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Bacterial small RNAs (sRNAs) are important post-transcriptional regulators of gene
expression. The functional and evolutionary characterization of sRNAs requires the
identification of homologs, which is frequently challenging due to their heterogeneity,
short length and partly, little sequence conservation. We developed the GLobal
Automatic Small RNA Search go (GLASSgo) algorithm to identify sRNA homologs in
complex genomic databases starting from a single sequence. GLASSgo combines an
iterative BLAST strategy with pairwise identity filtering and a graph-based clustering
method that utilizes RNA secondary structure information. We tested the specificity,
sensitivity and runtime of GLASSgo, BLAST and the combination RNAlien/cmsearch
in a typical use case scenario on 40 bacterial sRNA families. The sensitivity of the
tested methods was similar, while the specificity of GLASSgo and RNAlien/cmsearch
was significantly higher than that of BLAST. GLASSgo was on average ∼87 times faster
than RNAlien/cmsearch, and only ∼7.5 times slower than BLAST, which shows that
GLASSgo optimizes the trade-off between speed and accuracy in the task of finding
sRNA homologs. GLASSgo is fully automated, whereas BLAST often recovers only parts
of homologs and RNAlien/cmsearch requires extensive additional bioinformatic work to
get a comprehensive set of homologs. GLASSgo is available as an easy-to-use web
server to find homologous sRNAs in large databases.

Keywords: sRNA, prediction, homology search, ncRNA, bacteria, Rfam, comparative genomics, graph-based
clustering

INTRODUCTION

Small regulatory RNAs (sRNAs) are important regulators of gene expression in bacteria (Wagner
and Romby, 2015). In recent years, the number of identified bacterial sRNAs has increased
dramatically, but their functional characterization is lagging behind, requiring the development
of novel technologies and approaches (Barquist et al., 2015). An initial step in the validation
of candidate sRNAs from computational predictions or transcriptomic analyses is to test for
their evolutionary conservation. A phylogenetically conserved sRNA is, e.g., more likely to be of
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functional importance. Moreover, comparative computational
tools for the prediction of sRNA targets (Wright et al., 2013,
2014), for the calculation of a potentially conserved secondary
structure (Bernhart et al., 2008; Katoh and Toh, 2008; Smith
et al., 2010) and for the prediction of small open reading
frames of potential µ-proteins or dual function sRNAs (Washietl
et al., 2011) require the input of multiple members of an sRNA
family. In high-throughput dRNA-seq/RNA-seq experiments, the
comparative approach can be also used to predict potential
sRNAs from scratch (Lott et al., 2017).

Homologous sRNAs are conserved both at the sequence
and the structure level. For each set of homologous sRNAs
it is unclear how much additional information can be gained
when considering the secondary structures besides their primary
sequences. However, the importance of the secondary structure
as a feature increases when the overall sequence conservation
drops (Nawrocki and Eddy, 2013a). Hence, methods for the
prediction of sRNA homologs (reviewed in reference Freyhult
et al., 2006) are based on sequence comparison or the
combination of sequence and structure information. Tools
like, e.g., BLASTn (Altschul et al., 1990) or profile hidden
Markov models (Madera and Gough, 2002; Lindgreen et al.,
2014) use the primary sequence for predictions. Probabilistic
models (covariance models, CM) as implemented in Infernal
(Nawrocki and Eddy, 2013b) utilize the conserved sequence
and secondary structure of an RNA family, thereby gaining
additional information to detect homologs with low sequence
conservation. However, the construction of CMs requires a
structurally annotated single sequence or a multiple sequence
alignment. The Rfam database (Nawrocki et al., 2015) contains
pre-built models for a limited set of currently approximately 500
sRNA families, which can be used to scan (meta) genome or
transcriptome data with Infernal. Therefore, a common strategy
to systematically find homologs of a newly detected sRNA from
a so far undescribed family starts with searching databases for
homologous sequences, e.g., by BLASTn, followed by manual
curation of the candidate list and generation of a multiple
sequence/structure alignment. These information are used to
build a CM (Reinkensmeier et al., 2011; Lagares et al., 2016)
with which additional homologs can be searched with high
specificity. Each of these steps either requires extensive manual
action, or a solid background in bioinformatics. These facts
represent a high entry barrier for non-expert users (Menzel
et al., 2009). The tool RNAlien (Eggenhofer et al., 2016)
has automated the first step of this approach and allows
unsupervised CM construction on a web server. Despite this
advance, the user is still left with the task to use the CM
to search for new homologs in sequence databases. While
this sounds trivial, it actually requires the user to download
sequence databases, install the Infernal software and run the tool
using the command line. All these steps represent substantial
barriers for experimental biologists. To solve these problems,
we developed a fully automated workflow that combines the
speed of BLAST, a high specificity, as known for CM-based
approaches, with an easy access for wet lab users. Our tool
GLASSgo is based on an iterative BLASTn search strategy with
pairwise identity filtering. To account for the conservation of

RNA secondary structures, we additionally developed a fast,
graph-based, clustering method called Londen. Within a few
minutes, GLASSgo automatically generates sets of conserved
sRNAs that need no, or only little manual curation. These sets are
ideally suited for comparative genomics analyses, the description
of new RNA families (for submission to Rfam) and to study their
evolution and phylogenetic distribution. GLASSgo is accessible
via an easy-to-use web server1. Furthermore, the source code
of GLASSgo is available at GitHub2 and a Docker image at
DockerHub3.

MATERIALS AND METHODS

Sequence-Based Search
BLASTn (version 2.2.30+) and the NCBI ‘nt’ database (from
November 08, 2015) were used for sequence similarity searches.
Hits with an E-value lower or equal to a predefined threshold
are considered for the further analyses. The BLAST algorithm
often returns local hits that are shorter than the original
query sequence, therefore we apply an asymmetric sequence
extension. It computes the ranges of the missing parts with
respect to the homologous part in the query sequence and
extracts the information from e.g. the NCBI ‘nt’ database via
the blastdbcmd tool from the NCBI BLAST+ suite. Based on a
global sequence alignment (Gotoh, 1982), the pairwise identity
of each hit to the query sequence was computed. For performing
a pairwise sequence comparison, the “pairwise2.align.globalms”
function from the Biopython module pairwise2 was used with the
parameter settingmatch = 2,mismatch =−1, gapOpen =−0.5 and
gapExtend = −0.1. For our benchmark, we restricted the BLAST
search to the phylum of the respective input sequence and used
an E-value of 1.

Sequence Based Homolog Classification
and Sequence Selection for Iterative
BLAST Search
After the BLAST search the sequences are classified according
to their global pairwise sequence identity to the query (PI).
BLASTn requires ∼60-65% sequence identity to identify a
significant similarity for typical sRNAs (Nawrocki and Eddy,
2013a). We decided to choose a conservative threshold for true
homolog classification based on sequence similarity independent
of sRNA length and database size. Thus hits with a PI > 70%
are considered “true homologs,” those with a PI between the
lower PI threshold (default: 52%) and 70% are considered
“candidate homologs.” The “candidate homologs” are evaluated
by a secondary structure based clustering as described below.
To increase the sensitivity of GLASSgo, selected hits with a PI
between 65 and 80% are used for re-blasting. From hits with a PI
in the intervals (65, 70) and (70, 80) we select up to 45 each and
from the interval (80, 100) we take up to 10 hits. This set forms the
query for a new round of BLAST searching, sequence extension

1http://rna.informatik.uni-freiburg.de/GLASSgo/
2https://github.com/lotts/GLASSgo_GI-Version
3https://hub.docker.com/r/lotts/glassgo_gi_version/
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and PI based filtering. The repeated blasting potentially generates
duplicated sequences that are collapsed prior to the next steps.

Sequence Based Pre-clustering as Input
for Structural Analysis
The input sequences were roughly pre-grouped based on
their pairwise sequence identity calculated with the Clustal
Omega k-tuple method (Sievers et al., 2011). Only one
representative sequence (selection described below) of each
group is subsequently analyzed with RNApdist (Bonhoeffer
et al., 1993; Hofacker et al., 1994; Lorenz et al., 2011) and
used for the clustering by Londen (described below). This
step reduces the runtime and prevents the existence of too
similar sequences, which could result in relatively short branches
and subsequently in a strict small cutting radius. This could
interfere with the automatic scaling procedure of Londen.
As shown in Supplementary Figure S3 we first select the
most distant sequence to the query as representative for later
processing. All sequences that have a similarity ≥85% to
this representative sequence were grouped and excluded from
the similarity matrix prior to the next iteration. From the
remaining sequences we again select the sequence with the
lowest PI to the query and collect its neighborhood with a
similarity ≥85%. This procedure is repeated until no sequence
remains. In contrast to, e.g., single linkage clustering on
a pairwise identity matrix this approach prevents chaining,
i.e., the linkage of very dissimilar sequences due to a single
intermediate observation. If one of the representatives is classified
as structurally similar to a positive sequence (i.e., the query
or a true positive hit) by Londen (see next paragraph), all
respective group members are classified as structurally similar.
While not extensively screened, all sequence based similarity
thresholds were roughly optimized based on the 40 benchmark
sRNAs.

Structure Based Clustering (Londen)
For the representative sequences from the above described
sequence based pre-grouping algorithm we applied RNApdist
(Bonhoeffer et al., 1993; Hofacker et al., 1994; Lorenz et al.,
2011) (version 2.2.5) to compute a pairwise secondary structure
distance matrix, which is used to perform structure-based
clustering. Sequences in a cluster that contains at least one
true homolog or the input sequence itself, will be defined
as true homologs. For the clustering, we introduced a new
approach that is inspired by graph-based clustering (Zahn, 1971).
Graph-based clustering works on a minimum spanning tree
and generates a clustering by removing inconsistent edges, i.e.,
edges, whose length is significantly larger than the length of
neighboring edges. It can be considered as an improvement
of single-linkage clustering that prevents chaining. Instead of a
minimum spanning tree as in the original graph-based clustering,
we relied on neighbor-joining (NJ) to generate a spanning tree.
NJ was shown to produce biologically correct trees in several
studies and outperforms other distance-based methods (Saito
and Imanishi, 1989; Huelsenbeck, 1995). Thus, we first calculate
a cluster tree using NJ based on the structure distance matrix

that was calculated with RNApdist. Then we identify inconsistent
edges as follows: Let H¬ei be the set of edges connected to
node i excluding edge e, and Le the length of edge e. For an
edge e that connects nodes i and j, we compute the mean

length M of the respectively connected edges, i.e., Me
i =

∑
k∈H¬ei

Lk

|H¬ei |

and Me
j =

∑
k∈H¬ej

Lk

|H¬ej |
Londen supports two cutting methods, called

single cut and double cut mode. In single cut mode, edge e is
removed if Le > λ · Me

i or Le > λ · Me
j . In double cut mode,

edge e is removed, if Le > λ · Me
i and Le > λ · Me

j . The factor
λ controls the stringency of the procedure. Londen inspects all
edges of the NJ tree, resulting in a, possibly unary, set of trees
(the cutting procedure is visualized in Figure 1B). From this
we select the trees (clusters) that contain the query sequence
and/or or a true positive hit and report all enclosed sequences.
Through the GLASSgo web server, the user can manually change
λ (called “Manual value for filtering” in the interval [0, 3], default
value 2); otherwise, GLASSgo adjusts λ automatically based on
the following strategy: We estimate the sequence diversity by
the ratio r = α/β, where α is the number of sequences with
pairwise identity PI ≥ 60% and β the number of sequences
with PI < 60% and at least 2. If r < 1 (single-cut mode)
λ = min(0.29∗log10(L) + r, 2.4), else (r ≥ 1, double-cut mode)
=min(0.01∗ log10(L)+ r, 2.4), where L is the sequence length.
In case of a manually set λ, GLASSgo uses the double-cut
mode. By changing the parameter (−l, –londen_mode), it can
be switched from the double-cut mode to the single-cut mode
(not provided on the web server version). The used Londen
parameters were optimized on the 40 benchmark RNAs. To
evaluate the adjusted parameters, we tested GLASSgo on 15
additional sRNA families and compared the results to BLAST. For
this new set GLASSgo reached a total true positive (TP) number
of 3,777 [69 false positives (FPs), a mean positive predictive value
(PPV = TPs/(TPs + FPs)] of 0.986 and a minimum PPV of
0.79. The data for each family are available in Supplementary
Datasheet S2.

Test Case Design
For the benchmark, we selected 40 Rfam sRNA representatives
from various bacterial phyla and published evidence of actual
transcription. The sRNAs cover a sequence length range of
61–429 nucleotides. The input sequences for the benchmark were
the first entries in the respective Rfam seeds of the benchmark
sRNA families. The selected 40 Rfam families are: RF00034,
RF00035, RF00057, RF00111, RF00117, RF00444, RF00503,
RF01389, RF01391, RF01395, RF01399, RF01402, RF01408,
RF01460, RF01471, RF01472, RF01476, RF01477, RF01493,
RF01675, RF01783, RF01820, RF01828, RF02050, RF02072,
RF02099, RF02237, RF02238, RF02243, RF02273, RF02353,
RF02376, RF02377, RF02378, RF02405, RF02417, RF02452,
RF02502, RF02503, and RF02677. The used sequences for each
family are available in Supplementary Datasheet S1. The 15
Families used to evaluate the adjusted parameters were: RF00039,
RF00079, RF00083, RF00166, RF00195, RF00378, RF00616,
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FIGURE 1 | (A) Main steps of the GLASSgo workflow. (B) Illustrates the function of the tree based structural filter Londen. The leaves of the tree represent the
predicted homologs (gray circles) and internal nodes (blue, pink, and green circles) represent respective hypothetical common ancestors. Londen decides for each
internal node if the node and the corresponding leaves should be divided from the initial tree to build an independent tree/cluster, or if the node should stay
connected to the adjacent internal node(s). Therefore the mean of the length of all edges connected to a specific internal node is calculated and multiplied with the
stringency factor λ (In this example λ = 2) to get the cutting radius. If an adjacent edge is longer than the cutting radius, the edge is cut. In consequence a higher
stringency factor leads to less stringent cutting because the cutting radius will be higher. The stringency factor is automatically calculated in the range of based on
the input sequence length. Londen features two cutting modes. The more stringent “single cutting mode” cuts between two inner nodes if the cutting radius of at
least one of both nodes indicates a separation. In the “double cutting mode” both cutting radiuses are needed to support a separation.

RF01116, RF01416, RF01701, RF01808, RF01816, RF02394,
RF02396, and RF02552.

cmsearch
The tool cmsearch comes with Infernal [v1.1.2 (July 2016)] and
allows to search covariance models against a given sequence

database (Nawrocki and Eddy, 2013b). To make the results of
cmsearch comparable to those of GLASSgo and BLAST, we used
the same phylum-specific databases. Default parameter settings
were used and only significant hits (as indicated by cmsearch)
were considered for further analyses. The cmsearch tool also finds
fragments shorter than the sequences that led to the CM model.
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For the benchmark analysis, all hits with a sequence length <70%
of the original input were discarded.

cmscan
The tool cmscan comes with Infernal [v1.1.2 (July 2016)] and
allows to search a sequence against its related covariance model.
cmscan is used to evaluate all predicted sequences coming
from GLASSgo, RNAlien/cmsearch as well as BLAST vanilla.
The classified sRNA homologs are available in Supplementary
Datasheet S1.

RNAlien
We created a docker container (v1.12.6) based on openSUSE
42.2 Leap and installed RNAlien4 version 1.3.7. Furthermore, we
installed the following dependencies: RNAz (v2.1) (Gruber et al.,
2009), ViennaRNA Package (v2.3.4) (Lorenz et al., 2011), Infernal
(v1.1.2) (Nawrocki and Eddy, 2013b), RNAcode (v0.3) (Washietl
et al., 2011) and LocARNA (v1.9.2) (Smith et al., 2010).

Synteny Analysis
For the synteny analysis, amino acid sequences of all protein-
coding genes overlapping a window 3 kb up- and downstream of
the sRNA locus were extracted from the respective Genbank files
and clustered with CD-HIT (Huang et al., 2010) using a sequence
identity threshold of 0.4 and a word size of 2. Furthermore,
for clustering, the alignment needs to cover at least 60% of the
longer sequence. A visualization of the gene neighborhood of
all RF00111 homologs predicted by GLASSgo is given in the
Supplementary Datasheet S3.

Pairwise Diversity Analysis as Proxy for
Sensitivity and Complexity
The pairwise diversity for each Rfam family is computed by
taking all predicted sequences per family into account that are
classified as true positives by cmscan. We calculated the pairwise
similarity for each detected TP homolog to the respective query.
This is done for the GLASSgo results, the RNAlien/cmsearch
results and the extended BLAST results. For performing a
pairwise sequence comparison, the same software package and
parameters, as described for “Sequence based search,” were used.

Runtime Analysis
The 40 selected Rfam sRNA representatives from the
benchmark were used to analyze the runtime of GLASSgo,
RNAlien/cmsearch and BLAST. All three algorithms are
successively applied on the same dedicated infrastructure
and the runtime (single core) was measured using the Linux
time command. Calculations were carried out on a dual-CPU
system (Intel Xeon Broadwell E5-2680 v4, 2.40GHz) with
128GB DDR4 SDRAM running on 2400MHz. Bandwidth of the
internet connection has been measured (speedtest-cli v1.0.6)5 at
45/75Mbit/s (Download/Upload) against servers at Swift Systems
(ID: 246) located 60 km north of the NCBI (Bethesda, MD,
United States).

4https://github.com/eggzilla/RNAlien
5https://pypi.python.org/pypi/speedtest-cli/

Taxonomic Tree
In order to get an overview of the taxonomic distribution of the
detected GLASSgo hits, the GLASSgo web server provides an
interactive taxonomic tree of the organisms harboring a predicted
sRNA homolog. Therefore, the taxonomic identifier of each
GLASSgo hit is used to compute the taxonomic path up to the
root node. Multiple occurring paths are merged and counted.
Finally, the tree is transferred into JSON format and visualized
via a JavaScript application.

RESULTS

GLASSgo Workflow
The GLASSgo workflow consists of 4 major steps (Figure 1A).
The first step is a sequence search with BLAST, providing a set of
putative homologs of the input sRNA. Second the sequences are
classified based on their pairwise identity to the input sequence
(PI). Hits with a PI > 70% are directly taken as true homologs
due to their high sequence conservation. Hits with a PI between
70% and an adjustable lower PI threshold (default 52%) are
considered candidate homologs and further analyzed based on
their secondary structure in a tree based clustering approach in
step three. BLAST hits with a PI below the threshold are not
considered any further. In step four, positive structural clusters
are filtered and the corresponding sequences as well as their true
homologs are returned in a FASTA file as homologs of the input
sRNA. The taxonomic distribution of the respective organisms
is furthermore visualized in an interactive tree (provided on the
web server version).

The main new contribution of GLASSgo to the field of sRNA
homolog prediction is the application of a tree/graph-based
clustering approach called “Londen” to group sRNAs with a
similar secondary structure (Figure 1B). To this end we compute
the distances between the putative homologs based on their RNA
secondary structure ensembles using RNApdist (Hofacker et al.,
1994). The resulting pairwise distance matrix is used to construct
a neighbor joining tree, which is clipped by an auto-adaptive

TABLE 1 | Overview of benchmark results.

GLASSgo RNAlien/cmsearch BLAST

True positives
(TP)

Mean 229.4 244.1 216.9

Median 83.0 82.5 117.0

Maximum 1434 1417 1446

False positives
(FP)

Mean 2.13 0.1 354.4

Median 0.0 0.0 27.5

Maximum 18 1 7042

PPV Mean 0.99 1.00 0.67

Median 1.00 1.00 0.78

Maximum 1.00 1.00 1.00

Minimum 0.85 0.98 0.01

Run time [s] Mean 191 12308 26

Median 92 10660 12

Maximum 2409 26258 275

Minimum 4.8 4039 1.55
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FIGURE 2 | Number of true positive (TP) and false positive (FP) hits per Rfam sRNA family detected by GLASSgo, RNAlien/cmsearch and BLAST. FP hits are
accumulated on top of the bars and displayed in red. Families where RNAlien detected no homologs are indicated by “no model.” The inlay in the lower part shows
the cumulated TP and FP numbers for all 40 families. The name of the sRNA as used in literature is given next to the Rfam ID of the respective sRNA family. The
superscript letters indicate the verification method for the respective sRNA (N, Northern Blot; R, RNAseq; M, Microarray). Functionally characterized sRNAs are
indicated by two asterisks (∗∗). For the RF00111 GLASSgo prediction (marked by “!”) the number of TPs and FPs is given both based on the cmscan result and the
refined result including the synteny analysis.

procedure to generate clusters of sRNAs with similar secondary
structures. In order to decide which clusters likely contain true
homologs of the query sRNA we use the true positive hits and
the query sRNA as references. Each cluster containing at least
one of these reference sequences is considered as positive cluster
and all candidate hits within these positive clusters are considered
as true homologous sRNAs. A more detailed visualization of the
workflow is given in Supplementary Figure S1.

Benchmark With Known sRNAs
GLASSgo was tested on 40 sRNAs from the Rfam database
(Nawrocki et al., 2015). The selected sRNAs are 61 to 429
nucleotides long and originate from various taxa. Only sRNAs
with published evidence for their actual transcription were
considered. We compared the performance of GLASSgo in
terms of specificity, sensitivity and runtime with BLAST and

a combination of RNAlien and cmsearch (Nawrocki and
Eddy, 2013b; Eggenhofer et al., 2016). For BLAST alone
we used the same parameters as in the BLAST step of
GLASSgo (E-value = 1, taxon specific databases). To test the
RNAlien/cmsearch combination we first built models for all
sRNA families with RNAlien and then used these models to
scan the same taxon specific databases with cmsearch that
were used for GLASSgo as well as BLAST. Only hits that
covered at least 70% of the query sequence and were classified
as “significant” by cmsearch were considered further. Detailed
benchmark results are given in Supplementary Datasheet S2, a
summarized overview is given in Table 1.

Sensitivity and Specificity
In order to calculate sensitivity and specificity it is necessary to
know the numbers of true positives (TPs) and false positives
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FIGURE 3 | Positive predictive values (PPV) for all predictions from GLASSgo,
RNAlien/cmsearch and BLAST. The p-value of a Kruskal–Wallis test for a
significant difference between two distributions is shown if ≤ 0.05. The lowest
PPV for each method is indicated by a broken horizontal line and the
respective value. The four sRNA families which are not present in the
RNAlien/cmsearch prediction are colored in orange. The PPV of the GLASSgo
RF00111 prediction based on cmscan alone and with the additional synteny
analysis are given as green dots.

(FPs) as well as false negative predictions (FNs). This would
require knowledge about the number of true sRNA homologs
for each Rfam family in the NCBI database. However, since
we benchmarked on real life data, the actual “biological truth”
is unknown. In order to get a realistic measure of TPs and
FPs we used the respective CMs from Rfam to evaluate all
predicted candidates with cmscan. The quantity and the sequence
diversity of the detected homologs was then used as a proxy for
the sensitivity. GLASSgo detected in total 9,182 TP homologs
(79 FPs). Initially, cmscan classified 292 sRNA homologs as
FPs, but as described below cmscan missed 213 TPs for
RF00111/SdsR which could be verified by gene neighborhood
analysis. RNAlien/cmsearch detected 8,788 TP (4 FP) homologs
and BLAST found 8,674 TPs (14,175 FPs). RNAlien could
not build CM models for 4 sRNA families corresponding
to 10% of the benchmark. The hits per Rfam family are
given in Supplementary Datasheet S2 and displayed in
Figure 2. GLASSgo and RNAlien/cmsearch had a high specificity
(Figure 3) with an average positive predictive value (PPV) of
0.986 and 0.999, respectively. The respective worst performing

families in GLASSgo (PPV = 0.85) and RNAlien/cmsearch
(PPV = 0.98) showed no dramatic decrease in specificity. BLAST
had a mean PPV of 0.692 and 22/40 families with a PPV below
0.8. The FASTA files with all GLASSgo, RNAlien/cmsearch and
BLAST predictions are available in Supplementary Datasheet S1.

RF00111 – SdsR
There was only one benchmark sRNA family where the specificity
of GLASSgo seemingly dropped below 0.8. Based on the cmscan
analysis, GLASSgo detected 877 TPs and 220 FPs for RF00111
(RyeB or SdsR). In order to analyze the reason for this high
number of FPs we inspected the gene neighborhood (synteny)
of the predicted homologs. A reasonable sequence conservation
together with a conserved synteny is a strong indicator that
the sequences are indeed related and originate from a common
ancestor, as has been shown for MmgR or SgrS (Horler and
Vanderpool, 2009; Lagares et al., 2016). Initially, SdsR was
described to have a conserved synteny with the yebY gene at the 5′
site and no conserved synteny at the 3′ site (Fröhlich et al., 2012).
In some strains, e.g., Salmonella enterica ATCC BAA-1592 (SdsR
homolog has 98% identity to query) a prophage or prophage
fragment appears at the 3′ side of SdsR. The predicted homologs
from 213/220 of the FP classified homologs are located in vicinity
of a homologous prophage, as shown in Figure 4. In a likely
scenario, the phage transferred a part of SdsR to another genomic
location. A multiple alignment of predicted homologs with high
and low sequence identity to the query shows that the putatively
phage-transferred SdsR homologs have a high conservation at the
3′ end and a low conservation in the 5′ part. This indicates that
only a part of SdsR was transferred by the phage (Supplementary
Figure S2). Interestingly, some of these homologs are classified
as TPs by cmscan with a high E-value (e.g., S. enterica ATCC
9150, E-value: 4.7e-05), but only one nucleotide difference causes
an E-value below the threshold (e.g., S. enterica EC20120697,
E-value: 0.013) (Supplementary Figure S2). In conclusion, these
predicted homologs are very likely descendants of a true SdsR
homolog and hence no FPs. This likely also applies to some of
the SdsR homologs predicted by BLAST. However, the original
5′ part including the promoter sequences are likely missing and
it is unclear if these sequences are transcribed. In consequence,
the actual PPV for the GLASSgo prediction of the RF00111
family is 0.993.

Diversity of TP sRNA Homologs
All tools detected considerable numbers of true homologs. We
analyzed if these high numbers are only due to “trivial” hits with
nearly perfect sequence identity to the input or if they truly reflect
a high sensitivity. Possible methods to investigate the diversity
would address their taxonomic distribution or the sequence
diversity of the TP hits. For the sake of simplicity, we calculated
for all benchmark families the pairwise sequence identities for
each TP homolog to the respective query (Figure 5A). The lower
the observed pairwise sequence identities, the more diverse the
analyzed sequences. Thus, we defined the maximum pairwise
diversity (mPD) to the query, i.e., mPD = 100%-min(PI[%]).
Using only the mPD as measure, GLASSgo results were more
diverse than those of RNAlien/cmsearch in 11 cases and less
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FIGURE 4 | Synteny analysis of three homologs of RF00111/SdsR that are classified as TPs and a homolog that was classified as FP by cmscan. The TPs have a
sequence identity of 98.02% to the query sequence and the supposedly FP has a sequence identity of 54.69% in comparison to the query. All 4 predicted homologs
are located in vicinity to a putative prophage (black box). Homologous genes have matching background colors. Genes without homologs are colored gray.

diverse in 29 cases. Compared to BLAST, GLASSgo results were
more diverse in 6 cases, equally diverse in 6 cases and less
diverse in 28 cases. BLAST results were more diverse than
RNAlien/cmsearch results in 25 cases and less diverse in 15
cases. Figure 5B shows that the mPD of GLASSgo is capped
at 48%, due to the default PI threshold of 52%. On a closer
look, Figure 5A shows that the mPD was often dominated by
single highly diverse sequences (e.g., RF01395, RF01828, and
RF2072). In order to get a better measure of the overall diversity
within the detected homologs, we additionally calculated the
per family mean diversity (Figure 5C) and median diversity
(Figure 5D). Again, BLAST results showed the highest overall
diversity, while GLASSgo and RNAlien/cmsearch performed
equally good with slightly higher medians for the GLASSgo
results. The diversity values for each family are available in
Supplementary Datasheet S2.

Runtime
GLASSgo is designed for large-scale analyses of hundreds of
sRNAs, e.g., detected in transcriptomic studies, which renders its
runtime a critical factor. We compared the job execution times
for each of the 40 Rfam queries on a single CPU for GLASSgo,
RNAlien/cmsearch and BLAST. The mean and median execution
times for GLASSgo were 191.1 and 91.6 s, respectively, while the
maximum runtime was 2,409 seconds. The runtime of RNAlien
in combination with cmsearch was roughly two orders of
magnitude higher with mean, median and maximum execution
times of 16,760 (87.7 times slower than GLASSgo), 13,380 (146.1
times slower than GLASSgo) and 43,590 s, respectively. The
bulk of the runtime is due to the CM construction by RNAlien.
BLAST was the fastest method with mean, median and maximum
execution times of 25.7 (7.4 times faster than GLASSgo), 12.2 (7.5
times faster than GLASSgo) and 275 s, respectively (Figure 6).
The time for the sequence fetching of the BLAST hits is included

in this analysis. The individual runtimes per sRNA family are
given in Supplementary Datasheet S2.

The Web Server
GLASSgo is provided as an easy-to-use web server6. In default
mode, with the parameter settings used in this benchmark,
the only required input is the sequence of an sRNA of
interest. However, there are several options for customization to
optimize the homolog prediction for an individual sRNA. It is
recommended to limit the BLAST search to a specific taxonomic
group (e.g., Bacteria or Proteobacteria). Sensitivity and specificity
can be modulated by lowering or increasing the E-value and
the lower PI thresholds. The structural filtering (Londen) can
be switched off to increase sensitivity. In the default mode, the
filter is automatically adjusted to the length of the input sRNA
as well as the ratio of the sequence numbers with a PI ≥ 60%
and those <60% related to the query. For a short sRNA with
less information at sequence level, the Londen filter is stricter
than for a longer sRNA. In custom mode, the structural-filtering
value can be relaxed (higher values) or tightened (lower values).
The main output of GLASSgo is a FASTA file with all predicted
homologs. Additionally, the phylogenetic distribution of the hits
is visualized along a taxonomic tree.

DISCUSSION

The search for homologs is often the first step in the
functional characterization of an sRNA. A phylogenetically
conserved sRNA is more likely to be of functional importance
and less likely to be a sequencing artifact or the result of
noisy transcription. GLASSgo allows to discover homologous

6http://rna.informatik.uni-freiburg.de/GLASSgo/
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FIGURE 5 | Diversity of the homologs of the 40 benchmark sRNA families in the GLASSgo, RNAlien/cmsearch and BLAST predictions. (A) Diversity displayed as the
maximum pairwise diversity to the query (mPD) mPD = 100–(thelowestPI[]foreachsRNAfamily). (B) Boxplots of the per family mPDs. (C) Boxplots of the mean per
family diversities of all TP homologs to the respective query. (D) Boxplots of the median per family diversities of all TP homologs to the respective query. The p-Value
of a Kruskal–Wallis test for a significant difference between two distributions in the panels (B–D) is shown if ≤ 0.05. The respective values for each family are given in
Supplementary Datasheet S2.

sRNA sequences from scratch. We compared GLASSgo with
two existing homolog prediction approaches, BLAST and the
RNAlien/cmsearch combination. BLAST is fast and implemented

on a well-established web server that can be easily used by
non-experts to find homologous (nucleotide) sequences of all
kinds. That makes it an obvious starting point also for sRNA
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FIGURE 6 | Comparison of the runtimes of GLASSgo, RNAlien/cmsearch and
BLAST for the 40 benchmark predictions. RNAlien could not build a
covariance model for four families, for these families only the runtime of
RNAlien is plotted (orange dots). The p-value of a Kruskal–Wallis test for a
significant difference between two distributions is shown if ≤ 0.05.

homolog prediction. BLAST was the fastest approach detecting
an equal total number of TPs compared to the other two
approaches. However, BLAST produced also by far the most
FPs and had the by far lowest specificity. The combination
of RNAlien and cmsearch reached the highest specificity with
all PPVs above 0.98. Considering the whole distribution of
diversities for all families, both RNAlien/cmsearch and GLASSgo
performed equally well. A major drawback was that RNAlien
could not built CMs for 4 families representing 10% of the
benchmark sRNAs and hence no homologs could be predicted.
Due to the complex workflow, RNAlien/cmsearch has a roughly
two orders of magnitude higher runtime than GLASSgo, which
hinders large-scale surveys as well as quick analyses for an
sRNA of immediate interest. Furthermore, extensive additional
bioinformatic work is necessary to use the CMs from RNAlien
with cmsearch, which restricts its usefulness for non-expert users.

One of the main goals of GLASSgo was to ease the
accessibility for non-expert users. Therefore, we provide a web
server which is easy to use and directly displays the predicted
homologs ready for downstream analyses. We showed that
GLASSgo is only 7.5 times slower than BLAST and has a high
specificity which is only slightly lower than the specificity of
RNAlien/cmsearch. Furthermore, GLASSgo is as sensitive as
the RNAlien/cmsearch combination. The GLASSgo workflow
is highly flexible and can be easily adapted by the user. If

desired, the sensitivity of GLASSgo can be enhanced without
affecting the specificity by re-running the tool with a TP that
has a relatively low pairwise identity to the query (<70%) as
new input sequence. In cases where highest sensitivity is of
interest and specificity is less important, the structural filtering
of GLASSgo can be switched off. The BLAST output is then
filtered only by the sequence identity to the query, with the
additional benefit of the asymmetric sequence extension and
the iterative search procedure. To enhance the usability, the
synteny analysis presented in this paper (Figure 4) as well
as direct transfer of the GLASSgo output to the CopraRNA
target prediction tool (Wright et al., 2013, 2014) is planned
to be implemented in the next version of the web server.
It is also worth investigating how the graph-based clustering
approach of GLASSgo performs for other classes of structured
non-coding RNAs like, e.g., miRNA precursors, riboswitches,
or CRISPR repeats, where the information content at sequence
level is lower. We are convinced that GLASSgo will boost the
high-throughput functional classification of sRNAs. This is of
high interest for diverse disciplines, ranging from fundamental
research to biotechnology and medicine.
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FIGURE S1 | The GLASSgo algorithm. First, GLASSgo conducts a low stringency
BLASTn (default E-value = 1) search with a single sRNA sequence query against
the NCBI nucleotide collection (step 1). The BLAST search can be restricted to
specific taxonomic domains or phyla. Short local BLAST hits are extended, based
on the pairwise local BLAST alignment to match the length of the query (step 2).
Hits with a global pairwise sequence identity (PI) to the query that is greater or
equal to a given threshold (default PI: 52%) are considered for the following steps
(3). Next, the sequences are grouped based on their PI (step 4). Hits with a
PI > 70% are directly stored and considered as true positives (TPs). Sequences
with a PI between the lower PI threshold and 70% are considered as candidate
homologs and analyzed together with the true positive hits by the structure-based
filter module via graph-based clustering. The true positive hits serve as references
for positive clusters. Hits between 65 and 80% are candidates for re-blasting, to
increase the sensitivity of GLASSgo. A set of up to 100 hits is selected from
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these candidates (step 5). From hits with a PI in the intervals (65, 70) and (70, 80)
we select up to 45 each and from the interval (80, 100) we take up to 10 hits. This
set forms the query for a new round of BLAST searching, sequence extension and
PI based filtering (steps 1–4). The repeated blasting with up to 100 new queries
potentially generates a high number of duplicated sequences, which are removed
(step 6) before the sequences are pre-clustered based on their pairwise sequence
identity (step 7) to generate sequence similarity based clusters (clusterseq) (step 8).
This step reduces the runtime and prevents the existence of too similar leaves in
the resulting tree, which could interfere with the automatic scaling procedure of
Londen. One representative of each clusterseq is used to compute pairwise
distances based on the RNA secondary structure ensembles using RNApdist
(Hofacker et al., 1994) (step 9). The resulting distance matrix is used by Londen to
construct a neighbor joining tree (NJ), which is clipped by an auto-adaptive
procedure to generate structure based clusters (clusterstruc). All clusterstruc that
include the input sequence or a true positive hit are considered as positive clusters
and retained (steps 10 + 11). If a representative of a clusterseq is part of a positive
clusterstruc, all other members of this clusterseq are automatically considered as
positives (step 12). Sequences confirmed by Londen and true positive hits are
merged together and constitute the result of GLASSgo (step 13). The output is a
FASTA file with all predicted homologs and a taxonomic tree of the respective
organisms.

FIGURE S2 | Mafft multiple sequence alignment of selected RF00111 homologs
including partial promoter sequences. The sequence of RF00111/SdsR is boxed
in red. Homologs with are likely transferred by a phage are boxed in black.
Sequence “a” is classified as TP by cmscan. Sequence “b” with only one base
difference to sequence “a” is classified as FP by cmscan.

FIGURE S3 | Visualization of the sequence based pre-clustering of the BLAST hits
prior to the structure based clustering.

DATASHEET S1 | This zip folder contains four subfolders
‘main_test_cases-0_raw_data’, ‘main_test_cases-1_cm_evaluated_raw_data’,
‘additional_test_cases-0_raw_data’ and
‘additional_test_cases-1_cm_evaluated_raw_data’. In each folder with the prefix
‘main_test_cases’, there are three files, one represents the BLAST analysis, one

the GLASSgo analysis and one the RNAlien analysis. Instead, the folders with the
prefix ‘additional_test_cases’ contain only one file. All files have the same
underlying data format. Each sub result starts with its relating RFAM ID, e.g.,
‘#RF00111’ followed by the data in FASTA format. The first entry after the given
RFAM ID represents the query sequence. This sequence was used to perform the
search/prediction and at the end of an FASTA header, the taxonomic ID was
introduced for the BLAST, GLASSgo as well as the additional test cases. For the
GLASSgo, RNAlien/CMscan as well as the additional test cases, the pairwise
sequence identity related to the query sequence is available, e.g.,
‘p.c.VAL:98.02%’. All files in the ‘∗-0_raw_data’ folder are unfiltered and
represents the search/prediction results, containing false as well as true positives.
The files in folder ‘∗-1_cm_evaluated_raw_data’ were evaluated with cmscan and
each sequence was either classified as TP (CM-MODEL_TRUE) or as FP
(CM-MODEL_FALSE).

DATASHEET S2 | (Sheet 1) Benchmark results of the three compared
approaches for each of the 40 sRNA families. The number of true positives (TPs)
and false positives (FPs) is given with regard to our verification pipeline for
GLASSgo, RNAlien/cmsearch and BLAST. The specificity is expressed as the
positive predictive value (PPV). The run-time for each analysis on a single CPU is
given in seconds (time). For RNAlien/cmsearch, the run-times for the CM
generation by RNAlien (time Alien) and for the library scan with cmsearch (time
cms) are given separately and combined (time comb.) We used the pairwise
diversity of all detected TP homologs to the query as a proxy for the sensitivity of
the tools. Therefore, we calculated the maximal pairwise diversity to the query
sequence (mPD), the mean pairwise diversity to the query sequence (mean PD)
and the median pairwise diversity to the query sequence (median PD). (Sheet 2)
Results of the GLASSgo sRNA homolog prediction for 15 additional sRNA families
which were used to test the adjusted parameters of GLASSgo.

DATASHEET S3 | Synteny analysis of all homologs of RF00111/SdsR that are
predicted by GLASSgo. All genome regions are centered around the predicted
RF00111/SdsR homolog drawn in red. Homologous genes have matching
background colors. Genes without homologs are colored gray and genes without
amino acid sequence information in the genbank file (e.g., pseudo-genes) are
white.

REFERENCES
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic

local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-
2836(05)80360-2

Barquist, L., Lars, B., and Jörg, V. (2015). Accelerating discovery and functional
analysis of small RNAs with new technologies. Annu. Rev. Genet. 49, 367–394.
doi: 10.1146/annurev-genet-112414-054804

Bernhart, S. H., Hofacker, I. L., Will, S., Gruber, A. R., and Stadler, P. F. (2008).
RNAalifold: improved consensus structure prediction for RNA alignments.
BMC Bioinformatics 9:474. doi: 10.1186/1471-2105-9-474

Bonhoeffer, S., McCaskill, J. S., Stadler, P. F., and Schuster, P. (1993). RNA
multi-structure landscapes. A study based on temperature dependent partition
functions. Eur. Biophys. J. 22, 13–24.

Eggenhofer, F., Hofacker, I. L., and Höner Zu Siederdissen, C. (2016). RNAlien
- Unsupervised RNA family model construction. Nucleic Acids Res. 44,
8433–8441. doi: 10.1093/nar/gkw558

Freyhult, E. K., Bollback, J. P., and Gardner, P. P. (2006). Exploring genomic dark
matter: a critical assessment of the performance of homology search methods
on noncoding RNA. Genome Res. 17, 117–125. doi: 10.1101/gr.5890907

Fröhlich, K. S., Papenfort, K., Berger, A. A., and Vogel, J. (2012). A conserved RpoS-
dependent small RNA controls the synthesis of major porin OmpD. Nucleic
Acids Res. 40, 3623–3640. doi: 10.1093/nar/gkr1156

Gotoh, O. (1982). An improved algorithm for matching biological sequences.
J. Mol. Biol. 162, 705–708. doi: 10.1016/0022-2836(82)90398-9

Gruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L., and Stadler, P. F. (2009).
RNAz 2.0: improved noncoding RNA detection. Pac. Symp. Biocomput. 15,
69–79. doi: 10.1142/9789814295291_0009

Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and
Schuster, P. (1994). Fast folding and comparison of RNA secondary structures.
Monatsh. Chem. Chem. Mon. 125, 167–188. doi: 10.1007/BF00818163

Horler, R. S. P., and Vanderpool, C. K. (2009). Homologs of the small
RNA SgrS are broadly distributed in enteric bacteria but have diverged
in size and sequence. Nucleic Acids Res. 37, 5465–5476. doi: 10.1093/nar/
gkp501

Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). CD-HIT Suite: a web server
for clustering and comparing biological sequences. Bioinformatics 26, 680–682.
doi: 10.1093/bioinformatics/btq003

Huelsenbeck, J. P. (1995). Performance of phylogenetic methods in simulation.
Syst. Biol. 44, 17–48. doi: 10.1093/sysbio/44.1.17

Katoh, K., and Toh, H. (2008). Improved accuracy of multiple ncRNA alignment
by incorporating structural information into a MAFFT-based framework. BMC
Bioinformatics 9:212. doi: 10.1186/1471-2105-9-212

Lagares, A. Jr., Roux, I., and Valverde, C. (2016). Phylogenetic distribution and
evolutionary pattern of an α-proteobacterial small RNA gene that controls
polyhydroxybutyrate accumulation in Sinorhizobium meliloti. Mol. Phylogenet.
Evol. 99, 182–193. doi: 10.1016/j.ympev.2016.03.026

Lindgreen, S., Umu, S. U., Lai, A. S.-W., Eldai, H., Liu, W., McGimpsey, S.,
et al. (2014). Robust identification of noncoding RNA from transcriptomes
requires phylogenetically-informed sampling. PLoS Comput. Biol. 10:e1003907.
doi: 10.1371/journal.pcbi.1003907

Lorenz, R., Ronny, L., Bernhart, S. H., zu Siederdissen, C. H., Hakim, T.,
Christoph, F., et al. (2011). ViennaRNA package 2.0. Algorithms Mol. Biol. 6:26.
doi: 10.1186/1748-7188-6-26

Lott, S. C., Wolfien, M., Riege, K., Bagnacani, A., Wolkenhauer, O.,
Hoffmann, S., et al. (2017). Customized workflow development and data
modularization concepts for RNA-sequencing and metatranscriptome
experiments. J. Biotechnol. 261, 85–96. doi: 10.1016/j.jbiotec.2017.
06.1203

Madera, M., and Gough, J. (2002). A comparison of profile hidden Markov model
procedures for remote homology detection. Nucleic Acids Res. 30, 4321–4328.
doi: 10.1093/nar/gkf544

Frontiers in Genetics | www.frontiersin.org 11 April 2018 | Volume 9 | Article 124

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1146/annurev-genet-112414-054804
https://doi.org/10.1186/1471-2105-9-474
https://doi.org/10.1093/nar/gkw558
https://doi.org/10.1101/gr.5890907
https://doi.org/10.1093/nar/gkr1156
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1142/9789814295291_0009
https://doi.org/10.1007/BF00818163
https://doi.org/10.1093/nar/gkp501
https://doi.org/10.1093/nar/gkp501
https://doi.org/10.1093/bioinformatics/btq003
https://doi.org/10.1093/sysbio/44.1.17
https://doi.org/10.1186/1471-2105-9-212
https://doi.org/10.1016/j.ympev.2016.03.026
https://doi.org/10.1371/journal.pcbi.1003907
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1016/j.jbiotec.2017.06.1203
https://doi.org/10.1016/j.jbiotec.2017.06.1203
https://doi.org/10.1093/nar/gkf544
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00124 April 13, 2018 Time: 14:54 # 12

Lott et al. GLASSgo – Detection of sRNA Homologs

Menzel, P., Gorodkin, J., and Stadler, P. F. (2009). The tedious task of finding
homologous noncoding RNA genes. RNA 15, 2075–2082. doi: 10.1261/rna.
1556009

Nawrocki, E. P., Burge, S. W., Bateman, A., Daub, J., Eberhardt, R. Y., Eddy, S. R.,
et al. (2015). Rfam 12.0: updates to the RNA families database. Nucleic Acids
Res. 43, D130–D137. doi: 10.1093/nar/gku1063

Nawrocki, E. P., and Eddy, S. R. (2013a). Computational identification of functional
RNA homologs in metagenomic data. RNA Biol. 10, 1170–1179. doi: 10.4161/
rna.25038

Nawrocki, E. P., and Eddy, S. R. (2013b). Infernal 1.1: 100-fold faster RNA
homology searches. Bioinformatics 29, 2933–2935. doi: 10.1093/bioinformatics/
btt509

Reinkensmeier, J., Schlüter, J.-P., Giegerich, R., and Becker, A. (2011). Conservation
and occurrence of trans-encoded sRNAs in the Rhizobiales. Genes 2, 925–956.
doi: 10.3390/genes2040925

Saito, T., and Imanishi, N. (1989). Relative efficiencies of the Fitch-Margoliash,
maximum-parsimony, maximum-likelihood, minimum-evolution, and
neighbor-joining methods of phylogenetic tree construction in obtaining the
correct tree. Mol. Biol. Evol. 6, 514–525. doi: 10.1093/oxfordjournals.molbev.
a040572

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al.
(2011). Fast, scalable generation of high-quality protein multiple sequence
alignments using Clustal Omega. Mol. Syst. Biol. 7:539. doi: 10.1038/msb.
2011.75

Smith, C., Heyne, S., Richter, A. S., Will, S., and Backofen, R. (2010).
Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA
and LOCARNA. Nucleic Acids Res. 38, W373–W377. doi: 10.1093/nar/
gkq316

Wagner, E. G. H., and Romby, P. (2015). Small RNAs in bacteria and archaea:
who they are, what they do, and how they do it. Adv. Genet. 90, 133–208.
doi: 10.1016/bs.adgen.2015.05.001

Washietl, S., Findeiss, S., Müller, S. A., Kalkhof, S., von Bergen, M., Hofacker, I. L.,
et al. (2011). RNAcode: robust discrimination of coding and noncoding regions
in comparative sequence data. RNA 17, 578–594. doi: 10.1261/rna.2536111

Wright, P. R., Georg, J., Mann, M., Sorescu, D. A., Richter, A. S., Lott, S., et al.
(2014). CopraRNA and IntaRNA: predicting small RNA targets, networks and
interaction domains. Nucleic Acids Res. 42, W119–W123. doi: 10.1093/nar/
gku359

Wright, P. R., Richter, A. S., Papenfort, K., Mann, M., Vogel, J., Hess, W. R.,
et al. (2013). Comparative genomics boosts target prediction for bacterial
small RNAs. Proc. Natl. Acad. Sci. U.S.A. 110, E3487–E3496. doi: 10.1073/pnas.
1303248110

Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt
clusters. IEEE Trans. Comput. C20, 68–86. doi: 10.1109/T-C.1971.223083

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Lott, Schäfer, Mann, Backofen, Hess, Voß and Georg. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 12 April 2018 | Volume 9 | Article 124

https://doi.org/10.1261/rna.1556009
https://doi.org/10.1261/rna.1556009
https://doi.org/10.1093/nar/gku1063
https://doi.org/10.4161/rna.25038
https://doi.org/10.4161/rna.25038
https://doi.org/10.1093/bioinformatics/btt509
https://doi.org/10.1093/bioinformatics/btt509
https://doi.org/10.3390/genes2040925
https://doi.org/10.1093/oxfordjournals.molbev.a040572
https://doi.org/10.1093/oxfordjournals.molbev.a040572
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1093/nar/gkq316
https://doi.org/10.1093/nar/gkq316
https://doi.org/10.1016/bs.adgen.2015.05.001
https://doi.org/10.1261/rna.2536111
https://doi.org/10.1093/nar/gku359
https://doi.org/10.1093/nar/gku359
https://doi.org/10.1073/pnas.1303248110
https://doi.org/10.1073/pnas.1303248110
https://doi.org/10.1109/T-C.1971.223083
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	GLASSgo – Automated and Reliable Detection of sRNA Homologs From a Single Input Sequence
	Introduction
	Materials and Methods
	Sequence-Based Search
	Sequence Based Homolog Classification and Sequence Selection for Iterative BLAST Search
	Sequence Based Pre-clustering as Input for Structural Analysis
	Structure Based Clustering (Londen)
	Test Case Design
	cmsearch
	cmscan
	RNAlien
	Synteny Analysis
	Pairwise Diversity Analysis as Proxy for Sensitivity and Complexity
	Runtime Analysis
	Taxonomic Tree

	Results
	GLASSgo Workflow
	Benchmark With Known sRNAs
	Sensitivity and Specificity
	RF00111 – SdsR
	Diversity of TP sRNA Homologs
	Runtime

	The Web Server

	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References


