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Abstract: Efficient computational tools for the identification of putative target RNAs regulated by prokaryotic sRNAs
rely on thermodynamic models of RNA secondary structures. While they typically predict RNA–RNA in-
teraction complexes accurately, they yield many highly-ranked false positives in target screens. One obvious
source of this low specificity appears to be the disability of current secondary-structure-based models to reflect
steric constraints, which nevertheless govern the kinetic formation of RNA–RNA interactions. For example,
often—even thermodynamically favorable—extensions of short initial kissing hairpin interactions are kineti-
cally prohibited, since this would require unwinding of intra-molecular helices as well as sterically impossible
bending of the interaction helix. In consequence, the efficient prediction methods, which do not consider such
effects, predict over-long helices. To increase the prediction accuracy, we devise a dynamic programming
algorithm that length-restricts the runs of consecutive inter-molecular base pairs (perfect canonical stackings),
which we hypothesize to implicitely model the steric and kinetic effects. The novel method is implemented by
extending the state-of-the-art tool INTARNA. Our comprehensive bacterial sRNA target prediction benchmark
demonstrates significant improvements of the prediction accuracy and enables 3-4 times faster computations.
These results indicate—supporting our hypothesis—that length-limitations on inter-molecular subhelices in-
crease the accuracy of interaction prediction models compared to the current state-of-the-art approach.

1 INTRODUCTION

Small RNAs (sRNAs) are central regulators in
prokaryotic cells (Storz et al., 2011). For instance,
they can trigger mRNA decay (Lalaouna et al., 2013)
or modulate translation (Hoe et al., 2013) via di-
rect inter-molecular base pairing. Different mech-
anisms are known (detailed e.g. in (Nitzan et al.,
2017)) like the blocking of the ribosomal binding site
causing translation inhibition or the (de-)stabilization
of mRNAs by covering (or providing) binding sites
of RNAases. The sRNA–RNA interactions typically
contain a small nearly perfect subinteraction of about
7 base pairs (known as seed region) (Künne et al.,
2014) and have been shown to be located at acces-
sible regions that are mainly unpaired (Richter and
Backofen, 2012). Thus, beside general RNA–RNA
interaction prediction approaches (reviewed e.g. in
(Wright et al., 2018)), dedicated prediction tools like
INTARNA (Busch et al., 2008) or RNAPREDATOR
(Eggenhofer et al., 2011) have been developed and

applied (Li et al., 2012). Recently, fast heuristics
for genome-wide screens have been implemented,
e.g. RIBLAST (Fukunaga and Hamada, 2017) and
RISEARCH2 (Alkan et al., 2017).

For elucidating the regulatory network of sRNAs,
target prediction is applied (Backofen et al., 2014)
to guide experimental validation. While the essen-
tial bioinformatics machinery for this task is avail-
able (Backofen et al., 2017), computational meth-
ods still predict a high number of false positive tar-
gets. The latter can be reduced when individual tar-
get predictions of homologous sequences (Lott et al.,
2018) are combined in comparative approaches like
COPRARNA (Wright et al., 2014). Unfortunately,
this technique is only applicable for the identification
of evolutionary conserved targets. Another option is
to incorporate experimental structure probing data to
emend the RNAs’ accessibility information (Miladi
et al., 2019). Integrating probing data, which can be
obtained from high-throughput experiments (Choud-
hary et al., 2017), can significantly alleviate the prob-



lem of inaccurate accessibility prediction. However, it
does not touch—and is even orthogonal to—the here
discussed issues of target prediction.

In this work, we study means to efficiently im-
prove sRNA target prediction by restricting the ad-
missible interaction patterns. This is hypothesized to
incorporate steric and kinetic aspects going beyond
the thermodynamic secondary structure-based mod-
els. Specifically, our method is motivated by the ob-
servation that interacting sites of sRNAs are either
not enclosed by any base pairing (exterior) or located
within loop regions. For loop regions, the forma-
tion of (long) inter-molecular helices (i.e. the entan-
gling of the RNA molecules) requires the ‘unwinding’
of intra-molecular helices, which imposes additional
constraints on the substantial steric rearrangements
(rotating large parts of the molecules through space)
while the interaction grows. Consequently, the forma-
tion of long inter-molecular duplexes seems to be pro-
hibited, even if it would be expected in the currently
used thermodynamic models due to high hybridiza-
tion stability and sufficient accessibility. This well-
known phenomenon has been studied in the context
of other loop-initiated RNA–RNA interactions (Kolb
et al., 2000; Brunel et al., 2002).

Concretely, we test whether interaction predic-
tion can be improved by explicitly constraining the
maximal length of inter-molecular helices, which—
as we conjecture—indirectly considers steric and ki-
netic constraints. While preserving tractability, limit-
ing this length ensures that long helices must be in-
terrupted by interior loops—which is thought to re-
lax the ‘winding tension’. We provide efficient dy-
namic programming algorithms both for exact as well
as heuristic interaction prediction, incorporating the
new helix-length constraint (in addition to the well-
established seed constraint of previous approaches).
The approach is incorporated into INTARNA (Mann
et al., 2017), a state-of-the-art RNA–RNA interaction
prediction tool (Umu and Gardner, 2017). Finally,
we assess the effect of the helix-length constraints on
a large prokaryotic sRNA target prediction data set
extending (Wright et al., 2013). In this benchmark,
the helix length limitation reduces the overall runtime
and, supporting our conjecture, improves the predic-
tion quality.

2 METHODS

In the following, we will first present the recur-
sions used by the current state-of-the-art prediction
approaches like RNAUP (Mückstein et al., 2006) or
INTARNA (Mann et al., 2017). Subsequently, we in-

troduce the new recursions for helix-length restricted
prediction. First, all recursions are given for ex-
haustive/optimal interaction prediction, followed with
a discussion how they can be turned into efficient
heuristic variants. To ease readability, we provide
graphical recursion depictions and provide respective
formulas in the Appendix.

2.1 Accessibility-based Interaction
Prediction

Given two RNAs S1,S2 of length n,m, resp., we want
to find the interaction sites i..k ∈ [1,n] of S1 and
j..l ∈ [1,m] of S2 that minimize the interaction en-
ergy E(i, j,k, l). That is, we are interested in the most
stable interaction of an sRNA with a given putative
target. This interaction energy can then be used for
target ranking and the selection of the most promis-
ing candidates.

The interaction sites are considered free of intra-
molecular base pairs and can only form inter-
molecular base pairs. Two positions of the RNAs
can form a base pair if the respective nucleotides
are complementary (i.e. AU, GC, or GU). We con-
sider only sites where the boundaries are forming two
inter-molecular base pairs (i, j),(k, l). No two inter-
molecular base pairs (x,y),(x′,y′) ∈ [1,n]× [1,m] are
allowed to be crossing, i.e. it holds x ≤ x′ ↔ y ≤
y′, nor allowed to share a position within the same
RNA. Following the Nearest Neighbor energy model
(Tinoco Jr et al., 1973), the hybridization or du-
plex formation energy of a site is thus given by
the sum of the loop energies (Turner and Mathews,
2010) defined by consecutive base pairs. Here, we
distinguish between directly neighbored base pairs,
scored by ES terms, and neighbored base pairs that
enclose unpaired positions, evaluated by EIL terms.
The hybridization energy also contains a general en-
ergy penalty term Einit that, to some extent, reflects
the probability of interaction initiation. The optimal
(minimal) hybridization energy among all possible in-
teractions of the sites is given by H(i, j,k, l). The en-
ergy penalty ED needed to break all intra-molecular
base pairs within the individual sites is used to incor-
porate the sites’ accessibility for interaction forma-
tion. The overall energy of a site is thus given by

E(i, j,k, l) = H(i, j,k, l)+ED(i..k)+ED( j..l). (1)
All energy terms presented in the following are given
in kcal/mol unit and are computed using the Vienna
RNA package (Lorenz et al., 2011) version 2.4.4. For
simplicity, we exclude dangling-end and helix-end
contributions within Eq. 1. For formalisms, we refer
to the detailed introduction provided in (Raden et al.,
2018).



=

=

Figure 1: Sketch of the state-of-the-art recursion to compute
the optimal interaction energy without further constraints.

Figure 2: Recursion depictions to compute canonical helix
energies helix (top) using energy terms ES for stacked base
pairs and the optimal energy H (bottom) for a given inter-
action site using the energy terms EIL for interior loops.

ED terms can be efficiently computed via dy-
namic programming (Bernhart et al., 2011). This
leaves the computation of the optimal interaction en-
ergy H, also accessible via dynamic programming
(Mückstein et al., 2006). Figure 1 visualizes the cen-
tral recursion that either scores an initial base pair
(Einit ) or extends a shorter optimal interaction with
a stacked base pair (ES) or an interior loop contribu-
tion (EIL). All individual energy contributions Einit ,
ES and EIL are +∞ if the respective boundary indices
are non-complementary, i.e. can not form a base pair.
Note, interior loop sizes (p-r and q-s) are typically re-
stricted to a fixed maximal length w� n,m, which re-
sults in a runtime complexity of O(n2m2). A heuristic
variant of this recursion available in INTARNA with
O(nm) runtime was introduced in (Busch et al., 2008).
The base pairs of an optimal interaction with energy
H(i, j,k, l) can be obtained via traceback if of interest.

2.2 Helix-length Restricted Prediction

In order to restrict the length of inter-molecular he-
lices to a predefined constant cB≥ 2, referred to as he-
lix length, we decompose the prediction process into
two steps: (a) the energy pre-computation of possi-
ble helices composed of at most cB base pairs, and (b)
their assembly in order to find the optimal interaction
energy for a given site.

For simplicity, we first consider canonical he-
lices, i.e. perfect helices composed of stacked base
pairs only. Adaptions to non-canonical helices con-

taining small bulges and interior loops are discussed
in a subsequent section. Figure 2 shows the recur-
sion to compute the energy of canonical helices with
the left-/right-most inter-molecular base pair (i, j) <
(k, l), resp., stored in helix(i, j,k, l). The length con-
straint cB is ensured for canonical helices by set-
ting all entries to +∞ if the helix is too long, i.e.
max(k− i, l − j) ≥ cB. Note, for non-canonical he-
lices, helix(i, j,k, l) will contain the optimal energy
of any helix fulfilling the relaxed constraints.

Given this, the optimal hybridization energy
H(i, j,k, l) for the given interaction sites i..k and j..l
can be computed via the recursion depicted in Fig. 2.
That is, we either consider a full helix (if possible for
the given boundaries) or compose an interaction via
the addition of a new helix (on the left) to extend a
smaller optimal interaction. The composition inserts
an interior loop between the helix and the next inter-
action to ensure that no two helices are combined into
a longer one. Thus, the interior loop has to span at
least one unpaired position, i.e. (p− r)+(q− s)> 2,
and is constrained in length as for the recursions dis-
cussed before. Since both helix length as well as in-
terior loop length are constrained by respective con-
stants cB and w, the overall runtime complexity is still
O(n2m2).

2.3 Enforcing Seed Constraints in
Helix-length Restricted Prediction

As already discussed, seed-constraints are a central
tool to reduce false positive sRNA target predictions
(Tjaden et al., 2006; Bouvier et al., 2008). Within IN-
TARNA, possible seed interactions and respective en-
ergies are efficiently computed via dynamic program-
ming analogously to the presented helix energy pre-
processing; please refer to (Busch et al., 2008) for de-
tails. In the following, the optimal energy for the seed
with left-/right-most base pairs (i, j),(k, l), resp., are
stored in seed(i, j,k, l).

In order to ensure that a reported interaction con-
tains a seed region, we follow the approach presented
in (Busch et al., 2008). Therein, a second dynamic
programming table HS is computed based on H that
provides the optimal energy for a site given that the
considered interaction contains a seed region. The op-
timal energy of a site with seed is then given by

E(i, j,k, l) = HS(i, j,k, l)+ED(i..k)+ED( j..l) (2)

replacing Eq. 1.
Since seeds are valid parts of helices, which are

the building blocks for our introduced H computation,
we use a second auxiliary matrix helixS that provides
the optimal helix energy given that the helix contains



Figure 3: Depiction of the decomposition strategy for the
computation of the optimal energy of a helix containing a
seed helixS (top) and the best hybridization energy HS (bot-
tom) enforcing both the helix and seed constraint.

a seed. If the region contains no valid seed or this
would lead to too many base pairs, the energy is set
to +∞. Figure 3 depicts the recursion in order to fill
helixS based on the already introduced helix informa-
tion that is combined with the seed energy. To this
end, all possible locations of a seed combined with
flanking helices are evaluated. Due to the indepen-
dence of the seed and helix constraints, it is possible
to allow unpaired bases in the seed, even when not
allowing unpaired bases in the helix constraints and
vice versa.

Given this, the optimal hybridization energy HS
for a given site containing a seed and only helices
with at most cB base pairs, can be computed using
a recursion as depicted in Fig. 3. That is, either (i)
the site can be filled with a single helix containing a
seed (plus accounting for interaction initiation), or (ii)
a helix-length-constrained interaction site is extended
with a seed-containing helix, or (iii) we extend an in-
teraction that contains already a seed with a helix that
is not constrained to contain a seed.

2.4 Enforcing a Minimal Helix Stability

Given our focus on helices, we can easily enforce ad-
ditional constraints on the helices that are considered
for interaction composition. As the first step, we in-
troduce a minimal stability notion via an upper hy-
bridization energy bound Ehelix

max for individual helices.
Since energy is inversely related to stability, our ap-
proach will produce interaction patterns of stable sub-
helices connected by interior loop regions.

The energy threshold can be easily incorporated
into the presented recursions by extending the com-
putation of H and HS from Fig. 2 and 3, resp., with
side conditions. That is, entries from helix or helixS
are only considered, if the respective energy value is
below the given threshold Ehelix

max .

-1

Figure 4: Recursion depiction to compute the optimal hy-
bridization energy helixU (i, j,k, l,B) for non-canonical he-
lices with exactly B base pairs and interior loops containing
at most cU unpaired bases, i.e. (p− i)+ (q− j) ≤ cU + 2
and analogously for the second case.

2.5 Consideration of Non-canonical
Helices

So far, we only considered canonical helices for the
computation of helix. While this models the most sta-
ble helices that can be formed, minor variance of this
ideal, i.e. allowing for bulges or interior loops span-
ning only single or very few unpaired bases, will still
resemble a stable helix. But considering stable helices
only (using Ehelix

max ) would likely exclude such helices
if the canonical subhelices are too short. Thus, we
next discuss how the hybridization energy helix for
helices including minor bulges of at most cU unpaired
bases can be computed. We consider an interior loop
as minor if cU ≤ 2.

To this end, we introduce the auxiliary matrix
helixU (i, j,k, l,B) that provides the optimal helix hy-
bridization energy for the given site boundaries and
the number of base pairs B while allowing minor
bulges of size cU . Figure 4 depicts the respective re-
cursion. Note, the boundaries p,q considered for inte-
rior loops are constrained to (p− i)+(q− j)≤ cU +2.
The optimal helix hybridization energy helix(i, j,k, l)
is thus given by helixU (i, j,k, l,cB). Note, enforcing
the helices to be stable (via Ehelix

max ) will without further
constraints exclude helices composed of bulges only.

In addition to the altered helix computation, we
also have to ensure that the helices assembled within
the H and HS computation are spaced by interior
loops exceeding cU . That is, it holds for Fig. 2 and 3
that (r − p) + (s− q) > cU + 2. Note that setting
cU = 0 will provide the same results as if using canon-
ical helices only.

2.6 Heuristic Helix-length Restricted
Prediction

Due to the high time and space complexity of the ex-
act approach, we implemented heuristic variants of
the recursions following the ideas from (Busch et al.,
2008) introduced for INTARNA. That is, instead of
considering all interaction ranges for a given left-most
base pair (i, j), only the optimal right boundary (k, l)



together with the respective hybridization energy is
stored in H and HS. Thus, for a given left-most base
pair (i, j), the recursions from above are not confined
to a specific right k, l bound but use the right end of
the respective optimal recursion case. Please refer to
(Busch et al., 2008) for further details. This heuris-
tic reduces the space and time complexity to O(nm),
provides almost the same prediction quality (Umu and
Gardner, 2017), and makes the approach feasible for
the needed large-scale target screens also discussed in
the Result section.

Here, we apply this strategy not only to H and HS
but also to the helix and helixS matrices. That is, we
only memorize the best helix energy (and right bound-
ary) for each left-most helix base pair (i, j). Note,
both matrices have to be computed using small aux-
iliary matrices that replace the respective recursions.
Note further, the computation of H and HS becomes
more simple, since we do not consider different helix
lengths (via p and q) but only use the right-most base
pair of the best helix with left-most base pair (i, j).

3 RESULTS

To evaluate our introduced predictors concerning
their sRNA target prediction performance, we intro-
duce the manually curated benchmark data used sub-
sequently.

3.1 Data Set for sRNA Target
Prediction Benchmark

We investigate whether a restriction on inter-
molecular helix lengths could improve the overall pre-
diction accuracy of INTARNA. To this end, we cre-
ated an sRNA target prediction benchmark extending
the ideas and data from (Wright et al., 2013). The
whole benchmark data set including respective scripts
is available at

https://github.com/BackofenLab/IntaRNA-benchmark.

The benchmark consists of a large set of bacterial
sRNA queries and potential target sequences. We re-
strict our analysis to sRNA regulation based on the
blocking of the ribosomal binding site (see (Nitzan
et al., 2017) for a discussion). Thus, the targets
are genomic sub-regions around the start codon of
the respective mRNA including 200 nucleotides up-
stream and 100 nucleotides downstream, since many
sRNAs that regulate translation bind their target in
a region around the start codon. Sequences are ex-
tracted from the GenBank database of the National

Centre for Biotechnology Information (NCBI) (Ben-
son et al., 2008). The dataset comprises 4,319 target
regions from the E.coli genome (GenBank accession
number NC 000913) and 4,552 target regions from
the Salmonella typhimurium genome (NC 003197).
The query data set consists of 15 sRNAs from E. coli
and 15 from Salmonella, which have been shown ex-
perimentally to act as post-transcriptional regulators
by base-pairing to at least one of the target mRNAs.

To evaluate the performance, we follow the ap-
proach from (Tjaden et al., 2006). To this end, we
extracted 149 sRNA-mRNA pairs from the literature
that have been experimentally verified to interact.
Within the benchmark, we test how well these veri-
fied pairs can be separated from all possible sRNA-
mRNAs pairs. That is, we predict the optimal interac-
tion energy E for each of the 15 sRNAs in E.coli with
any of the 4,319 putative target regions. The same is
done for the Salmonella data set. As a result, there are
in total 133,065 potential sRNA-target interactions
and respective interaction energy estimates. From
these, only the mentioned 149 query-target pairs are
supported, leaving 132,916 unsupported pairs. Fi-
nally, we test whether interactions of the verified pairs
have lower optimal energy estimates compared to the
unsupported interactions. In other words, we evalu-
ate the ranks of the supported pairs within the energy
score distribution over all putative targets. That is, the
more verified interactions are predicted with low rank,
the more precise is the target prediction approach. A
detailed description of the technical part is available
in the Appendix.

3.2 Helix-length Constraints Enable
Faster Predictions and Improve
Prediction Quality

As reference and ”gold standard” for the evaluation of
our helix-length restricted approach, we use the pre-
diction performance of INTARNA version 2.2.0 us-
ing default values (i.e. heuristic predictions including
seeds) on the introduced benchmark data set using a
seed of length 7 for all predictions. In the following,
we refer to this version with ”original”.

Effect of maximal helix length

We have extended INTARNA with implementations
of our heuristic recursions, which enables clean com-
parisons for both prediction quality as well as space
and runtime requirement of the computations. Fig-
ure 5 compares the results for different maximal helix
length values cB with the original predictions. The
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Figure 5: Effect of different maximal canonical helix
lengths cB in terms of the recovery of verified sRNA-target
pairs among the top ranked predictions compared to the
original INTARNA results (red curve). The inset shows the
differences to the original results (red).

curves visualize the total number of verified sRNA-
target pairs within the respective top-ranked predic-
tions for each sRNA. That is the higher the curve the
better the recovery rate of the verified targets. To ease
comparisons, the inset shows the difference between
the results of the original version (red curve) and the
respective helix-length constrained predictions.

For low cB values, we observe a reduced predic-
tion accuracy compared to the original recursions. In
contrast, maximal helix lengths of 11-13 show much
improved recovery rates and provide the overall best
results. For cB = 11, we observe the highest recov-
ery improvement of additional 2.7 verified targets on
average. Higher cB values have a lower prediction ac-
curacy that will eventually converge towards the un-
constrained original prediction results. These obser-
vations apply to all tested variants.

In addition to the higher prediction accuracy, the
constrained version is about 3-4 times faster com-
pared to the original version, while maintaining the
same memory consumption.

Effect of minimal helix stability

Next, we investigate whether the restriction to stable
helices can further improve the prediction quality. To
this end, we fixed the maximal helix length to cB = 11,
given the results from above, and tested different he-
lix hybridization energy thresholds Ehelix

max . Figure 6
summarizes the results. Ehelix

max = −7.5 shows best
performance with a recovery improvement of about
8 verified targets on average, which is about three-
times higher compared to cB = 11 results without sta-
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Figure 6: Effect of different maximal helix energies Ehelix
max

(maxE in the plot) on the prediction performance (maximal
canonical helix length cB = 11) analogously to Fig. 5.
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Figure 7: Overview of the best prediction performance for
canonical (can.) (maximal canonical helix length cB =
11) and non-canonical (cU = 2) (maximal canonical helix
length cB = 13) and the overall best Ehelix

max =−7.5 for both
methods. Plot analogously to Fig. 5.

bility constraint (see above). Note, all tested Ehelix
max

values above −7.5 provide improved prediction per-
formance. Too low thresholds (Ehelix

max =−10) exclude
too many helices to enable better target prediction.

Effect of non-canonical helices

When relaxing the helix definition to non-canonical
helices that are allowed to contain minor bulges or in-
terior loops with up to cU unpaired bases, the overall
prediction performance is not exceeding the canonical
helix variant. Here, best results are observed for cU =
2 and a maximal helix length cB = 13 while cB values



of 11-13 still show the best results (data not shown).
Figure 7 provides a comparison of the best parameter-
izations for the canonical and non-canonical approach
with and without Ehelix

max = −7.5 constraint. From this
it is obvious that a relaxation of the helix definition
does not improve the prediction quality compared to
stable canonical helices.

4 DISCUSSION & CONCLUSION

Predictions of helix-length constrained interac-
tions can be done with the same time and space com-
plexity as known for unconstrained RNA–RNA inter-
action prediction. In fact, the helix-length constraint
significantly reduces the search space such that we
observe on average a 3-4 times faster target predic-
tion for our benchmark data set. The reduced run-
time results from the following: compared to the cur-
rent state-of-the-art recursion from Fig. 1, the helix-
length constrained approach from Fig. 2 faces the
same search space for the interior loop sizes but ap-
pends full helices instead of individual base pairs.
This becomes even more striking for the heuristic
variant, which does not considered all possible helix
lengths but only the optimal helix for the left-most
base pair (i, j).

Furthermore, we observe enriched target predic-
tion accuracy measured in terms of increased recov-
ery rates of verified sRNA-target pairs known from
the literature. Maximal helix lengths cB of 11-13
base pairs show the best prediction quality, while
shorter drastically reduced the recovery rate. This
is mainly achieved by disregarding low-energy inter-
actions composed of many bulge and interior loops
(putative false positives) rather than altering the inter-
action details of the verified sRNA-target pairs. Re-
sults can be further improved when only stable he-
lices with an energy below a given threshold Ehelix

max
are considered for prediction. For helices of a maxi-
mal length of 11-13 base pairs, an upper energy bound
of −7.5kcal/mol provides the best target prediction
performance. Notably, the consideration of a relaxed
helix definition allowing for small bulge or interior
loops does not significantly improve the results com-
pared to perfect canonical helices but has slightly
higher runtime requirements.

Our observations support our hypothesis that long
inter-molecular helices are less likely due to steric and
kinetic constraint of the interaction formation process.
That is, we think the ’decomposed helix interaction
model’, where short stable helices are interrupted by
flexible interior loops, a more realistic model com-
pared to unconstrained predictions.

One way to further improve the model would be
to confine helix-length constrained predictions to re-
gions mainly unpaired in loop regions while applying
the unconstrained approach for exterior unpaired re-
gions. This can be efficiently distinguished during ED
computation from the underlying partition functions
(Mückstein et al., 2006; Bernhart et al., 2011). An-
other planned direction is to apply further constraints
on the helices considered within the prediction. For
instance, we will further investigate the correlation of
helix base pair number cB and optimal upper energy
bounds Ehelix

max , since they are most likely linked by the
average stacking energy or similar terms.

Even though we exemplified our new approach by
extending INTARNA, the concept is a generic one.
We therefore expect also other RNA–RNA interaction
prediction methods to profit from a restriction of inter-
molecular helix lengths.
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APPENDIX

A Benchmarking workflow

The benchmark workflow used for the creation of the
prediction accuracy plots is shown in Figure 8. First, for
each sRNA query, optimal interactions with all mRNA tar-
gets are predicted using INTARNA with a certain parameter
set. Then the resulting interactions are sorted according to
their energy values, from the most favourable, i.e. those
with the lowest values, to the least favourable. Finally, we
identify the rank of each verified target (considered a sup-
ported prediction). For each maximal rank value (later plot-
ted on the x-axis), we count the number of verified targets
for all sRNA queries that show a rank smaller or equal to
this.



This process is repeated for each benchmarked parame-
ter set. The data collected is then plotted. The x-axis of the
plot represents the maximal rank we consider for each result
file, e.g. a number of target predictions of 20 means that we
consider the 20 first lines of each result file and count how
many verified targets appear. This is covered by the y-axis,
which represents how many verified targets were among the
considered top-ranked target predictions. The violin plots
are generated by calculating the difference of a certain pa-
rameterization of INTARNA e.g. cB = 11 to the original
predictor. This reveals general trends of the different meth-
ods compared to the curve plot.
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Figure 8: Depiction of the benchmarking process.



B Formal Recursions

ES(i, j,k, l) =


(

energy contribution for
stacking base pairs (i, j),(k, l)

)
: if k− i = 1 and l− j = 1,

+∞ : otherwise

(3)

EIL(i, j,k, l) =


(

energy contribution for
stack or interior loop (i, j),(k, l)

)
: if i < k and j < l,

+∞ : otherwise

(4)

helix(i, j,k, l) =


min

{
ES(i, j, i+1, j+1)+helix(i+1, j+1,k, l)
ES(i, j,k, l)

: if canonical helix

helixU (i, j,k, l;cU ,cB) : otherwise

(5)

helixU (i, j,k, l;U,B) = min


min

p,q with
min(k−p,l−q)≥B−1
(p−i)+(q− j)≤U+2

(
EIL(i, j, p,q)

+helixU (p,q,k, l;U,B−1)

)
: if B > 2,

EIL(i, j,k, l) : otherwise.

(6)

helixS(i, j,k, l) = min
p,r
q,s

(
helix(i, j, p,q)+ seed(p,q,r,s)+helix(r,s,k, l)

)
(7)

H(i, j,k, l) = min


helix(i, j,k, l)+Einit

min
p,r,q,s with

(r−p)+(s−q)>cU+2
helix(i, j,k,l)≤Ehelix

max

(
helix(i, j, p,q)+EIL(p,q,r,s)+H(r,s,k, l)

)
(8)

HS(i, j,k, l) = min



helixS(i, j,k, l)+Einit

min
p,r,q,s with

(r−p)+(s−q)>cU+2
helixU (i, j,k,l)≤Ehelix

max

(
helixS(i, j, p,q)+EIL(p,q,r,s)+H(r,s,k, l)

)

min
p,r,q,s with

(r−p)+(s−q)>cU+2
helix(i, j,k,l)≤Ehelix

max

(
helix(i, j, p,q)+EIL(p,q,r,s)+HS(r,s,k, l)

) (9)


