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Efficient computational tools for the identification of putative target RNAs regulated by

prokaryotic sRNAs rely on thermodynamic models of RNA secondary structures. While

they typically predict RNA–RNA interaction complexes accurately, they yield many
highly-ranked false positives in target screens. One obvious source of this low specificity

appears to be the disability of current secondary-structure-based models to reflect steric

constraints, which nevertheless govern the kinetic formation of RNA–RNA interactions.
For example, often—even thermodynamically favorable—extensions of short initial kiss-

ing hairpin interactions are kinetically prohibited, since this would require unwinding
of intra-molecular helices as well as sterically impossible bending of the interaction he-
lix. Another source is the consideration of instable and thus unlikely subinteractions

that enable better scoring of longer interactions. In consequence, the efficient prediction
methods that do not consider such effects show a high false positive rate.

To increase the prediction accuracy we devise IntaRNAhelix, a dynamic programming

algorithm that length-restricts the runs of consecutive inter-molecular base pairs (perfect
canonical stackings), which we hypothesize to implicitely model the steric and kinetic ef-

fects. The novel method is implemented by extending the state-of-the-art tool IntaRNA.

Our comprehensive bacterial sRNA target prediction benchmark demonstrates signifi-
cant improvements of the prediction accuracy and enables more than 40-times faster

computations. These results indicate—supporting our hypothesis—that stable helix com-
position increases the accuracy of interaction prediction models compared to the current
state-of-the-art approach.

Keywords: RNA–RNA Interaction Prediction; Steric Constraints; Constrained Helix

Length; Canonical Helix; Seed.

1. INTRODUCTION

Small RNAs (sRNAs) are central regulators in prokaryotic cells26. For instance,

they can trigger mRNA decay15 or modulate translation12 via direct inter-molecular

base pairing. Different mechanisms are known (detailed e.g. in22) like the blocking
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of the ribosomal binding site causing translation inhibition or the (de-)stabilization

of mRNAs by covering (or providing) binding sites of RNAases. The sRNA–RNA

interactions typically contain a small nearly perfect subinteraction of about 7 base

pairs (known as seed region)14 and have been shown to be located at accessible re-

gions that are mainly unpaired25. Thus, beside general RNA–RNA interaction pre-

diction approaches (reviewed e.g. in32), dedicated prediction tools like IntaRNA8

or RNApredator10 have been developed and applied16. Recently, fast heuristics

for genome-wide screens have been implemented, e.g. sTarPicker34, RIblast11

or RIsearch21.

For elucidating the regulatory network of sRNAs, target prediction is applied2

to guide experimental validation. While the essential bioinformatics machinery for

this task is available3, computational methods still predict a high number of false

positive targets. The latter can be reduced when individual target predictions of ho-

mologous sequences18 are combined in comparative approaches like CopraRNA31.

Unfortunately, this technique is only applicable for the identification of evolutionary

conserved targets. Another option is to incorporate experimental structure prob-

ing data to amend the RNAs’ accessibility information20. Integrating probing data,

which can be obtained from high-throughput experiments9, can significantly allevi-

ate the problem of inaccurate accessibility prediction. However, it does not touch—

and is even orthogonal to—the here discussed issues of target prediction.

In this work, we study means to efficiently improve sRNA target prediction by

restricting the admissible interaction patterns. This is hypothesized to incorporate

steric and kinetic aspects going beyond the thermodynamic secondary structure-

based models. Specifically, our method is motivated by two observations.

Observation 1: Interacting sites of sRNAs are either not enclosed by any base

pairing (exterior) or located within loop regions. For loop regions, the formation of

(long) inter-molecular helices (i.e. the entangling of the RNA molecules) requires

the ‘unwinding’ of intra-molecular helices, which imposes additional constraints

on the substantial steric rearrangements (rotating large parts of the molecules

through space) while the interaction grows. Consequently, the formation of long

inter-molecular duplexes seems to be prohibited, even if it would be expected in the

currently used thermodynamic models due to high hybridization stability and suf-

ficient accessibility. This well-known phenomenon has been studied in the context

of other loop-initiated RNA–RNA interactions7,13.

Observation 2: Thermodynamic interaction prediction is based on summing

inter-molecular loop terms. Consequently, more loops, i.e. base pairs, enable lower

energies, especially if the overall interaction pattern is formed by stable parts (with

no or few bulges) that are linked by very instable subinteractions, which are com-

posed of a sequence of bulges and interior loops.

Here, we test whether interaction prediction can be improved by composing

interactions from helices rather than individual loops, which should amend for Ob-

servation 2. Furthermore, we explicitly constrain the maximal length of considered
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inter-molecular helices, which—as we conjecture—indirectly considers steric and

kinetic constraints. While preserving tractability, limiting this length ensures that

long helices must be interrupted by interior loops—which is thought to relax the

‘winding tension’ following Observation 1.

We provide efficient dynamic programming algorithms both for exact as well as

heuristic helix-based interaction prediction, incorporating the new helix-length con-

straint (in addition to the well-established seed constraint of previous approaches).

The approach is incorporated into IntaRNA19, a state-of-the-art RNA–RNA inter-

action prediction tool30, and available as individual tool IntaRNAhelix. Finally,

we assess the effect of the helix-length constraints on a large prokaryotic sRNA tar-

get prediction data set extending33. In this benchmark, the helix length limitation

reduces the overall runtime and, supporting our conjecture, improves the prediction

quality.

2. METHODS

In the following, we will first present the recursions used by the current state-

of-the-art prediction approaches like RNAup21 or IntaRNA19. Subsequently, we

introduce the new recursions for helix-length restricted prediction. First, all re-

cursions are given for exhaustive/optimal interaction prediction, followed with a

discussion how they can be turned into efficient heuristic variants. To ease read-

ability, we provide graphical recursion depictions and provide respective formulas

in the Appendix.

2.1. Accessibility-based Interaction Prediction

Given two RNAs S1, S2 of length n,m, resp., we want to find the interaction sites

i..k ∈ [1, n] of S1 and j..l ∈ [1,m] of S2 that minimize the interaction energy

E(i, j, k, l). That is, we are interested in the most stable interaction of an sRNA

with a given putative target. This interaction energy can then be used for target

ranking and the selection of the most promising candidates.

The interaction sites are considered free of intra-molecular base pairs and can

only form inter-molecular base pairs. Two positions of the RNAs can form a base

pair if the respective nucleotides are complementary (i.e. AU, GC, or GU). We con-

sider only sites where the boundaries are forming two inter-molecular base pairs

(i, j), (k, l). No two inter-molecular base pairs (x, y), (x′, y′) ∈ [1, n]× [1,m] are al-

lowed to be crossing, i.e. it holds x ≤ x′ ↔ y ≤ y′, nor allowed to share a position

within the same RNA. Following the Nearest Neighbor energy model27, the hy-

bridization or duplex formation energy of a site is thus given by the sum of the loop

energies29 defined by consecutive base pairs. Here, we distinguish between stacked

(directly neighbored) base pairs, scored by ES terms, and neighbored base pairs that

enclose unpaired positions, evaluated by EIL terms. The hybridization energy also

contains a general energy penalty term Einit that, to some extent, reflects the prob-

ability of interaction initiation. The optimal (minimal) hybridization energy among
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Fig. 1. Sketch of (left) the original IntaRNA recursions to compute the optimal interaction energy

without and with seed constraints and (right) the new variants that exclude lonely base pairs.

all possible interactions of the sites is given by H(i, j, k, l). The energy penalty ED

needed to break all intra-molecular base pairs within the individual sites is used to

incorporate the sites’ accessibility for interaction formation. The overall energy is

thus given by

E(i, j, k, l) = H(i, j, k, l) + ED1(i..k) + ED2(j..l). (1)

All energy terms presented in the following are given in kcal/mol unit and are com-

puted using the Vienna RNA package17 version 2.4.12. For simplicity, we exclude

dangling-end and helix-end contributions within Eq. 1. For formalisms, we refer to

the detailed introduction provided in24.

ED terms can be efficiently computed via dynamic programming5. This leaves

the computation of the optimal interaction energy H, also accessible via dynamic

programming21. Figure 1 (top-left) visualizes the central recursion that either scores

an initial base pair (Einit) or extends a shorter optimal interaction with a stacked

base pair (ES) or an interior loop contribution (EIL). All individual energy con-

tributions Einit, ES and EIL are +∞ if the respective boundary indices are non-

complementary, i.e. can not form a base pair. Note, interior loop sizes (p-i and q-j)

are typically restricted to a fixed maximal length w � n,m, which results in a run-

time complexity of O(n2m2). The base pairs of an optimal interaction with energy

H(i, j, k, l) can be obtained via traceback if needed. A heuristic variant of this re-

cursion available in IntaRNA with O(nm) runtime was introduced in8, which also
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Fig. 2. Recursion depictions (top-left) to compute canonical helix energies helix using energy terms
ES for stacked base pairs used for (top-right) to optimize energy H for a given interaction site using

the energy terms EIL for interior loops. (bottom-left) seed-containing helix helixS computation

to enable (bottom-right) seed-constraint helix-based predictions via HS .

incorporates seed constraints (see Fig. 1 (bottom-left) for a respective non-heuristic

variant).

Within this work, we also investigate a new prediction strategy that considers

only interactions without lonely base pairs (see Fig. 1 (right) for recursion depic-

tions). A base pair is lonely if it is not stacked on either side. In contrast to the

unconstraint variant, the seed-incorporating recursion of HS has to explicitely con-

sider interaction initialization via seeds (case 1) and the interior-loop-spaced seed

extension of an interaction (case 3). The recursions do not alter time nor space

complexity of the prediction.

2.2. Helix-length Restricted Prediction

In order to restrict the length of inter-molecular helices to a predefined con-

stant cB ≥ 2, referred to as helix length, we decompose the prediction process

into two steps: (a) the energy pre-computation of possible helices composed of at

most cB base pairs, and (b) their assembly in order to find the optimal interaction

energy for a given site.

For simplicity, we first consider canonical helices, i.e. perfect helices composed of

stacked base pairs only. Adaptions to non-canonical helices containing small bulges

and interior loops are discussed in a subsequent section. Figure 2 shows the recursion

to compute the energy of canonical helices with the left-/right-most inter-molecular

base pair (i, j) < (k, l), resp., stored in helix(i, j, k, l). The length constraint cB is

ensured for canonical helices by setting all entries to +∞ if the helix is too long, i.e.

max(k − i, l − j) ≥ cB . Note, for non-canonical helices, helix(i, j, k, l) will contain

the optimal energy of any helix fulfilling the relaxed constraints.

Given this, the optimal hybridization energy H(i, j, k, l) for the given interaction

sites i..k and j..l can be computed via the recursion depicted in Fig. 2. That is, we
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either consider a full helix (if possible for the given boundaries) or compose an

interaction via the addition of a new helix (on the left) to extend a smaller optimal

interaction. The composition inserts an interior loop between the helix and the next

interaction to ensure that no two helices are combined into a longer one. Thus, the

interior loop has to span at least one unpaired position, i.e. (p − r) + (q − s) > 2,

and is constrained in length as for the recursions discussed before. Since both helix

length as well as interior loop length are constrained by respective constants cB and

w, the overall runtime complexity is still O(n2m2).

2.3. Enforcing Seeds

As already discussed, seed-constraints are a central tool to reduce false positive

sRNA target predictions28,6. Within IntaRNA, possible seed interactions and re-

spective energies are efficiently computed via dynamic programming analogously

to the presented helix energy pre-processing; please refer to8 for details. In the fol-

lowing, the optimal energy for the seed with left-/right-most base pairs (i, j), (k, l),

resp., are stored in seed(i, j, k, l).

In order to ensure that a reported interaction contains a seed region, we follow

the approach presented in8. Therein, a second dynamic programming table HS is

computed based on H that provides the optimal energy for a site given that the

considered interaction contains a seed region. The optimal energy of a site with seed

is then given by

E(i, j, k, l) = HS(i, j, k, l) + ED1(i..k) + ED2(j..l) (2)

replacing Eq. 1.

Since seeds are valid parts of helices, which are the building blocks for our in-

troduced H computation, we use a second auxiliary matrix helixS that provides

the optimal helix energy given that the helix contains a seed. If the region contains

no valid seed or this would lead to too many base pairs, the energy is set to +∞.

Figure 2 depicts the recursion in order to fill helixS based on the already introduced

helix information that is combined with the seed energy. To this end, all possible

locations of a seed combined with flanking helices are evaluated. Due to the inde-

pendence of the seed and helix constraints, it is possible to allow unpaired bases in

the seed, even when not allowing unpaired bases in the helix constraints and vice

versa.

Given this, the optimal hybridization energy HS for a given site containing

a seed and only helices with at most cB base pairs, can be computed using a

recursion as depicted in Fig. 2. That is, either (i) the site can be filled with a

single helix containing a seed (plus accounting for interaction initiation), or (ii) a

helix-length-constrained interaction site is extended with a seed-containing helix,

or (iii) we extend an interaction that contains already a seed with a helix that is

not constrained to contain a seed.
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2.4. Enforcing a Minimal Helix Stability

Given our focus on helices, we can easily enforce additional constraints on the he-

lices that are considered for interaction composition. As the first step, we introduce

a minimal stability notion via an upper hybridization energy bound Ehelix
max for in-

dividual helices. Since energy is inversely related to stability, our approach will

produce interaction patterns of stable subhelices connected by interior loop regions.

The energy threshold can be easily incorporated into the presented recursions

by extending the computation of H and HS from Fig. 2 with side conditions. That

is, entries from helix or helixS are only considered, if the respective overall energy

value is below the given threshold Ehelix
max , i.e. it holds for a helix with boundary

base pairs (i, j) and (k, l)

helix(i, j, k, l) + ED1(i..k) + ED2(j..l) < Ehelix
max . (3)

2.5. Consideration of Non-canonical Helices

So far, we only considered canonical helices for the computation of helix. While this

models the most stable helices that can be formed, minor variance of this ideal, i.e.

allowing for bulges or interior loops spanning only single or very few unpaired bases,

will still resemble a stable helix. But considering stable helices only (using Ehelix
max )

would likely exclude such helices if the canonical subhelices are too short. Thus, we

next discuss how the hybridization energy helix for helices including minor bulges

of at most cU unpaired bases can be computed. We consider an interior loop as

minor if cU ≤ 2.

To this end, we introduce the auxiliary matrix helixU (i, j, k, l, B) that provides

the optimal helix hybridization energy for the given site boundaries and the number

of base pairs B while allowing minor bulges of size cU . The optimal helix hybridiza-

tion energy helix(i, j, k, l) is thus given by helixU (i, j, k, l, cB). Note, enforcing the

helices to be stable (via Ehelix
max ) will without further constraints exclude helices

composed of bulges only.

In addition to the altered helix computation, we also have to ensure that the

helices assembled within the H and HS computation are spaced by interior loops

exceeding cU . That is, it holds for Fig. 2 that (r− p) + (s− q) > cU + 2. Note that

setting cU = 0 will provide the same results as if using canonical helices only.

2.6. Heuristic Helix-length Restricted Prediction

Due to the high time and space complexity of the exact approach, we implemented

heuristic variants of the recursions following the ideas from8 introduced for In-

taRNA. That is, instead of considering all interaction ranges for a given left-most

base pair (i, j), only the optimal right boundary (k, l) together with the respec-

tive hybridization energy is stored in H and HS . Thus, for a given left-most base
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pair (i, j), the recursions from above are not confined to a specific right k, l bound

but use the right end of the respective optimal recursion case. Please refer to8 for

further details. This heuristic reduces the space and time complexity to O(nm),

provides almost the same prediction quality30, and makes the approach feasible for

the needed large-scale target screens also discussed in the Result section.

Here, we apply this strategy not only to H and HS but also to the helix and

helixS matrices. That is, we only memorize the best helix energy (and right bound-

ary) for each left-most helix base pair (i, j). Note, both matrices have to be com-

puted using small auxiliary matrices that replace the respective recursions. Note

further, the computation of H and HS becomes more simple and faster, since we do

not consider different helix lengths (via p and q) but only use the right-most base

pair of the best helix with left-most base pair (i, j). This approach is incorporated

into IntaRNA version 3, instantiated as standalone tool IntaRNAhelix, available

from and documented at

https://github.com/BackofenLab/IntaRNA

3. RESULTS

3.1. Data Set for sRNA Target Prediction Benchmark

To assess the impact of the helix-based interaction prediction, we created an sRNA

target prediction benchmark extending the ideas and data from8,28,33. The whole

benchmark data set including respective scripts is available at

https://github.com/BackofenLab/IntaRNA-benchmark

The benchmark consists of a large set of bacterial sRNA queries and poten-

tial target sequences. We restrict our analysis to sRNA regulation based on the

blocking of the ribosomal binding site (see22 for a discussion). Thus, the targets

are genomic sub-regions around the start codon of the respective mRNA including

200 nucleotides upstream and 100 nucleotides downstream. The dataset comprises

4,319 target regions from the Escherichia coli genome (GenBank4 accession num-

ber NC 000913) and 4,552 target regions from the Salmonella typhimurium genome

(NC 003197). The query data set consists of 30 sRNAs, 15 from each organism, that

have been shown experimentally to act as post-transcriptional regulators by base-

pairing to at least one of the targets. For these, we extracted 149 such verified

sRNA-target pairs from the literature.

Within the benchmark, we test how well these verified pairs can be separated

from all possible sRNA-target pairs. To this end, we identify for each sRNA the top-

100 targets with lowest overall interaction energy, i.e. putative targets with most

stable interactions. Subsequently, we count how many of the verified sRNA-target

pairs can be recovered within all top-100 predictions.

As reference and ”gold standard” for the evaluation of our helix-length restricted

approach, we use the prediction performance of IntaRNA version 3.alpha (com-

piled with ViennaRNA v2.4.12) using default values (i.e. heuristic predictions in-
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Fig. 3. Effect of different maximal canonical helix lengths cB in terms of the recovery of verified

sRNA-target pairs among the top ranked predictions relative to the original IntaRNA results
(dotted line).

cluding seeds with 7 base pairs) on the introduced benchmark data set. In the

following, we refer to this version with ”original” and provide qualitative and com-

putational performance measures in relation to it.

The original IntaRNA version recovers 52 verified targets among the top-100

targets predicted for each sRNA. Thus, division by this value provides the reported

relative recovery rates for the tested interaction prediction variants. Analogously,

relative overall runtimes for the target screens of the benchmark are stated to ab-

stract from the hardware used.

3.2. The Impact of Lonely Base Pairs

A first step towards helix-focused RNA-RNA interaction prediction is the exclusion

of lonely base pairs, since they represent instable subinteractions composed of two

bulges or interior loops. Using this heuristic, we improve the recovery of verified

targets within our benchmark set by 10% while reducing the overall runtime by a

factor of about 6 to 17%.

While this strategy provides already strong improvements, it does not enable

further constraints on the interaction pattern. Thus, we tested the helix-based pre-

diction approach evaluated next.

3.3. Helix-length Constraints Enable Faster Predictions and

Improve Prediction Quality

Effect of Maximal Helix Length

Following our hypothesis, we tested the effect of limiting the length of inter-

molecular helices to incorporated steric constraint that can hinder long helix forma-

tions. We constrained the maximal number of base pairs within helices cB with val-

ues from 7 to 15. Results are depicted in Fig. 3 for canonical helices without bulges.

For low cB values (< 10), we observe a reduced prediction accuracy compared to

the original recursions. In contrast, when relaxing the bound on the maximal helix

lengths to values of 10 or higher, improved recovery rates are found. This shows the
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Fig. 4. Effect of maximal helix-interior-loop size cU for different maximal helix lengths cB .

potential of a prediction strategy based on helix composition compared to standard

loop-composing approaches.

In addition to the improved prediction accuracy, the constrained version is about

3-times faster compared to the original version, while maintaining the same memory

consumption.

Considering only a Single Helix

When investigating the helix-length-restricted results, we found that most predicted

interactions are composed of a single helix. Thus, we investigated whether helix

composition is needed at all or if it is sufficient to extend a seed into a single helix.

While this strategy is very fast (about 40-times faster compared to the original ap-

proach), it offers only a reduced prediction accuracy of 87%. We therefore conclude

that composing individual helices to larger interactions is central to provide the

improved results reported above.

Effect of Non-Canonical Helices

When relaxing the helix definition to non-canonical helices that are allowed to

contain minor bulges or interior loops with up to cU unpaired bases, the overall

prediction performance can be further improved. Figure 4 compares the results

for maximal helix-interior-loop size cU ∈ {0, 1, 2} for maximal helix lengths cB ∈
{10, 11, 12} that performed well for canonical helices. Here, best results are observed

for cU = 2 and a maximal helix length cB = 11.

Generally, relaxing the helix definition slightly improves prediction accuracy but

enables only reduced (cU = 1) or even no runtime improvement (cU = 2). Thus, we

focus in the following on canonical helices only.

Effect of Minimal Helix Stability

Next, we investigated whether the restriction to stable helices can further improve

the prediction quality. To this end, we tested different overall helix energy thresholds

Ehelix
max from -10 to 0 for the well performing maximal helix lengths cB ∈ {10, 11, 12}.
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Fig. 5. Effect of maximal helix energies Ehelix
max (+∞ = unconstraint) on the prediction performance

for different maximal helix lengths cB . The inset provides details for low runtime values.

Figure 5 summarizes the results. While Ehelix
max = 0 eventually defines the least

constraint, it shows best performance with a recovery improvement of about 15%

for cB = 10. This is about three-times higher compared to cB = 10 results without

stability constraint (see above).

The most significant impact of the helix-stability constraint was observed when

comparing runtime with the original approach. We observe speedups from 28 up to

47 for Ehelix
max = 0 and −10, resp., since runtime is reduced to about 3.5 to 2.1%,

resp., which results in the substantial decrease of putative helices that are considered

for interaction prediction.

Note, all tested Ehelix
max values provide improved prediction performance such that

we conclude that combining stable helices results in the best prediction strategy.

4. DISCUSSION & CONCLUSION

Helix-based predictions of RNA-RNA interactions can be done with the same time

and space complexity as known for loop-based methods. In fact, the helix-length

constraint already reduces the search space such that we observe on average a 3-

times faster target prediction for our benchmark data set. When further constraining

the search to stable helices only (via enforcing upper energy bounds Ehelix
max ), target

screens become more than 40 times faster. The reduced runtime results from the

following: compared to the current state-of-the-art recursion from Fig. 1, the helix-

composing approach from Fig. 2 faces the same search space for the interior loop

sizes but appends full helices instead of individual base pairs. This becomes even

more striking for the heuristic variant, which does not considered all possible helix

lengths but only the optimal helix for the left-most base pair (i, j).

Furthermore, we observe enriched target prediction accuracy measured in terms

of increased recovery rates of verified sRNA-target pairs known from the literature.

Maximal helix lengths cB of 10-12 base pairs show the best prediction quality,

while shorter drastically reduced the recovery rate. This is mainly achieved by

disregarding low-energy subinteractions composed of many bulge and interior loops

(putative false positives) rather than altering the interaction details of the verified
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sRNA-target pairs. Results can be further improved when only stable helices with

an overall energy below a given threshold Ehelix
max are considered for prediction. For

helices of a maximal length of 10-12 base pairs, the loose upper energy bound of 0

provides the best target prediction performance. Notably, the consideration of a

relaxed helix definition allowing for small bulge or interior loops improves the results

compared to perfect canonical helices but has much higher runtime requirements.

Our observations support our hypothesis that long inter-molecular helices are

less likely due to steric and kinetic constraint of the interaction formation process.

That is, we think the ’helix-composed interaction model’—where short stable helices

are interrupted by single flexible interior loops—a more realistic model compared

to unconstrained loop-composing predictions. The latter can be significantly im-

proved when lonely base pairs are excluded, but it is still inferior to stable-helix

composition. Within the helix-based model, interaction formation can be seen either

as a parallel process where each helix is formed independently or a serial interac-

tion extension via subsequent helix formations that are paused to overcome the

energetically unfavorable spacing interior loops.

One way to further improve the model would be to confine helix-length con-

strained predictions to regions mainly unpaired in loop regions while applying the

unconstrained approach for exterior unpaired regions. This can be efficiently dis-

tinguished during ED computation from the underlying partition functions21,5.

Another planned direction is to apply further constraints on the helices considered

within the prediction. For instance, we will incorporate and test the effect of exclud-

ing lonely base pairs in the unconstrained helix model to reduce its computational

cost and further improve prediction accuracy. Furthermore, we will investigate the

correlation of helix base pair number cB and optimal upper energy bounds Ehelix
max ,

since they are most likely linked by the average stacking energy or similar terms. An

integration of IntaRNAhelix into the Freiburg RNA tools webserver23 is under

construction.
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Appendix - Formal Recursions

ES(i, j, k, l) =


(

energy contribution for

stacking base pairs (i, j), (k, l)

)
: if k − i = 1 and l − j = 1,

+∞ : otherwise

(4)

EIL(i, j, k, l) =


(

energy contribution for

stack or interior loop (i, j), (k, l)

)
: if i < k and j < l,

+∞ : otherwise

(5)

helix(i, j, k, l) =


min

{
ES(i, j, i + 1, j + 1) + helix(i + 1, j + 1, k, l)

ES(i, j, k, l)
: if canonical helix

helixU (i, j, k, l; cU , cB) : otherwise

(6)

helixU (i, j, k, l;U,B) = min



min
p,q with

min(k−p,l−q)≥B−1
(p−i)+(q−j)≤U+2

(
EIL(i, j, p, q)

+helixU (p, q, k, l;U,B − 1)

)
: if B > 2,

EIL(i, j, k, l) : if ((k − i) + (l − j) ≤ U + 2) ∧ B=2,

+∞ : otherwise.

(7)

helixS(i, j, k, l) = min
p,r
q,s

(
helix(i, j, p, q) + seed(p, q, r, s) + helix(r, s, k, l)

)
(8)

H(i, j, k, l) = min


helix(i, j, k, l) + Einit

min
p,r,q,s with

(r−p)+(s−q)>cU+2

helix(i,j,k,l)≤Ehelix
max

(
helix(i, j, p, q) + EIL(p, q, r, s) + H(r, s, k, l)

)
(9)

HS(i, j, k, l) = min



helixS(i, j, k, l) + Einit

min
p,r,q,s with

(r−p)+(s−q)>cU+2

helixU (i,j,k,l)≤Ehelix
max

(
helixS(i, j, p, q) + EIL(p, q, r, s) + H(r, s, k, l)

)

min
p,r,q,s with

(r−p)+(s−q)>cU+2

helix(i,j,k,l)≤Ehelix
max

(
helix(i, j, p, q) + EIL(p, q, r, s) + HS(r, s, k, l)

)(10)

References

1. Alkan F, Wenzel A, Palasca O, Kerpedjiev P, Rudebeck A, Stadler PF, Hofacker
IL, Gorodkin J, RIsearch2: suffix array-based large-scale prediction of RNARNA
interactions and siRNA off-targets, Nucleic Acids Research 45(8):e60, 2017. doi:
10.1093/nar/gkw1325.

2. Backofen R, Amman F, Costa F, Findeiss S, Richter AS, Stadler PF, Bioinformatics
of prokaryotic RNAs, RNA Biol 11(5), 2014.

3. Backofen R, Engelhardt J, Erxleben A, Fallmann J, Grüning B, Ohler U,
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