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Abstract

Secondary structure is the natural level of coarse in the realm of nucleic acid

structures. It forms a conceptually important intermediate level of description

and explains the dominating part of the free energy of structure formation.

Secondary structures are well conserved over evolutionary time-scales and for

many classes of RNAs evolve slower than the underlying primary sequence.

Given the close link between structure and function, secondary structure is

routinely used as a basis to explain experimental findings. Recent technological

advances, finally, have made it possible to assay secondary structure directly

using high throughput methods. From a computational biology point of view,

secondary structures have a special role because they can be computed efficiently

using exact dynamic programming algorithms.

Keywords:

1. Introduction

Structure, in particular evolutionarily conserved structure is an excellent pre-

dictor of biological function. This is true for all classes of biopolymers, including
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Figure 1: Decomposition of an RNA secondary structure into structural elements. Energy

contributions are assigned to the plane faces depending on their type and the nucleotides

delimiting them. “Stem loops”, i.e., stacked pairs of base pairs, from the unit of helices.

proteins and nucleic acids. The physics of structure formations, however, dif-

fers substantially between proteins and nucleic acids. The dominating process5

in protein folding is global, driven by hydrophobic forces. RNAs, on the other

hand, exhibit a hierarchical folding process, where base pairs and thus helices,

are rapidly formed, while the spatial arrangement of complex tertiary structures

usually is a slow process.

RNA secondary structure elements (see Fig. 1 for an overview) are formed10

via intramolecular interactions of nucleotides. Such interactions form base-pairs

via hydrogen bonds between corresponding nucleotides, enforcing restrictive lo-

cal geometries. The standard set of RNA base-pairs (AU,GC) is known as

Watson-Crick-base-pairs , named after the famous discoverers of DNAs double-

helical structure [1]. GC-base-pairs can form three hydrogen bonds between15

their Watson-Crick edges, while AU-base-pairs can only form two. This is im-

portant considering their energy contributions, which is higher for GC- than

for AU-base-pairs . The main part of the interaction energy, however, is con-
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tributed by the stacking interaction of the π-electron systems of the aromatic

rings of the nucleobases. These energy contributions are large compared to the20

effects of hydrogen bonding. As a consequence, almost all RNAs form highly

stable, well-defined secondary structures, while protein structures often remain

flexible or are only marginally stable at room temperature [2].

At a more detailed level, other interactions between nucleotides beyond

canonical base-pairs contribute to structure formation. Most prominently, GU25

wobble-base pairs regularly appear in native RNA structures. RNA bases not

only interact via the “standard” Watson-Crick-edge. Instead, they can also form

bonds between their Hoogsteen- or CH-edge and their Sugar-edge. These edges

even allow the formation of base-pairs between three bases at once, known as

base triplets, influencing the stability of helices and tertiary as well as quaternary30

structures. Long range interactions like pseudo-knots or kissing hairpins also

contribute to RNA secondary structure formation. This form of intramolec-

ular base-pairing happens when a stem or loop region interacts with another

non-adjacent stem or loop region.

In this contribution we provide a short overview of the RNA folding al-35

gorithms and recent additions and variations. We briefly introduce current

extensions beyond the basic secondary structure model and address methods

to align, compare, and cluster RNA structures. The contribution ends with a

tabular summary of the most important software suites in the fields, many of

which are already integrated in the Galaxy-RNA-workbench [3].40

2. Basic Secondary Structure Prediction Algorithms

The dominance of base stacking and loop entropies as energetic contribution

and the restriction to a single interaction partner enables a purely combinatorial

description of RNA (and DNA) secondary structures, and thus to completely

ignore both, the atom-scale details and the actual spatial embedding of the45

molecule. Formally, an RNA secondary structure is simply a (labeled) graph

whose nodes represent entire nucleotides and whose edges denote base pairs, so
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that

1. edges are formed only between nucleotides that form Watson-Crick or GU

base pairs;50

2. no two edges emanate from the same vertex, i.e., from the mathematical

point of view, a secondary structure is a matching;

3. edges span at least three unpaired bases;

4. if the vertices are placed in 5′ to 3′ order on the circumference of a circle

and edges are drawn as straight lines, no two edges cross.55

The last condition ensures that the graph is outerplanar and therefore excludes

so-called pseudo-knots, to which we will briefly return below.

Over the last two decades an additive energy model known as the “Turner

parameters” has become the well-tested standard model for the energy of an

RNA secondary structure. It stipulates that relevant energetic contribution are60

the stacking of base pairs, the entropic strain of loops, as well as partial stacking

of unpaired bases at the ends of helical regions (usually referred to as dangling

ends). These have been tabulated as function of the sequence compositions of

stacked pairs and loops respectively, based on a wealth of detailed experimental

evidence.65

The dynamic programming approach to RNA secondary structure prediction

relies on the fact that structures can be recursively decomposed into smaller

components with independent energy contributions. In each of the decomposi-

tion steps only a single loop (or stacking of two consecutive base pairs) needs to

be evaluated. Fig. 2 outlines this scheme in a graphical manner. This decom-70

position scheme has the form of a context free grammar. In the simplest model,

Nussinov’s maximum circular matching [5], the paired contribution C is inter-

preted as a single base pair around an arbitrary structure F . The more realistic

Turner model requires a somewhat more complex grammar, distinguishing hair-

pin loops, interior loops (including stacking base pairs as a special case), and75

multi-branch loops. Again we refer to the literature for the details.

The grammar, whose exact form depends on the structural building blocks
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Figure 2: The classical recursions of the standard model of RNA folding (Drawing from

[4]). The hieroglyphic symbols denote different types of RNA secondary structures: F is an

arbitrary secondary structures, C a structure enclosed by a base pair, and M and M1 denote

components of multibranch loops. We refer to [4] and the references therein for a detailed

description of the algorithms.

that are associated with energy contributions, pertains an identical form to the

computation of the minimum free energy structure [6, 7], the partition function

[8] or the density of states [9]. These algorithmic variants differ only in the way80

how the individual steps of the recursion are evaluated, i.e., whether energies

are minimized, partition functions are summed, or histograms are convoluted

over alternative decompositions. Instead of experimentally measured parame-

ters, one can also employ machine learning techniques to infer parameters from

training sets of known structures [10]. The machine learning approaches, usu-85

ally phrased as stochastic context free grammars (SCFGs) [11], can afford more

freedom in the choice of the details of the decomposition model [12].

Generic variations on the algorithms have been designed to retrieve a large

collection of sub-optimal structures [13] instead of only a single representative

minimum free energy structure. The exact computation of partition functions90

not only provides access to equilibrium base pairing probabilities but also to

melting temperatures and specific heat profiles [14].
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3. Variations on the Theme

3.1. Secondary Structures

Local Secondary Structures. RNAs much beyond the length of ribosomal RNAs95

presumably do not fold into their global minimum but form locally stable struc-

tural domains. This effect can be modeled by restricting the maximal span L of

base pairs. This approach not only yields more plausible structure predictions,

it also drastically increases the computational efficiency. The “scanning ver-

sions” [15, 16] of the standard folding recursions require only O(nL2) time and100

O(n+L2) space, where n is the sequence length. This makes them fast enough

for genome and transcriptome-wide approaches. In [17], optimized parameter

for local folding of mRNA were introduced. On a large set of benchmark, this

work could also show that local folding is preferable to global folding for mRNAs.

Centroids and their Relatives. Centroids are structures with a minimum dis-105

tance to all other structures in the ensemble of possible structures. Together

with Maximum Expected Accuracy structures, which contain a maximal num-

ber of base pairs with high probability, they provide a measure for the confidence

for a predicted structure, more details can be found in section 5.

Consensus Structures. Given a good alignment of a collection of related RNA110

structures, their consensus structure, i.e., a set of base pairs at corresponding

alignment positions can be computed using the same dynamic programming

approach. To this end, RNAalifold [18, 19] simply adds the sequence-dependent

energy contribution over alignment columns in each evaluation of the energy

model. The use of alignments as input considerably improves the accuracy115

of the predicted secondary structures. Consensus structure predictions are not

only of interest in their own right but also form the basis for statistical measures

of RNA secondary structure conservation [20, 21].

3.2. RNA Folding with Constraints

Although the Turner energy model provides a surprisingly accurate approx-120

imation of the RNA folding energies, it is not perfect. On the one hand, the
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energy parameters, which have been estimated by regression from large num-

bers of melting experiments, are afflicted by residual measurement errors. On

the other hand, the secondary structure model is not perfect and neglects many

weak interactions. As a consequence, secondary structure predictions are far125

from perfect. It is of great interest therefore to guide the prediction procedure

with external information. This can be done in two ways: either by constraining

the set of allowed structures using hard constraints or by encouraging or dis-

couraging certain structural features with the help of bonus energies. Recently

a generic framework to handle both types of constraints has been incorporated130

into the ViennaRNA Package [22].

Hard constraints either enforce or prevent pairing of a certain base or base-

pair , usually implemented as high energy penalties. A less harsh way to imple-

ment constraints is to reward or penalize structures that match or contradict

available information via moderate pseudo-energy terms, so called soft con-135

straints. The latter can be set in proportion to some measure of confidence or

signal strength.

In general, constraints become of interest in scenarios where RNAs interact,

either with other RNAs, proteins, or ligands. Hard constraints can be used to

model the exposition of binding sites, rendering them either accessible, or inac-140

cessible for interaction partners. Soft constraints can be used to fine-tune RNA

secondary structure predictions by incorporating chemical or enzymatic “reac-

tivities” either directly, as energy contributions/penalties, or by minimizing the

deviations between predicted and measured signal. In particular, the inclusion

of SHAPE reactivities has been studied in much detail by several groups. A re-145

cent addition to the ViennaRNA package implements the most commonly used

options [22]. These methods have become applicable to genome-wide surveys of

condition-dependent secondary structure changes. An example is a recent study

of temperature dependence of structures in bacterial pathogens [23].

RNA molecules in vivo usually interact with multiple partners simultane-150

ously. These interactions can influence each other even if there is no direct

competition of the same or overlapping binding sites since competitive and co-
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operative effects can be mediated by structural changes that can unblock or

block previously paired or accessible regions. The magnitude of such effects can

be computed when free energy of a RNA molecule bound by two interaction155

partners is derived from the difference ∆∆G between the sum of the energy of

both partners interacting separately and the end state and ground state [24]. A

negative value of ∆∆G indicates antagonistic binding effects, a positive ∆∆G

indicates cooperative effects. Such effects can efficiently be modeled using the

constraint folding option in the ViennaRNA package 2.0 [4], where a pair of160

binding sites constraints the structure ensemble by forcing these sites inaccessi-

ble.

Regional Accessibility. A parameter that is crucial for the analysis of interac-

tions of RNAs with proteins or other nucleic acids is energy necessary to expose

a local binding site region to the partner. It is of crucial importance for exam-165

ple in the context of microRNA/mRNA binding, siRNA efficiency, or bacterial

sRNA function. This opening energy is conceptually the difference between the

free energy of the equilibrium ensemble and the free energy of an ensemble con-

strained to leave a known binding site unpaired. Instead of using constrained

folding framework to compute accessibilites for each individual region, it is pos-170

sible to compute accessibilities for all intervals simultaneously using a much

more efficient dedicated variation of the folding algorithms [25, 26].

3.3. RNA-RNA and RNA-Protein Interactions

The multi-faceted regulatory machinery of gene expression is based on the

interplay between RNA and regulatory factors like other RNAs or proteins. It is175

crucial for the balance between synthesis (transcription), translation, transport

and decay of mRNAs, ncRNAs and proteins to modulate the spatial-temporal

expression of RNA molecules. Hundreds of RNA binding proteins and even more

miRNAs are encoded in the human genome [27, 28, 29], emphasizing their role

in gene regulation and thus the vitality of organisms. The extreme versatility of180

RNA molecules in terms of sequence and structure features and the complexity
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of RNA binding domains and binding preferences of proteins raise the need for

advanced and efficient algorithms for interaction analysis.

There are basically two different approaches for determining the interaction

between two RNAs that takes into account both the sequence and structure of185

the participating RNAs. The first type of approaches defines the search for an

RNA-target as the problem of predicting a common stable structure for the two

interacting RNAs. This is in general an NP-complete problem [30]. Thus, exist-

ing approaches implement a partial structure model that can predict a certain

class of interactions. The simplest model is implemented in RNAcofold [31],190

where only the class of nested interactions are considered, resulting in a com-

plexity of O(n3) due to its similarity with normal RNA structure prediction.

However, many functional interactions such as kissing hairpins are not cov-

ered in this model. This led to the development of several extended structural

models that provided a compromise between complexity and the structural class195

covered. As shown in several publications, excluding so-called zig-zag interac-

tions does make the problem solvable in polynomial time. Roughly speaking,

zig-zag interactions are structures where at least two inter-molecular base-pairs

are covered by one intra-molecular base-pairs in one sequence, and two non-

nested base-pairs in the other sequence in a way that disallows the split into200

two separate interaction sites. Once these interactions are excluded, the mini-

mum free energy interaction structure can be predicted in several energy mod-

els [32, 30] in O(n6) time. Even the partition function and associated quantities

such as melting temperature and base-pairing probabilities for inter-molecular

base-pairs can be predicted with the same complexity [33, 34].205

Albeit these approaches solve the problem of RNA-RNA interactions with

kissing hairpins in polynomial time, the complexity of O(n6) time is too high for

genome-wide screens. Here, accessibility-based approaches improve the situa-

tion while still being able to predict complex interactions like kissing hairpins. A

region in an RNA structure is called accessible if it is free from internal structure.210

The energy required to make the interaction site accessible can be determined

in a modified partition function approach for the individual sequences in cubic
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time [35]. RNAup [36] then combines this accessibility term for two interaction

sites with the best energy for the duplex-formation for these sites, yielding an

O(n2w2) approach for target prediction, where w is the maximal length of the215

interaction sites. The resulting score corresponds to the partition function of all

interacting structures that have the same duplex. IntaRNA [37, 38] reduces this

runtime to O(n2) for the final duplex calculation using a heuristics for the right

end of the interaction site. By combining this with a seed-based approach, the

prediction quality is nearly the same as for RNAup . RNAplex is an even faster220

approach that uses a heuristic version for the calculation of accessibility. The

energy required to make a region accessible is directly related to the probability

that this region is free in the ensemble of all structures. This probability is now

approximated in RNAplex using a Markov chain with limited memory.

One additional problem is that RNAup , IntaRNA and RNAplex predict only225

one continuous interaction site. However, there have been interactions exper-

imentally validated that consist of several such interactions. There have been

several approaches of different complexity to extend the accessibility concept to

this extended class of interactions [39, 40].

The aforementioned approaches do not rely on conservation, which could230

drastically reduce the inherently high false positive rate for target prediction.

One possibility for taking conservation into account is to use an alignment-

folding approach as in RNAalifold (see above). Here, one predicts interactions

between two different alignments [41, 42]. However, as shown in [43], the inter-

action sites is not necessarily conserved, especially on mRNAs. CopraRNA [44]235

does not attempt to predict conserved interaction sites, but conserved interac-

tions by combining evidence for the interaction between two RNAs in different

species. A recent benchmark on sRNA target prediction shows that CopraRNA

clearly outperforms other target prediction tools. However, CopraRNA is limited

to RNAs where conservation information is available.240

While RNA-RNA interactions are directly related to RNA folding, this is not

the case for the prediction of targets of RNA-binding proteins (RBPs). Instead,

the approaches for finding binding sites of RBPs are more related to finding mo-
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tifs in a set of bound sequences, which is the data provided by SELEX and CLIP

experiments. Due to the similarity between this problem and the task of find-245

ing binding sites of transcription factors, motif discovery tools like MEME [45]

have been used frequently. However, as already shown, one cannot ignore the

contribution of the RNA secondary structure. Many RBPs for example pre-

fer single-stranded regions as binding sites. Memeris [46] is an extension of

MEME that uses accessibility as prior for motif discovery. RNAcontext [47] uses a250

physical energy model of motif binding that integrates structural information.

Graphprot [48] extends the idea of k-mers with gaps to graphs, which are used

to represent the folding of the binding sites and its context, using an efficient

graph-kernel. It is currently one of the most reliable tools for predicting binding

sites from CLIP data, as shown by several experimentally verified binding pre-255

dictions [47, 49]. RNA secondary structure influences on RNA binding behavior

of proteins has also been successfully used to discriminate actively bound sites

from a list of potential binding sites [50]. This concept was one of the key moti-

vations for the curation of AREsite2 [51], a database that combines genome wide

motif annotation in human and several model organisms with RNA secondary260

structure and CLIP-derived binding site information. This serves as a basis for

the analysis and prediction of RNA-protein interactions and their influence on

RNA halflife.

3.4. RNA Gene Finding

Homology-based RNA gene finding. RNAs with conserved secondary structure265

are typically either short non-coding RNAs or relatively small structured do-

mains that are part of larger transcripts. The short length, the small size of the

nucleotide alphabet, and the usually relatively low level of sequence conserva-

tion conspire to make RNA homology search a difficult problem [52]. Still, the

most commonly used tool is blastn and it works well in many circumstances.270

The conserved secondary structure of many RNA families, however, provides

additional information that is harnessed by infernal to improve both sensitiv-

ity and specificity of the search [53]. Instead of single sequence, it starts from
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a structure-annotated multiple alignment, as available for many RNA families

from the Rfam database [54]. The alignment is converted into a covariance275

model, a tree-like generalization of HMMs, which allows efficient search in ge-

nomic sequences. At present, infernal serves as the tool for RNA homology

search.

De novo detection of conserved RNA structure. Our current knowledge of ncRNA

genes is far from complete, however. Even in the age of efficient RNA-seq meth-280

ods, it is still of interest to find evidence for evolutionarily conserved, and thus

likely functional, RNA structure (see [55, 56] for recent reviews). Over the years,

several types of tools have been devised for this purpose. QRNA [57] uses a fully

probabilistic model and computes for a pairwise sequence alignment the poste-

rior probabilities that it derived from a coding region, a conserved secondary285

structure, or neither. RNAdecoder [58] is an extension of this idea that considers

the superposition of RNA structure and coding region. Tools such as AlifoldZ

[59], SissiZ [60], and RNAz [61, 62, 63] start from multiple sequence alignments

and evaluate descriptors such as folding energies and sequence diversity to de-

cide whether the alignment harbors a conserved structure or not. To make this290

decision, RNAz , for example, uses a support vector machine trained from large

sets of structured RNAs and shuffled decoys. cmfinder [64] considers a set of

related, but unaligned sequences and their predicted secondary structures. To-

gether with anchors of sequence similarity these are used to build CMs with the

help of infernal , which in turn are used to search for further matches, which are295

used in an interactive expectation maximization step to refine the CM, whose

significance is then evaluated. A common issue with all de novo RNA gene

finders is a relatively high false discovery rate that needs to be estimated by

comparing the foreground data with a control, which is usually constructed by

column-wise shuffling of the input alignments.300
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4. Beyond the Standard Model

Folding in “2 1
2D”. Several structural motifs go well beyond the secondary struc-

ture model but can still be accommodated in the same computational frame-

work. This pertains in particular to local motifs. Well-studies examples are G-

quadruplexes [65] and local 3D-motifs such as kink-turns [66]. Computationally305

these are treated like special loop types, which is made easy by the constraint

handling framework in the ViennaRNA package. In addition, however, motif

specific energy models are necessary to handle these cases consistently. So far,

these are only available for some motif classes.

Folding in the Leontis-Westhof Representation. The Leontis-Westhof represen-310

tation of RNA structures goes beyond secondary structure in that it also accom-

modates all types of non-standard base pairs and classifies them by isostericity

classes [67, 68]. This leads to a natural extension of the standard energy model

in which interior and hairpin loops are decomposed further into small compo-

nents delimited by non-standard base pairs; in addition, the energy model now315

takes into account that adjacent loop components strongly influence each other.

This type of extended model serves as starting point for de novo 3D structure

prediction tools such as mc-sym [69]. It can be dealt with by dynamic program-

ming, albeit the recursions are substantially more involved than those of Fig. 2,

see [70].320

Pseudoknots. The topic of RNA pseudoknots has received much attention in

the past, albeit to a large extent from a more theoretical and algorithmic point

of view. There are several competing models describing the different classes of

pseudoknotted structures, most of which fall into the realm of multi-context-

free grammars (MCFGs) and can be handled by dynamic programming [11, 71],325

albeit at computational complexities that are prohibitive for molecules larger

than a few hundred nucleotides. Enumerative approaches for non-MCFG classes

of structures are discussed in [72]. At present, the practical applicability of

pseudoknots is largely limited by accuracy of energy models, which have to be
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estimated from small sets of examples.330

5. Comparison of RNAs Based on Secondary Structures

Tree Editing and Tree Alignment. Secondary structures are naturally repre-

sented in the “dot-parenthesis” notation, which consists of a pair of matching

parentheses for each base pair and and dot for each unpaired position. The

example of Fig. 1, for example reads

...((((((((...))..))..((.((...)).)))))).

Such expressions of nested parenthesis have a natural interpretation as rooted,

ordered trees in computer science. In consequence, tree alignment and tree

editing algorithms, which generalize familiar sequence alignment methods, can

be adapted for comparing RNAs based on their sequence and structure [73, 74].335

Both approaches were extended to multiple RNAs following the progressive

alignment scheme [73, 75]. Furthermore, the tree-based approach can even be

extended to pseudoknotted structures for a large variety of pseudoknot types [76,

77].

Such methods however, especially if based on tree-alignment, are very sen-340

sitive to the compared secondary structures. This limits their practical use for

analyzing RNAs of a priori unknown structure, since secondary structures have

to be predicted from the sequence of each single RNA.

Simultaneous Folding and Alignment. The quality of secondary structure pre-

diction increases substantially, when the structure is computed from an align-345

ment of related sequences. While sequences of high similarity can be aligned

sufficiently well by traditional sequence alignment methods, such alignments

tend to become inaccurate, when pairwise identities drop below about 60%;

then compromising comparative structure prediction.

In such cases, the simultaneous computation of alignment and secondary350

structure folding, originally proposed by Sankoff [78], remedies this RNA struc-

ture analysis dilemma. In practice, the original Sankoff algorithm suffers from
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considerable computational cost, due to its extreme time complexity of O(n6)

and overhead due to the computation of minimum energy in the Turner model.

The tool LocARNA [79] substantially improves computation time over the355

Sankoff algorithm by utilizing information from the single RNAs structure en-

sembles. Building on pairwise Sankoff-like simultaneous alignment and fold-

ing (SA&F), it aligns multiple structures following the progressive alignment

scheme (realized in the tool mlocarna ). LocARNA-P [80] takes LocARNA ’s idea

of fast SA&F to a new level by computing partition functions over simultaneous360

alignments and foldings. This allows the efficient computation of alignment re-

liability profiles as well as probabilistic consistency-transformation to improve

the quality of multiple RNA alignments [80].

Due to their RNA ensemble-based optimizations, LocARNA and LocARNA -

P reduce the time and space complexity over Sankoff’s algorithm each by a365

quadratic factor (in sequence length n). Nevertheless, its O(n4) time complexity

is still limiting. In practice, LocARNA tackles this by a series of further heuristics

as well as alignment constraints.

Taking a different route, SPARSE [81] performs SA&F in a similar model as

LocARNA —in fact, it improves structure prediction flexibility—without relying370

on prior knowledge or sequence-based heuristics, but reduces the time com-

plexity of the alignment algorithm by another quadratic factor over LocARNA ,

resulting in O(n2) time. This is achieved by exploiting even more features of

the RNAs’ secondary structure ensembles.

In a variation of SA&F, which compares RNAs based on (simultaneously)375

predicted non-crossing structures of the RNAs, CARNA [82] computes align-

ments that optimize similarity across the entire secondary structure ensembles.

This strategy allows pseudoknots and is potentially advantageous for align-

ments of multi-structure RNAs with complex dependencies. Another interesting

SA&F-related problem is the prediction of local secondary structures with ex-380

actly matching sequences. As in SA&F, such structures are not known a priori

but are predicted simultaneously to the comparison. This simultaneous match-

ing and folding problem is efficiently solved by ExpaRNA-P [83] in O(n2) time
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and space. Due to the efficiency of this method, the exactly matching substruc-

tures enable fast analysis of very large RNAs and serve as anchors to speed up385

SA&F in LocARNA [83]. SPARS [81] is an extension of ExpaRNA-P that solves

the complete SA&F problem in O(n2) time and space.

Measures of reliability. Prediction always includes some amount of uncertainty.

For the user it is important to get some information on how reliable a predic-

tion is, for a detailed review refer to [84]. In case of RNA secondary structure390

prediction, base pair probabilities and the partition function can be used to

derive some measures for reliability. This includes Ensemble Diversity, which

is the average distance of two structures drawn from the Boltzmann ensem-

ble, in the simplest case the base pair distance. Positional Entropy captures

whether a nucleotide is found mainly paired or unpaired. Ensemble Centroids395

are structures that minimize the weighted average (base-pair ) distance to all

other structures in the ensemble. Maximum Expected Accuracy structures are

predicted by maximizing the number of correct base pairs.

Clustering of structured RNAs. As discussed before, finding new RNA genes is

a hard problem. One important approach is to use computational screens for400

conserved structured RNAs. However, such screens result in large sets (typically

several thousands if not hundered’s of thousand) of putative ncRNAs. The main

problem is to annotate these newly detected putative RNA genes. The detection

of individual domains, as very successfully used in the annotation of protein

coding genes, can currently not be applied for RNA genes due to the flexibility405

of the RNA structure.

The successful classification of known RNA-genes in families (i.e., RNAs

related by evolution like tRNAs) and classes (i.e., RNAs related by same func-

tional structure like miRNA and snoRNAs) has opened up a possibility for a

structure-based annotation approach by clustering putative ncRNAs according410

their sequence and structure to detect new RNA classes. One possibility is to

directly use the score produced by sequence-structure alignment as for the hier-

archical clustering of RNAs [85, 79]. RNAclust [79] is a dedicated pipeline facil-
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itating complete clustering of RNAs. SoupViewer allows to semi-automatically

analyze such a complete RNA cluster tree, easing the otherwise manual pro-415

cess of inspection for potential misclassifications. However, the problem of this

clustering approach is twofold. First, determining the similarity between two

different RNAs in the clustering procedure is complex (at least O(n4) time).

Second, this score has to be calculated for all pairs of RNAs, which restricts

its application to a small sets of RNAs, typically in range of few thousands.420

This is circumvented by, so-called alignment-free approaches [86, 87] that avoid

the calculation of a quadratic number of alignments and thus are able to clus-

ter hundreds of thousand of RNAs. GraphClust [86] even avoids any quadratic

step by using an inverse index based on a structure-aware hashing approach to

determine dense RNA neighborhoods.425

6. Tools and suites for RNA analysis

This section presents a collection of the most relevant RNA-centric software

available. Table 6 lists a selection of tools or suites of tools which are concerned

with RNA secondary structure prediction, design, homology and more. This

collection of software enables researchers to investigate virtually all aspects of430

RNA biology. Although some tasks are covered by more than one program, they

each have their specifics and features making them a valid contribution to this

collection. The RNAshape [88] algorithm of the Bielefeld RNA tools for example,

allows the abstraction of RNA secondary structure to a tree-like domain of

shapes which integrates well with dynamic programming algorithms and avoids435

exponential explosion while providing a non-heuristic and complete account of

properties of the molecule’s folding space. Many of the tools presented here

were curated in a collection, the Galaxy-RNA-Workbench , which provides users

with a virtual box containing pre-installed versions of the tools. This workbench

enables researches to investigate RNA in silico , even without detailed knowledge440

of the command line or the overhead of installation and dependency resolution,

all in a dockerized galaxy instance.
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7. Concluding Remarks

RNA structure prediction is a fast evolving topic, both, in regard to compu-

tational as well as experimental methods. The recent emerge of experimental445

techniques for (high-throughput) capture of in vivo RNA secondary structures

and RNA interactions further speeds up this process. In this review, we present

an overview from general concepts of RNA secondary structure prediction to

recent advances in computational RNA folding, which deal with existing chal-

lenges in the field and address new challenges introduced by experimentally450

derived structure constraints.

The major concept for the inclusion of experimental data into prediction

of RNA secondary structure and influences of interactions is the definition of

constraints. No matter if hard or soft constraints are used, the integration of

experimental data has to be handled with care, as there is no guarantee that455

predictions become indeed more accurate.

However, the here presented tools and suites allow to investigate virtually

all aspects of RNA secondary structure and thereby affected features. Most of

them are either available as suites, or have web server interfaces that allow the

non-commandline affine user to benefit from their features. In a collaborative460

effort, many of these tools have additionally been collected in the Galaxy-RNA-

workbench , which makes them available in a virtualized box, featuring a Galaxy

brand easy to use interface.
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