
pr
ep

rin
t

“pourrna” — 2019/7/26 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

pourRNA - a time- and memory-efficient approach
for the guided exploration of RNA energy
landscapes
Gregor Entzian 1,∗ and Martin Raden 2

1University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstraße 17, 1090 Vienna, Austria, and
2Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The folding dynamics of RNAs are typically studied via coarse-grained models of the underl-
ying energy landscape to face the exponential growths of the RNA secondary structure space. Still, studies
of exact folding kinetics based on gradient basin abstractions are currently limited to short sequence leng-
ths due to vast memory requirements. In order to compute exact transition rates between gradient basins,
state-of-the-art approaches apply global flooding schemes that require to memorize the whole structure
space at once. pourRNA tackles this problem via local flooding techniques where memorization is limited
to the structure ensembles of individual gradient basins.
Results: Compared to the only available tool for exact gradient basin based macro state transition rates
(namely barriers), pourRNA computes the same exact transition rates up to ten times faster and requires
two orders of magnitude less memory for sequences that are still computationally accessible for exhau-
stive enumeration. Parallelized computation as well as additional heuristics further speed up computations
while still producing high quality transition model approximations. The introduced heuristics enable a gui-
ded trade-off between model quality and required computational resources. We introduce and evaluate a
macroscopic direct-path heuristics to efficiently compute refolding energy barrier estimations for the co-
transcriptionally trapped RNA sv11 of length 115 nt. Finally, we also show how pourRNA can be used to
identify folding funnels and their respective energetically lowest minima.
Availability: pourRNA is freely available at https://github.com/ViennaRNA/pourRNA
Contact: entzian@tbi.univie.ac.at
Supplementary information: Supplementary data available at Bioinformatics online.

1 Introduction
The prediction of accurate RNA folding kinetics is still a computationally
demanding problem despite decades of research. One of the main reasons
is the exponential growth of an RNA’s structure space with sequence length
even in simple secondary structure models (Hofacker et al., 1998). This
growth directly relates to increasing runtimes when aggregating folding
simulation statistics, e.g. done in Flamm et al. (2000) and Kirkpatrick et al.
(2013). To compute exact dynamics, the master equation formalism can be
used, but this typically requires a reduction of the system’s size. To this end,
a coarse-grained representation of the vast structural ensemble by a small

set of macro-states with respective transition rates is used. Different macro-
state definitions have been introduced, e.g. based on static properties of
the respective energy landscape (Wolfinger et al., 2004) or correlations of
transition rates (Zhang and Chen, 2003).

A standard approach to compute exact macro-state transition rates, e.g.
implemented in barriers, requires a (partial) structure space enumeration
below a reasonable energy threshold (Wolfinger et al., 2004). This proce-
dure is currently limited to short sequence lengths up to 100 nt due to vast
memory requirements.

To bypass this problem, different strategies to sample the structure
space are combined with transition rate estimations. For instance, the
recent Basin Hopping Graph (BHG) framework samples structures and
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local minima and subsequently estimates the minimal energy barrier betw-
een them via direct folding pathway computations (Kucharík et al., 2014).
While this enables kinetics predictions for longer RNAs, the procedure
might miss transition states (Kucharík et al., 2014) and the dynamics can
be distorted due to poor transition rate estimates based on saddle heights
only (see supplementary material F).

Here, we introduce pourRNA for both transition rate estimation as well
as local minima exploration of RNA secondary structure energy landsca-
pes. The approach makes use of local flooding techniques as introduced
by Mann et al. (2014). That is, starting from a given local minimum, the
respective gradient basin macro-state is explored. This provides all data
needed to compute exact transition rates to the (on-the-fly) identified nei-
ghbored macro-states. So far unexplored neighbored basins are queued for
flooding and the process iterates until the queue is empty. Local flooding
makes the approach (a) memory efficient, since only small parts of the
structure space have to be memorized, and (b) enables parallelized macro-
state processing, which results in much lower runtimes compared to global
flooding approaches while still computing the same exact transition rates.

Besides the computation of exact transition rates, pourRNA also offers
heuristics to further reduce its computational requirements while still
providing highly accurate rates. This is mainly achieved by additional
constraints on local flooding and results in a controlled trade-off between
runtime and prediction quality. Furthermore, we can guide whether or not
neighbored macro-states are processed with additional filters. This enables
us to explore only specific parts of the energy landscape that are reached
via the fastest folding pathways, which are related to folding funnels as
defined by Klemm et al. (2008). Therein, a funnel is defined as a second
level macro-state that fuses neighbored gradient basins based on a gradient
that follows the highest macroscopic transition rate to a lower basin. We
show that pourRNA can compute the mapping of individual structures or
gradient basins to their folding funnels, since its heuristics can be set to
compute macroscopic gradient walks following Klemm et al. (2008).

Finally, we introduce a new macro-state-based direct path heuristic to
identify the energy barrier between two RNA structures. Besides its general
application to study refolding pathways of RNA molecules, e.g. from
meta-stable states into the global optimum, such heuristics are important
to handle incomplete transition information. The latter is common when
only the lower part of the energy landscape is computationally accessible.

We evaluate pourRNA both concerning its technical benefits in terms of
runtime and memory consumption as well as its potential for high-quality
rate models for a known set of RNAs from the literature. This is done both
for the computation of exact transition rates as well as using the newly
introduced heuristics.

2 Formal Preliminaries
Within the following, we shortly introduce RNA energy landscapes repre-
senting non-crossing secondary structures defined by the triple (P, N,E).
The structure spaceP comprises all non-crossing secondary structures P
for a given RNA sequence considering Watson-Crick and G-U base pairs.
A structure is non-crossing, or nested or pseudoknot-free, if any two base
pairs are either enclosing distinct subsequences or one is enclosing the
other. The symmetric neighborhood N(P ) comprises the set of all stru-
ctures P ′ ∈ P that differ in exactly one base pair from P , i.e. it holds
that P ′ ∈ N(P ) if one can transform P into P ′ by inserting or deleting a
single base pair. The (free) energy E(P ) of a structure in units of kcal

mol is
determined by the Nearest Neighbor Model (Tinoco et al., 1973) using the
parameters from Mathews et al. (2004). A structureP ′ is considered ’ener-
getically smaller’ than P if its energy is either lower (E(P ′) < E(P ))
or equal but its structure dot-bracket string encoding is lexicographically
smaller, which is needed due to the degeneracy of the energy model (see

Flamm et al. (2002) for further details). A structure is called local minimum
P̌ if it is energetically smaller than all its neighbors. Detailed definitions
and formalisms are provided in the supplementary material A.

Following Wolfinger et al. (2004), we partition P into gradient basin
macro-states. Each gradient basin is associated with a single local mini-
mum structure P̌ of the energy landscape. The gradient basin B(P̌ ) ⊆ P
is defined recursively and contains all structures whose gradient neighbor
is withinB, where the gradient neighbor (if existent) is the smallest among
all energetically smaller neighbors. Therefore, any local minimum P̌ does
not have a gradient neighbor and is thus the minimal energy structure of a
basin. The set of basinsB thus comprises a partitioning ofP and we denote
with b ∈ B in short a basin for some local minimum. Two basins b 6= b′

are neighbored if two of their respective structures are neighbored. The
energy of a basin is given by its ensemble energy E(b) = −RT log(Zb),
whereZb denotes its partition function given by

∑
P∈b w(P ), i.e. the sum

of Boltzmann weights w(P ) = exp(−E(P )/RT ) for gas constant R
and temperature T (fixed to 37◦C in this study).

Folding dynamics of an RNA are typically studied as a Markov pro-
cess on P (Flamm and Hofacker, 2008) for which appropriate transition
rates between the structure-representing states have to be defined. For
kinetics on P , in the following referred to by micro-states, transition
rates are typically defined by Metropolis rates. That is for two nei-
ghbored structures P, P ′ (with P∈N(P ′)) the transition rate kP→P ′

from P to P ′ is given by min (1, exp(−(E(P ′)− E(P ))/RT )); all
other rates are 0. The macroscopic transition rates on B are aggrega-
ted from microscopic ones under the assumption that each basin is in
thermodynamic equilibrium (and thus observing a structure P∈b∈B is
given by its Boltzmann probability Pr[P |b] = w(P )/Zb). For a transi-
tion from a basin b to one of its neighbors b′∈N(b) the rate is therefore
kb→b′ =

∑
P∈b

∑
P ′∈b′ Pr[P |b]kP→P ′ , i.e. the weighted sum of

inter-basin micro-state transitions.
The vast majority of structures from P have positive energy values

(see (Lou and Clote, 2010) for an illustration) and thus extremely low pro-
babilities Pr[P |P] within the structural ensemble. Therefore, we restrict
w.l.o.g. the structure space to P̄ ⊆ P via an absolute upper energy thre-
shold of 5 kcal

mol (i.e. P∈P̄ ↔ E(P )<5 kcal
mol ). Besides reducing the state

space, this threshold also ensures that the probable parts of the landscape
are represented and still connected, as discussed in the supplementary
material B. A similar effect is obtained when excluding structures with
unstacked base pairs fromP in combination with an appropriate neighbo-
rhood definition as e.g. done by Kirkpatrick et al. (2013), since such base
pairs are heavily penalized within the energy model.

Before discussing how macro-state transition rates are computed, we
first point out that they can be expressed as kb→b′ = Ẑ{b,b′}/Zb,
where Ẑ{b,b′} denotes the sum of the minimal Boltzmann weights
(min (w(P ), w(P ′))) of all microscopic inter-basin transitions P∈b →
P ′∈b′ with P∈N(P ′) as shown in Mann et al. (2014), i.e.

Ẑ{b,b′} =
∑
P∈b

∑
P ′∈N(P )∩b′

min
(
w(P ), w(P ′)

)
. (1)

We call the set of states contributing to Ẑ{b,b′} the transition-state ensem-
ble between b and b′, which is direction independent. Given this, the
computation of macro-state rates reduces to the problem of (i) computing
the partition function Zb for each basin b∈B and (ii) the identification of
all transition-state ensembles to derive respective Ẑ{b,b′} values.

3 Methods
In the following, we first shortly introduce the current standard approach to
compute exact transition rates before introducing our pourRNA approach.
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3.1 State of the Art – global flooding

barriers, introduced by Wolfinger et al. (2004), was the first tool for RNA
research to compute exact macro-state transition rates up to a given energy
threshold. The approach is based on two preliminaries: (1) the recursive
definition of gradient basins and (2) the possibility to enumerate the stru-
cture space ordered by ascending energy. The latter was made possible for
RNAs by the work of Wuchty et al. (1999), implemented in RNAsubopt
from the Vienna RNA package (Lorenz et al., 2011), and recently extended
by Stone et al. (2015).

For each structure from an energy-sorted input P , barriers identifies
its gradient neighbor g(P ). If none exists, P is a local minimum and
thus is assigned to a new gradient basin b. Otherwise, P is assigned to
the basin b of its gradient neighbor, which was already processed due to
the ascending energy input. Furthermore, the partition functions Zb and
Ẑ{b,b′} are updated. The latter is done for all neighbors of P (not within
b) with lower energy since their gradient basin assignment b′ is known and
that way no microscopic transition is counted twice.

This global flooding approach requires the memorization of all pro-
cessed input structures. The exponential growth of the structure space thus
makes it infeasible for sequences longer than 100 nt (Geis et al., 2008).
When only a low energy subspace up to some upper energy bound is
enumerated, it is not ensured that the resulting (partial) basins are all tran-
sitively connected via identified micro-state transitions, which is needed
for an exact Markov model.

A similar approach, lid by Sibani et al. (1999), requires no presorted
input but faces the same memory problem. While barriers’s processing
can be imagined as a rising global ground water level within the whole
landscape, lid implements a local ’flood-and-overflow’ strategy where
transitions to neighbored basins directly trigger (recursively) their floo-
ding until the basins’ flooding levels are balanced again. When the method
’flows over the lid’ into an unknown neighbored basin, a gradient walk is
applied to identify the respective local minimum. Eventually, the lid appro-
ach can result in very distorted and incomplete transition rate estimates of
the landscape when the available memory limit is exceeded too early. To
our knowledge, no implementation for RNA energy landscapes is avai-
lable. Thus, we restrict our comparison in the following to the barriers
pipeline.

3.2 pourRNA – asynchronous, exhaustive, local flooding

Here, we introduce pourRNA that solves the memory problems of the
global flooding methods. It fuses the explorative idea of the lid method with
the memory-efficient local flooding approach introduced by Mann et al.
(2014), which enables a controllable low-memory approach intrinsically
open to asynchronous parallelization.

Local flooding enables the efficient computation of the partition
function Zb of a given basin b. To this end, a priority queue T of unproces-
sed structures (sorted by energy, see Sec. 2) is initialized with the neighbors
of the local minimum of the basin. The minimum itself initializes the
basin’s list (or priority queue) D of already processed states. As for global
flooding, iteratively the (energetically smallest) top element P from T

is extracted and its neighbors are investigated. If its gradient neighbor is
withinD, it is part of the basin and thusZb is updated, all its neighbors with
higher energy are added to T . In addition, partition functions Ẑ{b,b′} of
macroscopic transitions are updated using hashed gradient walks if the gra-
dient neighbor is unknown (and thus part of a neighbored basin b′). Given
that this is only applied to the ’surface’ of the current basin, gradient walk
computations can be accelerated by storing the gradient neighbor relation
of states observed along the gradient walks, which provides improvements
for gradient walks with equal tails. Finally, P is added to D. Since D only
contains information about the currently processed basin b, the identifi-
cation of neighboring b′ by means of an inter-basin micro-state transition

P → P ′ (with P ∈ b and P ′ ∈ b′) has to be determined by a gradient
walk starting in P ′. For further details, please refer to Mann et al. (2014).

Given this, the overall workflow of pourRNA for a given set of arbitrary
input structures Pi ⊆ P can be sketched as follows:

- initialize list of processed basins BD = ∅
- initialize list of unprocessed basins BT (local minimum information)

via gradient walks for all input structures from Pi

1. extract next basin b ∈ BT
2. run local flooding for b
3. store Zb and Ẑ{b,b′}
4. update BT with all newly identified neighbored basins b′

5. add b to BD and mark as processed
6. go to (1.) if BT 6= ∅

As shown by Mann et al. (2014), the vast majority of gradient basins
is small. Since this approach exhaustively processes all basins b∈B in an
iterative scheme, pourRNA can compute all exact transition rates with the
low memory requirements of local flooding.

In addition, this approach is intrinsically open to parallelization since
local flooding of b is independent of the processing of any other basin.
Only the update of Ẑ{b,b′} and BT has to be synchronized. As soon
as new neighbored basins are identified, their processing can be started
asynchronously.

3.3 pourRNA – exploration heuristics

As already discussed, the RNA structure space and thus the size of the
respective energy landscape grows exponentially in sequence length. Since
the vast majority of RNA structures is energetically unfavorable (positive
energy values) and thus unlikely to be formed, it is reasonable to restrict the
energy landscape exploration to low energy conformation. In the following,
two such heuristics implemented in pourRNA are discussed.

3.3.1 maxE – global absolute energy bound
A first and obvious way to constrain exploration, also e.g. available
within the global flooding barriers pipeline, is to ignore RNA structu-
res above a global upper absolute energy bound (maxE), also discussed
e.g. in (Hofacker et al., 2010; Kucharík et al., 2014). Due to the bell-
shaped density-of-states distribution of RNAs (see e.g. (Lou and Clote,
2010)), a low maxE value will (i) ignore the vast majority of the stru-
cture space while (ii) still approximating the partition function (ensemble
weight) with high precision. The latter results from the discussed inverse
exponential relationship of energy terms and Boltzmann weights w. Even-
tually, the probability (w(P )/Z) to observe a respective structure P drops
exponentially with increasing energy.

When initialized with a single input structure, pourRNA identifies
its respective local minimum via gradient walk computation and explo-
res the accessible gradient basins (transitively) neighbored to the start
basin. While this will eventually result in the full basin partitioning of the
energy landscape for unconstrained exploration, pourRNA will produce
only the cluster of accessible basins if the structure space is restricted by
an upper absolute energy bound. In order to be exhaustive under such
constraints, one can efficiently enumerate local minima via dynamic pro-
gramming as introduced by Clote (2005); Lorenz and Clote (2011) or
approximate results via sampling following, for example, Ding and Law-
rence (2003); Lorenz and Clote (2011); Kucharík et al. (2014) or Michalik
et al. (2017). Also we can initialize pourRNA with structure samples from
co-transcriptional folding simulations (Danilova et al., 2006; Hofacker
et al., 2010; Proctor and Meyer, 2013), since they resemble the structure
space that initializes and thus guides subsequent global folding. A well
studied example is the RNA sv11 (Biebricher and Luce, 1992) also used
for benchmarking within the Results section.
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Fig. 1. (a) When restricting local flooding to a deltaE range above the local minimum,
macro-state transitions might only be identified in one direction (arrow). (b) depiction of
the "stair climb effect" (gray arrows; exploration starts in basin b), which can be undesired
when interested in the kinetics following high rates to more stable basins (black arrow).

3.3.2 deltaE – local relative energy bound
In contrast to global flooding, pourRNA can also restrict the local flooding
of individual macro-states by the deltaE heuristic. If enabled, only structu-
res within the energy range of deltaE above the respective local minimal
energy are investigated whether they are part of the gradient basin or mark a
transition to a neighbored basin. This efficiently restricts the memory con-
sumption of pourRNA, since basins typically cover a wide energy range
(and also show a density-of-states distribution similar to the global one,
see Mann et al. (2014)).

Since we are ignoring many (high energy) micro-states depending on
the local flooding level defined by deltaE, the resulting basin’s partition
function Zb is only an estimate of the true partition function. But since Zb

is dominated by the local minimum (and energetically close structures),
highly accurate approximations can already be gained by low deltaE thre-
sholds (see supplementary material E). Nevertheless, energetically lower
basins will show larger effects than high energy basins, since we apply the
same relative deltaE threshold to all.

Furthermore, since we ignore high energy micro-state transitions, we
might miss respective macro-state transitions as well. This problem is
partially amended by the pourRNA pipeline when both macro-states are
processed. In that case, it is likely that micro-state transitions from the ener-
getically higher to the lower basin are found (see Fig. 1(a)). Since Ẑ{b,b′}
is symmetric, identification from one side is sufficient. If both directions
are processed (independently), pourRNA stores the higher Ẑ{b,b′} value,
since it resembles the better approximation. Note, when using the deltaE
heuristics, exploration has to start at high energy basins. Otherwise, unfa-
vorable "up hill" transitions and thus whole sublandscapes can be missed
(see Fig. 1(a)).

The deltaE bound implies a maximal energy barrier for considered
exit pathways for the basin. That is, deltaE equals the maximal energy
difference between the local minimum P̌ and the highest transition state
P̂ and thus the smallest transition rate can be estimated by the Arrhe-
nius equation, i.e. exp(−deltaE/RT ) (see supplementary material E).
For instance, a deltaE value of +5 kcal

mol corresponds to a minimal transi-
tion rate of about 0.0003 to be considered for landscape exploration. Thus,
depending on the deltaE value, the resulting sublandscape models the "fast
folding" sublandscape (structure space) accessible for the molecule for the
given start structure and can be used to study refolding processes as we
exemplify later.

3.3.3 maxNeighE and kBest – gradient walks on macro-states
Gradient basins are not the most abstract representation used to study
energy landscapes and folding kinetics. Folding funnels represent an even
higher level of abstraction and cluster macro-states by their separating low-
est barriers (to more stable structures) (Leopold et al., 1992; Frauenfelder
and Leeson, 1998; Karplus, 2011). Klemm et al. (2008) have introduced a
formal framework building on gradient basins. Therein, the lowest barrier
(and thus the highest macroscopic transition rate) to a neighbored basin

with lower local minimum defines recursively a funnel partitioning of the
energy landscape. The funnel assignment is eventually based on gradient
walks on macro-states.

pourRNA can be used to identify such macroscopic gradient neighbors
to compute the overall funnel partitioning or to identify the respective local
minimum of the funnel. To this end, pourRNA allows to filter the set of
neighbored basins that are considered for further exploration (step 4 in the
pourRNA algorithm).

For a given gradient basin b, the kBest filter allows to restrict the
neighbored basin exploration to the kBest basins b′ with highest macro-
state transition rates kb→b′ , independently of the absolute rate values.
Since the rate is inversely related to the respective energy barrier on folding
paths, the highest rate corresponds to the lowest energy barrier.

The maxNeighE filter prunes all neighbored basins b′ for which the
energy difference of the respective minima E(P̌ ′) − E(P̌ ) is below the
user defined threshold. That is, if maxNeighE is set to 0 or below, only more
stable (lower energy) and thus kinetically favored basins are considered
for further exploration (this corresponds to the black arrow in Fig. 1(b)).

To compute a gradient walk on macro-states, we simply set maxNei-
ghE=0 (to ensure "down hill climbs") and kBest=1 (to follow only the
highest rate; assuming it to be unique). This is similar to ideas of Kühnl
et al. (2017). Note, the order of the filters is important, since the highest
rates are not necessarily leading to energetically lower neighbored gradient
basins. Macroscopic gradient walks are of interest when studying higher
level energy landscape organizations like folding funnels (Klemm et al.,
2008), which is discussed in detail in supplementary material H.

The combination of both filters is a powerful tool to restrict the search
space of pourRNA when investigating fast refolding kinetics. For long
RNAs, even the restriction of the maximal absolute energy (maxE) as well
as the local flooding boundary (deltaE) will result in very large macro-state
models of the landscape. Thus, we can face a "stair climb effect" during the
exploration (depicted by gray arrows in Fig. 1(b)) that might be undesired
when e.g. studying fast refolding pathways to more stable structures. This
problem can be mitigated by pourRNA, since the consideration of "less
stable" basins can be limited or excluded (via maxNeighE) and we can
focus on the fastest folding routes (controlled by kBest).

3.3.4 Direct paths on macro-state level
When multiple input structures are provided and the exploration is con-
strained by maxE or deltaE, the resulting transition rate model can be
non-ergodic, i.e. some (clusters of) macro-states are not (transitively) con-
nected. The same applies to the state-of-the-art barriers pipeline, since
it covers all local minima (and respective macro-states) below the maxE
energy bound to which pourRNA input structures are initially mapped. To
compute folding kinetics, additional post-processing is needed to heuri-
stically estimate (high energy) transitions between connected macro-state
clusters.

Kucharík et al. (2014) discuss and evaluate various ways how macro-
state clusters can be connected. One of the first approaches was introduced
by Morgan and Higgs (1998) and considers only direct paths of micro-
states. That is, given a start and target structure P and P ′, resp., only
structures Px⊆(P∪P ′) that show a combination of start/target base pairs
are considered (while keeping the shared base pairs, i.e. (P∩P ′) ⊆ Px).
In the following, we refer to trajectories P..Px..P ′ via such structures
as microscopic direct paths. findpath implements a fast bounded breadth-
first search within this structure space (Flamm et al., 2001), which is
employed by Kucharík et al. (2014) to connect macro-states and to identify
the interjacent basins. The latter is supported by local flooding techniques
to optimize the barrier estimation.

Here, we generalize the notion of direct paths to macro-states, which
is so far, to our knowledge, only defined for micro-states as given above.
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To this end, we first map start and target structure to their respective local
minima P̌ and P̌ ′. Subsequently, we restrict pourRNA’s landscape explo-
ration to basins with local minima P̌x along direct paths between the P̌

and P̌ ′ (analogously to the microscopic direct path definition). To allow
for some variations (e.g. due to helix extensions within the local minima
of basins), we allow for some (small) base pair deviation ∆bp from micro-
scopic direct paths, i.e. |P̌s \ (P̌∪P̌ ′)| < ∆bp. This macroscopic path
exploration can be combined with the introduced heuristics to speed up
the search.

Note, in contrast to the approach of Kucharík et al. (2014), we are
not biased to macro-states along the microscopic direct path optimized
by findpath. Note further, since we are only constraining the base pair
distance of local minima and not the micro-states considered during local
flooding, our macroscopic direct paths will explore a larger structure space
compared to microscopic direct-path search.

4 Results and Discussion

4.1 Data set

For analyzing and benchmarking pourRNA, RNAs used in other RNA kine-
tics studies of varying lengths were extracted from literature. The shorter
molecules were used to compare to exhaustive methods, while we exem-
plify the use of pourRNA’s heuristics for longer RNAs. The supplementary
material C lists all RNAs with sequence and meta information. Unless sta-
ted differently, pourRNA uses the unstructured open chain as initial state
for its exploration.

4.2 Exact transition rate computation

In the following, we compare pourRNA’s runtime and maximal memory
consumption to the state-of-the-art barriers pipeline using the 56 nt SL
RNA. Both approaches are considering only structures with an absolute
energy below 5 kcal

mol . The barriers approach required in total 45 min (RNA-
subopt+barriers) with a memory peak of 8.3 GB; both numbers define the
reference for subsequent comparisons. Note, this pipeline cannot profit
from multi-threading and requires a sorted list of all suboptimal structures
up to a certain threshold (computed by the tool RNAsubopt).

In order to benchmark pourRNA’s computational performance for exact
kinetics studies, no additional heuristics (beside maxE) are applied. Thus,
pourRNA produces exactly the same macroscopic transition rates compa-
red to the barriers pipeline. Single-thread computations with pourRNA
(solid lines in Fig. 2(a)) took 6.3 min and 60 MB; using 10 threads redu-
ced the runtime to 3.6 min but increased maximal memory to 190 MB
(averages for two repetitions). We observe a non-linear correlation of the
number of used threads and runtime, which converges already for about 4
threads. In contrast, memory consumption almost linearly increases with
thread number (see also supplementary material D).

To investigate the source of the runtime improvement, we first recap
that the RNAsubopt+barriers pipeline can be decomposed into three steps:
(i) unsorted structure enumeration via dynamic programming, (ii) sor-
ting of the structures, and (iii) computation of the macroscopic transition
rates, where (i)+(ii) are done by RNAsubopt. Given that the latter requires
less than 0.5 min for sorted enumeration of the considered SL structure
space, the global flooding of barriers defines the overall runtime that is
mainly governed by microscopic rate computations. Furthermore, barri-
ers implements its own neighborhood routines; pourRNA uses methods
from the recent Vienna RNA package v2.4.10. While this might explain
some runtime difference, we assume that the speedup mainly stems from
the different rate computation implementations used in pourRNA. Finally,
barriers enumerates a large number of high energy basins that are not con-
nected to the minimum free energy basin and are irrelevant for the overall
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Fig. 2. (a) Averaged relative time (triangle) and memory (circle) consumption of our
pourRNA approach (1-10 threads) compared to RNAsubopt+barriers (1 thread) for SL
RNA. See text for absolute time and memory values.
(b) Memory consumption of the tools barriers and pourRNA for RNA sequences of different
length. Each marker corresponds to the memory size for the tool that processed one or more
sequences of the given length. Each tool uses 1 thread and pourRNA applies also the delta
energy micro state filter, which additionally decreases the memory consumption, indicated
by the trend lines. For barriers the line is dotted, for pourRNA it is solid and for pourRNA
with deltaE=5 filter it is dashed.

folding dynamics. Thus, pourRNA benefits from the reduced memoriza-
tion (and thus allocation and hashing efforts) needed for local compared to
global flooding. The fast convergence results from a few large basins that
consume most of the time (compare basin size statistics by Mann et al.
(2014)). While all other basins are smaller and already completed, the
large basins are still in the flooding process.

Figure 2(b) compares the trends of peak memory consumption for
increasing sequence lengths using barriers and pourRNA. The consum-
ption of pourRNA is much lower, because it holds only the structures for
one basin in memory.

4.3 Parameter optimization for the deltaE heuristic

To assess the quality of the kinetic models produced with pourRNA’s del-
taE heuristic, we investigate the overall partition functionZ =

∑
b∈B Zb,

the ensemble energy Eall = −RT log(Z), and the number of identi-
fied macro-state transitions for different deltaE values (see supplementary
material E). The closer these values are to the exact values (without addi-
tional heuristics), the better is the approximation. For deltaE values above
5 kcal

mol , we observe no significant difference. For values below 4-5 kcal
mol , the

explored sublandscape is increasingly less representative. This can be seen
both at the decrease of relative Z as well via the strong reduction of the
number of identified macro-state rates, which is observed independently
of the sequence lengths. Given our experiments, we thus consider a deltaE
value of 5 kcal

mol (or slightly above) as a useful threshold for local flooding
restrictions to provide a good balance of time consumption and the quality
of the resulting kinetic model.

4.4 Approximate transition rates using the deltaE heuristic

Here, we reevaluate the performance of pourRNA compared to the barriers
pipeline when restricting local flooding with deltaE = 5 kcal

mol . Results are
depicted by dashed lines in Fig. 2. By applying the deltaE filter, both run-
time and memory consumption are significantly further reduced (compare
Fig. 2(a)). However, memory requirements still grow slowly exponenti-
ally with the sequence length (i.e. a linear trend in log scale plotting in
Fig. 2(b)).

Since pourRNA’s runtime is dominated by the processing of the lar-
gest basins, restricting this local flooding results in both time and memory
reduction. As can be seen from Fig. 2(a), this leads to an even faster conver-
gence of the time requirement. Notably, memory requirement becomes



pr
ep

rin
t

“pourrna” — 2019/7/26 — page 6 — #6

6 Entzian & Raden

nearly constant for different thread numbers when deltaE is applied. This
results from the extremely small basin fractions that are enumerated for
the given deltaE bound.

To evaluate the quality of the approximated transition rates produced
with the deltaE heuristic, we computed population trajectories using tre-
ekin (Wolfinger et al., 2004) and compared them to the kinetics when
using exact macroscopic rates as computed by pourRNA without filters
(or barriers). The resulting kinetics are depicted within the supplementary
material F and show no visual difference for exact and approximate rates.

4.5 Energy barrier estimation of RNA refolding

As discussed already, co-transcriptional folding can guide the folding pro-
cess to meta-stable conformations that are structurally quite different from
the energetic optimum (global minimum free energy structure). A well
studied example is the sv11 RNA that is kinetically "trapped" in a local
minimum (see supplementary material G.1) due to co-transcriptional sub-
structure formation (Biebricher and Luce, 1992). To study the refolding
process from the kinetic trap to the global optimum (which is dominant
in thermodynamic equilibrium), estimates of the relative energy barrier
that needs to be overcome are needed. The energy barrier is defined as the
maximal energy E(P̂ ) of the transition state P̂ on the energetically lowest
(microscopic) path that connects the meta-stable start state with the global
optimum (see e.g. (Wolfinger et al., 2004)). The Arrhenius equation inver-
sely relates the energy difference to the barrier (i.e. the activation energy
within a high-level abstraction) with the respective transition rate on an
exponential scale. Thus, the energy barrier has to be identified as well as
possible to enable accurate rate and timing assessment of the refolding.

Since the energy landscape of sv11 is already too large for global flo-
oding (Kucharík et al., 2014), so far only estimates of the refolding energy
barrier are known. Kucharík et al. (2014) have shown for sv11 that the
energy barrier estimates from microscopic direct path optimization (using
findpath) provide only a rough approximation. Also applying heuristics
implemented in PathFinder (Lorenz et al., 2009) or TabuPath (Dotu et al.,
2009) yield no improvements. They could show via their BHG sampling
approach that a "detour" within the energy landscape improves the barrier
estimates (compare findpath and BHG in Tab. 1). In the following, we will
study this refolding problem using pourRNA (always using up to 8 cores).

To emulate a proper experimental setup, we first "rediscovered"
the meta-stable conformation known from the literature using the co-
transcriptional folding simulation webserver KineFold (Xayaphoummine
et al., 2005) (see supplementary material G.1). This provides us with the
start structure for our explorative local flooding approach.

Refolding along fast macro-state transitions
First, we investigate the energy landscape accessible via fast macro-state
transitions using the deltaE heuristic. To enable comparisons with results
from (Kucharík et al., 2014) we are using the turner-99 energy para-
meters from the Vienna RNA package 2.4.10 (see supplementary material
G.3 for turner-04 results). We also use an extended micro-state nei-
ghborhood definition (as done for BHG by Kucharík et al. (2014)) that
also connects structures that differ in exactly one position in one base pair,
which is called a shift move. Note, so far shift moves are not available for
findpath.

Since we know already an upper bound on the energy barriers from
the microscopic path optimization (see findpath in Tab. 1), we set maxE to
-56 kcal

mol . Starting from the meta-stable conformation, we cannot reach the
global minimum free energy structure using a deltaE value of 4 kcal

mol . Using
deltaE=5 kcal

mol , pourRNA explores a cluster of 143,032 gradient basins
within 6.3 h of computation time. The cluster includes the macro-state of
the global minimum free energy structure. Thus, using a modified Dijkstra
algorithm, we find an energy barrier estimation of -62.3 kcal

mol (compare

method (parameters) E(P̂ ) time |Bp|
findpath (width=1000) -56.1 <1 m
BHG [from (Kucharík et al., 2014)] [-59.2] [∼20 h]
pourRNA
(maxE=-56, deltaE=5) -62.3 6.3 h 143,032
(maxE=-56, deltaE=6) -62.3 7.8 d 714,359
(maxE=-56, deltaE=9) -62.3 10.6 d 771,300
(maxE=-56, deltaE=5, kBest=8) -62.3 4.9 h 111,777
(maxE=-56, deltaE=6, kBest=5) -62.3 2.2 h 40,880
pourRNA - macroscopic direct paths
(maxE=-56, deltaE=6, ∆bp=6) -59.4 1.2 h 20,607
(maxE=-56, deltaE=6, ∆bp=8) -62.3 2 h 44,130
(maxE=-56, deltaE=6, ∆bp=10) -62.3 4.3 h 89,598
(maxE=-56, deltaE=6, ∆bp=10, kBest=6) -62.3 2.8 m 2,361

Table 1. Barrier estimations (energy of lowest transition states P̂ in kcal
mol using

turner-99 energy parameters from the Vienna RNA package 2.4.10) and
runtime for sv11 refolding using different methods: microscopic direct path
search (findpath), Basin-Hopping-Graph (BHG) and pourRNA. For pourRNA
also the number of processed macro-states b ∈ Bp is reported.

Tab. 1). The respective refolding barrier relates to the path identified by
Kucharík et al. (2014), as discussed within the supplementary material G.2.

To test whether the identified barrier can be improved, we run higher
local flooding thresholds of up to 9 kcal

mol . While we are exploring a much
larger part of the energy landscape no lower energy barrier could be found.
We thus conclude that -62.3 kcal

mol is the true energy barrier of the refolding.
While superior to both findpath as well as BHG, pourRNA still requires

much more time than findpath. To further speed up the computation, we
next tested the impact of the kBest heuristics, i.e. we restrict exploration
to neighbored basis that are reached via the highest rates (and thus lowest
local energy barriers). Setting kBest to 5, reduces the runtime to 2.2 hours
while we find the same energy barrier. This results from the (expected)
strong reduction of explored basins (see Tab. 1).

Refolding along macroscopic direct paths
As shown by Kucharík et al. (2014), the energy barrier identified by BHG
can be found by nearly direct microscopic paths. Thus, we expect to find
our identified energy barrier via macroscopic direct path exploration.

To this end, we first investigate the impact on runtime and barrier
estimation when comparing macroscopic direct paths with the exhaustive
exploration reported in the last section for deltaE=6 kcal

mol . When not allo-
wing for some structural flexibility (∆bp = 0), the meta-stable state can
not be connected to the global optimum. When local minima of basins are
allowed to differ in up to 6 base pairs from both start and target minimum
(∆bp = 6), we find a first energy barrier estimate of -59.4 kcal

mol within 1.2
hours. Further relaxations to ∆bp = 8 reproduces in 2 hours the already
known barrier of -62.3 kcal

mol . The runtime differences correlate well with
the number of processed macro-states (compare Tab. 1).

Since the overall runtime is still high, we restrict the exploration to
fast transitions along macroscopic direct paths by setting kBest. As before,
focussing on fast transitions vastly reduces the explored sublandscape. This
enables a much faster identification of the optimal energy barrier within
less than three minutes, which is close to the findpath heuristic.

Note, beside being orders of magnitude faster compared to BHG,
pourRNA provides deterministic results while BHG is using randomized
sampling strategies to cover the energy landscape.
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5 Conclusion
The computation of gradient basin macro-state transition rate models to
study the folding kinetics of RNA molecules is a hard computational pro-
blem. So far, exact computations were mainly limited by the extensive
memory consumption resulting from the exponential growths of the RNA
structure space with sequence length.

Here, we have introduced pourRNA that implements an explorative
local flooding strategy rather than applying a global flooding scheme as
done by state-of-the-art approaches. Local flooding enables faster kine-
tics model computation while its memory footprint is orders of magnitude
smaller compared to the barriers pipeline. Furthermore, it enables the
application of restricted local flooding schemes. pourRNA’s deltaE heu-
ristic limits flooding to a given energy range above the basin’s local
minimum. That way, the resulting kinetics will reflect the fast refolding
transition. Due to this limitation, transitions exceeding the deltaE limit will
be missed. However, since the transition state ensembles are symmetric,
they can be identified also in the reverse direction and are thus often still
available for kinetics computation.

Further filters that restrict the exploration of neighbored basins e.g. to
more stable structures (maxNeighE) or just to the most likely transitions
(kBest) enable a further reduction of the computational cost but restrict
the study e.g. to fast refolding pathways and kinetics. In its extreme, these
filters can be used to identify gradient walks on a macroscopic level, needed
e.g., to study folding funnels.

We emulated a refolding use case for the 115 nt long RNA sv11. This
RNA is co-transcriptionally trapped in a meta-stable conformation. We
have shown that pourRNA is able to identify better energy barrier estimates
compared to results from literature. We could show that restricting the
exploration to fast folding macroscopic direct paths provides a powerful
filter to identify high accuracy energy barriers with low runtimes.

For such refolding experiments, it is often hard to choose a well
working parameterization without additional knowledge. Thus, pourRNA
enables dynamic adaptation e.g. of the kBest filter value if the start structure
can not be connected either to the global minimum free energy structure
or a provided target for the initial parameter setup.

Our ongoing work focuses on a dynamic deltaE heuristic that will
ensure that the local partition function is well approximated using the
ideas by Mann and Klemm (2011). Furthermore, we are investigating pos-
sibilities to parallelize local flooding to further speed up the investigation
of very large basins. Finally, we will test other heuristics, e.g. following
Bogomolov et al. (2010) or Huang and Voß (2014), to further improve the
barrier estimates between macro-state clusters.
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