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In this supplementary material, we describe in full the algorithm for computing the partition
function of two interacting nucleic acid strands. We also present the sequence pairs in the data sets
used for verification of our algorithm.

1 Preliminaries

Throughout this paper, we denote the two nucleic acid strands by R and S. Strand R is indexed
from 1 to Lg, and S is indexed from 1 to Lg both in 5 to 3’ direction. Note that the two strands
interact in opposite directions, e.g. R in 5 — 3/ with S in 3’ « 5’ direction. Each nucleotide is
paired with at most one nucleotide in the same or the other strand. The subsequence from the it"
nucleotide to the 5" nucleotide in a strand is denoted by [i,j]. We refer to the i*" nucleotide in R
and S by ig and ig respectively.

An intramolecular base pair between the nucleotides 7 and j in a strand is called an arc and
denoted by a bullet 7 e j. An intermolecular base pair between the nucleotides ig and ig is called
a bond and denoted by a circle igp 0ig. An arc i @ jr covers a bond lg o kg if ir < I < jr. We
call ig ® jr an interaction arc if there is a bond lg o kg covered by i ® jr. A kissing arc is an
interaction arc that directly covers a bond. More precisely, we call ir @ jr a kissing arc if it covers
a bond lg o kg such that if i, e jj, covers the same bond Ig o kg, then i, < ir and jr < jp. A
subsequence [ig, jr] contains a direct bond, lgrokg, if ir <l < jr and no arc within [ig, jr] covers
lgr o kg. Assuming ig < jg, two bonds ig o ig and jgr o jg are called crossing bonds if ig < jg.
An interaction arc i e jr in a strand subsumes a subsequence [ig, js| in the other strand if for
all bonds lp o kg, if ig < kg < jg then i < Igr < jr. Two interaction arcs are equivalent if they
subsume one another. Two interaction arcs iz e jg and ig e jg are part of a zigzag, if neither ig e jr
subsumes [ig, js| nor ig e jg subsumes [ig, jr].

In this work, we assume there are no pseudoknots in individual secondary structures of R and
S, and also there are no crossing bonds and zigzags between R and S.
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2 Interaction Energy Model

An unpseudoknotted secondary structure s of a single nucleic acid, in the standard energy model
[4], is decomposed into loops, and a free energy is associated with every loop in s. The total free
energy (G is the sum of loop free energies. The standard energy model consists of the following
loop types: 1) Hairpin, 2) Interior, and 3) Multiloop. In an interaction secondary structure of two
strands under our assumptions !, new kinds of components can appear. We extend the standard
energy model by defining those new kinds of interaction components. Similar to the standard case,
an interaction secondary structure s can be decomposed into intramolecular loops and the new
interaction components such that the total free energy G is sum of the free energies of loops and
interaction components. Our extended energy model consists of the following components:

o Empty: Gfr;pty is the free energy of a subsequence [i, j| that contains no base pairs and is
external to all loops. Its energy contribution is assumed to be zero.

halrpln

e Hairpin: G| is the free energy of a hairpin closed by the arc ¢ e j. That depends on the
sequence and loop size.

e Interior: G;nls’fr}g ;18 the free energy of the interior loop enclosed by the closing arc i e j and

the interior arc ki @ ky. That free energy depends on the closing base pairs and the loop size.
An interior loop is called bulge iff one side of the loop has zero length. Stacked pairs are a
special case of bulge loops in which case the size of the loop is zero. A stem is a series of
stacked pairs.

e Multi: Gmult‘ is the energy of a multiloop with B base pairs and U unpaired bases. It is
approxunated by .
G = a1 + aoU + a3 B, (1)

in which a; is the penalty for the formation of the multiloop, as is the penalty for each
unpaired base in the multiloop, and as is the penalty for each loop in the multiloop.

e Hybrid: G?Z?Zigi} is the free energy of a joint secondary structure consisting of a series of
bonds, k o k5,7 = 1,...,m, with no intramolecular base pairing or branching. We call such
a component hybrid. We define the energy associated with a hybrid component by

hybrld 2 : interior
{kz Ok;l /31 + g sz 7kiR+17kg+17k,i5" (2)

in which (7 is the penalty for the formation of the hybrid, and o < 1 is the ratio of the free
energy of intermolecular to that of intramolecular interior loops (as suggested by [1]). Note
that with 51 = 0,0 =1, Ghybrid ig jdentical to the energy proposed by RNAhybrid, first in-
troduced by Rehmsmeier et al. which considers only one hybrid component for mRNA /target
duplexes and does not allow any intramolecular structure [7],

kissing .
Uk, Bk
makes interaction with the other strand and has B* base pairs and U* unpaired bases. Such
component is called a kissing loop. The energy associated with a kissing loop is given by

e Kissing: G is the energy of an intramolecular loop (hairpin, interior, or multiloop) that

Gt = 82U + 33 BY, (3)

'Remember we do not allow pseudoknots, crossing bonds, and zigzags in this work.



in which B* is the number of loops and U* the number of unpaired bases in the kissing loop.
Note in our model we use different 3; and o values for a hybrid component covered by a
kissing loop.

e Inter-hybrid: GMter-hybrid jg the energy of an intermolecular loop bounded by two bonds
belonging to two consecutive hybrid components. Bases in either sequence facing this kind
of loop might be the end points of only arcs and not bonds. We call such a component
inter-hybrid loop. In this work the energy contribution of an inter-hybrid loop is assumed to
be zero.

3 Interaction Partition Function

Here, we describe a recursive algorithm for computing the partition function of two interacting
nucleic acid strands, called piRNA. Our algorithm guarantees to consider all possible secondary
structures exactly once. We prove every possible secondary structure is reached by exactly one
trajectory in the recursion process.

We present our algorithm using recursion diagrams [3, 8]. Our algorithm computes two types
of recursive quantities: 1) the partition function of a subsequence [i, j] in one strand, and 2) the
joint partition function of subsequences [ig,jr] and [ig,js]. A region is the domain over which a
partition function is computed. Terminal bases are the boundaries of a region. For the first type,
region is [i, j] with 7 and j terminal bases. For the second type, region is [ig, jr| X [is,js] with i,
JRr, is, and jg terminal bases. The length pair of region [ir, jr| X [is,js] is (lr = jr —ir + 1,ls =
js —is+1). Our algorithm starts with (Ir = 1,ls = 1) and considers all length pairs incrementally
up to (Il = Lg,ls = Lg). For a fixed length pair (Ig,ls), recursive quantities for all the regions
lig,ir +lg — 1] X [ig,is + s — 1] are computed.

3.1 Partition Function for Non-Interacting Subsequences

For computing the partition function of a subsequence in one strand we use McCaskill’s algorithm
[6]. McCaskill’s algorithm is shown in Figure 1, in which Q;; is the partition function for the
subsequence [i, j|]. Throughout this paper, a horizontal line indicates the phosphate backbone, a
solid curved line indicates an arc, and a dashed curved line encloses a region and denotes its two
terminal bases which may be paired or unpaired. Letter(s) within a region specify a recursive
quantity. White regions are recursed over and blue regions indicate those portions of the secondary
structure that are fixed at the current recursion level and contribute their energy to the partition
function as defined by the energy model. Green and red regions have the same recursion cases as
the corresponding white regions, except that for the green regions multiloop energy and for red
regions kissing loop energy is applied, i.e. the corresponding penalties for each unpaired base and
base pair should be applied.

In Figure 1, the first case of @); ; corresponds to an empty structure (that constitutes no base
pairs) whose free energy is assumed to be zero, thus its contribution to the partition function is
eiGzZ’L "/RT _ 1. In the other case, there exists at least one arc and the leftmost one is k1 @ ko. It
contributes Qzl,kg Qky+1,; to the partition function, therefore,

Qij =14+ Y Q@1 (4)

1<k1<ko<j

The second line shows the cases of Qg’ ; which is the partition function for the subsequence [i, 7]
assuming ¢ and j are base paired. The arc i e j can close different substructures: hairpin, interior,
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Figure 1: McCaskill’s algorithm: recursion for @); ;, the partition function for the subsequence [, j].
Above, Q?’j is the partition function for the subsequence [i,j] assuming ¢ and j are base paired,

and fzj is the partition function for the subsequence [i, j] assuming there is at least one arc in the
region.

or multiloop. The energy contribution of each substructure is calculated based on the standard
thermodynamics energy model.

hairpin __ ~interior
1<k1<ko<j (5)
b bz.green —(a1+az(k1—i—1)+as3)/RT
Y Q@ e :

ka+1,—1
1<k1<ko<j

The third line shows cases of Q% which is the partition function for the subsequence [i, j]
assuming the region constitutes at least one arc. Therefore,

Q= Y Q@i 6)

i<k1<ko<j

As mentioned before, a green region is contained in a multiloop. The region has the same
recursion as if it was white, however the base pair and unpaired penalties of multiloop should be
applied to it. Explicitly,

bz b .green—(ag(k1—i—1)+a3)/RT
i = E : Qhy ks Qieyt1,5 € ’ (7)
1<k1<ka2<j
.green ___—ao(j—i—1)/RT b -green  —(az(k1—i—1)+agz)/RT
ij ¢ + Qs ko @iy 1,5 € ' 8)
1<k1<ka2<j

3.2 Partition Function for Interacting Subsequences

In the following, we present all cases of Qf . . . which is the interaction partition function for
& b TRyJRsVS,]S P

the region [ig, jr] X [is,js]. A solid vertical line indicates a bond, a dashed vertical line denotes
two terminal bases of a region which may be base paired or unpaired, and a dotted vertical line
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Figure 2: Cases of the interaction partition function QZ'IR,jR,is,js' The first case constitutes no

bonds. In the second case, the leftmost bond is a direct bond on both subsequences. In the third
case, the leftmost bond is covered by an interaction arc in at least one subsequence.

denotes two terminal bases of a region which are assumed to be unpaired. Figure 2 shows the cases
of QF: 1) there is no bond between the two subsequences, 2) the leftmost bond is a direct bond
in both subsequences, and 3) the leftmost bond is covered by an arc in at least one subsequence.
Therefore,

I Ib
iR,JRyS:JS :QiRijQiS7jS+ Z Qz’R,krlezﬂ,stkl,jR,z'S,kz"‘

ip<ki<jgp
ig<ko<jg (9)
Qi Q Qb i
iR,k1—1%ko+1,js Uk ,jR,is k2>
iR<k1<UiR
ig<ko<ig
= Ihh
( ‘(\\
iR JR ki ki Nk
Ib P ‘ Ih ‘ Ih Ia
is is k' ko k2
e A M
‘ Ih Ib ‘ Ih Ib
kb 2 AN
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Figure 3: Recursion for {g ipis.js ASSUMINg ig o jg is a bond. We show a version of the recursion

that contains two split points in each sequence for simplicity reasons. However, this would increase
the complexity and can easily be resolved by introducing two additional matrices Q" and Q"
for the region [ig, k1] X [k2, js| as indicated by the arrows.

Figure 3 shows the recursion for Q{}g imigds?

[ir,jr] X [is,js] assuming ir o jg is a bond. Since we have penalties for opening and closing

the interaction partition function for the region



a hybrid component, the recursion for Q’® has to determine whether the region contains one or
several hybrid components. In all cases, Q" contains the full hybrid component containing the
bond ig o jg (see Figure 5 for Q' recursion). The first possibility reflects the case where we have
only one hybrid component. In the other cases, we have always at least two hybrid components.
The subsequent intermolecular bond starts a new hybrid component iff 1) it is not direct in at least
one subsequence, i.e. it is covered by an arc in the associated regions (case 2 of the Q' recursion),
or 2) there is at least one arc between the two successive intermolecular bonds (case 3 and 4 of the
Q'? recursion). Using the additional matrices Q" and Q™" we get

Ib _~Ihh IThb Ib
QI inisis =@ icis ¥ O Qi ks Qb st

ip<k1<ip
ig<ko<ig (10)
E Ihh - Qla
ir,k1,k2,55 Ck1,jRis,k2"
ip<k1<ip
ig<ko<jg
iR IR k1.bz k1
Ihb = ‘ Ih Ih
js is koo S ko bz
iR JR k1
Ihh = ‘ h
is ig R
: . Thb Thh : : .
Figure 4: Cases of Q;. ;. ;. and Q"% .  whose region contains one hybrid component on the

left. Here, region [ig, k1] X [k2,js] represents a hybrid component. Figure 5 shows the recursion
for QT*.

The quantities Q'"* and Q" are defined by the recursion diagrams in Figure 4 and equivalently
by the following equations:

Ihb _ —B1/RT nIh bz . bz
iRJRYS,JS Z € Qim/ﬂ,kmjs (le-i-l,jRQlSvk?*l + Qis,kQ—l) (11)
iR<k1<JR
ig<ko<jg
and
Thh _ § —B1/RT ryIh 0.
QiRij,is,js - e M/ QiRykl7k27jSQk1+17]RQ15'7k‘2_1’ (12)
iRSk1SJR
ig<ka<jg

in which Q" is the interaction partition function for a hybridization region (Figure 5).

Figure 5 shows the recursion for Q. Since we do not allow isolated bond the base case of Q"
is an interior loop, otherwise it can be an isolated bond. Two cases are possible: 1) there is no
bond other than ig o js and ig o jr in the region, and 2) there exist more bonds between ig o jg
and ig o jr, the leftmost of which is ki o ko. Precisely,
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Figure 5: Cases of QZI g imis.js the interaction partition function for a single hybrid component.
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Figure 6: Cases of
an interaction arc.

Figure 6 shows the cases of {g inis.js for which at least one of ip and jg is the end point of

interaction arc: 1) ir e ky subsumes [ko, js] and ko is not base paired with jg, 2) k2 @ jg subsumes
[ir, k1] and ig is not base paired with ki, and 3) ig e ky and ko e jg are equivalent. If only one of ip
and jg is the end point of an interaction arc while the other one is the end point of a bond, then
the interaction arc subsumes the other subsequence. If both iz and jg are end points of interaction
arcs, then one of the arcs subsumes the other one or they are equivalent. Therefore,

Ia . Is I
LRy RY SIS § : QiRvkl7k27jSle+17iji57k2_1+
iR<k1<jR
ig<ka<jg
Is' I
Z iRJﬂ7k27jSle+17jR7i57k2*1+ (14)
iR<k1<iR
ig<ko<jg
E Qle QL
iR,k1,k2,j5 ¢ki+1,jRis,ka—1>
ip<k1<JR
ig<ko<jg
in which Q{; k1.ksjs 15 the interaction partition function of [ir, k1] X [k2,js]| assuming ip e ky is
. . . / . .
an interaction arc that subsumes [ko, js], Qi[; ke ko js 1S the symmetric counterpart of Q%, and

Ie .
ir,k1,k2,5s 3
equivalent interaction arcs.

For Q'¢, it does not make any difference which one of the covering arcs ip ® jr and ig e jg is
extracted first. We first extract the covering arc from S (see Figure 7). Extracting the covering arc,

is the interaction partition function of [ig, k1] X [ke, js| assuming ip e k1 and ks e jg are



Figure 7: Cases of QZ-I; iRis.s! for which ip @ jr and ig e jg are equivalent interaction arcs.

the remaining subsequence of S contains either at least one direct bond, in which case kissing loop
penalty should be applied, or multiple interaction arcs, in which case multiloop penalty should be
applied. Hence, Figure 7 is appropriately colored by green and red to remind the type of penalty.
So, we have

Te . Ism.green ~gm Isk.red gk
iR:JRYS:JS E: QiR,kLkmjs igok1—1ka+1js T iRJﬂ7’?2JSQisvk1—1,k2+17js' (15)

1g<ki1<ka<jg
i eV = d e j i d e j
k1 ko

i d e j il_de_1j =4 d e j
k1 ko

Figure 8: Recursion for ff; ..; and Qf’,?, .j the partition functions for [i, j] excluding the gap [d, €],
assuming 7 and j are base paired. For Q9%, the gap contains a direct bond, and for Q9 the gap

contains multiple interaction arcs.

Note that Q777 ; and Q?Z ..; are the partition functions for [i, j] excluding the gap [d. ], as-

suming i and j are base paired. For Q9™ the gap contains multiple interaction arcs, and for Q9*,
the gap contains a direct bond (see Figure 8). Therefore,

gm _ g .green ~.green

i7d7€,j - Z Qi7kl7k27ij1+1,ko2—1,j’ (16)
i<k;<d
e<kg<j

and

gk _ g .red .red

Qlied = D Qlrsy @@ - (17)
i<ky<d
e<ko<j

The gap partition function QY is defined by the recursion in Figure 9. This quantity is similar
to the g in Dirks-Pierce’s algorithm [3]. For ng,d,e,j’ we assume 7o j and dee. Note that i =d,j = e
is a single arc case. There are two groups of cases: 1) there is no more spanning arc in the region,
and 2) there is at least another outermost spanning arc k; e ky. In both groups, there could be
some additional structure in the region. If there is no additional structure in the region, then the
spanning region is an interior loop. If there is at least one arc in either side of the gap, then the
spanning region forms a multiloop and penalty of multiloop should be applied.

Let iI}f’,ijyiSJS be the partition function for [ig, jg| X [is, js] assuming ir e jg is an interaction
arc that subsumes [ig, jg]. Since the union of the cases of @'** and Q'*™ comprise the cases of
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Figure 9: Recursion for Q7 ,

[d, €] assuming i e j and d e e.

; the partition function for the subsequence [i, j] excluding the gap

QIS
)

Is _ NIsk Ism

irdrisigs — @irgrisids T Qirsriis.ds: (18)

In particular, Q'** contains all cases of Q'* in which [ig, js] has at least one direct bond, and
Q!*™ contains all cases of Q!* in which [ig,js] includes multiple interaction arcs. Similarly, we
extract the covering arc from Q7% and Q'*™ to obtain QT™™, Q'™ QTF™ and Q'** where k
stands for kissing (or equivalently containing a direct bond) and m for multiple interaction arcs.
iyt I Ik Imk Ikk : :

The quantities Q;"7} i ios Qipinicis: Qingnisisr and Q% . ;. are defined by recursions in
Figs. 11, 12, 13, and 14. Note that all four terminal bases of the region have to be the end points
of a bond or of an interaction arc. In summary:

e Q™™ includes all cases that have multiple interaction arcs in both [ig,jr] and [ig, js|.

e Q'™k includes all cases where [ig, jg] has multiple interaction arcs and [ig, js] has at least
one direct bond.

o Q™ is symmetric to Q'™ with respect to R and S.
e Q*F includes all cases where both [ig,jr] and [ig, js] have at least one direct bond.

In Q™™ both subsequences [ir,jg] and [is, js] include multiple interaction arcs and have no
direct bond (Figure 11). All four terminal bases are endpoints of interaction arcs. Since i and jg
are endpoints of interaction arc, there must exist a @ on the left side of the region. This Q% has
no direct bond on both subsequences from R and S, which we call Q% . The bases jp and ig are
also end points of interaction arc, so there are interaction arcs on the right side of the Q/™™ in both
subsequences. These arcs can have three types: 1) arc in subsequence [ig, jr] subsumes the arc in
subsequence [ig, js|, 2) arc in subsequence [ig, js] subsumes the arc in subsequence [ig, jg|, or 3)
two arcs are equivalent. Note that for multiple interaction arcs there are an Q¢, Qs or Q' on
both left and right side of the region. The left one is contained in an extracted Q'¢, and the right
one is extracted separately. This scheme will continue for the other cases with multiple interaction
arcs.

In Q'™*, subsequence [ig, jr] has multiple interaction arcs and subsequence [ig, j5] has at least
one direct bond (Figure 12). Here, ig and jr are the end points of an interaction arc and ig and
js are the end points of a bond or interaction arc. Since ip is the end point of an interaction arc,
there must exist a Q!® on the left side of the region. The @Q’® has no direct bond in the subsequence
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LRyJR1S,]S’
arc subsuming [ig,js]. In Q'*™, [is,js] contains multiple interaction arcs and in Q**, [ig, js]
contains at least one direct bond.

Figure 10: Recursion for Q interaction partition function assuming iz ejg is an interaction

of R, but it can have two cases with direct bond in subsequence of S. We denote the special Q¢
that has at least one direct bond in the subsequence of S by Q4. In this case, the arc on the
right side of the subsequence of R can have three types: 1) it subsumes an interacting region in
lis,js], 2) it is subsumed by the interaction arc on the right side of [ig, js|, and 3) it is equivalent
to the interaction arc on the right side of [ig, js|. Note that the arc on [ig, js] can only subsume
subsequences with multiple interaction arcs. If the Q'® has no direct bond in S subsequence, in
which case it is denoted by Q7% the arc on the right side of [ig, jz] should subsume a subsequence
on the right side of [ig, js| that has at least one direct bond. The quantity Q%™ is symmetric to
Q™% with respect to R and S (Figure 13).

In Q' both subsequences of R and S have at least one direct bond, and all four terminal
bases of the region can be end points of bond or interaction arc (Figure 14). We go through the
cases based on different possibilities of terminal bases. If two terminal bases at the same side of
the region are end points of a bond, then obviously they are base paired, otherwise at least one of
them is the end point of an interaction arc.

In the first case of Figure 14, all four terminal bases are end points of bond, i.e. ig o jg and
jr oig. This case is similar to Q'® with a bond on its right. We denote this special Q'* by Q!
which is shown in Figure 15. If just i o jg, then there is a Q' on left side of the region. In
that case, the right side has three cases: 1) the right side of [ig, jr| contains an interaction arc
that subsumes a subsequence on the right side of [ig, js], 2) the right side of [ig, js| contains an
interaction arc that subsumes a subsequence on the right side of [ig, jr], and 3) there are equivalent
interaction arcs on the right sides of [ig, jg| and [ig, js|. If just jr o ig, then the case is similar to
a Q'® with a bond on its right. We denote this special Q% by Q'% (Figure 15).

10
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Figure 11: Recursions for
arcs.

Now consider cases in which terminal bases neither on the left nor on the right make bond with
one another. In this type of cases, there must exist a Q'® on the left side of the region. This Q¢
may contain direct bonds on either subsequence. Denote the special Q¢ that has at least one direct
bond in both subsequences by @'%. The right side of the region has three cases: 1) there is an
interaction arc on the right side of the remaining subsequence of R that subsumes a subsequence
on the right side of S, 2) there is an interaction arc on the right side of the subsequence of S,
that subsumes a subsequence on the right side of R, and 3) there are equivalent interaction arcs
on the right sides of the subsequences of R and S. Denote the special Q® that has at least one
direct bond in the subsequence of R by Q/%n. There must exist an interaction arc on the right
side of the subsequence of R that subsumes a subsequence on the right side of S. Note that the
subsequence on the right side of S should have at least one direct bond. We denote the special Q¢
that has at least one direct bond in the subsequence of S by Q7% <. In that case, there must exist
an interaction arc on the right side of the subsequence of S that subsumes a subsequence on the
right side of R. Note that the subsequence on the right side of R should have at least one direct
bond.

11
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assuming [ig, jr| has at least one direct bond and [ig, js] has
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Figure 15: The quantities Q', Q' and Q% are some auxiliary quantities similar to Q’, Q' and
Q' except that there is a bond on their right side.
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4 Data Sets

For verification of our algorithm in predicting the melting temperature, we used three data sets
available in the literature. Sequences of the RNA pairs from the first data set, which were originally
reported in Table 3 of [9], have been explicitly mentioned in the paper. Here, we present sequence of
the RNA pairs from the second (originally reported in Table 1 of [2]) and third (originally reported

in Tables 3 and 4 of [5]) data sets that have been used in Tables 2 and 3 of the paper.

Table 1: Sequences of the set of RNA pairs reported in Table 2 of the paper.

Pairs

Sequences

A

B

C

GGAGCGGCUUCGGCCGGACG
/CGUCaaCUCC
GGAGaCGGCUUCGGCCGGACG
/CGUCauaCUCC
GGAGaCGGCUUCGGCCGGCAG
/CUGCauaCUCC
GGAGgCGGCUUCGGCCGuUGACG
/CGUCcauaCUCC
GGAGaCGGCUUCGGCCGcGACG
/CGUCauaCUCC
GGAGgCGGCUUCGGCCGuUGACG
/CGUCauaCUCC
GGAGCGGCUUCGGCCGGACG
/CGUCCUCC
GGAGaCGGCUUCGGCCGGACG
/CGUCcauaCUCC
GGAGCGGCUUCGGCCGGACG
/CGUCauaCUCC
GGAGCGGCUUCGGCCGGACG
/CGUCcauaCUCC
GGAGaCGGCUUCGGCCGcGACG
/CGUCcauaCUCC
GGAGaCGGCUUCGGCCGaGACG
/CGUCcauaCUCC

Table 2: Sequences of the set of RNA pairs reported in Table 3 of

the paper.
Pairs Sequences

G-GC-G/C-C GGCAGGCGCUUCGGCGCGGAGG
/CCUCCCUGCC

G-GC-G/CaC GGCAGGCGCUUCGGCGCGGAGG
/CCUCCaCUGCC

G-GC-G/CaxC GGCAGGCGCUUCGGCGCGGAGG
/CCUCCaaCUGCC

G-GC-G/Ca3C GGCAGGCGCUUCGGCGCGGAGG
/CCUCCaaaCUGCC

G-GC-G/CauaC GGCAGGCGCUUCGGCGCGGAGG

Continued on next page
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Table 2 — continued from previous page

Pairs Sequences

/CCUCCauaCUGCC

G-GC-G/CayC GGCAGGCGCUUCGGCGCGGAGG
/CCUCCaaaaCUGCC

GaGC-G/C-C GGCAGaGCGCUUCGGCGCGGAGG
/CCUCCCUGCC

GaGC-G/CaC GGCAGaGCGCUUCGGCGCGGAGG
/CCUCCaCUGCC

GaGC-G/CayC GGCAGaGCGCUUCGGCGCGGAGG
/CCUCCaaCUGCC

GaGC-G/CasC GGCAGaGCGCUUCGGCGCGGAGG
/CCUCCaaaCUGCC

GaGC-G/CauaC GGCAGaGCGCUUCGGCGCGGAGG
/CCUCCauaCUGCC

GaGC-G/CayC GGCAGaGCGCUUCGGCGCGGAGG
/CCUCCaaaaCUGCC

GaxGC-G/C-C GGCAGaaGCGCUUCGGCGCGGAGG
/CCUCCCUGCC

GayGC-G/CaC GGCAGaaGCGCUUCGGCGCGGAGG
/CCUCCaCUGCC

GaxGC-G/CaxC GGCAGaaGCGCUUCGGCGCGGAGG
/CCUCCaaCUGCC

GayGC-G/CagC GGCAGaaGCGCUUCGGCGCGGAGG
/CCUCCaaaCUGCC

GaGC-G/CauaC GGCAGaaGCGCUUCGGCGCGGAGG
/CCUCCauaCUGCC

GaxGC-G/Cay,C GGCAGaaGCGCUUCGGCGCGGAGG
/CCUCCaaaaCUGCC

GaGCaG/C-C GGCAGaaGCGCUUCGGCGCaGGAGG
/CCUCCCUGCC

GapGCaG/CaC GGCAGaaGCGCUUCGGCGCaGGAGG
/CCUCCaCUGCC

GaGCaG/CasC GGCAGaaGCGCUUCGGCGCaGGAGG
/CCUCCaaCUGCC

GaGCaG/CasC GGCAGaaGCGCUUCGGCGCaGGAGG
/CCUCCaaaCUGCC

GapGCaG/CauaC GGCAGaaGCGCUUCGGCGCaGGAGG
/CCUCCauaCUGCC

GaGCaG/CayC GGCAGaaGCGCUUCGGCGCaGGAGG
/CCUCCaaaaCUGCC

GaGCayG/C-C GGCAGaaGCGCUUCGGCGCaaGGAGG
/CCUCCCUGCC

GapGCayG/CaC GGCAGaaGCGCUUCGGCGCaaGGAGG
/CCUCCaCUGCC

GagGCayG/CayC GGCAGaaGCGCUUCGGCGCaaGGAGG
/CCUCCaaCUGCC

GaGCayG/Ca3C GGCAGaaGCGCUUCGGCGCaaGGAGG
/CCUCCaaaCUGCC

GapGCayG/CauaC GGCAGaaGCGCUUCGGCGCaaGGAGG
/CCUCCauaCUGCC

GagGCayG/CayC GGCAGaaGCGCUUCGGCGCaaGGAGG
/CCUCCaaaaCUGCC

Continued on next page
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Table 2 — continued from previous page

Pairs Sequences

G-UA-G/C-C GGCAGUCGCUUCGGCGAGGAGG
/CCUCCCUGCC

G-UA-G/CaC GGCAGUCGCUUCGGCGAGGAGG
/CCUCCaCUGCC

G-UA-G/CayC GGCAGUCGCUUCGGCGAGGAGG
/CCUCCaaCUGCC

G-UA-G/CasC GGCAGUCGCUUCGGCGAGGAGG
/CCUCCaaaCUGCC

G-UA-G/CauaC GGCAGUCGCUUCGGCGAGGAGG
/CCUCCauaCUGCC

G-UA-G/CayC GGCAGUCGCUUCGGCGAGGAGG
/CCUCCaaaaCUGCC

GaUA-G/C-C GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCCUGCC

GaUA-G/CaC GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCaCUGCC

GaUA-G/CayC GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCaaCUGCC

GaUA-G/Ca3C GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCaaaCUGCC

GaUA-G/CauaC GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCauaCUGCC

GaUA-G/CayC GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCaaaaCUGCC

G-CG-GC-G/C-C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCCUGCC

G-CG-GC-G/CaC GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaCUGCC

G-CG-GC-G/CasC GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaCUGCC

G-CG-GC-G/CasC GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaaCUGCC

G-CG-GC-G/CayC GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaaaCUGCC

GaCG-GC-G/C-C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCCUGCC

GaCG-GC-G/CaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaCUGCC

GaCG-GC-G/CasC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaCUGCC

GaCG-GC-G/Ca3C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaaCUGCC

GaCG-GC-G/CauaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCauaCUGCC

GaCG-GC-G/Cay,C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaaaCUGCC

GaCG-GCaG/C-C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG
/CCUCCCUGCC

GaCG-GCaG/CaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG
/CCUCCaCUGCC

GaCG-GCaG/CaxC

GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

Continued on next page
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Table 2 — continued from previous page

Pairs Sequences

/CCUCCaaCUGCC

GaCG-GCaG/CasC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG
/CCUCCaaaCUGCC

GaCG-GCaG/CauaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG
/CCUCCauaCUGCC

GaCG-GCaG/CayC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG
/CCUCCaaaaCUGCC

GaCGayGCaG/C-C | GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG
/CCUCCCUGCC

GaCGayGCayG/CaC | GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG
/CCUCCaCUGCC

GaCGayGCayG/CayC | GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG
/CCUCCaaCUGCC
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