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In this supplementary material, we describe in full the algorithm for computing the partition
function of two interacting nucleic acid strands. We also present the sequence pairs in the data sets
used for verification of our algorithm.

1 Preliminaries

Throughout this paper, we denote the two nucleic acid strands by R and S. Strand R is indexed
from 1 to LR, and S is indexed from 1 to LS both in 5′ to 3′ direction. Note that the two strands
interact in opposite directions, e.g. R in 5′ → 3′ with S in 3′ ← 5′ direction. Each nucleotide is
paired with at most one nucleotide in the same or the other strand. The subsequence from the ith

nucleotide to the jth nucleotide in a strand is denoted by [i, j]. We refer to the ith nucleotide in R

and S by iR and iS respectively.
An intramolecular base pair between the nucleotides i and j in a strand is called an arc and

denoted by a bullet i • j. An intermolecular base pair between the nucleotides iR and iS is called
a bond and denoted by a circle iR ◦ iS . An arc iR • jR covers a bond lR ◦ kS if iR < lR < jR. We
call iR • jR an interaction arc if there is a bond lR ◦ kS covered by iR • jR. A kissing arc is an
interaction arc that directly covers a bond. More precisely, we call iR • jR a kissing arc if it covers
a bond lR ◦ kS such that if i′R • j′R covers the same bond lR ◦ kS , then i′R ≤ iR and jR ≤ j′R. A
subsequence [iR, jR] contains a direct bond, lR ◦kS , if iR ≤ lR ≤ jR and no arc within [iR, jR] covers
lR ◦ kS . Assuming iR < jR, two bonds iR ◦ iS and jR ◦ jS are called crossing bonds if iS < jS .
An interaction arc iR • jR in a strand subsumes a subsequence [iS , jS ] in the other strand if for
all bonds lR ◦ kS , if iS ≤ kS ≤ jS then iR < lR < jR. Two interaction arcs are equivalent if they
subsume one another. Two interaction arcs iR • jR and iS • jS are part of a zigzag, if neither iR • jR

subsumes [iS , jS ] nor iS • jS subsumes [iR, jR].
In this work, we assume there are no pseudoknots in individual secondary structures of R and

S, and also there are no crossing bonds and zigzags between R and S.

∗Joint first authors
†Corresponding authors
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2 Interaction Energy Model

An unpseudoknotted secondary structure s of a single nucleic acid, in the standard energy model
[4], is decomposed into loops, and a free energy is associated with every loop in s. The total free
energy Gs is the sum of loop free energies. The standard energy model consists of the following
loop types: 1) Hairpin, 2) Interior, and 3) Multiloop. In an interaction secondary structure of two
strands under our assumptions 1, new kinds of components can appear. We extend the standard
energy model by defining those new kinds of interaction components. Similar to the standard case,
an interaction secondary structure s can be decomposed into intramolecular loops and the new
interaction components such that the total free energy Gs is sum of the free energies of loops and
interaction components. Our extended energy model consists of the following components:

• Empty: G
empty
i,j is the free energy of a subsequence [i, j] that contains no base pairs and is

external to all loops. Its energy contribution is assumed to be zero.

• Hairpin: G
hairpin
i,j is the free energy of a hairpin closed by the arc i • j. That depends on the

sequence and loop size.

• Interior: Ginterior
i,k1,k2,j is the free energy of the interior loop enclosed by the closing arc i • j and

the interior arc k1 • k2. That free energy depends on the closing base pairs and the loop size.
An interior loop is called bulge iff one side of the loop has zero length. Stacked pairs are a
special case of bulge loops in which case the size of the loop is zero. A stem is a series of
stacked pairs.

• Multi: Gmulti
U,B is the energy of a multiloop with B base pairs and U unpaired bases. It is

approximated by
Gmulti

U,B = α1 + α2U + α3B, (1)

in which α1 is the penalty for the formation of the multiloop, α2 is the penalty for each
unpaired base in the multiloop, and α3 is the penalty for each loop in the multiloop.

• Hybrid: G
hybrid
{ki

R
◦ki

S
}

is the free energy of a joint secondary structure consisting of a series of

bonds, ki
R ◦ ki

S , i = 1, . . . ,m, with no intramolecular base pairing or branching. We call such
a component hybrid. We define the energy associated with a hybrid component by

G
hybrid
{ki

R
◦ki

S
}

= β1 + σ

m−1∑

i=1

Ginterior
ki

R
,ki+1

R
,ki+1

S
,ki

S

, (2)

in which β1 is the penalty for the formation of the hybrid, and σ ≤ 1 is the ratio of the free
energy of intermolecular to that of intramolecular interior loops (as suggested by [1]). Note

that with β1 = 0, σ = 1, Ghybrid is identical to the energy proposed by RNAhybrid, first in-
troduced by Rehmsmeier et al. which considers only one hybrid component for mRNA/target
duplexes and does not allow any intramolecular structure [7],

• Kissing: G
kissing
Uk,Bk is the energy of an intramolecular loop (hairpin, interior, or multiloop) that

makes interaction with the other strand and has Bk base pairs and Uk unpaired bases. Such
component is called a kissing loop. The energy associated with a kissing loop is given by

G
kissing
Uk,Bk = β2U

k + β3B
k, (3)

1Remember we do not allow pseudoknots, crossing bonds, and zigzags in this work.
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in which Bk is the number of loops and Uk the number of unpaired bases in the kissing loop.
Note in our model we use different β1 and σ values for a hybrid component covered by a
kissing loop.

• Inter-hybrid: Ginter-hybrid is the energy of an intermolecular loop bounded by two bonds
belonging to two consecutive hybrid components. Bases in either sequence facing this kind
of loop might be the end points of only arcs and not bonds. We call such a component
inter-hybrid loop. In this work the energy contribution of an inter-hybrid loop is assumed to
be zero.

3 Interaction Partition Function

Here, we describe a recursive algorithm for computing the partition function of two interacting
nucleic acid strands, called piRNA. Our algorithm guarantees to consider all possible secondary
structures exactly once. We prove every possible secondary structure is reached by exactly one
trajectory in the recursion process.

We present our algorithm using recursion diagrams [3, 8]. Our algorithm computes two types
of recursive quantities: 1) the partition function of a subsequence [i, j] in one strand, and 2) the
joint partition function of subsequences [iR, jR] and [iS , jS ]. A region is the domain over which a
partition function is computed. Terminal bases are the boundaries of a region. For the first type,
region is [i, j] with i and j terminal bases. For the second type, region is [iR, jR]× [iS , jS ] with iR,
jR, iS , and jS terminal bases. The length pair of region [iR, jR]× [iS , jS ] is (lR = jR − iR + 1, lS =
jS− iS +1). Our algorithm starts with (lR = 1, lS = 1) and considers all length pairs incrementally
up to (lR = LR, lS = LS). For a fixed length pair (lR, lS), recursive quantities for all the regions
[iR, iR + lR − 1]× [iS , iS + lS − 1] are computed.

3.1 Partition Function for Non-Interacting Subsequences

For computing the partition function of a subsequence in one strand we use McCaskill’s algorithm
[6]. McCaskill’s algorithm is shown in Figure 1, in which Qi,j is the partition function for the
subsequence [i, j]. Throughout this paper, a horizontal line indicates the phosphate backbone, a
solid curved line indicates an arc, and a dashed curved line encloses a region and denotes its two
terminal bases which may be paired or unpaired. Letter(s) within a region specify a recursive
quantity. White regions are recursed over and blue regions indicate those portions of the secondary
structure that are fixed at the current recursion level and contribute their energy to the partition
function as defined by the energy model. Green and red regions have the same recursion cases as
the corresponding white regions, except that for the green regions multiloop energy and for red
regions kissing loop energy is applied, i.e. the corresponding penalties for each unpaired base and
base pair should be applied.

In Figure 1, the first case of Qi,j corresponds to an empty structure (that constitutes no base
pairs) whose free energy is assumed to be zero, thus its contribution to the partition function is

e−Gempty
i,j /RT = 1. In the other case, there exists at least one arc and the leftmost one is k1 • k2. It

contributes Qb
k1,k2

Qk2+1,j to the partition function, therefore,

Qi,j = 1 +
∑

i≤k1<k2≤j

Qb
k1,k2

Qk2+1,j. (4)

The second line shows the cases of Qb
i,j which is the partition function for the subsequence [i, j]

assuming i and j are base paired. The arc i • j can close different substructures: hairpin, interior,
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Figure 1: McCaskill’s algorithm: recursion for Qi,j, the partition function for the subsequence [i, j].
Above, Qb

i,j is the partition function for the subsequence [i, j] assuming i and j are base paired,

and Qbz
i,j is the partition function for the subsequence [i, j] assuming there is at least one arc in the

region.

or multiloop. The energy contribution of each substructure is calculated based on the standard
thermodynamics energy model.

Qb
i,j =e

−G
hairpin
i,j /RT +

∑

i≤k1<k2≤j

e
−Ginterior

i,k1,k2,j
/RT

+

∑

i≤k1<k2≤j

Qb
k1,k2

Q
bz.green
k2+1,j−1 e−(α1+α2(k1−i−1)+α3)/RT .

(5)

The third line shows cases of Qbz
i,j which is the partition function for the subsequence [i, j]

assuming the region constitutes at least one arc. Therefore,

Qbz
i,j =

∑

i≤k1<k2≤j

Qb
k1,k2

Qk2+1,j . (6)

As mentioned before, a green region is contained in a multiloop. The region has the same
recursion as if it was white, however the base pair and unpaired penalties of multiloop should be
applied to it. Explicitly,

Qbz
i,j =

∑

i≤k1<k2≤j

Qb
k1,k2

Q
.green
k2+1,j e−(α2(k1−i−1)+α3)/RT , (7)

Q
.green
i,j = e−α2(j−i−1)/RT +

∑

i≤k1<k2≤j

Qb
k1,k2

Q
.green
k2+1,j e−(α2(k1−i−1)+α3)/RT . (8)

3.2 Partition Function for Interacting Subsequences

In the following, we present all cases of QI
iR,jR,iS ,jS

which is the interaction partition function for
the region [iR, jR] × [iS , jS ]. A solid vertical line indicates a bond, a dashed vertical line denotes
two terminal bases of a region which may be base paired or unpaired, and a dotted vertical line
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Figure 2: Cases of the interaction partition function QI
iR,jR,iS ,jS

. The first case constitutes no
bonds. In the second case, the leftmost bond is a direct bond on both subsequences. In the third
case, the leftmost bond is covered by an interaction arc in at least one subsequence.

denotes two terminal bases of a region which are assumed to be unpaired. Figure 2 shows the cases
of QI : 1) there is no bond between the two subsequences, 2) the leftmost bond is a direct bond
in both subsequences, and 3) the leftmost bond is covered by an arc in at least one subsequence.
Therefore,

QI
iR,jR,iS ,jS

=QiR,jR
QiS ,jS

+
∑

iR≤k1<jR
iS<k2≤jS

QiR,k1−1Qk2+1,jS
QIb

k1,jR,iS ,k2
+

∑

iR≤k1<jR
iS<k2≤jS

QiR,k1−1Qk2+1,jS
QIa

k1,jR,iS ,k2
,

(9)

=Ib Ih

= Ihh

Ih Ib Ih Ib

Ih Ia

= Ihb

jS iS

k1

k′

1 k1
k′

1 k1

k′

1 k1iR jR

k2

k′

2
k2 k′

2
k2

k′

2
k2

bz

bz

Figure 3: Recursion for QIb
iR,jR,iS ,jS

assuming iR ◦ jS is a bond. We show a version of the recursion
that contains two split points in each sequence for simplicity reasons. However, this would increase
the complexity and can easily be resolved by introducing two additional matrices QIhh and QIhb

for the region [iR, k1]× [k2, jS ] as indicated by the arrows.

Figure 3 shows the recursion for QIb
iR,jR,iS ,jS

, the interaction partition function for the region
[iR, jR] × [iS , jS ] assuming iR ◦ jS is a bond. Since we have penalties for opening and closing
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a hybrid component, the recursion for QIb has to determine whether the region contains one or
several hybrid components. In all cases, QIh contains the full hybrid component containing the
bond iR ◦ jS (see Figure 5 for QIh recursion). The first possibility reflects the case where we have
only one hybrid component. In the other cases, we have always at least two hybrid components.
The subsequent intermolecular bond starts a new hybrid component iff 1) it is not direct in at least
one subsequence, i.e. it is covered by an arc in the associated regions (case 2 of the QIb recursion),
or 2) there is at least one arc between the two successive intermolecular bonds (case 3 and 4 of the
QIb recursion). Using the additional matrices QIhh and QIhb, we get

QIb
iR,jR,iS ,jS

=QIhh
iR,jR,iS ,jS

+
∑

iR<k1<jR
iS<k2<jS

QIhb
iR,k1,k2,jS

QIb
k1,jR,iS ,k2

+

∑

iR<k1<jR
iS<k2<jS

QIhh
iR,k1,k2,jS

QIa
k1,jR,iS ,k2

.
(10)

= Ih IhIhb

jRiR

jS iS

k1 k1

k2
k2

bz

bz

= IhIhh

jRiR

jS iS

k1

k2

Figure 4: Cases of QIhb
iR,jR,iS ,jS

and QIhh
iR,jR,iS ,jS

whose region contains one hybrid component on the
left. Here, region [iR, k1] × [k2, jS ] represents a hybrid component. Figure 5 shows the recursion
for QIh.

The quantities QIhh and QIhb are defined by the recursion diagrams in Figure 4 and equivalently
by the following equations:

QIhb
iR,jR,iS ,jS

=
∑

iR≤k1≤jR
iS≤k2≤jS

e−β1/RT QIh
iR,k1,k2,jS

(Qbz
k1+1,jR

QiS ,k2−1 + Qbz
iS ,k2−1) (11)

and
QIhh

iR,jR,iS ,jS
=

∑

iR≤k1≤jR
iS≤k2≤jS

e−β1/RT QIh
iR,k1,k2,jS

Qk1+1,jR
QiS ,k2−1, (12)

in which QIh is the interaction partition function for a hybridization region (Figure 5).
Figure 5 shows the recursion for QIh. Since we do not allow isolated bond the base case of QIh

is an interior loop, otherwise it can be an isolated bond. Two cases are possible: 1) there is no
bond other than iR ◦ jS and iS ◦ jR in the region, and 2) there exist more bonds between iR ◦ jS

and iS ◦ jR, the leftmost of which is k1 ◦ k2. Precisely,
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= IhIh

jRiR

jS iS

k1

k2

Figure 5: Cases of QIh
iR,jR,iS ,jS

the interaction partition function for a single hybrid component.

QIh
iR,jR,iS ,jS

=e
−σGinterior

iR,jR,iS,jS
/RT

+
∑

iR≤k1≤jR
iS≤k2≤jS

e
−σGinterior

iR,k1,k2,jS
/RT

QIh
k1,jR,iS ,k2

. (13)

= I I IIs IeIa Is′

k2

k1 k1

k2 k2

k1

jS

iR

iS

jR

Figure 6: Cases of QIa
iR,jR,iS ,jS

, for which we assume at least one of iR and jS is the end point of
an interaction arc.

Figure 6 shows the cases of QIa
iR,jR,iS ,jS

for which at least one of iR and jS is the end point of
interaction arc: 1) iR • k1 subsumes [k2, jS ] and k2 is not base paired with jS , 2) k2 • jS subsumes
[iR, k1] and iR is not base paired with k1, and 3) iR •k1 and k2 • jS are equivalent. If only one of iR
and jS is the end point of an interaction arc while the other one is the end point of a bond, then
the interaction arc subsumes the other subsequence. If both iR and jS are end points of interaction
arcs, then one of the arcs subsumes the other one or they are equivalent. Therefore,

QIa
iR,jR,iS ,jS

=
∑

iR<k1≤jR
iS≤k2≤jS

QIs
iR,k1,k2,jS

QI
k1+1,jR,iS ,k2−1+

∑

iR≤k1≤jR
iS<k2≤jS

QIs′

iR,k1,k2,jS
QI

k1+1,jR,iS ,k2−1+

∑

iR<k1≤jR
iS<k2≤jS

QIe
iR,k1,k2,jS

QI
k1+1,jR,iS ,k2−1,

(14)

in which QIs
iR,k1,k2,jS

is the interaction partition function of [iR, k1] × [k2, jS ] assuming iR • k1 is

an interaction arc that subsumes [k2, jS ], QIs′

iR,k1,k2,jS
is the symmetric counterpart of QIs, and

QIe
iR,k1,k2,jS

is the interaction partition function of [iR, k1]× [k2, jS ] assuming iR • k1 and k2 • jS are
equivalent interaction arcs.

For QIe, it does not make any difference which one of the covering arcs iR • jR and iS • jS is
extracted first. We first extract the covering arc from S (see Figure 7). Extracting the covering arc,
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=Ie

gm

Ism Isk

gk

k2 k1 k2 k1

iR

iSjS

jR

Figure 7: Cases of QIe
iR,jR,iS ,jS

, for which iR • jR and iS • jS are equivalent interaction arcs.

the remaining subsequence of S contains either at least one direct bond, in which case kissing loop
penalty should be applied, or multiple interaction arcs, in which case multiloop penalty should be
applied. Hence, Figure 7 is appropriately colored by green and red to remind the type of penalty.
So, we have

QIe
iR,jR,iS ,jS

=
∑

iS<k1<k2<jS

Q
Ism.green
iR,k1,k2,jS

Q
gm
iS ,k1−1,k2+1,jS

+ QIsk.red
iR,k1,k2,jS

Q
gk
iS ,k1−1,k2+1,jS

. (15)

=ed
k2

i j

g

k1

i j

gm

i j ee dd =

gk

ed
k2

i j

g

k1

i ji j ee dd

Figure 8: Recursion for Q
gk
i,d,e,j and Q

gm
i,d,e,j the partition functions for [i, j] excluding the gap [d, e],

assuming i and j are base paired. For Qgk, the gap contains a direct bond, and for Qgm the gap
contains multiple interaction arcs.

Note that Q
gm
i,d,e,j and Q

gk
i,d,e,j are the partition functions for [i, j] excluding the gap [d, e], as-

suming i and j are base paired. For Qgm the gap contains multiple interaction arcs, and for Qgk,
the gap contains a direct bond (see Figure 8). Therefore,

Q
gm
i,d,e,j =

∑

i≤k1≤d

e≤k2≤j

Q
g
i,k1,k2,jQ

.green
k1+1,dQ

.green
k2−1,j, (16)

and
Q

gk
i,d,e,j =

∑

i≤k1≤d

e≤k2≤j

Q
g
i,k1,k2,jQ

.red
k1+1,dQ

.red
k2−1,j. (17)

The gap partition function Qg is defined by the recursion in Figure 9. This quantity is similar
to the g in Dirks-Pierce’s algorithm [3]. For Q

g
i,d,e,j, we assume i•j and d•e. Note that i = d, j = e

is a single arc case. There are two groups of cases: 1) there is no more spanning arc in the region,
and 2) there is at least another outermost spanning arc k1 • k2. In both groups, there could be
some additional structure in the region. If there is no additional structure in the region, then the
spanning region is an interior loop. If there is at least one arc in either side of the gap, then the
spanning region forms a multiloop and penalty of multiloop should be applied.

Let QIs
iR,jR,iS ,jS

be the partition function for [iR, jR]× [iS , jS ] assuming iR • jR is an interaction

arc that subsumes [iS , jS ]. Since the union of the cases of QIsk and QIsm comprise the cases of
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eee

ee
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g
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d

d d

dd

k1 k2

Figure 9: Recursion for Q
g
i,d,e,j the partition function for the subsequence [i, j] excluding the gap

[d, e] assuming i • j and d • e.

QIs,
QIs

iR,jR,iS ,jS
= QIsk

iR,jR,iS ,jS
+ QIsm

iR,jR,iS ,jS
. (18)

In particular, QIsk contains all cases of QIs in which [iS , jS ] has at least one direct bond, and
QIsm contains all cases of QIs in which [iS , jS ] includes multiple interaction arcs. Similarly, we
extract the covering arc from QIsk and QIsm to obtain QImm, QImk, QIkm, and QIkk, where k

stands for kissing (or equivalently containing a direct bond) and m for multiple interaction arcs.
The quantities QImm

iR,jR,iS ,jS
, QIkm

iR,jR,iS ,jS
, QImk

iR,jR,iS ,jS
, and QIkk

iR,jR,iS ,jS
are defined by recursions in

Figs. 11, 12, 13, and 14. Note that all four terminal bases of the region have to be the end points
of a bond or of an interaction arc. In summary:

• QImm includes all cases that have multiple interaction arcs in both [iR, jR] and [iS , jS ].

• QImk includes all cases where [iR, jR] has multiple interaction arcs and [iS , jS ] has at least
one direct bond.

• QIkm is symmetric to QImk with respect to R and S.

• QIkk includes all cases where both [iR, jR] and [iS , jS ] have at least one direct bond.

In QImm, both subsequences [iR, jR] and [iS , jS ] include multiple interaction arcs and have no
direct bond (Figure 11). All four terminal bases are endpoints of interaction arcs. Since iR and jS

are endpoints of interaction arc, there must exist a QIa on the left side of the region. This QIa has
no direct bond on both subsequences from R and S, which we call QIann . The bases jR and iS are
also end points of interaction arc, so there are interaction arcs on the right side of the QImm in both
subsequences. These arcs can have three types: 1) arc in subsequence [iR, jR] subsumes the arc in
subsequence [iS , jS ], 2) arc in subsequence [iS , jS ] subsumes the arc in subsequence [iR, jR], or 3)
two arcs are equivalent. Note that for multiple interaction arcs there are an QIe, QIs or QIs′ on
both left and right side of the region. The left one is contained in an extracted QIa, and the right
one is extracted separately. This scheme will continue for the other cases with multiple interaction
arcs.

In QImk, subsequence [iR, jR] has multiple interaction arcs and subsequence [iS , jS ] has at least
one direct bond (Figure 12). Here, iR and jR are the end points of an interaction arc and iS and
jS are the end points of a bond or interaction arc. Since iR is the end point of an interaction arc,
there must exist a QIa on the left side of the region. The QIa has no direct bond in the subsequence
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Imm Ikm

jR
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=

gm gk

Isk IkkImk
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Figure 10: Recursion for QIs
iR,jR,iS ,jS

, interaction partition function assuming iR•jR is an interaction

arc subsuming [iS , jS ]. In QIsm, [iS , jS ] contains multiple interaction arcs and in QIsk, [iS , jS ]
contains at least one direct bond.

of R, but it can have two cases with direct bond in subsequence of S. We denote the special QIa

that has at least one direct bond in the subsequence of S by QIand . In this case, the arc on the
right side of the subsequence of R can have three types: 1) it subsumes an interacting region in
[iS , jS ], 2) it is subsumed by the interaction arc on the right side of [iS , jS ], and 3) it is equivalent
to the interaction arc on the right side of [iS , jS ]. Note that the arc on [iS , jS ] can only subsume
subsequences with multiple interaction arcs. If the QIa has no direct bond in S subsequence, in
which case it is denoted by QIann , the arc on the right side of [iR, jR] should subsume a subsequence
on the right side of [iS , jS ] that has at least one direct bond. The quantity QIkm is symmetric to
QImk with respect to R and S (Figure 13).

In QIkk, both subsequences of R and S have at least one direct bond, and all four terminal
bases of the region can be end points of bond or interaction arc (Figure 14). We go through the
cases based on different possibilities of terminal bases. If two terminal bases at the same side of
the region are end points of a bond, then obviously they are base paired, otherwise at least one of
them is the end point of an interaction arc.

In the first case of Figure 14, all four terminal bases are end points of bond, i.e. iR ◦ jS and
jR ◦ iS . This case is similar to QIb with a bond on its right. We denote this special QIb by QIbr

which is shown in Figure 15. If just iR ◦ jS , then there is a QIb on left side of the region. In
that case, the right side has three cases: 1) the right side of [iR, jR] contains an interaction arc
that subsumes a subsequence on the right side of [iS , jS ], 2) the right side of [iS , jS ] contains an
interaction arc that subsumes a subsequence on the right side of [iR, jR], and 3) there are equivalent
interaction arcs on the right sides of [iR, jR] and [iS , jS ]. If just jR ◦ iS , then the case is similar to
a QIa with a bond on its right. We denote this special QIa by QIar (Figure 15).
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Figure 11: Recursions for QImm
iR,jR,iS ,jS

assuming both [iR, jR] and [iS , jS ] have multiple interaction
arcs.

Now consider cases in which terminal bases neither on the left nor on the right make bond with
one another. In this type of cases, there must exist a QIa on the left side of the region. This QIa

may contain direct bonds on either subsequence. Denote the special QIa that has at least one direct
bond in both subsequences by QIadd . The right side of the region has three cases: 1) there is an
interaction arc on the right side of the remaining subsequence of R that subsumes a subsequence
on the right side of S, 2) there is an interaction arc on the right side of the subsequence of S,
that subsumes a subsequence on the right side of R, and 3) there are equivalent interaction arcs
on the right sides of the subsequences of R and S. Denote the special QIa that has at least one
direct bond in the subsequence of R by QIadn . There must exist an interaction arc on the right
side of the subsequence of R that subsumes a subsequence on the right side of S. Note that the
subsequence on the right side of S should have at least one direct bond. We denote the special QIa

that has at least one direct bond in the subsequence of S by QIand . In that case, there must exist
an interaction arc on the right side of the subsequence of S that subsumes a subsequence on the
right side of R. Note that the subsequence on the right side of R should have at least one direct
bond.
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Figure 12: Recursions for QImk
iR,jR,iS ,jS

assuming [iR, jR] has multiple interaction arcs and [iS , jS ] has
at least one direct bond.

12



=Ikm Iadn Iadn

iR jR

iSjS

Ism Is′ Iadn Ie Iann Isk′

=Iadn IeIsk′

Ism Idn
I∗n Ism′ IdnIdn

jRiR

jS iS
k2

k1
k1

k2

k1

k2 k2

k1

=Idn Iadn

jRiR

jS iS k2

k1

=I∗n IdnInn

jRiR

jS iS

Figure 13: Recursions for QIkm
iR,jR,iS ,jS

assuming [iR, jR] has at least one direct bond and [iS , jS ] has
multiple interaction arcs.

13



=Ikk

Iadd Iadd IandIadnIadd

iR jR

jS iS

Ibr Ib Ib Ib IarIs Is′ Ie

Is Is′ Ie Isk Isk′

=Iadd IeIsk′
Id∗ IsmIsk Idd

I
∗d Ism′ Idd Idd

jRiR

jS iS
k2

k1

k2

k1
k1

k2

k1

k2 k2

k1

= Ib IaddIdd

k2
k2

k1k1jRiR

jS iS

= Ind IddI
∗d

jRiR

jS iS

Figure 14: Recursions for QIkk
iR,jR,iS ,jS

assuming both [iR, jR] and [iS , jS ] have at least one direct
bond.
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Figure 15: The quantities QIr , QIbr and QIar are some auxiliary quantities similar to QI , QIb and
QIa except that there is a bond on their right side.
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4 Data Sets

For verification of our algorithm in predicting the melting temperature, we used three data sets
available in the literature. Sequences of the RNA pairs from the first data set, which were originally
reported in Table 3 of [9], have been explicitly mentioned in the paper. Here, we present sequence of
the RNA pairs from the second (originally reported in Table 1 of [2]) and third (originally reported
in Tables 3 and 4 of [5]) data sets that have been used in Tables 2 and 3 of the paper.

Table 1: Sequences of the set of RNA pairs reported in Table 2 of the paper.

Pairs Sequences

A GGAGCGGCUUCGGCCGGACG
/CGUCaaCUCC

B GGAGaCGGCUUCGGCCGGACG
/CGUCauaCUCC

C GGAGaCGGCUUCGGCCGGCAG
/CUGCauaCUCC

D GGAGgCGGCUUCGGCCGuGACG
/CGUCcauaCUCC

E GGAGaCGGCUUCGGCCGcGACG
/CGUCauaCUCC

F GGAGgCGGCUUCGGCCGuGACG
/CGUCauaCUCC

G GGAGCGGCUUCGGCCGGACG
/CGUCCUCC

H GGAGaCGGCUUCGGCCGGACG
/CGUCcauaCUCC

I GGAGCGGCUUCGGCCGGACG
/CGUCauaCUCC

J GGAGCGGCUUCGGCCGGACG
/CGUCcauaCUCC

K GGAGaCGGCUUCGGCCGcGACG
/CGUCcauaCUCC

L GGAGaCGGCUUCGGCCGaGACG
/CGUCcauaCUCC

Table 2: Sequences of the set of RNA pairs reported in Table 3 of
the paper.

Pairs Sequences

G-GC-G/C-C GGCAGGCGCUUCGGCGCGGAGG
/CCUCCCUGCC

G-GC-G/CaC GGCAGGCGCUUCGGCGCGGAGG
/CCUCCaCUGCC

G-GC-G/Ca2C GGCAGGCGCUUCGGCGCGGAGG
/CCUCCaaCUGCC

G-GC-G/Ca3C GGCAGGCGCUUCGGCGCGGAGG
/CCUCCaaaCUGCC

G-GC-G/CauaC GGCAGGCGCUUCGGCGCGGAGG
Continued on next page
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Table 2 – continued from previous page

Pairs Sequences

/CCUCCauaCUGCC
G-GC-G/Ca4C GGCAGGCGCUUCGGCGCGGAGG

/CCUCCaaaaCUGCC
GaGC-G/C-C GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCCUGCC
GaGC-G/CaC GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCaCUGCC
GaGC-G/Ca2C GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCaaCUGCC
GaGC-G/Ca3C GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCaaaCUGCC
GaGC-G/CauaC GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCauaCUGCC
GaGC-G/Ca4C GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCaaaaCUGCC
Ga2GC-G/C-C GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCCUGCC
Ga2GC-G/CaC GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCaCUGCC
Ga2GC-G/Ca2C GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCaaCUGCC
Ga2GC-G/Ca3C GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCaaaCUGCC
Ga2GC-G/CauaC GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCauaCUGCC
Ga2GC-G/Ca4C GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCaaaaCUGCC
Ga2GCaG/C-C GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCCUGCC
Ga2GCaG/CaC GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCaCUGCC
Ga2GCaG/Ca2C GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCaaCUGCC
Ga2GCaG/Ca3C GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCaaaCUGCC
Ga2GCaG/CauaC GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCauaCUGCC
Ga2GCaG/Ca4C GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCaaaaCUGCC
Ga2GCa2G/C-C GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCCUGCC
Ga2GCa2G/CaC GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCaCUGCC
Ga2GCa2G/Ca2C GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCaaCUGCC
Ga2GCa2G/Ca3C GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCaaaCUGCC
Ga2GCa2G/CauaC GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCauaCUGCC
Ga2GCa2G/Ca4C GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCaaaaCUGCC
Continued on next page
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Table 2 – continued from previous page

Pairs Sequences

G-UA-G/C-C GGCAGUCGCUUCGGCGAGGAGG
/CCUCCCUGCC

G-UA-G/CaC GGCAGUCGCUUCGGCGAGGAGG
/CCUCCaCUGCC

G-UA-G/Ca2C GGCAGUCGCUUCGGCGAGGAGG
/CCUCCaaCUGCC

G-UA-G/Ca3C GGCAGUCGCUUCGGCGAGGAGG
/CCUCCaaaCUGCC

G-UA-G/CauaC GGCAGUCGCUUCGGCGAGGAGG
/CCUCCauaCUGCC

G-UA-G/Ca4C GGCAGUCGCUUCGGCGAGGAGG
/CCUCCaaaaCUGCC

GaUA-G/C-C GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCCUGCC

GaUA-G/CaC GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCaCUGCC

GaUA-G/Ca2C GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCaaCUGCC

GaUA-G/Ca3C GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCaaaCUGCC

GaUA-G/CauaC GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCauaCUGCC

GaUA-G/Ca4C GGCAGaUCGCUUCGGCGAGGAGG
/CCUCCaaaaCUGCC

G-CG-GC-G/C-C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCCUGCC

G-CG-GC-G/CaC GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaCUGCC

G-CG-GC-G/Ca2C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaCUGCC

G-CG-GC-G/Ca3C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaaCUGCC

G-CG-GC-G/Ca4C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaaaCUGCC

GaCG-GC-G/C-C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCCUGCC

GaCG-GC-G/CaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaCUGCC

GaCG-GC-G/Ca2C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaCUGCC

GaCG-GC-G/Ca3C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaaCUGCC

GaCG-GC-G/CauaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCauaCUGCC

GaCG-GC-G/Ca4C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG
/CCUCCaaaaCUGCC

GaCG-GCaG/C-C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG
/CCUCCCUGCC

GaCG-GCaG/CaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG
/CCUCCaCUGCC

GaCG-GCaG/Ca2C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG
Continued on next page
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Table 2 – continued from previous page

Pairs Sequences

/CCUCCaaCUGCC
GaCG-GCaG/Ca3C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCaaaCUGCC
GaCG-GCaG/CauaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCauaCUGCC
GaCG-GCaG/Ca4C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCaaaaCUGCC
Ga2CGa2GCa2G/C-C GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG

/CCUCCCUGCC
Ga2CGa2GCa2G/CaC GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG

/CCUCCaCUGCC
Ga2CGa2GCa2G/Ca2C GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG

/CCUCCaaCUGCC
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