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ABSTRACT

Recent interests, such as RNA interference and antisense RNA
regulation, strongly motivate the problem of predicting whether two
nucleic acid strands interact.
Motivation: Regulatory non-coding RNAs (ncRNAs) such as
microRNAs play an important role in gene regulation. Studies on
both prokaryotic and eukaryotic cells show that such ncRNAs usually
bind to their target mRNA to regulate the translation of corresponding
genes. The specificity of these interactions depends on the stability
of intermolecular and intramolecular base pairing. While methods
like deep sequencing allow to discover an ever increasing set of
ncRNAs, there are no high-throughput methods available to detect
their associated targets. Hence, there is an increasing need for
precise computational target prediction. In order to predict base-
pairing probability of any two bases in interacting nucleic acids, it
is necessary to compute the interaction partition function over the
whole ensemble. The partition function is a scalar value from which
various thermodynamic quantities can be derived. For example, the
equilibrium concentration of each complex nucleic acid species and
also the melting temperature of interacting nucleic acids can be
calculated based on the partition function of the complex.
Results: We present a model for analyzing the thermodynamics of
two interacting nucleic acid strands considering the most general
type of interactions studied in the literature. We also present a
corresponding dynamic programming algorithm that computes the
partition function over (almost) all physically possible joint secondary
structures formed by two interacting nucleic acids in O(n6) time.
We verify the predictive power of our algorithm by computing (i)
the melting temperature for interacting RNA pairs studied in the
literature and (ii) the equilibrium concentration for several variants of
the OxyS–fhlA complex. In both experiments, our algorithm shows
high accuracy and outperforms competitors.
Availability: Software and web server is available at
http://compbio.cs.sfu.ca/taverna/pirna/
Contact: cenk@cs.sfu.ca; backofen@informatik.uni-freiburg.de
Supplementary information: Supplementary data are avaliable at
Bioinformatics online.

1 INTRODUCTION
Starting with the discovery of microRNAs (miRNAs) and the
advent of genome-wide transcriptomics, it has become clear that
RNA plays a large variety of important roles in living organisms
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that extend far beyond being a mere intermediate in protein
biosynthesis (Storz, 2002). Several of these non-coding RNAs
(ncRNAs) regulate gene expression post-transcriptionally through
base pairing (and establishing a joint structure) with a target
mRNA, as per the eukaryotic miRNAs and small interfering
RNAs (siRNAs) (Bartel, 2004; Hannon, 2002; Zamore and Haley,
2005), antisense RNAs (Brantl, 2002; Wagner and Flardh, 2002)
or bacterial small regulatory RNAs (sRNAs) (Gottesman, 2005).
In addition to such endogenous regulatory ncRNAs, antisense
oligonucleotides have been used as exogenous inhibitors of gene
expression; antisense technology is now commonly used as a
research tool as well as for therapeutic purposes. Furthermore,
synthetic nucleic acids systems have been engineered to self-
assemble into complex structures performing various dynamic
mechanical motions (Seeman, 2005; Seeman and Lukeman, 2005;
Simmel and Dittmer, 2005; Venkataraman et al., 2007; Yin et al.,
2008).

Despite all the above advances, computational methods for
predicting ncRNA–target mRNA interactions suffer from a low
specificity (see below for an overview); this is possibly due to two
technical reasons. First, several of these methods consider restricted
versions of the problem (e.g. simplified energy functions or restricted
types of interactions)—this is mostly for computational reasons.
Second, a quantitative analysis of binding thermodynamics between
oligonucleotides and target RNAs is often lacking. To determine the
binding effectiveness, an accurate analysis of the thermodynamics
of two interacting nucleic acid strands is necessary.

In this article, we aim to compute how likely two RNA or DNA
strands are to interact, and to predict base-pairing probability of
any two bases—which we then use to quantitatively measure the
strength, probability and stability of the joint structure established
by the interacting strands (Mathews, 2004). To correctly calculate
those probabilities, it is necessary to compute the partition function
over the whole ensemble of possible individual and joint secondary
structures. The partition function is a scalar value from which various
thermodynamic quantities can be derived (Landau and Lifshitz,
1969). For instance, one can compute the equilibrium concentration
of each complex nucleic acid species from their partition functions.
Also, the partition function can be used to predict the melting
temperature of interacting nucleic acids.

Although algorithms for predicting the most likely (the lowest
total free energy) joint structure that can be formed by two
interacting RNA strands are available [see, for example, Alkan
et al. (2006)], previous little work has been done for computing
the partition function of interacting RNA strands. It is important to
note that designing an algorithm to compute the partition function
is more challenging than that to predict the minimum free energy
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secondary structure: a partition function algorithm should guarantee
that every joint structure is considered exactly once.

In this article, we present an O(n6) time algorithm to compute
the partition function over the type of interactions that Alkan et al.
(2006) considered.1 We extend the standard energy model for a
single RNA model to an energy model for the joint secondary
structure of interacting strands by considering new types of (joint)
structural components. We verify our algorithm (and the associated
software we developed) by computing the melting temperature for
RNA pairs available (Diamond et al., 2001; Mathews and Turner,
2002; Xia et al., 1998) and the equilibrium concentration for
OxyS–fhlA complexes for wild-type fhlA and four other mutants
reported in the literature (Argaman and Altuvia, 2000). In both
experiments, our algorithm shows high accuracy and outperforms
existing alternatives.

1.1 Related work
During the last few decades, several computational methods
emerged to study the secondary structure thermodynamics of a single
nucleic acid strand. Nearest neighbor thermodynamic model has
become the standard energy model for a nucleic acid secondary
structure (Mathews et al., 1999). The standard energy model
is based on the assumption that stacking base pairs and loop
entropies contribute additively to the free energy of a nucleic
acid secondary structure. More recently, the standard energy model
has been extended for pseudoknots (Cao and Chen, 2006; Dirks
and Pierce, 2003). Based on additivity of the energy, efficient
dynamic programming algorithms for predicting the minimum free
energy secondary structure (Nussinov et al., 1978; Rivas and Eddy,
1999; Waterman and Smith, 1978; Zuker and Stiegler, 1981) and
computing the partition function of a single strand (Dirks and Pierce,
2003; McCaskill, 1990) have been developed.

Some previous attempts to analyze the thermodynamics of
multiple interacting strands concatenate input sequences in some
order and consider them as a single strand. For example, pairfold
(Andronescu et al., 2005) and RNAcofold from Vienna package
(Bernhart et al., 2006) concatenate the two input sequences into
a single strand and predict its minimum free-energy structure.
Dirks et al. (2007) present a method, as a part of NUPack,
that concatenates the input sequences in some order, carefully
considering symmetry and sequence multiplicities, and computes
the partition function for the whole ensemble of complex species.
However, concatenating the sequences is not accurate at all as even if
pseudoknots are considered, some useful interactions are excluded
while many physically impossible interactions are included (e.g.
physically impossible crossing interactions).

Alternatively, several methods avoid internal base-pairing in
either strand, and compute the minimum free energy secondary
structure for their hybridization under this constraint [RNAhybrid
(Rehmsmeier et al., 2004), UNAFold (Dimitrov and Zuker, 2004;
Markham and Zuker, 2008), and RNAduplex from Vienna package
(Bernhart et al., 2006)]. These approaches naturally work only for
simple cases involving typically very short strands.

A third set of methods predict the secondary structure of
each individual RNA independently, and predict the (most likely)

1Which is, to our knowledge, the most general type of interactions considered
in the literature.

hybridization between the unpaired regions of the two molecules.
More sophisticated alternatives view interaction as a multi-step
process (Busch et al., 2008; Mückstein et al., 2006; Walton et al.,
2002): (i) unfolding of the two molecules to expose bases needed
for hybridization, (ii) the hybridization at the binding site and
(iii) restructuring of the complex to a new minimum free-energy
conformation.

In addition to the above approaches, a number of studies aimed
to compute the minimum total energy joint structure between two
interacting strands under energy models with growing complexity.
For instance, Pervouchine devised a dynamic programming
algorithm to maximize the number of base pairs among interacting
strands (Pervouchine, 2004). A follow-up work by Kato et al. (2009)
proposed a grammar-based approach to RNA–RNA interaction
prediction. More generally, Alkan et al. (2006) studied the joint
secondary structure prediction problem under three different models:
(i) base pair counting, (ii) stacked pair energy model and (iii)
loop energy model. Alkan et al. (2006) proved that the general
RNA–RNA interaction prediction under all three energy models
is an NP-hard problem. Therefore, they suggested some natural
constraints on the topology of possible joint secondary structures
that are satisfied by all examples of complex RNA–RNAinteractions
in the literature. The resulting algorithms compute the minimum
free energy secondary structure among all possible joint secondary
structures that do not contain (internal) pseudoknots, crossing
interactions (i.e. external pseudoknots) and zigzags (see Section 2.1
for the exact definition).

2 METHODS

2.1 Preliminaries
Throughout this article, we denote the two nucleic acid strands by R and S.
Strand R is indexed from 1 to LR, and S is indexed from 1 to LS both in
5′ to 3′ direction. Note that the two strands interact in opposite directions,
e.g. R in 5′→3′ with S in 3′←5′ direction. Each nucleotide is paired with
at most one nucleotide in the same or the other strand. We refer to the i-th
nucleotide in R and S by iR and iS , respectively. The subsequence from the
i-th nucleotide to the j-th nucleotide in a strand is denoted by [i,j].

An intramolecular base pair between the nucleotides i and j in a strand
is called an arc and denoted by a bullet i•j. An intermolecular base pair
between the nucleotides iR and iS is called a bond and denoted by a circle
iR ◦ iS . An arc iR •jR covers a bond lR ◦kS if iR < lR < jR. We call iR •jR an
interaction arc if there is a bond lR ◦kS covered by iR • jR. A kissing arc is
an interaction arc that directly covers a bond. More precisely, we call iR •jR
a kissing arc if it covers a bond lR ◦kS such that if i′R • j′R covers the same
bond lR ◦kS , then i′R≤ iR and jR≤ j′R. A subsequence [iR,jR] contains a direct
bond, lR ◦kS , if iR≤ lR≤ jR and no arc within [iR,jR] covers lR ◦kS . Assuming
iR < jR, two bonds iR ◦iS and jR ◦jS are called crossing bonds if iS < jS . An
interaction arc iR • jR in a strand subsumes a subsequence [iS,jS] in the other
strand if for all bonds lR ◦kS , if iS≤kS≤ jS then iR < lR < jR. Two interaction
arcs are equivalent if they subsume one another. Two interaction arcs iR •jR
and iS • jS are part of a zigzag, if neither iR • jR subsumes [iS,jS] nor iS •jS
subsumes [iR,jR].

In this article, we assume there are no pseudoknots in individual secondary
structures of R and S, and also there are no crossing bonds and zigzags
between R and S.

2.2 Interaction energy model
An unpseudoknotted secondary structure s of a single nucleic acid, in the
standard energy model (Mathews et al., 1999), is decomposed into loops,
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Fig. 1. Interaction components of OxyS–fhlA pair presented in Argaman
and Altuvia (2000).
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Fig. 2. A hybrid component between the two strands whose free energy is
Ghybrid=β1+σ (Gstem1+Gbulge+Gstem2+Ginternal+Gstem3 ).

and a free energy is associated with every loop in s. The total free energy
Gs is the sum of loop free energies. The standard model consists of the
following loop types: (i) hairpin, (ii) interior, which can be stack, bulge or
internal loop and (iii) multiloop whose energies are denoted by Ghairpin,
Ginterior and Gmulti, respectively.

In an interaction, secondary structure of two strands under our assumptions
(remember we do not allow pseudoknots, crossing bonds and zigzags in this
work), new kinds of components can appear. We extend the standard energy
model by defining those new kinds of interaction components. Similar to
the standard case, an interaction secondary structure s can be decomposed
into intramolecular loops and the new interaction components such that the
total free energy Gs is sum of the free energies of loops and interaction
components. Figure 1 shows the decomposition of OxyS–fhlApair secondary
structure into the interaction components (Argaman and Altuvia, 2000).
These components and their free energy contributions are

• Hybrid: G
hybrid
{ki

R◦ki
S }

is the free energy of a joint secondary structure

consisting of a series of bonds, ki
R ◦ki

S,i=1,...,m, with no
intramolecular base pairing or branching. We call such a component
hybrid. We define the energy associated with a hybrid component by

G
hybrid
{ki

R◦ki
S }
=β1+σ

m−1∑

i=1

Ginterior
ki

R,ki+1
R ,ki+1

S ,ki
S
, (1)

in which β1 is the penalty for the formation of the hybrid, and σ ≤1 is
the ratio of the free energy of intermolecular to that of intramolecular
interior loops [as suggested by Alkan et al. (2006)] (Fig. 2). Note

that with β1=0,σ =1, Ghybrid is identical to the energy proposed
by RNAhybrid, first introduced by Rehmsmeier et al. (2004), which
considers only one hybrid component for mRNA/target duplexes and
does not allow any intramolecular structure.

• Kissing: G
kissing
Uk ,Bk is the energy of an intramolecular loop (hairpin,

interior or multiloop) that makes interaction with the other strand. Such

R

S

b2 b2

b3

b3

Fig. 3. A kissing loop in R that interacts with the other strand S. In this case,
the free energy of the kissing loop is Gkissing=4β2+2β3.

component is called a kissing loop. The energy associated with a kissing
loop is given by

G
kissing
Uk ,Bk =β2Uk+β3Bk, (2)

in which Bk is the number of loops and Uk the number of unpaired bases
in the kissing loop (Fig. 3). Note that in our model we use different β1

and σ values for a hybrid component covered by a kissing loop.

• Inter-hybrid: Ginter-hybrid is the energy of an intermolecular loop
bounded by two bonds belonging to two consecutive hybrid
components. Bases in either sequence facing this kind of loop might
be the end points of only arcs and not bonds. We call such a
component inter-hybrid loop. In this work, the energy contribution of
an inter-hybrid loop is assumed to be 0.

2.3 Interaction partition function
The partition function is a weighted sum over the set of all possible secondary
structures S

Q(T )=
∑

s∈S

e−Gs/RT (3)

where R is the universal gas constant and T is the temperature.
Efficient algorithms for computing the partition function for a single strand

have been given. McCaskill (1990), gave the first partition function algorithm
for a single unpseudoknotted nucleic acid strand and Dirks and Pierce (2003)
gave a partition function algorithm for a single strand allowing pseudoknots.
However, computing the partition function for multiple interacting strands
has not been properly addressed. In previous attempts, multiple strands are
concatenated in some order and partition function for the resulting single
strand is computed (Bernhart et al., 2006; Dimitrov and Zuker, 2004; Dirks
et al., 2007). That approach is not accurate as even if pseudoknots are
considered, some useful interactions are excluded while many physically
impossible interactions are included (e.g. physically impossible crossing
interactions). On the other hand, considering all possible secondary structures
makes the problem NP-hard (Alkan et al., 2006). Therefore, we only consider
those secondary structures that do not contain pseudoknots, crossing bonds
and zigzags.

Interaction partition function (IPF) problem

Given a pair of nucleic acid strands R and S, and a temperature T , compute
the partition function, QI (T ), over SI the set of all possible single or duplex
secondary structures that do not contain pseudoknots, crossing bonds and
zigzags.
Input: nucleic acid strands R and S.
Output:

QI (T )=
∑

s∈SI

e−Gs/RT .

We give a recursive algorithm, called Partition function for InteRacting
Nucleic Acids (piRNA), for the IPF problem. In all of our recursions, the
considered cases are disjoint. This fact shows that every possible secondary
structure is reached by exactly one trajectory in the recursion process. Our
algorithm guarantees to consider all possible secondary structures exactly
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Fig. 4. McCaskill’s algorithm: recursion for Qi,j , the partition function
for the subsequence [i,j]. Above, Qb

i,j is the partition function for the

subsequence [i,j] assuming i and j are base paired, and Qbz
i,j is the partition

function for the subsequence [i,j] assuming there is at least one arc in the
region.

once. Since our algorithm covers so many cases, we do not include all the
details here. A comprehensive description of our algorithm is available in
our Supplementary Material.

We present our algorithm using recursion diagrams (Dirks and Pierce,
2003; Rivas and Eddy, 1999). Our algorithm computes two types of recursive
quantities: (i) the partition function of a subsequence [i,j] in one strand,
and (ii) the joint partition function of subsequences [iR,jR] and [iS,jS]. A
region is the domain over which a partition function is computed. Terminal
bases are the boundaries of a region. For the first type, region is [i,j] with
i and j terminal bases. For the second type, region is [iR,jR]×[iS,jS] with
iR, jR, iS and jS terminal bases. The length pair of region [iR,jR]×[iS,jS] is
(lR= jR− iR+1,lS= jS−iS+1). Our algorithm starts with (lR=1,lS=1) and
considers all length pairs incrementally up to (lR=LR,lS=LS). For a fixed
length pair (lR,lS), recursive quantities for all the regions [iR,iR+ lR−1]×
[iS,iS+ lS−1] are computed.

For computing the partition function of a subsequence in one strand we use
McCaskill’s (1990) algorithm. McCaskill’s algorithm is shown in Figure 4,
in which Qi,j is the partition function for the subsequence [i,j]. Throughout
this article, a horizontal line indicates the phosphate backbone, a solid curved
line indicates an arc and a dashed curved line encloses a region and denotes
its two terminal bases that may be paired or unpaired. Letter(s) within a
region specify a recursive quantity. White regions are recursed over and blue
regions indicate those portions of the secondary structure that are fixed at the
current recursion level and contribute their energy to the partition function as
defined by the energy model. Green and red regions have the same recursion
cases as the corresponding white regions, except that for the green regions
multiloop energy and for red regions kissing loop energy is applied, i.e.
the corresponding penalties for each unpaired base and base pair should be
applied.

In Figure 4, the first case of Qi,j corresponds to an empty structure (that
constitutes no base pairs) whose free energy is assumed to be 0, thus its

contribution to the partition function is e−Gempty
i,j /RT =1. In the other case,

there exists at least one arc and the leftmost one is k1•k2. It contributes
Qb

k1,k2
Qk2+1,j to the partition function, therefore,

Qi,j=1+
∑

i≤k1<k2≤ j

Qb
k1,k2

Qk2+1,j . (4)

The second line shows the cases of Qb
i,j which is the partition function

for the subsequence [i,j] assuming i and j are base paired. The arc
i• j can close different substructures: hairpin, interior or multiloop. The
energy contribution of each substructure is calculated based on the standard
thermodynamics energy model. The third line shows cases of Qbz

i,j which is the
partition function for the subsequence [i,j] assuming the region constitutes
at least one arc. A region tagged by bz and colored by green is contained
in a multiloop and the penalty of multiloop should be applied to it. Explicit
equations for Qb

i,j and Qbz
i,j are given in the Supplementary Material.

=I IaIb

iR

iS

jR

jS

k1

k2 k2

k1

Fig. 5. Cases of the interaction partition function QI
iR,jR,iS ,jS

. The first case
constitutes no bonds. In the second case, the leftmost bond is a direct bond
on both subsequences. In the third case, the leftmost bond is covered by an
interaction arc in at least one subsequence.
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Fig. 6. Recursion for QIb
iR,jR,iS ,jS

assuming iR ◦jS is a bond. We show a version
of the recursion that contains two split points in each sequence for simplicity
reasons. However, this would increase the complexity and can easily be
resolved by introducing two additional matrices QIhh and QIhb for the region
[iR,k1]×[k2,jS] as indicated by the arrows (see Supplementary Material for
a full definition).

In the following, we present all cases of QI
iR,jR,iS ,jS

which is the interaction
partition function for the region [iR,jR]×[iS,jS].Asolid vertical line indicates
a bond, a dashed vertical line denotes two terminal bases of a region which
may be base paired or unpaired and a dotted vertical line denotes two terminal
bases of a region which are assumed to be unpaired. For the interaction
partition functions, gray regions indicate a reference to the partition functions
for the single sequences. Figure 5 shows the cases of QI : (i) there is no bond
between the two subsequences, (ii) the leftmost bond is a direct bond in both
subsequences and (iii) the leftmost bond is covered by an arc in at least one
subsequence. Therefore,

QI
iR,jR,iS ,jS =QiR,jR QiS ,jS+

∑

iR≤k1<jR
iS<k2≤jS

QiR,k1−1Qk2+1,jS QIb
k1,jR,iS ,k2

+
∑

iR≤k1<jR
iS<k2≤jS

QiR,k1−1Qk2+1,jS QIa
k1,jR,iS ,k2

,

(5)

in which QIb
k1,jR,iS ,k2

is the interaction partition function for the region

[k1,jR]×[iS,k2] assuming k1◦k2 is a bond, and QIa
k1,jR,iS ,k2

is the interaction
partition function for the region [k1,jR]×[iS,k2] assuming that the leftmost
bond in the region is covered by an arc in at least one subsequence. Figures 6
and 8 show the recursion for QIb and QIa where b stands for bond and a stands
for arc.
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Fig. 7. Cases of QIh
iR,jR,iS ,jS

the interaction partition function for a single
hybrid component.

= I I IIs IeIa Is

iR jR

iSjS k2 k2 k2

k1 k1 k1

Fig. 8. Cases of QIa
iR,jR,iS ,jS

, for which we assume at least one of iR and jS is
the end point of an interaction arc.

Figure 6 shows the recursion for QIb
iR,jR,iS ,jS

, the interaction partition
function for the region [iR,jR]×[iS,jS] assuming iR ◦jS is a bond. Since we
have a β1 penalty for each hybrid component, the recursion for QIb has to
determine whether the region contains one or several hybrid components. In
all cases, QIh contains the full hybrid component containing the bond iR ◦jS
(see Fig. 7 for QIh recursion). The first possibility reflects the case where we
have only one hybrid component. In the other cases, we have always at least
two hybrid components. The subsequent intermolecular bond starts a new
hybrid component iff (i) it is not direct in at least one subsequence, i.e. it is
covered by an arc in the associated regions (Case 2 of the QIb recursion), or
(ii) there is at least one arc between the two successive intermolecular bonds
(Cases 3 and 4 of the QIb recursion). Using the additional matrices QIhh and
QIhb, we get

QIb
iR,jR,iS ,jS =QIhh

iR,jR,iS ,jS

+
∑

iR<k1<jR
iS<k2<jS

QIhb
iR,k1,k2,jS

QIb
k1,jR,iS ,k2

+
∑

iR<k1<jR
iS<k2<jS

QIhh
iR,k1,k2,jS

QIa
k1,jR,iS ,k2

.

(6)

Figure 7 shows the cases of QIh: (i) there is no bond other than iR ◦ jS and
iS ◦jR in the region, and (ii) there exist more bonds between iR ◦jS and iS ◦jR,
the leftmost of which is k1◦k2.

Figure 8 shows the cases of QIa
iR,jR,iS ,jS

for which at least one of iR and jS
is the end point of an interaction arc: (i) iR •k1 subsumes [k2,jS] and k2 is
not base paired with jS , (ii) k2•jS subsumes [iR,k1] and iR is not base paired
with k1 and (iii) iR •k1 and k2•jS are equivalent. If just one of iR and jS is
the end point of an interaction arc while the other one is the end point of
a bond, then the interaction arc subsumes the other subsequence. If both iR
and jS are end points of interaction arcs, then one of the arcs subsumes the
other one or they are equivalent. Therefore,

QIa
iR,jR,iS ,jS =

∑

iR<k1≤jR
iS≤k2≤jS

QIs
iR,k1,k2,jS

QI
k1+1,jR,iS ,k2−1

+
∑

iR≤k1≤jR
iS<k2≤jS

QIs′
iR,k1,k2,jS

QI
k1+1,jR,iS ,k2−1

+
∑

iR<k1≤jR
iS<k2≤jS

QIe
iR,k1,k2,jS

QI
k1+1,jR,iS ,k2−1,

(7)

in which QIs
iR,k1,k2,jS

is the interaction partition function of [iR,k1]×[k2,jS]
assuming iR •k1 is an interaction arc that subsumes [k2,jS], QIs′

iR,k1,k2,jS
is

the symmetric counterpart of QIs and QIe
iR,k1,k2,jS

is the interaction partition

=Ie

gm

Ism Isk

gk

iR jR

jS iS

k2 k1 k2 k1

Fig. 9. Cases of QIe
iR,jR,iS ,jS

, for which iR • jR and iS • jS are equivalent
interaction arcs.

=

gk

ed i j

g

i ji j ee dd

=ed i j

g

i j

gm

i j ee dd
k1 k2

k1 k2

Fig. 10. Recursion for Qgk
i,d,e,j and Qgm

i,d,e,j , the partition functions for [i,j]
excluding the gap [d,e], assuming i and j are base paired. The gap in Qgk is
assumed to contain a direct bond hence the red color, and the gap in Qgm is
assumed to contain multiple interaction arcs hence the green color. In both
cases, i<k1≤d and e≤k2 < j.

function of [iR,k1]×[k2,jS] assuming iR •k1 and k2• jS are equivalent
interaction arcs.

For QIe, it does not make any difference which one of the covering
arcs, iR • jR and iS • jS , is extracted first. We first extract the covering arc
from S (Fig. 9). Extracting the covering arc, the remaining subsequence of S
contains either at least one direct bond, in which case kissing loop penalty
should be applied, or multiple interaction arcs, in which case multiloop
penalty should be applied. Hence, Figure 9 is appropriately colored by green
and red to remind the type of penalty.

Note that Qgk
i,d,e,j and Qgm

i,d,e,j are the partition functions for [i,j] excluding

the gap [d,e] assuming i and j are base paired. For Qgk , the gap is assumed
to contain a direct bond, and for Qgm the gap is assumed to contain multiple
interaction arcs (Fig. 10). The only difference between Qgk and Qgm is in
the penalty type. For both Qgk and Qgm, there are two cases: (i) there is no
more spanning interaction arc in the region, and (ii) there is at least another
innermost spanning interaction arc k1•k2. In both groups, there could be
some additional intramolecular structure in the region. The quantity Qg

i,k1,k2,j
is the partition function for the subsequence [i,j] excluding the gap [k1,k2]
assuming i• j and k1•k2. The gap partition function Qg is similar to Qg in
Dirks–Pierce’s (2003) algorithm. See our Supplementary Material for the
details of Qgk , Qgm and Qg.

The union of the cases of QIsk and QIsm comprises the cases of QIs.
Similar to the cases of QIe, we extract the covering arc from QIsk and QIsm to
obtain QImm, QImk , QIkm and QIkk , where k stands for kissing (or equivalently
containing a direct bond) and m for multiple interaction arcs. Note that all
four terminal bases of the region of these four quantities are paired, i.e. each
terminal base is either the end point of a bond or of an interaction arc. These
four quantities have complicated cases. Due to lack of space, we explain
them in our Supplementary Material.

3 EXPERIMENTS
Here, we report our implementation of the algorithm and two types
of experiments we performed to test the predictive power of our
algorithm:

(1) Predicting the melting temperature of RNA duplexes is an
important application of the partition function for interacting
nucleic acid pairs (Dimitrov and Zuker, 2004); our first
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experiment tests how accurately our algorithm predicts the
melting temperature of RNA pairs collected from several
sources in the literature with respect to the accuracy of
available alternatives, RNAcofold from Vienna package
v1.7.2 (Bernhart et al., 2006) and UNAFold v3.6 which
is a new version of former mfold (Markham and Zuker,
2008). We remind the reader that RNAcofold concatenates
the two RNA strands and computes the partition function for
the resulting single strand. Therefore, it does not consider
many cases that our algorithm considers. UNAFold v3.6,
on the other hand, simplifies the problem by forbidding
intramolecular base pairing. It computes the partition function
of the two strands over just hybridization structures. As
can be expected, our algorithm consistently outperforms the
alternatives in all three datasets.

(2) A novel experiment (which, to our knowledge has not been
performed successfully by any other program to date) uses
our algorithm to predict the equilibrium concentration of an
RNA–RNA complex, in particular the OxyS–fhlA interaction
(Argaman and Altuvia, 2000).2 We successfully predicted the
equilibrium concentrations for OxyS with wild-type fhlA and
four other fhlA mutants.

Note that the parameters used by our program in the above
experiments have been manually optimized as computational
learning methods for fine tuning the parameters require prohibitive
computational resources. It may be possible to improve the accuracy
of our program through a better selection of parameters.

3.1 Implementation
We remind the reader that the time and space complexity of our
algorithm are O(n6) and O(n4), respectively; here n=max(LR,LS)
is the maximum length of the two input strands. We implemented
our algorithm in C++, and used the energy functions and energy
parameters of UNAFold v3.6 for a single strand (Markham and
Zuker, 2008). The parameters used by our program for our own
interaction energy model are given in the next section. As per
Section 2.2, we use a different β1 penalty and σ for a hybrid
component that is covered by a kissing loop. The parameters for a
hybrid component that is not covered by a kissing loop is denoted by
β ′1 and σ ′. We add an Adenine-Uracil base pair (AU) penalty to the
energy of a hybrid component per each terminal AU base pair; this
penalty is motivated by Xia et al. (1998). Similar to RNAhybrid,
the interior loops in a hybrid component are restricted to a constant
maximum length, in either sequence, which is set to 15 in this work.

Since our algorithm considers many more possible secondary
structures in comparison to alternative methods, our program has
a higher running time. Fortunately, our algorithm can be easily
parallelized as the dynamic programming tables computed by

2Equilibrium concentrations of another complex formed by CopA/I–CopT
is also available in the literature (Hjalt and Wagner, 1995), however the
interaction has tertiary structural componets, i.e. a very long pair of kissing
hairpins forming a helix, anti-helix pair with a long gap in between.
Alkan et al. (2006) were able to establish the most likely joint structure
between this RNA pair only through postprocessing. This complex requires
some additional constraints on the lengths of interacting loops that are not
incorporated into our model due to additional computational complexity they
would impose.

our program on subsequence pairs depend only on their (proper)
subregions. We parallelized our program using OpenMP 3.0. Our
experiments were performed on a large-scale shared memory
parallel platform with 64 PPC 1.9 GHz processors with 256 GB
RAM. We ran our program for strands of length between 5 nt to
120 nt. The running time of our program for short strands (∼20 nt)
was < 1 m—for longer strands (∼120 nt) it was ∼10 h.

3.2 Datasets
The first dataset that we used for predicting melting temperature
contains all nine different RNA pairs reported in Table 3 of Xia
et al. (1998). It contains almost complementary 5- to 7- nt RNA pairs
that were designed to optimize the thermodynamic parameters for
terminal base pairs. Their melting temperatures vary from 29.8◦C
to 53.7◦C.

The second dataset that we used for computing melting
temperature contains all 12 different RNA pairs reported in Table 1
of Diamond et al. (2001). These RNA pairs are designed to optimize
the thermodynamic parameters for three-way multi loops. In each
pair of this dataset, the first RNA has∼20 nt and the second one has
∼10 nt. The experimental melting temperatures were determined
from heat absorbance measurements by two different methods that
are explained as ‘Method 3’ and ‘Method 4’ in Puglisi and Tinoco
(1989). Although these pairs are very similar, the average difference
of the two methods for this dataset is 2.49◦C. This suggests that
there may exist RNA pairs with exceptional features in this set.

The third dataset that we used for computing melting temperature
contains all 62 different RNA pairs reported in Tables 3 and 4 of
Mathews and Turner (2002). These pairs are designed to optimize
the thermodynamic parameters for three- and four-way multi loops.
In each pair of this dataset, the first RNA has 22–40 nt and the second
one has 10–14 nt. Again, the experimental melting temperatures
were determined by two different methods. This dataset is large
enough with longer sequences, and the average difference of the two
methods for this dataset is 0.7◦C, smaller than that for the second
dataset. Moreover, the variance and maximum of the difference is
smaller than those of the second dataset. Overall, this dataset is more
reliable than the previous one. These three datasets are all we were
able to collect from the literature.

3.3 Melting temperature
As mentioned before, predicting the melting temperature of RNA
duplexes is one of the most important applications of the partition
function for interacting nucleic acid pairs (Dimitrov and Zuker,
2004). Table 1 shows the melting temperatures computed by our
program, RNAcofold, and UNAFold v3.6 for the first dataset.
In this set, the strands are short, and as we expected, our algorithm
is highly accurate with only 1.48◦C absolute difference from
experimental values on average. It can be seen that RNAcofold
and UNAFold perform relatively poorly, and their predicted melting
temperatures differ from the experimental values by about 9◦C on
average.

Table 2 shows the melting temperatures predicted by the three
programs for the second dataset. Each pair is referred to by an
identifier (A,B,...,L). Please refer to our Supplementary Material
or Diamond et al. (2001) to see the exact sequences of each pair.
As mentioned before, the experimental melting temperatures were
determined from heat absorbance measurements by two different
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Table 1. Experimental and predicted melting temperatures for the first
dataset [see Section 3.2 and Xia et al. (1998)]

Pairs Experiment piRNA RNAcofold UNAFold

ACGCA/UGCGU 29.8 29.41 42.64 46.14
GCACG/CGUGC 37.5 36.07 46.61 43.91
AGCGA/UCGCU 30.2 30.38 42.68 45.15
GCUCG/CGAGC 37.2 36.88 47.75 44.71
ACUGUCA/UGACAGU 48.2 44.91 56.8 57.59
GUCACUG/CAGUGAC 51.1 49.4 58.44 55.91
AGUCUGA/UCAGACU 45.7 45.47 56.4 56.68
GACUCAG/CUGAGUC 52 49.96 59.11 56.25
GAGUGAG/CUCACUC 53.7 49.97 59.07 56.00

Avg. error 1.48 9.35 8.55
Spearman rank corr. 0.97 0.97 0.57

All values, except Spearman’s rank correlation, are in degree centigrade. Bold entries
are the most accurate predictions. In other words, they have the least difference from
experimental measurements.

Table 2. Experimental and predicted melting temperatures for the set of
RNA pairs reported in Diamond et al. (2001)

Pairs Experiment piRNA RNAcofold UNAFold

Tl Tc

A 28.7 30.3 32.44 50.99 21.52
B 19 20.5 31.55 52.55 33.22
C 33.6 33.6 32.94 53.11 39.77
D 33.9 36 32.43 51.02 26.85
E 23 24.4 31.66 52.48 32.22
F 34.9 36.9 33.28 54.7 39.91
G 32.4 33.6 32.76 49.76 64.27
H 16.1 18.9 36.41 57.92 29.76
I 29 32.3 32.32 50.99 29.18
J 32.3 37.1 37.01 56.92 28.8
K 23.4 30.7 31.45 49.36 26.18
L 33.5 35.4 32.61 50.51 28.01

Tl Tl Tc Tl Tc Tl Tc
Avg. difference 2.49 5.53 4.19 24.21 21.72 8.86 9.38
Spearman rank corr. 0.87 0.36 0.45 −0.05 0 0.16 0.03

Each pair is referred to by an identifier (A,B,...,L). Please refer to our Supplementary
Material or Diamond et al. (2001) to see the exact sequences of each pair. All values,
except Spearman’s rank correlation, are in degree centigrade. Bold entries are the most
accurate predictions. In other words, they have the least difference from experimental
measurements.

methods which are explained as ‘Method 3’and ‘Method 4’in Puglisi
and Tinoco (1989). We refer to the melting temperature values
computed by ‘Method 3’ and ‘Method 4’ by Tc and Tl , respectively.
RNAcofold accuracy obviously dropped in this case, whereas
UNAFold accuracy did not change much in comparison to the
results for the first dataset. The accuracy of our method has also
dropped a bit, which may be because of some RNA pairs with
exceptional features.

Table 3 presents the melting temperatures predicted by the three
programs for the third dataset. As you can see, our program has
high accuracy and performs significantly better than RNAcofold
and UNAFold for this dataset. As we argued before, the third
dataset is the largest and the most reliable of the three datasets. It
is important to note that RNAcofold and UNAFold both perform
poorly either in this case or the two previous cases. Therefore, neither
RNAcofold norUNAFold is as reliable as our program for melting
temperature prediction.

Table 3. Experimental and predicted melting temperatures for the set of RNA
pairs reported in Mathews and Turner (2002)

Pairs Experiment piRNA RNAcofold UNAFold

Tl Tc

G-GC-G/C-C 45.4 46 56.81 37 21.4
G-GC-G/CaC 51.8 52.2 56.84 37 27.15
G-GC-G/Ca2C 55.9 56 56.86 37 27.12
G-GC-G/Ca3C 58.4 57.3 56.85 37 25.73
G-GC-G/CauaC 57.3 56.9 56.84 37 24.35
G-GC-G/Ca4C 56.7 57.1 56.85 37 25.06
GaGC-G/C-C 51.2 49.3 56.94 37.1 21.25
GaGC-G/CaC 55.2 54.7 56.96 41 21.44
GaGC-G/Ca2C 56.1 55.6 56.98 41 21.46
GaGC-G/Ca3C 56.1 54.9 56.97 41 21.44
GaGC-G/CauaC 54.8 54.3 56.98 37.06 21.47
GaGC-G/Ca4C 55.3 54.8 56.98 37 21.39
Ga2GC-G/C-C 55.1 52.9 57 50.17 36.04
Ga2GC-G/CaC 57 56.4 57.03 48.01 36.8
Ga2GC-G/Ca2C 55.6 55.4 57.05 41.84 36.91
Ga2GC-G/Ca3C 55 54.7 57.03 41.84 36.19
Ga2GC-G/CauaC 55.3 54.5 57.3 52.17 36.74
Ga2GC-G/Ca4C 54.1 53.9 57.05 48.01 34.22
Ga2GCaG/C-C 56.6 56.6 57.18 47.01 36.01
Ga2GCaG/CaC 58.7 58.9 57.18 44.1 36.81
Ga2GCaG/Ca2C 58 58.8 57.2 44.1 36.13
Ga2GCaG/Ca3C 56.5 57.5 57.15 44.1 36.96
Ga2GCaG/CauaC 57.2 56.9 57.48 43 35.92
Ga2GCaG/Ca4C 57.9 57.9 57.17 44.1 34.66
Ga2GCa2G/C-C 56 56.9 57.19 37.17 36.14
Ga2GCa2G/CaC 58.7 59.1 57.2 44.1 36.94
Ga2GCa2G/Ca2C 59.7 59.6 57.19 44.1 36.22
Ga2GCa2G/Ca3C 58.6 58.7 57.16 44.1 35.89
Ga2GCa2G/CauaC 57 57.3 57.74 37 35.03
Ga2GCa2G/Ca4C 57.5 58.1 57.18 44.1 34.93
G-UA-G/C-C 50.4 50.8 56.82 46.26 21.53
G-UA-G/CaC 54.3 55.8 57.88 61.42 34.47
G-UA-G/Ca2C 56.6 57.8 57.89 61.42 41.68
G-UA-G/Ca3C 57.6 58.5 57.88 61.42 40.84
G-UA-G/CauaC 57.9 58.7 57.87 61.41 40.96
G-UA-G/Ca4C 58.6 58.5 57.88 61.43 40.64
GaUA-G/C-C 51.6 51.8 56.96 49.18 21.42
GaUA-G/CaC 55.6 55.7 57.01 37.07 30.98
GaUA-G/Ca2C 56.7 57.4 57.04 50.31 31.46
GaUA-G/Ca3C 56.8 56.9 57 44.17 29.91
GaUA-G/CauaC 57 57.1 56.99 37.07 29.98
GaUA-G/Ca4C 56.8 56.8 57.01 50.31 29.29
G-CG-GC-G/C-C 64.8 65.2 57.24 37 21.38
G-CG-GC-G/CaC 58.8 60.4 57.22 37 21.44
G-CG-GC-G/Ca2C 55.6 56.4 57.35 37 21.38
G-CG-GC-G/Ca3C 55.4 55.3 57.32 37 21.56
G-CG-GC-G/Ca4C 53.9 53 57.19 37 21.38
GaCG-GC-G/C-C 57.3 58.7 57.2 37 21.71
GaCG-GC-G/CaC 59.7 61.2 57.21 37 21.76
GaCG-GC-G/Ca2C 55.4 57.2 57.19 37 21.45
GaCG-GC-G/Ca3C 55.2 56.5 57.11 37 21.42
GaCG-GC-G/CauaC 55.2 55.8 57.09 37 21.38
GaCG-GC-G/Ca4C 55 55.3 57.14 37 21.47
GaCG-GCaG/C-C 58.1 58.8 56.9 37 21.54
GaCG-GCaG/CaC 59.3 59.7 56.99 37 21.76
GaCG-GCaG/Ca2C 57.5 59.4 56.89 37 63.08
GaCG-GCaG/Ca3C 57.9 58.2 56.95 37 21.44
GaCG-GCaG/CauaC 58.9 58.3 56.93 37 21.53
GaCG-GCaG/Ca4C 57.3 58.1 56.84 37 21.46
Ga2CGa2GCa2G/C-C 54.4 55.5 57.12 47.17 67.28
Ga2CGa2GCa2G/CaC 55 56.6 57.04 44.01 67.23
Ga2CGa2GCa2G/Ca2C 55.3 57.2 57.12 51.31 66.09

Tl Tl Tc Tl Tc Tl Tc
Avg. difference 0.7 1.87 1.95 14.27 14.41 26.5 26.56
Spearman rank corr. 0.92 0.25 0.35 −0.04 −0.04 0.2 0.28

Each pair is referred to by an identifier. Please refer to our Supplementary Material or Mathews and Turner (2002) to see
the exact sequences of each pair. All values, except Spearman’s rank correlation, are in degree centigrade. Bold entries are
the most accurate predictions. In other words, they have the least difference from experimental measurements.
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Fig. 11. Experimental and computational determination of equilibrium constants for pairs of OxyS with wild-type and mutated fhlA. Horizontal axis denotes
the initial concentration of fhlA, and the vertical axis denotes the percentage of OxyS in OxyS–fhlA complex. Initial concentration of OxyS was 2×10−9 M
(Argaman and Altuvia, 2000). Both RNAcofold and UNAFold predict that the percentage of OxyS in complex is approximately 0 for the considered fhlA
concentrations.

The running time of our program for the first dataset was about a
few seconds, for the second dataset about 10 min and for the third
dataset ∼72 h on a Linux PC with Pentium-D 3.6 GHz CPU and
4 GB of RAM. Note that we did not use any learning methods for
tuning our six interaction energy parameters because of the running
time of our program. Our interaction energy parameters in melting
temperature experiments are β1=5.1,β2=β2=0.1,σ =0.92,β ′1=
4.1 and σ ′ =0.95, which were manually optimized using only the
first data set. The second and the third datasets were used as test sets.

3.4 Equilibrium concentration
Our second set of experiments, to the best of our knowledge,
have not been successfully performed by the use of any available
program to date. Here we predict the equilibrium concentrations
for OxyS with wild-type fhlA and four other fhlA mutants. OxyS
is a small untranslated RNA (109 nt) that is induced in response to
oxidative stress in Echerichia coli. It acts as a regulator affecting
the expression of multiple genes. In particular, OxyS represses
the translation of fhlA, a transcriptional activator for formate
metabolism, by binding to it. Argaman and Altuvia (2000) carried
out a series of experiments to measure equilibrium dissociation
constants for OxyS with wild-type fhlA and its mutants. To
measure the equilibrium dissociation constants, they measured the
concentration of OxyS–fhlA complex for a fixed initial OxyS
concentration (2 nM) and various initial concentrations of fhlA.
Their plots are reported in Figure 8 and Table 2 of Argaman and
Altuvia (2000). Those plots can be predicted from the partition
functions for OxyS, fhlA, OxyS–OxyS, fhlA–fhlA and OxyS-fhlA.
To validate our algorithm, we computed these partition functions
using our program, and predicted the equilibrium concentrations of
OxyS–fhlA complex. Our results are compatible with experimental
measurements, as we had expected.

Figure 11 shows the experimental measurements and our results.
Interestingly, our algorithm predicted the equilibrium concentration
of OxyS–fhlA complex quite accurately for the wild-type fhlA
and all of its mutants. We also experimented with RNAcofold
and UNAFold in this case. Both RNAcofold and UNAFold
predict that the percentage of OxyS in complex is approximately

0 in all five cases for the considered fhlA concentrations. This is
probably not very surprising as correctly predicting the equilibrium
concentrations is a very difficult task and is highly sensitive to
the accuracy of the partition functions. We describe below how to
compute the concentrations from partition functions, and why it is
difficult to correctly predict those equilibrium concentrations.

Given two nucleic acid strands R and S, we can compute the
equilibrium concentrations of R, S, RR, SS and RS species, denoted
by NR, NS, NRR, NSS and NRS, respectively, from their partition
functions (Dimitrov and Zuker, 2004). In the equilibrium, the
free energy of a closed system at constant temperature, volume
and pressure tends toward a minimum (Landau and Lifshitz,
1969). Equilibrium concentrations are computed from the chemical
equilibrium constants

KR=
QI

RR

Q2
R

= NRR

N2
R

,

KS=
QI

SS

Q2
S

= NSS

N2
S

, (8)

KRS=
QI

RS
QRQS

= NRS
NRNS

,

under the constraint NRS=N0
R−2NRR−NR=N0

S−2NSS−NS, in

which N0 are the initial concentrations of single strands. We noticed
that QR and QS computed by the three programs are very close
because they use the same algorithm for a single strand (i.e.
McCaskill’s algorithm). Therefore based on (8), a method can
compute equilibrium concentrations correctly only if it computes
each individual QI accurately. As one can observe in Figure 11, our
program has been able to predict OxyS–fhlAcomplex concentrations
accurately, thus we can conclude that our program computes all QI

accurately.
As mentioned above, the parameters used by our program on

this dataset have been manually optimized. Our energy parameters
in this experiment are β1=6.6, β2=β2=0.1, σ =0.9, β ′1=4.5
and σ ′ =0.9.
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4 CONCLUSION AND FUTURE WORK
In this article, we present piRNA, an efficient algorithm to
compute a partition function of two interacting nucleic acid strands.
Our algorithm considers almost all physically possible secondary
structures that do not contain pseudoknots, crossing interactions
and ‘zigzag’s. In order to specify the free energy of a joint
structure established by interacting strands, we extend the standard
nearest neighbor single-strand thermodynamic energy model to an
energy model for two interacting strands by introducing three new
components: (i) hybrid component, (ii) kissing loop and (iii) inter-
hybrid loops that are modified versions of hybridization, multi
loop and pseudoknot energy models. We verified our algorithm
by computing the melting temperature for RNA pairs available
in the literature and the equilibrium concentration for OxyS-fhlA
complex. In both experiments our algorithm provides high accuracy
and outperforms available alternatives.

We computed the melting temperature for RNA pairs in (Diamond
et al., 2001; Mathews and Turner, 2002; Xia et al., 1998)
(Tables 1–3). On average, the predicted melting temperature by our
program is ∼2◦C different from experimental values. Our program
is >10◦C more accurate than the alternatives, RNAcofold and
UNAFold, on average. It is important to note that RNAcofold
and UNAFold both perform poorly in at least one of the three
datasets, while our program is consistently accurate across all
three datasets. Therefore, neither RNAcofold nor UNAFold is
as reliable as our program for melting temperature prediction.
In addition, our algorithm is able to compute the OxyS–fhlA
complex equilibrium concentrations for wild-type and mutated
fhlA accurately. Both RNAcofold and UNAFold predict those
equilibrium concentrations to be approximately 0, which does not
even roughly follow the experimental measurements.

Although our algorithm is fairly efficient, improving the generality
and complexity of our algorithm will be one of our priorities
in the near future. In particular, we aim to explore whether it is
possible to cover more general interactions without increasing the
computational complexity of the algorithm.
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