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ABSTRACT

Motivation: The structure of RNA molecules is often crucial for their

function. Therefore, secondary structure prediction has gained much

interest. Here, we consider the inverse RNA folding problem, which

means designing RNA sequences that fold into a given structure.

Results:We introduce a new algorithm for the inverse folding problem

(INFO-RNA) that consistsof twoparts; adynamicprogrammingmethod

for good initial sequences and a following improved stochastic local

search that uses an effective neighbor selection method. During the

initialization, we design a sequence that among all sequences adopts

the given structure with the lowest possible energy. For the selection of

neighbors during the search, we use a kind of look-ahead of one selec-

tion step applying an additional energy-based criterion. Afterwards, the

pre-ordered neighbors are tested using the actual optimization criterion

ofminimizing thestructuredistancebetweenthe targetstructureand the

mfe structure of the considered neighbor.

We compared our algorithm to RNAinverse and RNA-SSD for artificial

and biological test sets. Using INFO-RNA, we performed better than

RNAinverse and in most cases, we gained better results than RNA-

SSD, the probably best inverse RNA folding tool on the market.
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Bioinformatics online.

1 INTRODUCTION

RNAs are involved in translation (tRNA, rRNA), splicing (snRNA),

processing of other RNAs (snoRNA, RNAseP) and regulatory

processes (miRNA, siRNA) (Hüttenhofer et al., 2002). Furthermore,

parts of mRNAs can adopt structures that regulate their own trans-

lation [SECIS (Hüttenhofer and Böck, 1998; Liu et al., 1998), IRE

(Addess et al., 1997)]. The function of RNA molecules often depends

on both the primary sequence and the secondary structure. Since

prediction or experimental determination of three-dimensional

RNA structures remain difficult, much work focuses on problems

associated with its secondary structure, which can be described as a

set of paired positions of the RNA sequence. These positions are

assigned to complementary bases according to Watson and Crick (A

and U, C and G). In some cases, other pairings (e.g. G and U) can be

found. The problem of predicting the secondary structure of an RNA

is called the RNA folding problem. Existing computational

approaches are based on a thermodynamic model that gives a free

energy value for each secondary structure (Zuker, 1994). The

structure with the lowest energy [called the minimum free energy

(mfe) structure] is expected to be the most stable one.

In this paper, we consider the inverse RNA folding problem,

which is the design of RNA sequences that fold into a desired

structure. This design is applicable to ribozymes and riboswitches

(Knight, 2003; Winkler et al., 2004; Cech, 2004), which may be used

as drugs in research and medicine. Furthermore, the inverse RNA

folding can be applied to the design of noncoding RNAs, which are

involved in a large variety of processes, e.g. gene regulation,

chromosome replication and RNA modification (Storz, 2002).

Given an RNA secondary structure, we aim at finding an RNA

sequence that is going to adopt this structure. Straight forwardly

testing each sequence, whether its mfe structure is the searched

one, is impossible since the number of sequences grows exponentially

in the size of the structure (Hofacker, 1994). Thus, different heuristic

local search strategies, which do not analyze the complete solution

space, were used by existing programs dealing with inverse RNA

folding (Hofacker et al., 1994; Andronescu et al., 2004; Dirks et al.,
2004). One approach to inverse folding is implemented in RNAin-

verse, which is included in the Vienna RNA Package (Hofacker et al.,
1994). There, the strategy of adaptive walk is used and local optima

are found according to two different criteria, namely a structural

distance between the mfe structure of the designed sequence and

the target structure (mfe-mode) and the probability of folding into

the target structure (p-mode). A second algorithm is called RNA-SSD

(RNA Secondary Structure Designer) and was developed by

Andronescu et al. (2004). It is based on a recursive stochastic

local search that also tries to minimize a structure distance.

We present a new algorithm INFO-RNA for the INverse FOlding

of RNA. It consists of two steps; a new design method for good

initial sequences and a following improved stochastic local search

that uses an effective neighbor selection method. Concerning the

initialization step, we found out that a good choice is to use a

sequence that among all sequences adopts the given structure

with the lowest possible energy. We present a dynamic program-

ming approach to solve this problem. Here, multi-branched loops

(short: multiloops) are especially complicated to handle. For the

selection of neighbors during the local search, we deviated from the

arbitrary order used in RNAinverse and RNA-SSD. Using a kind of

look-ahead of one selection step, we first order the set of neighbors

using an energy-based criterion, which is much faster to calculate

than the actual optimization criterion of minimizing the structure�To whom correspondence should be addressed.

� 2006 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


distance between the target structure and the mfe structure of the

considered neighbor. Afterwards, the neighbors are tested in the

calculated order using the actual optimization criterion. We tested

INFO-RNA on artificial as well as on real data and compared the

results to the ones of RNA-SSD and RNAinverse.

2 THE INFO-RNA APPROACH

The general problem of inverse RNA folding can be described as

follows. Find an RNA sequence S¼ S1 . . .Snof length n that folds into

a given secondary structureT, where Si2B¼ {A,C,G,U} for 1� i�
n. T can be described as a set of pairs (i1, i2), where 1� i1 < i2 � n and

positions i1 and i2 are paired. In the following, all regarded secondary

structures are pseudoknot-free, where a structure T is called

pseudoknot-free if for every 2 base pairs (bp) (i1, i2) and (j1, j2) in

T holds i1 < i2 < j1 < j2 or i1 < j1 < j2 < i2. We have to analyze a search

space of an exponentially high number of valid RNA sequences.

These are sequences that can form the base pairs required for the

target structure regardless of energy. Therefore, it is not possible to

find a globally optimal solution by testing all candidate sequences and

thus, local search methods are widely used to address the inverse

folding problem. Consequently, the resulting local optima are not

guaranteed to be globally optimal but are optimal among all their

sequence neighbors. The sequence neighbors of a sequence S are all

sequences Si that differ from S in one unbound position or in two

positions which have to pair concerning structure T (Fig. 1).

Except on the search strategy itself, the performance of the local

search depends on the quality of the initializing sequence. Often, it

is chosen at random. In the following, we are going to introduce a

new method to create an excellent initializing sequence and describe

the local search strategy we used.

2.1 The initializing step

The initializing step of INFO-RNA uses the technique of dynamic

programming. This method was successfully applied to RNA

secondary structure prediction, e.g. by Zuker and Stiegler (1981),

and related problems. Similar to Zuker and Stiegler, we use free

energies of structural elements [stacks, bulge- (BL), interior- (IL),

hairpin- (HL), multiloops (ML)]. They depend on the size of the

loop, the closing base pairs, and on the free bases inside the loops

and adjacent to the closing pairs. Since each pair belongs to two

elements, neighbored elements in a structure are linked and base

pairs cannot be handled independently. Additionally, their energy

fraction depends on directly adjacent free bases. Free bases that are

not adjacent to a base pair do not give any energy fraction. The free

energy value of a pseudoknot-free structure is calculated by adding

up all partial energies of its elements.

Given a target structure T, we find a sequence S that among all

sequences adopts T with the lowest possible energy. Formally, this

means that we find a sequence S resulting from argminS0 eðS
0
‚TÞ

where e(S0, T) represents the free energy of sequence S
0
folded into

structure T. For solving this problem, our dynamic programming

algorithm needs linear time depending on the structure size. It starts

with small substructures and enlarges them gradually by 1 bp. Thus,

the algorithm starts at the closing pair of a hairpin loop, sub-

sequently fixes it to pair assignments out of the set of valid pairs

BP ¼ {A-U,C-G,G-C,U-A,G-U,U-G}, and assigns the unbound

positions of the loop such that they provide the lowest possible

energy value for this small substructure under the condition that

the closing pair is fixed. This is stored for all six possible assign-

ments of the pair. Afterwards, the next pair to the HL-closing one is

fixed. The energy can be calculated by the sum of the energy of the

hairpin loop including the closing pair and the stacking energy of

the current pair and the closing one of the HL. To find the best

energy value, we have to minimize this sum over all possible

assignments of the base pair closing the HL. This is demonstrated

in equation 1 exemplarily, where e(.) represents the mfe. It refers to

Figure 2A.

: ð1Þ

We define a substructure Tði1‚ i2Þ as structural part of T that is

closed by pair (i1, i2) and has a connected backbone (Fig. 2B).

eðTði1‚ i2Þ j ðSi1 ‚Si2Þ!ða1‚a2ÞÞ is defined to be its mfe under the
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Fig. 1. Exemplary sequence (and structure) and all its sequence neighbors

that can adopt this structure. The parenthesis notation is used for the repre-

sentation of the RNA secondary structure. An opening ‘(’and a closing par-

enthesis‘)’ stand for a base pair, a dot ‘.’ represents an unbound position.
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Fig. 2. (A) RNA secondary structure. (B) Substructure T(26,35) having a

connected backbone. (C) Structural element T
ð27‚ 33Þ
ð26‚ 35Þ without a connected

backbone.
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condition that the sequence positions of the closing pair of the

substructure ðSi1 ‚Si2Þ are fixed to a base pair assignment (a1, a2).

Furthermore, we define a structural element T
ði1þk‚ i2�lÞ
ði1‚ i2Þ as part of

structure T that consists of only two neighboring pairs (i1, i2) and

(i1 + k, i2 � l). These ones close the element. It does not have a

connected backbone (Fig. 2C). In case of a ML, the structural

element is closed by >2 bp and the definition is applied analogously.

We define eðTði1þk‚ i2�lÞ
ði1‚ i2Þ j ðSi1 ‚Si2Þ!ða1‚a2Þ‚ðSi1þk‚Si2�lÞ!ðb1‚b2ÞÞ

as the mfe of the structural element that is closed by base pairs

(i1, i2) and (i1 + k, i2 � l) whose sequence positions are fixed to

assignments (a1, a2) and (b1, b2), respectively. Equation (2) form-

alizes the example of Equation (1).

eðTð15‚ 22ÞjðS15‚Sð22ÞÞ!ðA‚UÞÞ ¼

min
ða1‚a2Þ

eðTð16‚ 21ÞjðS16‚ S21Þ!ða1‚a2ÞÞ

þ e T
ð16‚ 21Þ
ð15‚ 22Þ

���� ðS16‚S21Þ!ða1‚a2Þ
ðS15‚S22Þ!ðA‚UÞ

� �8<
:

9=
;:

ð2Þ

The energy value of any element depends on the assignment of

the base pairs and, in case of a loop, on the unpaired bases adjacent

to a stem and the loop size. The minimal energy of a substructure

T(i1, i2)
can be evaluated by adding the minimum energy of the one

pair smaller substructure Tði1þk‚ i2�lÞ and the energy of the structural

element T
ði1þk‚ i2�lÞ
ði1‚ i2Þ . Therefore, an already analyzed smaller sub-

structure can be seen as black box, except for its closing pair.

We calculate the lowest possible energies for substructures

gradually by adding the next pair to a smaller substructure.

Of course, the question arises in which order the base pairs should

be handled. For that purpose, we define an order � in which base

pairs are analyzed. (i1, i2) � (j1, j2) means that base pair (i1, i2) is

analyzed prior to base pair (j1, j2). The actual order in which the base

pairs of the target structure are examined is defined as follows.

ði1‚ i2Þ� ðj1‚ j2Þ if and only if i1 > j1 ð3Þ

Relating to the example of Figure 2A, the order of all pairs is the

following: (28, 32) � (27, 33) � (26, 35) � (25, 36) � (16, 21) �
(15, 22) � (14, 23) � (6, 10) � (5, 11) � (4, 12) � (2, 38) � (1, 39).

All pairs that are part of the structural element that is closed by the

current pair and that are smaller than the current one (concerning the

order) are denoted as predecessors of the current pair. Since closing

pairs of HLs do not depend on any other pair, they have no pre-

decessor. The closing pair of a ML has as many predecessors as

stems originate from the loop. All other pairs have exactly one

predecessor. Table 1 shows the predecessors of Figure 2A.

Having set the order of all pairs, a dynamic programming matrix

D is filled with minimal free energies. Each row in D represents a

base pair of the target structure while each column stands for a

possible assignment of the pairs. Thus, D has as many rows as pairs

are in our desired structure and six columns, which represent the

assignments A-U, U-A, C-G, G-C, G-U and U-G. In the following,

pairs are no longer represented by their pairing positions, e.g. (i1, i2),

but only by their numbers in D, e.g. i. The values in the matrix D(i,a)

give the mfe of a substructure ending at base pair i (represented by

the row) that is assigned to a 2 BP (given by the column). Every

substructure starts at one or more base pairs that do not have any

predecessors.

Before giving a detailed description of the algorithm, we have to

define some variables and notations that are used in the following

equations. Now, Tj
i represents the structural element of T between

base pairs i and j where i and j are row numbers in D. The free

energy of the structural element between base pairs i and j assigned

to a and b, respectively, is given by eðTj
i=i! a‚ j! bÞ. Further

definitions are shown in Table 2.

During our dynamic programming approach, the fields in the

matrix are filled row by row. Depending on the kind of the pair,

i.e. on the number of predecessors, the values are calculated as

follows.

(A) If base pair i has exactly one predecessor, i.e. it is a closing

pair of a bulge loop, of an interior loop, or of a stack,

8 a 2 BP : Dði‚aÞ ¼ eAUði‚aÞ

þ min
b2BP

Dði � 1‚bÞ þ min
assignment of free

bases in Ti�1
i

that are

adjacent to i � 1 or i

e Ti�1
i

���� i! a
i � 1! b

� �8<
:

9=
;‚

where eðTi�1
i j i! a‚ i � 1! bÞ gives the energy of the structural

Table 1. Base pairs and their predecessors of the structure of Figure 2A

Base pair Predecessor(s)

(28,32) None

(27,33) (28,32)

(26,35) (27,33)

(25,36) (26,35)

(16,21) None

(15,22) (16,21)

(14,23) (15,22)

(6,10) None

(5,11) (6,10)

(4,12) (5,11)

(2,38) (4,12), (14,23), (25,36)

(1,39) (2,38)

Table 2. Definition of variables

pk(i) k-th predecessor of pair i (sorted according to the order)

s Number of stems originating from a ML (¼number of

predecessors of the closing base pair of the ML)

f Number of free bases adjacent to stems in a ML

F Total number of free bases in a ML

eML(s,F) Size-depending energy fraction of a ML with F free bases

and s stems

esbs(b) Single base stacking energy of a free base assigned to b and

adjacent to one or two stems in a ML

H Total number of free bases in a HL

eHL(H) Size-depending energy fraction of a HL of size H

ebonus
a,b1, . . . , bH HL bonus energy depending on the assignment of the closing

pair and the free bases. It is lower than 0 for some special

tetra HLs. Otherwise it is set to 0.

eTM(a,b1,bH) Terminal stacking and mismatch energy in HLs. It depends

on the assignment a of the closing pair of the HL and the

assignment of the directly adjacent free bases b1 and bH
eAU(i,a)¼ Terminal AU penalty. It penalizes stems, whose last pair is

assigned to A and U or G and U

eAUði,aÞ

¼
0:5, if i is the last pair of a stem

and a 2 fA–U, U–A, G–U, U–Gg
0, otherwise

8<
:
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element between pairs i � 1 and i assigned to a and b. Besides on a
and b, this energy value depends on the assignment of the free bases

directly adjacent to i� 1 and i. Thus, both mentioned effects can be

seen here: the dependency of the base pairs to each other and the

dependency to the adjacent free bases.

(B) If base pair i has more than one predecessor, i.e. it is a closing

pair of a multiloop, 8 a 2 BP:

Dði‚aÞ ¼ eMLðs‚FÞ þ eAUði‚aÞ

þ min
a1‚ . . .‚as 2 BP
b1‚ . . .‚bf 2 B

( Xs
k¼1

DðpkðiÞ‚akÞ þ
Xf
j¼1

esbsðbjÞ
)

‚

where the minimum is taken over all possible assignments of all

predecessor base pairs a1, . . . , as and of all free bases b1, . . . , bf
adjacent to them. Straight forwardly implemented, this evaluation

can be exponential in the number of stems originating from the ML

and the number of adjacent free bases since the energy fraction of a

free base adjacent to two stems depends on the assignments of both.

But since usually only MLs with a low number of stems occur, even

the naive solution is usable in practice. However, this complexity

can be reduced to linear time for all MLs by introducing a further

dynamic programming matrix M for each ML. It calculates the best

free energy of the substructure closed by the closing pair of the ML

dynamically. The evaluation of the ML starts with the first stem-

ending pair according to the order of the pairs. The order is defined

as given in Equation (3), but the definition of the predecessors is

renewed. Now, pair i is predecessor in an ML to pair j iff i� j and it

does not exist any pair k in the ML such that i � k � j.
Matrix M includes a row for each stem-ending base pair except

the one that is closing the ML. The matrix has to be re-calculated for

each possible assignment of the closing pair of the loop since this

pair is fixed and a kind of predecessor for the first stem-ending pair.

In each step, the best energy of the part of the ML that includes the

current base pair j and all pairs i with i� j is evaluated. To this aim,

all assignments of the previous base pair as well as of the stem-

adjacent free base(s) between the current and the previous pair have

to be taken into account. This has to be done, since the energy

fraction of a free base depends on the assignment of all adjacent

base pairs. Thus, we have to differentiate between the two cases

given in Equations (4) and (5). There, i represents the base pair and

the associated assignment is denoted as a.

The energy fraction of a free base assigned to t and adjacent left

(l) or right (r) to base pair j assigned to b is given by the single

base-stacking energy esbsl ðt‚ j‚bÞ and esbsr ðt‚ j‚bÞ, respectively.

(I) If there is only one free base between the current base pair i
and its predecessor ip,

Mði‚aÞ ¼ min
b 2 BP
t 2 B

minfesbsr ðt‚ i‚aÞ‚esbsl ðt‚ ip‚bÞg

þMðip‚bÞ þ Dðip‚bÞ

8<
:

9=
;‚ ð4Þ

where b denotes the assignment of base pair ip, t represents the

assignment of the free base between ip and i.
(II) If there are more than one bases between the current base pair

i and its predecessor ip,

Mði‚aÞ ¼ min
b 2 BP
tp 2 B

esbsl ðtp‚ ip‚bÞ þMðip‚bÞ þ Dðip‚bÞ
þ min

tc2B
esbsr ðtc‚ i‚aÞ

( )
ð5Þ

where b denotes the assignment of base pair ip, tp and tc represent the

assignments of the free bases adjacent to ip and to i, respectively.

The calculation of the first base pair in the ML (represented by the

first row of M) works analogously. Here, the closing pair of the ML

acts as its predecessor with a fixed assignment. Finally, the entry for

the closing pair of the ML in D is evaluated analogously to Equa-

tions (4) and (5) depending on the entries of matrix M.

(C) If base pair i has no predecessor, i.e. it is a closing pair of a

hairpin loop, 8 a 2 BP:

Dði‚aÞ ¼ eHLðHÞ
þ min

b1‚ ...‚bH2B
ebonus
a‚b1‚ ...‚bH

þ eAUði‚aÞ‚ H ¼ 3

eTMða‚b1‚bHÞ‚ H > 3

� �� �
‚

where the minimum is taken over all possible assignments of all free

bases b1, . . . , bH in the HL.

Having filled the complete matrix D, we finally aim at finding the

sequence that adopts the given structure with the lowest possible

energy. For that purpose, we choose the smallest energy value of the

last row of D. It gives the mfe a sequence can have, when folding

into the target structure. To find the sequence that provides this

energy, we are going back through matrix D along the path of the

best predecessor assignments. For this reason, we store traceback

pointers during the computation of D. Finally, all free bases that are

not directly adjacent to a base pair and thus not giving any energy

value are chosen arbitrarily.

Using this dynamic programming algorithm, we obtain a

sequence that among all sequences adopts the target structure

with the lowest possible energy. There is no other sequence that

has lower energy when folding into this structure. Nevertheless, the

sequence is not guaranteed to fold into it since actually this

sequence can have even less energy when folding into another

structure. Therefore, the resulting sequence is processed further

in a second step.

Complexity. Filling matrices D and M, and generating the trace-

back are the things to do during the initialization. Since D has six

entries per row and at most n/2 rows, it consists of at most 3n values.

Hence, we have to check what time is needed per entry. For that

purpose, we differentiate between the three kinds of entries in D
depending on the corresponding base pair (A,B,C). During the

calculation of values corresponding to pairs having exactly one

predecessor (type A), the minima are taken over all assignments

of the predecessor and the adjacent free bases. Thus, at most 6 � 44

steps are needed. As already mentioned, straight forwardly, the

complexity for entries representing a closing pair of a ML (type

B) is exponentially high in the number of stems that form the loop

and the number of free bases adjacent to them. Since usually only

MLs with a low number of stems occur, even the naive solution is

usable in practice. Nevertheless, this complexity can be reduced by

using a separate dynamic programming matrix M for the evaluation

of MLs. By doing this, all closing pairs of all MLs can be analyzed

in at most linear time overall. Last but not least the complexity of

type C entries has to be considered. Here, the entry corresponds to a

closing pair of a HL. Thus, only in case of a tetra-loop, the assign-

ment of all bases in the loop is important. For larger HLs, only the

assignment of the free bases adjacent to the closing pair are taken

into account. Therefore, the calculation of fields of type C needs at

most 44 steps.

Thus, each entry in D of type A or C can be calculated in

constant time and hence, evaluating all of them needs O(n) time.
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Furthermore, the calculation of all entries for pairs closing a ML

can also be done in O(n) time. Consequently, the whole matrix D
can be evaluated in linear time as well as the generation of the

traceback.

2.2 The local search step

After generating the start sequence, local optima are found by

mutating iteratively. For that purpose, neighbored sequences are

tested to check whether they provide a better value according to

an objective function. In INFO-RNA, we use the objective function

of minimizing the structure distance between the mfe structure of

the designed sequence and the target structure (mfe-mode) as used

in RNAinverse. This structure distance is defined as the number of

differentially paired or unpaired bases. Furthermore, we also optim-

ize small substructures first and proceed them to larger ones as done

by Hofacker et al. (1994), since running the optimization directly on

the full-length sequence would take too much time. The idea is that

a substructure, which is optimal for a subsequence, will appear in

the full sequence with enhanced probability even if this is not

assured.

In INFO-RNA, the local search is a stochastic local search (SLS)

(Hoss, 1998). This strategy has a lot in common with the widely used

search strategy of adaptive walk (AW), which moves to the first

found neighbor of the sequence that has an mfe structure with a

lower structure distance to the target structure than the current

one. But whereas the AW often gets stuck in local optima (sequences

which are better than all their neighbors but not necessarily the

globally best solution), the stochastic local search is allowed to

move to worse neighbors with a fixed probability pw to overcome

local optima. A tested neighbor is retained if its mfe structure has a

smaller distance to the target structure than the current one. Other-

wise, it is kept with probability pw. We set pw to 0.1 since this has

turned out to be the best value during our experiments. The search

terminates after a fixed number of steps. We set this number to 10

times the length of the structure. As moves to worse neighbors are

allowed, the last sequence is not necessarily the best one found. Thus,

the best found sequence is stored during the search and finally given.

During the search, not all sequence neighbors are candidates for

mutation. Only positions that do not pair correctly and positions

adjacent to those are tested. While in RNAinverse these neighbors

are tested in arbitrary order, during INFO-RNA, the order can be

chosen depending on a look-ahead of one selection step. Thereto,

the energy of each candidate sequence folded into the target struc-

ture is calculated. Then, the resulting energy difference to the

current one is evaluated. Let e(S, T) be the energy of sequence

S folded into the wanted structure T. Let S0 be a neighbor of S
and e(S0, T) the energy of S0 when folding into T. Then, the energy

difference is given by e(S, T) � e(S0, T). The higher the difference is,

the earlier the neighbor is examined according to the actual

optimization criterion. Using INFO-RNA, the order of testing the

neighbors can be chosen depending on energy as described above

(NE-mode) or arbitrarily (NA-mode) as done in RNAinverse. This

pre-selection step can be done easily, since all structural elements

contribute additively to the energy of the whole structure and thus,

only structural elements that are closed by the mutated pair or

include a mutated free base have to be re-evaluated. After fixing

the test order of the neighbors, they are evaluated concerning the

actual optimization criterion of minimizing the structure distance of

the mfe structure of the sequence and the target structure

(mfe-mode). To evaluate the folding energy, we use functions

from the Vienna RNA Package.

3 RESULTS

We evaluated the performance of INFO-RNA and compared it with

two other inverse RNA folding algorithms: RNAinverse from the

Vienna RNA Package (Hofacker et al., 1994) and RNA-SSD

(Andronescu et al., 2004). For that purpose, we chose several arti-

ficially generated RNA structures as well as some test sets contain-

ing real biological data. To make our results comparable, we chose

some biological test sets similar to that of Andronescu et al. (2004).

We used an executable of RNA-SSD, kindly provided by the

authors, and repeated the tests they had done, since first, RNA-SSD

was improved since its publication and second, we used faster PCs.

When using RNAinverse, maximizing the probability of

folding into the target structure (p-mode) often gives better results

than minimizing the structure distance between the mfe structure

of the designed sequence and the target structure (mfe-mode) but

the former works only for short structures up to a size of �200

since it operates on the whole structure. Thus, we always chose

the mode of RNAinverse that gives a result at all and if both

modes gained a solution, the better one was chosen. We call a

run successful, if the mfe structure of the final sequence is the

target one. Otherwise, it is denoted as unsuccessful.

All computations were done on PCs with 3 GHz Intel Pentium

4 processors and 2 GB RAM. Since all tested algorithms are non-

deterministic, we performed multiple runs on each problem

instance. In the following, all given runtimes ET denote expected

times required for finding a solution. They are given in CPU seconds

and calculated in the same way as done by Andronescu et al. (2004)

by ES + (1/fs � 1) EU, where ES and EU represent the average time

needed for successful and unsuccessful runs, respectively. The

fraction of successful runs is given by fS. A problem arises if fS
is 0. Then the expected time ET is set to infinity, which means that a

solution will never be found. In the following tables, we indicate

these cases by a –. During our tests, INFO-RNA will be used in mfe-

mode in combination with the NE-mode, if nothing further is men-

tioned.

3.1 Artificial test sets

Our first three test sets consist of artifically generated structures. For

that purpose, we generated RNA structures with some user-given

structural features, e.g. the overall size of the structure, loop sizes

and the length of the stems. For all sizes, minimal and maximal

values are fixed. A structure generator chooses values among valid

sizes as well as structural elements at random. The values we used

are summarized in the Supplementary Data.

We generated two test sets of 300 structures each. Test set Ia

consists of short structures up to a length of 200, while test set Ib

includes larger structures of sizes between 300 and 700. Even if test

sets Ia and Ib also include multiloop structures, we additionally

analyzed two small but complex ones in test set Ic. Structure

Ic-1 turned out to be hard to design because it includes a stem

just consisting of only 1 bp. None of the tested programs managed

it to design a sequence folding into this structure. Structure Ic-2

differs from Ic-1 just in the challenging stem, which consists of 3 bp

here (Fig. 3). Our results show that this slight difference made the

structure much easier to design.
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Using the artificial test sets Ia–c, we analyzed success and speed

of INFO-RNA, RNA-SSD and RNAinverse. Please note that due to

the large sizes of structures included in test set Ib the p-mode of

RNAinverse was not applied to this test set. For test set Ia, we

examined each structure 100 times with each algorithm and tested

for how many structures the respective algorithm succeeded in all

100 cases. The same was done for test set Ib, but here, each structure

was examined only 10 times. Table 3 summarizes the results. INFO-

RNA was always successful for all 300 structures of Ia as well as Ib.

For small structures (Ia), RNA-SSD and RNAinverse performed

only a little worse. RNA-SSD needed twice as long and RNAinverse

400 times as long as INFO-RNA did. For test set Ib, which includes

larger structures, RNA-SSD also performed only a little worse than

INFO-RNA but was much slower.

The structures of Ic were examined 100 times each. The resulting

succession rates and expected times are given in Table 4. Since for

structure Ic-1 all algorithms failed in all cases, no times are given.

But all three algorithms designed sequences whose mfe structures

are in a small structure distance to the target one. In Table 4, the

succession rates in parentheses give the fraction of sequences whose

mfe structures have a distance of two to the target one. For structure

Ic-2, the fraction of successful runs differs among all three

algorithms. While INFO-RNA failed in only one run (out of

100), RNA-SSD did not succeed in 38 cases. Furthermore, the latter

is >3000 times slower than INFO-RNA. It can be summarized that,

for test set Ic, INFO-RNA has a better succession rate than the other

two algorithms and is much faster.

3.2 Biological test sets

Computationally predicted structures for known RNA sequences.
In order to test the performance for real biological data, we used

two further test sets. These ones consist of structures that are

computationally predicted for known RNA sequences. All struc-

tures were predicted by RNAfold from the Vienna RNA Package

(Hofacker et al., 1994), the same procedure that is used to evaluate

the foldings during INFO-RNA, RNA-SSD and RNAinverse. Thus,

it is guaranteed that at least one sequence exists, whose mfe struc-

ture is the analyzed one.

The first test set of computationally predicted structures consists

of 24 structures of 260–1475 bases also analyzed by Andronescu

et al. (2004). They created a set of ribosomal RNA sequences

obtained from the Ribosomal Database Project (Cole et al.,
2003) and predicted their mfe structures. We refer to this as test

set IIa. Since Andronescu et al. have already shown that RNA-SSD

performs better than RNAinverse when analyzing structures of IIa,

we restricted our tests to a comparison of INFO-RNA and RNA-

SSD. For each structure, we performed between 10 and 50 runs per

algorithm similar to Andronescu et al. (2004). As both algorithms

are successful here, we turned our attention to the comparison of

speed. For that purpose, we applied INFO-RNA in a slightly

different way. If it did not succeed within 300 CPU seconds,

INFO-RNA was aborted and, thus, terminated unsuccessfully.

Afterwards, the neighbor-testing-mode is changed for the next

runs (from the energy-dependent NE-mode to the arbitrary

NA-mode or back), as it seems that the current strategy is not

successful for the given structure. The new mode is retained till

Ic-1 Ic-2

Fig. 3. Special ML structures of Ic differing in the part given in gray.

Table 3. Results for test sets Ia and Ib

Name INFO-RNA RNA-SSD RNAinverse

Ia (CSR) 300/300 298/300 294/300

Ia (�EET) 0.1 0.2 41.9

Ib (CSR) 300/300 294/300 1/300

Ib (�EET) 9.1 46.8 –

Results for INFO-RNA, RNA-SSD and RNAinverse concerning success and speed on

artificial test sets Ia and Ib. The complete succession rate (CSR) gives the fraction of

structures for which the respective algorithm found a solution in all runs done for each

structure. �EET represents the average expected time needed to compute a solution (given in

CPU seconds).

Table 4. Results for test set Ic

Name INFO-RNA RNA-SSD RNAinverse

Ic-1(SR) 0/100 0/100 0/100

Ic-1(ET) — — —

Ic-1(2)(SR) (100/100) (87/100) (79/100)

Ic-1(2)(ET) (6.1) (2484) (9.4)

Ic-2(SR) 99/100 62/100 44/100

Ic-2(ET) 0.6 1996.8 21.34

Results for INFO-RNA, RNA-SSD and RNAinverse concerning performance and speed

on the artificial structures of test set Ic. The succession rate (SR) gives the fraction of

structures for which the respective algorithm found a correct solution. ET represents the

expected time needed to compute a solution (given in CPU seconds). The values in

parentheses in lines Ic-1(2) give the succession rates and the expected times to compute a

solution within a distance of two from Ic-1.

Table 5. Results for test set IIb.

Subset of IIb INFO-RNA RNA-SSD RNAinv.

220–400 (ASR) 100% 93% 2.0%

220–400 (�EET) 2.4 226.8 —

400–900 (ASR) 100% 93% 0.3%

400–900 (�EET) 93.3 285.3 —

900–1975(ASR) 100% 81% 0.0%

900–1975(�EET) 1447.4 3043.9 —

Results for subsets (depending on the structure size) of test set IIb obtained by running

INFO-RNA and RNA-SSD 25 times each and RNAinverse ten times for each structure.

The time �EET is the average expected time needed to compute a solution for a structure of

the respective subset. The average succession rate (ASR) gives the average fraction of

successful runs.
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it fails. Thus, we always applied the mode with less unsuccessful

terminations. If both modes led to the same number of failures,

NE-mode was chosen. This strategy of testing is obvious, since

users of the program will change the parameters as well, if the

algorithm has failed with their current parameter values. Since

RNA-SSD does not include these modes, the strategy was only

applied in case of INFO-RNA. Generally, it can be said that

INFO-RNA performs much faster than RNA-SSD did in

(Andronescu et al., 2004). But we repeated all tests with a newer

version of RNA-SSD on our PCs. For test set IIa, the results are

comparable for INFO-RNA and RNA-SSD. However, INFO-RNA

failed for only one structure, while RNA-SSD did for three. Detailed

results can in be seen in Supplementary Data.

The second test set of computationally predicted structures

consists of 308 structures of 220–1975 bases. They are the mfe

structures of all annotated eukaryotic rRNA gene sequences from

release 9.27 of the Ribosomal Database Project (RDP-II) (Cole

et al., 2005). We refer to this as test set IIb. The whole set of

eukaryotic sequences from RDP-II was chosen since the perform-

ance of INFO-RNA is to be tested on more than some exemplary

sequences chosen in (Andronescu et al., 2004). For INFO-RNA and

RNA-SSD, we performed 25 runs for each structure, and because of

the longer runtime only 10 times for RNAinverse. Furthermore, runs

of RNAinverse were terminated unsuccessfully if no solution was

found after 3600 CPU seconds. To determine the success of the

algorithms for classes of structures in a certain size range, we

divided test set IIb into three subsets according to the size of the

structures. The results are shown in Table 5. INFO-RNA performs

best and fastest for all three subsets of IIb and all runs for each

structure were successful.

Structures from the biological literature. Finally, we analyzed the

performance of INFO-RNA and RNA-SSD on a test set containing

structures published in the literature. This set is chosen identical to

test set C of Andronescu et al. (2004). We refer to it as test set III.

Pseudoknots were removed by disregarding pairs in pseudoknots.

Results are given in Table 6. We did not examine the performance

of RNAinverse since Andronescu et al. have already done this.

To analyze success and speed of INFO-RNA and RNA-SSD, we

examined 100 runs per structure for each algorithm. The succession

rates and expected computing times demonstrate the excellent

performance of INFO-RNA. In all but one case, it was faster

than RNA-SSD. Furthermore, it succeeded for more structures

than RNA-SSD and unsuccessful runs terminated with better

approximate solutions.

3.3 Stability of the designed sequences

Another important item for the validation of INFO-RNA is the

question of the stability of the designed sequences. We analyzed

the stability of some arbitrarily chosen structures of test sets IIa+b.

The selected biological sequences underlying test set IIa were cho-

sen according to Andronescu et al. to assure comparability. For

each, we compared the stability of its mfe fold to that of the

designed sequences when folding into the predicted structure.

For that purpose, we used the partion function option of

RNAfold of the Vienna RNA Package (Hofacker et al., 1994).

For each designed sequence S as well as for the biological

sequences Sb, we computed the probability P(T j S) of the final

sequence folding into the target structure T. The designed

sequences were sorted according to their stability. The best, the

median and the worst ones as well as the results for the

biological sequences are given in Table 7. Sequences designed

by INFO-RNA are much more stable than the biological ones

and the sequences obtained by Andronescu et al. (2004).

In a second step, we analyzed arbitrarily chosen sequences under-

lying test set IIb (a small, a medium and a long one) and evaluated

the stability of their mfe folds to that of the designed sequences

when folding into the predicted structure. Results are also given in

Table 7. Again, sequences designed by INFO-RNA have a much

Table 6. Results for test set III.

Name Size INFO-RNA RNA-SSD

SR ET SR ET

1 Minimal catalytic domains of the hairpin ribozyme satellite RNA of

the tobacco ringspot virus (Figure 1a) (Fedor, 2000)

65 100/100 0.03 100/100 0.04

2 U3 snoRNA 50-domain from Chlamydomonas reinhardtii, in vivo probing

(Figure 6B) (Antal et al., 2000)

79 100/100 0.01 100/100 0.02

3 H. marismortui 5S rRNA (Figure 2) (Szymanski et al., 2002) 122 (100/100)(2) (45.2) (100/100)(2) (2163.9)

4 VS Ribozyme from Neurospora mitochondria (Figure 1A)

(Lafontaine et al., 2001)

167 100/100 0.1 100/100 0.3

5 R180 ribozyme (Figure 2B) (Sun et al., 2002) 180 37/100 194.0 58/100 2267.8

(63/100)(2) (20/100)(2)

6 XS1 ribozyme, Bacillus subtilis P RNA-based ribozyme (Figure 2A)

(Mobley and Pan, 1999)�
314 100/100 19.0 100/100 22.4

7 Homo Sapiens RNase P RNA (Figure 4) (Pitulle et al., 1998) � 340 100/100 66.8 94/100 491.1

8 S20 mRNA from E.coli (Figure 2) (Mackie, 1992) 372 100/100 110.8 87/100 728.2

9 Halobacterium cutirubrum RNAse P RNA (Figure 2) (Haas et al., 1990)� 376 (100/100)(4) (5026.8) (1/100)(6) (220530.0)

10 Group II intron ribozyme D135 from ai5g (Figure 5) (Swisher et al., 2001) 583 100/100 7.9 100/100 3.9

Originally pseudoknotted structures are marked with an asterisk (�). Here, pseudoknots are removed by disregarding 8 bp in each case. All other are pseudoknot-free. The succession rate

(SR) gives the fraction of runs in which the respective algorithm found a correct solution. ET represents the expected time needed to compute a solution. For structures were no correct

solution was found, SR andET are given in parentheses. They reflect the fraction in which the best approximate solution was found and the time needed for it, respectively. The distance to

the target structure is given additionally.
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higher stability than the biological ones. Furthermore, Table 7

shows the excellent quality of all results of test set IIb. In all

cases, the best and even the median designed sequences have a

higher stability than the biological ones. For most structures, the

best designed sequence was >1000 times more stable than the

biological one.

All these results show that in INFO-RNA, it is not necessary to

optimize the stability additionally. It suffices to minimize the struc-

ture distance of the mfe structures to the target one to design highly

stable structures.

4 DISCUSSION

We have introduced a very fast and successful new approach of the

inverse RNA folding problem, called INFO-RNA. In general, it

outperforms existing tools. It consists of two major steps: a new

initialization method and a following advanced stochastic local

search that uses an effective neighbor selection method. The former

is implemented by a dynamic programming approach, which finds a

sequence that among all sequences adopts the target structure with

the lowest possible energy. It is done in linear time depending on the

structure size. We have shown that this initial sequence is an

excellent starting point for the subsequent local search, which is

short but powerful. Only few local search steps and less time are

needed to generate a good sequence that folds into the target

structure. This is due to an energy-based pre-ordering of the set

of neighbors which can be calculated much faster than the actual

optimization criterion of minimizing the structure distance. Since all

computational approaches for (inverse) RNA folding are based on a

thermodynamic model, the sequences designed by INFO-RNA are

not guaranteed to fold into the target structure in a cell.

To test the performance of INFO-RNA, we analyzed several test

sets of artifically generated as well as biological RNA structures and

compared the results with RNA-SSD and RNAinverse. In general,

INFO-RNA outperforms RNA-SSD and it performs substantially

better than RNAinverse. However, it should be noted that RNAin-

verse was also designed to produce random samples from the

sequence space. Obviously, INFO-RNA cannot be used to produce

samples since the initializing sequence is rather fixed apart from a

random variation in unbound bases located in loop regions. We

performed some initial experiments to investigate the performance

of INFO-RNA using a random initializing sequence. The improved

stochastic local search alone is still able to produce comparable

results, although INFO-RNA looses much of its speed. Thus, for

the sampling task INFO-RNA should be used without the initial-

ization method.

Since G–C base pairs are energetically most favorable, the ini-

tializiation sequences of INFO-RNA have a high GC content. This

GC content is subsequently reduced by the local search but the final

sequences are still enriched in G’s and C’s which might explain the

high stability of the designed sequences. In future, it is desirable to

introduce sequence constraints in INFO-RNA to reduce the GC

content.
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