Resource

The Planemo toolkit for developing, deploying,
and executing scientific data analyses in Galaxy

and beyond

Simon Bray,"” John Chilton,*” Matthias Bernt,> Nicola Soranzo,*
Marius van den Beek,? Bérénice Batut,’ Helena Rasche,® Martin Cech,?
Peter).A. Cock,® Bjérn Griining,' and Anton Nekrutenko?

' Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany;
2Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
3Department of Computational Biology, Helmholtz Centre for Environmental Research GmbH-UFZ, 04318 Leipzig, Germany;
*Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom, *Clinical Bioinformatics Group, Department of
Pathology, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands; Academie voor de Technologie van Gezondheid en
Milieu, Avans Hogeschool, 4818 AJ Breda, The Netherlands; SJames Hutton Institute, Invergowrie, Dundee DD2 5DA, United

Kingdom

There are thousands of well-maintained high-quality open-source software utilities for all aspects of scientific data analysis.
For more than a decade, the Galaxy Project has been providing computational infrastructure and a unified user interface for
these tools to make them accessible to a wide range of researchers. To streamline the process of integrating tools and con-
structing workflows as much as possible, we have developed Planemo, a software development kit for tool and workflow
developers and Galaxy power users. Here we outline Planemo’s implementation and describe its broad range of function-
ality for designing, testing, and executing Galaxy tools, workflows, and training material. In addition, we discuss the philos-
ophy underlying Galaxy tool and workflow development, and how Planemo encourages the use of development best
practices, such as test-driven development, by its users, including those who are not professional software developers.

[Supplemental material is available for this article.]

The Galaxy project provides web browser access to command-line
scientific software, together with the necessary compute resources,
in a convenient, shareable, and reproducible way to tens of thou-
sands of researchers around the world (Afgan et al. 2018). More
than 8000 tools are available for installation onto any Galaxy
server; users can run these individually, connect multiple tools to-
gether to form workflows, and finally perform complex analyses,
without the need to access acommand line. Although Galaxy itself
does not require any significant computational skills to use, the de-
velopment and maintenance of new tools and workflows benefit
from sophisticated infrastructure with both human and automat-
ed components. The process of integrating software into Galaxy re-
quires knowledge of both the command-line interface of the
underlying software and the schema used by Galaxy to define tools
in order to be able to write a “Galaxy tool wrapper,” mapping data
set inputs, parameter inputs, and outputs between them. Once
written, wrappers, as well as other Galaxy artifacts such as work-
flows or training material (Batut et al. 2018), are amenable to rou-
tine processes such as testing, deployment, and regular updates, all
of which can be automated using continuous integration (CI) sys-
tems. Here we present Planemo, a versatile library and command-
line application that is used extensively as a software development

"These authors contributed equally to this work.

Corresponding author: aun1@psu.edu

Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.276963.122.
Freely available online through the Genome Research Open Access option.

kit by Galaxy or Common Workflow Language (CWL) (Crusoe
et al. 2022) tool, workflow, and training material developers, as
well as a toolkit for Galaxy “power users.” Planemo provides a sim-
ple but powerful command-line interface for tool and workflow
development and deployment, which encourages and enforces
good practices for software development. In addition, it enables
automated deployment of developed tools and automatic updates
of the software dependencies used internally by each Galaxy tool.
The testing functionality included in Planemo has been success-
fully integrated into CI workflows of the major tool and workflow
repositories, which helps to ensure the creation of high-quality
tool wrappers and workflows.

Planemo is structured into numerous subcommands, which
provide a broad range of functionality. Here we discuss a selection
of the most important functionalities, grouped around the follow-
ing themes: (1) development of Galaxy tools, workflows, tutorials,
and CWL tools; (2) deployment of the developed tools and work-
flows; (3) automated tool and workflow dependency updates; and
(4) tool and workflow execution. Table 1 summarizes this func-
tionality, and Figure 1 provides a graphical overview. In addition
to its use as a command-line application, Planemo can also be
used as a library by other projects. An example is the Planemo
Training Development Kit project (PTDK; https://github.com/
galaxyproject/ptdk), which provides Planemo’s functionality for
creating training material for Galaxy workflows via a web server.

©2023 Brayetal. Thisarticle, published in Genome Research, is available under
a Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

33:261-268 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/23; www.genome.org

Genome Research 261
www.genome.org

https://github.com/galaxyproject/ptdk
https://github.com/galaxyproject/ptdk
https://github.com/galaxyproject/ptdk
https://github.com/galaxyproject/ptdk
https://github.com/galaxyproject/ptdk
mailto:aun1@psu.edu
https://www.genome.org/cgi/doi/10.1101/gr.276963.122
https://www.genome.org/cgi/doi/10.1101/gr.276963.122
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml

Bray et al.

Table 1. Overview of Planemo functionality and subcommands

Object — Function | Galaxy tool Galaxy workflow

Initial template creation
Development

tool_init

test, lint, serve test, lint, serve

Deployment test, ci_*, shed_* test, ci_*, shed_*
Execution run run
Automated updates autoupdate autoupdate

workflow_test_init

CWL Galaxy training material
tool_init training_init, training_generate_from_wf
test, lint
—_ GTN
run GTN

Columns represent artifacts that can be created or manipulated with Planemo; rows represent different actions that can be performed on them. ltalics
represent actions that are performed without using Planemo: Trainings are deployed using Jekyll and executed by users following the training material

in the graphical interface.

Although most of these tasks described above can already be
performed individually without using Planemo, it provides a con-
venient single tool that encourages the best practices agreed on by
the Galaxy community. As a result, Planemo is an essential part of
the Galaxy ecosystem and, in fact, is already extensively used, hav-
ing been downloaded more than 70,000 times from both
Anaconda and PyPI.

Results

Galaxy tool development

A Galaxy tool is defined by a wrapper for an underlying software
(or code) that maps its data set inputs, parameter inputs, and out-
puts to a command-line script executed by Galaxy. When running
a tool in the Galaxy interface, a user selects his or her preferred
choices for the exposed data set and parameter inputs. The

Developer's local machine ‘

Galaxy server then constructs the command, schedules it as a
job onto appropriate compute resources, collects the results once
the job has completed, and returns them to the user.

Writing Galaxy tool wrappers requires a thorough knowledge
of the underlying software and also an understanding of the
Galaxy tool schema that defines how Galaxy wrappers are written.
The tool schema is defined in a simple manner in order to make the
process of wrapping software as accessible as possible (https://docs
.galaxyproject.org/en/latest/dev/schema.html). Planemo provides
several helpful features that assist tool developers in creating high-
quality wrappers that meet community-defined standards, such as
those developed by the Intergalactic Utilities Commission (IUC;
https://galaxy-iuc-standards.readthedocs.io/). These features are im-
plemented as subcommands, for example, “planemo test.”
Planemo also helps to enforce software development best practices
such as writing tests for all tools and linting the wrapper definitions

GitHub repository

IUC/ IWC O

Manual
% creation

tool_init

PR

© Manual
L X1 i
I—‘ ,

> / Tool
% d:?inition

shed_
update
> Workflow

auto
update
test
remotely
é
..tg Workflow
B %

ptdk webserver

Public Galaxy Server

[1]] Training
L=l skeleton

Figure 1.

< .'I:g Workflow

Dockstore / WorkflowHub

ToolShed

~— N

Multi-container repository

|
llllll,l Container o Sy

Overview of the use of Planemo for development, deployment, and execution of Galaxy tools, workflows, and training materials. Red indicates

manual work; blue, Planemo commands; yellow, automated steps; and green, created artifacts.

262 Genome Research
www.genome.org

https://docs.galaxyproject.org/en/latest/dev/schema.html
https://docs.galaxyproject.org/en/latest/dev/schema.html
https://docs.galaxyproject.org/en/latest/dev/schema.html
https://docs.galaxyproject.org/en/latest/dev/schema.html
https://docs.galaxyproject.org/en/latest/dev/schema.html
https://docs.galaxyproject.org/en/latest/dev/schema.html
https://galaxy-iuc-standards.readthedocs.io
https://galaxy-iuc-standards.readthedocs.io
https://galaxy-iuc-standards.readthedocs.io
https://galaxy-iuc-standards.readthedocs.io
https://galaxy-iuc-standards.readthedocs.io

Planemo for tool development

to avoid bugs and ensure a coherent and readable style. Further sup-
port for tool development standards is provided by the Galaxy
Language Server (https://github.com/galaxyproject/galaxy-
language-server), an implementation of the Language Server
Protocol and a Visual Studio Code extension for Galaxy tools, which
can be used side-by-side with Planemo.

A common starting point for tool development is the
“tool_init” subcommand. To use this, the developer provides
a variety of options, including an example command line, tool
name, inputs, outputs, and software requirements, from
which Planemo generates a skeleton tool wrapper. Most of the
“tool_init” parameters are optional, but the more that are pro-
vided, the more detailed the initial skeleton will be.

Developers can then inspect and edit the generated file, add-
ing more parameters and increasing the complexity of the wrapper
logic by incorporating conditionals and repeat elements if neces-
sary. As they continue to edit, they can use the “1int” subcom-
mand to validate the wrapper under development. Planemo’s
linting forces wrappers to match Galaxy’s tool schema, ensuring
stylistic consistency and preventing some errors such as mis-
matched file formats; it also insists that the developer write a
“help” section documenting the tool being wrapped. Crucially,
Planemo recommends that wrappers define at least one test case
to ensure the development of high-quality, portable, reliable,
and functional tools, and this recommendation is strictly enforced
by the IUC’s and other tool repositories. Once tests are defined, to-
gether with an initial tool definition, the developer can start to run
the tests using the “test” subcommand. This launches a transient
Galaxy server on the developer’s computer; installs the Galaxy tool
under development, together with all software dependencies; and
executes the tests specified within the tool wrapper. The results of
the tests are then returned to the developer, by default using a re-
port defined using JSON and HTML, although other format types
are also supported (xUnit, jUnit, Markdown, and Allure).

Planemo encourages the use of test-driven development
(Siddiqui 2021), a software development principle that states test
cases should be written before a new feature is developed. Test-
driven development is an industry-wide best practice. Defining ex-
tensive test cases covering the required features at the start of the
process provides a focus for development and results in more ro-
bust and better documented code that contains fewer bugs. The
tool developer is forced to adopt the perspective of the Galaxy
user from the start to consider possible-use cases of the software
for which tests need to be written. Initial test failures lead to itera-
tive refinement of the wrapper, until a fully-functional Galaxy
tool, which passes all tests, is produced.

Once tests are passing, the developer should optimize the tool
interface that is presented to the user of the tool. To facilitate this,
Planemo provides the “serve” subcommand, which launches a
Galaxy server with the new tool installed, allowing the developer
to inspect the rendering of the wrapper in the graphical interface
and to perform manual testing. The developer should also improve
the documentation of the tool by annotating each of the tool pa-
rameters, as well as writing a help section to explain the tool’s aim
and usage, which appears beneath the tool parameters in the
graphical interface.

CWL tool development

In addition to Galaxy tools, Planemo also acts as a software devel-
opment kit for CWL tools. CWL is a tool and workflow specifica-
tion that is independent of a particular workflow manager; it

aims to increase the portability of scientific workflows by allowing
workflows written in CWL to be executed by any CWL-supporting
workflow manager. Thus, the tasks of workflow composition and
workflow execution can be decoupled from one another. The
same subcommands described already for Galaxy tool develop-
ment can also be used to develop CWL tools, including
“tool_init” and “test.” By appending the “--cwl” argument
to the “tool_init” subcommand, Planemo generates a template
for a CWL tool definition, rather than a Galaxy wrapper. The test
and lint commands then detect that the input file is a CWL wrap-
per and process it accordingly. Tools are tested by executing with
the CWL engine cwltool and comparing the result with test data
or specified assertions in the same way as for Galaxy tools. The
completed wrapper can be run using any CWL engine, such as
cwltool, Toil (Vivian et al. 2017), Arvados (https://arvados.org),
or Galaxy.

Galaxy workflow development

Workflows are created in Galaxy by connecting together multiple
tools (i.e., an output of one tool becomes an input for the follow-
ing one) in order to automate complex analyses. Unlike tools,
workflows can be defined and edited in Galaxy’s graphical work-
flow editor; often the starting point is an interactive analysis (a
Galaxy history) from which a workflow can be extracted automat-
ically. It is also possible to manually author workflows in the gxfor-
mat2 workflow language (https://github.com/galaxyproject/
gxformat2), and the user can switch between manually writing
workflows and editing in the graphical interface using the
“workflow_edit” subcommand, which spins up a Galaxy in-
stance with the workflow under development preinstalled for edit-
ing. Planemo additionally facilitates the creation of test cases by
providing the option of generating them automatically from a
pre-existing workflow invocation.

Once a draft version of the workflow exists, it should be
iteratively improved in the same way as for tools, using the same
lint, test, and serve subcommands already introduced. The
“workflow_lint” subcommand checks workflows for errors
and conformance with best practices—a command-line inter-
face-mirroring functionality that is also provided by the Galaxy
graphical workflow editor. For example, workflows that are miss-
ing test cases, labeled outputs, or essential metadata fail linting.
Running the “test” subcommand launches a local Galaxy in-
stance, installs the tools used in the workflow, uploads the work-
flow, and executes it on the provided input test data. In the
same way as for tool testing, the workflow outputs are downloaded
and compared with the test data, resulting in either a pass or fail
status. In some cases, it can be convenient to run testing on an
existing public server, such as https://usegalaxy.org, https
://usegalaxy.eu, or https://usegalaxy.org.au; this is also supported
by Planemo. Running the “serve” subcommand provides a local
Galaxy server with the workflow and the needed tools preinstalled,
which can be used for workflow development and fine-tuning.

The philosophy of Galaxy tool and workflow development

After the previous discussion of the process of tool and workflow
development, the question arises about how software complexity
should be divided between the tool and the workflow level.
Should most of the effort go into developing workflows, keeping
tools as simple as possible, and flexibly rewrapping the underlying
software depending on the demands of a particular workflow,
or should developers invest time creating complex and

Genome Research 263
www.genome.org

https://github.com/galaxyproject/galaxy-language-server
https://github.com/galaxyproject/galaxy-language-server
https://github.com/galaxyproject/galaxy-language-server
https://github.com/galaxyproject/galaxy-language-server
https://github.com/galaxyproject/galaxy-language-server
https://arvados.org
https://arvados.org
https://arvados.org
https://arvados.org
https://github.com/galaxyproject/gxformat2
https://github.com/galaxyproject/gxformat2
https://github.com/galaxyproject/gxformat2
https://github.com/galaxyproject/gxformat2
https://github.com/galaxyproject/gxformat2
https://usegalaxy.org
https://usegalaxy.org
https://usegalaxy.org
https://usegalaxy.org
https://usegalaxy.eu
https://usegalaxy.eu
https://usegalaxy.eu
https://usegalaxy.eu
https://usegalaxy.org.au
https://usegalaxy.org.au
https://usegalaxy.org.au
https://usegalaxy.org.au
https://usegalaxy.org.au

Bray et al.

multifunctional tools that can be reused without modification in
multiple workflows?

The way in which scientific workflow management systems
resolve this dilemma differs. Nextflow (Di Tommaso et al. 2017)
and Snakemake (Molder et al. 2021), two other widely used scien-
tific workflow managers, take the first approach, whereas Galaxy
leans heavily toward the second of these two options, as does
CWL, although the following discussion will focus on Galaxy.
Both approaches are valid, and there have been several recent re-
views comparing the features and advantages provided by differ-
ent workflow managers (Wratten et al. 2021). Galaxy encourages
the creation of modular tools that are usable in isolation, so they
can be used interchangeably in multiple different workflows.
Tools generally encapsulate most of the complexity of the under-
lying software, allowing workflows to be simply constructed in
a graphical interface by connecting the component tools.
Workflows can thus be thought of as complex structures built
from the same fundamental building blocks, which can be con-
structed without knowledge of the internal functionality of the in-
dividual tools. This has several advantages with regard to the user
experience: Building workflows becomes a far less daunting task,
and tools can also be used individually in the graphical interface,
which makes Galaxy accessible to new users and enables its use
as a teaching environment for scientific analysis.

Another advantage of this approach is the “separation of con-
cerns,” a design principle in computer science. Different groups of
scientists can develop and apply specialized and complementary
areas of knowledge: The tool developer can concentrate on describ-
ing and developing the Galaxy tool, without considering any
downstream workflows that will be created later. On the other
hand, the workflow developer can construct complex, high-level
pipelines, without the detailed understanding of the component
tools and the command-line possessed by the tool developer.
This has the dual advantage that workflows can be treated on a
more abstract level and that the workflow creation process is
made accessible for a far greater number of users.

The separation of concerns between tools and workflows also
benefits security. Executing untrusted software on a compute clus-
ter is highly undesirable; thus, workflows need to be assessed for
security risks before execution. For many workflow management
systems, this assessment must be repeated for each workflow. In
contrast, as the Galaxy tool review process involves checking tools
for security issues before merging, a system administrator can
deploy tools developed by the IUC or similar high-trust communi-
ties with confidence. The question of workflow security is thus
made redundant: If the component tools are trusted, a workflow
based on those tools can likewise be trusted.

These advantages must be balanced against the time invest-
ment required from community members to build up a diverse
set of tools to allow the construction of scientifically interesting
workflows. Nonetheless, the Galaxy community, facilitated by
Planemo, has succeeded in developing such a toolset and making
it available to the scientific community.

Cl for community repositories

Galaxy has a large and vibrant community of tool and workflow
developers, creating Galaxy tools in a wide range of scientific
fields, ranging from genomics to proteomics, computational
chemistry, and climate science. As a result, a large number of
high-quality tools already exist and are actively maintained over
several GitHub repositories, centered around the main IUC repos-

itory; the IWC (for definition, see Methods) performs the equiva-
lent function of a repository for Galaxy workflows. Building
these communities has required many years of work by multiple
contributors; in order to streamline the process and ease the bur-
den on the tool developers, developing infrastructure to facilitate
human review and automate as much as possible is essential.
Planemo forms the core of this infrastructure.

Once a developer has completed the tool wrapper or workflow,
they can submit it to a community repository, usually hosted on
GitHub, for review. Alternatively, they may also deploy it themselves
(e.g., tothe ToolShed or WorkflowHub), but submission to a commu-
nity repository is encouraged to ensure the code is thoroughly re-
viewed and to publicize the new tool or workflow. Community
repositories are configured to run the linting and testing checks al-
ready described after submission, via a CI workflow. Planemo pro-
vides a couple of simple subcommands, “ci_find repos” and
“ci_find_tools,” to identify tools that have been added or modi-
fied. Both of these allow chunking of tools in order to parallelize the
testing process over multiple CI jobs. As part of the CI testing, linting
and testing of the tools are repeated, as well as linting of any Python
and R (R Core Team 2021) scripts added together with the new tool
wrappers. These steps ensure the submitted tools are of high quality,
enforce consistent standards on the code, and reduce the mainte-
nance burden for the entire community.

If all tests pass and the proposed new tool or workflow is ac-
cepted by the community, another CI job is initiated to deploy it
to the ToolShed. This makes use of Planemo’s “shed_update”
command, which uses the ToolShed credentials associated with
the repository to upload the newly created tool. Once it is available
on the ToolShed, it can easily be installed onto any Galaxy server.

The entire process, consisting of automated testing, human
review, and automated deployment, ensures the creation of
high-quality, trustworthy tools that can be safely installed and
used. It requires several more specialized steps, which go beyond
the simple Planemo subcommands that the developer runs on
his or her local machine. To package these CI workflows into a sin-
gle unit, a GitHub Action is provided (https://github.com/
galaxyproject/planemo-ci-action), which can be reused in other
tool repositories. New tool repositories with the same structure
as the IUC repository can be conveniently created from a template
repository created by the Galaxy community (https://github.com/
galaxyproject/galaxy-tool-repository-template).

Automation of tool and workflow updates

Another feature offered by Planemo is automatic updates of
Galaxy tool and workflow software dependencies, using the
“autoupdate” subcommand. In combination with separate
autoupdate features already developed by the Bioconda and
conda-forge (https://doi.org/10.5281/zenodo.4774217) commu-
nities, this forms a sequence of semiautomated software update
procedures, which are triggered by an official release of new source
code. After this new release appears, this chain ensures that new
Conda packages, new Docker and Singularity containers, updated
Galaxy tools, and, finally, updated Galaxy workflows are generated
(Fig. 2). At each step, a CI job detects the artifact published in the
previous step and initiates the process of updating a dependent ar-
tifact, generally by means of a GitHub pull request (PR).

The CI pipelines developed by Bioconda and conda-forge
monitor the Conda recipes they maintain, regularly checking the
links provided in the recipes for new releases. When the developers
of an upstream software package release a new version, the CI

264 Genome Research
www.genome.org

https://github.com/galaxyproject/planemo-ci-action
https://github.com/galaxyproject/planemo-ci-action
https://github.com/galaxyproject/planemo-ci-action
https://github.com/galaxyproject/planemo-ci-action
https://github.com/galaxyproject/planemo-ci-action
https://github.com/galaxyproject/galaxy-tool-repository-template
https://github.com/galaxyproject/galaxy-tool-repository-template
https://github.com/galaxyproject/galaxy-tool-repository-template
https://github.com/galaxyproject/galaxy-tool-repository-template
https://github.com/galaxyproject/galaxy-tool-repository-template
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217

Planemo for tool development

BIOCONDA
Source o Tl K3 BioConda LoAIGIEY
Seds) upd © s package T
release [LERLECENYAY i update

Qcreate

PLAN=MO

review

containers

Galaxy ° 3 install

ToolShed [

= Qupdate

Galaxy
server(s)

PLAN=MO|Q update 3 installTC update

PLAN=MO
@ watch o
Qupdate ri:w

y
workflow(s)

PLAN=MO|®create

Docker containers
container O create hosted on CVMFS

Figure 2. Automation pipeline for Bioconda packages, BioContainers, Galaxy tools, and workflows.

creates a PR to update the package recipe. Once the PR is reviewed
and merged, newly built packages are uploaded to the Anaconda
repository.

In parallel, a bot running the “autoupdate” subcommand
monitors the Galaxy tool wrappers maintained by the IUC, as
well as a few other smaller communities, checking the dependen-
cies defined in the tool wrapper. Once an updated Bioconda or
conda-forge package is published in the step above, the Planemo
autoupdate bot detects this and updates the dependencies section
of the Galaxy tool accordingly. A PR is then submitted to the
GitHub repository, to be reviewed and manually updated if neces-
sary, before it is merged and deployed as described in the CI for
Community Repositories section.

Galaxy tools can specify multiple dependencies. If these de-
pendencies are installed via Conda, the packages can be simply in-
stalled into a single environment, but if dependency installation is
achieved using containers, a new container must be built for each
required combination of dependencies. This is achieved by the
“mulled build” infrastructure; a CI job triggers the building of a
Docker container for each new combination of packages on the
publication of new Galaxy tool versions. Another CI job is respon-
sible for generating singularity containers from the new Docker
containers, which are made available by the BioContainers and
Galaxy communities via a CernVM file system (CVMES) (Blomer
et al.). These steps do not require manual review.

The Planemo autoupdate bot also monitors the Galaxy work-
flows maintained by the IWC and checks whether new versions
exist for each of the component tools. Once a new tool version is
created (either by the upstream tool autoupdate step or by a tool
developer), the workflow definition file hosted by the IWC is mod-
ified accordingly and a PR submitted for review (Fig. 3).

Execution

Apart from providing assistance with tool and workflow develop-
ment and deployment, Planemo is also a useful resource for
Galaxy power users who need to launch high-throughput data
analyses. Galaxy is traditionally accessed via a graphical interface
in the web browser, and features such as Galaxy collections already
provide a high level of parallelization to users of the graphical in-
terface. Nonetheless, there are important scenarios in which a user
might need to run individual workflows hundreds or thousands of
times; in which the data cannot be grouped into collections ahead
of time, for example, for variant calling of SARS-CoV-2 genomic
data; and in which a huge amount of new data is published contin-

uously (Maier et al. 2021). As a convenient alternative to the graph-
ical interface, Planemo allows workflow execution to be scheduled
programmatically using the “run” subcommand, either on a local
machine or on a larger Galaxy server. “planemo run” can be em-
bedded in scripts of varying complexity, which can be scheduled
and controlled via CI systems or message queues to run workflows
on demand, such as on new data appearing or tool updates.

Internally, Planemo executes workflows by submitting them
to the chosen server via Galaxy’s API. Requests to the API are made
using BioBlend, a library that wraps many API endpoints as Python
methods. It is also possible to execute workflows directly using
BioBlend or simply by making API calls using a tool such as
cURL. Although this approach does offer a high level of flexibility,
it requires the user to possess a high level of knowledge of the API
(e.g., the correct format to submit workflow parameters) and often
requires the creation of custom scripts. In contrast, Planemo’s
“run” subcommand offers a high-level interface to execute work-
flows, monitor them during execution, and report on their status
after completion, packaged as a single command.

For tool and workflow development, the artifacts under de-
velopment are generally tested against an ephemeral local
Galaxy instance, which is deleted after use. Although this is also
supported by the “run” subcommand, with the workflow outputs
saved to a specified location, this approach is not scalable for work-
flows that demand long compute times, with large data inputs, or
with workflows that need to be executed multiple times. In many
cases, users may prefer to make use of established, stable infrastruc-
tures, such as a public Galaxy instance or a private instance admin-
istered by their research group. Planemo allows external Galaxy
instances to be specified for all “run” and “test” commands by
providing the server URL and user API authentication key on the
command line. As it is inconvenient and insecure to enter the
API key with each command, Planemo also allows users to define
profiles in which the URL and API key is configured for each server.
The user can then define multiple profiles and run workflows on
different servers simply by appending, for example, “--profile
usegalaxy-org” or “--profile private-server,” to the
command.

Planemo provides numerous command-line options to con-
figure the workflow execution process. The name of the history
in which the new invocation is created, as well as a list of Galaxy
tags to add, can be specified via the command line. In addition,
Planemo and Galaxy allow both data sets and workflows to be
specified via hexadecimal IDs that point toward a Galaxy object
on an external server, rather than by referring to a local path.

Genome Research 265
www.genome.org

Bray et al.

planemo-autoupdate commented yesterday

Hello! This is an automated update of the following workflow: workflows/sars-cov-2-variant-calling/sars-cov-2-pe-illumina-
artic-variant-calling. | created this PR because | think one or more of the component tools are out of date, i.e. there is a newer

version available on the ToolShed.

By comparing with the latest versions available on the ToolShed, it seems the following tools are outdated:

¢ toolshed.g2.bx.psu.edu/repos/devteam/bwa/bwa_mem/0.7.17.1 should be updated to toolshed.g2.bx.psu.edu/repos

/devteam/bwa/bwa_mem/0.7.17.2

* toolshed.g2.bx.psu.edu/repos/iuc/samtools_view/samtools_view/1.9+galaxy2 should be updated to

toolshed.g2.bx.psu.edu/repos/iuc/samtools_view/samtools_view/1.13

¢ toolshed.g2.bx.psu.edu/repos/devteam/samtools_stats/samtools_stats/2.0.2+galaxy2 should be updated to

toolshed.g2.bx.psu.edu/repos/devteam/samtools_stats/samtools_stats/2.0.3

e toolshed.g2.bx.psu.edu/repos/iuc/ivar_trim/ivar_trim/1.3.1+galaxye should be updated to

toolshed.g2.bx.psu.edu/repos/iuc/ivar_trim/ivar_trim/1.3.1+galaxy2

¢ toolshed.g2.bx.psu.edu/repos/iuc/lofreq_call/lofreq_call/2.1.5+galaxye should be updated to

toolshed.g2.bx.psu.edu/repos/iuc/lofreq_call/lofreq_call/2.1.5+galaxyl

* toolshed.g2.bx.psu.edu/repos/iuc/ivar_removereads/ivar_removereads/1.3.1+galaxye should be updated to

toolshed.g2.bx.psu.edu/repos/iuc/ivar_removereads/ivar_removereads/1.3.1+galaxy2

* toolshed.g2.bx.psu.edu/repos/iuc/multiqc/multiqc/1.9+galaxyl should be updated to

toolshed.g2.bx.psu.edu/repos/iuc/multiqc/multiqc/1.11+galaxye

The workflow release number has been updated from 0.4.2 to 0.4.3.

Figure 3. An example GitHub pull request created by the Planemo autoupdate bot, updating a workflow hosted on the IWC.

This has the advantage of avoiding multiple uploads of the same
data set or workflow if the workflow has to be executed multiple
times. Planemo can also be configured either to wait until the
workflow has completed and download the output data sets creat-
ed or to terminate once the workflow has been successfully sched-
uled. In the latter case, the “1ist_invocations” command can
be used to monitor running workflows and to return the number
of jobs that have succeeded, failed, or are incomplete. If jobs
have failed, for example, owing to transient server issues, the
user can also choose to restart them wusing the “rerun”
subcommand.

Training material

Planemo provides utilities for developing tutorials for different
types of data analysis with Galaxy. The Galaxy Training
Network, accessible via https://training.galaxyproject.org, pro-
vides a range of training material, including slide decks, tutorials,
and videos. In particular, the tutorials are written in Markdown
and rendered using Jekyll and often feature “hands-on boxes”
that describe the exact combination of parameters and input
that users need to submit when running a Galaxy tool. Most tuto-
rials instruct the trainees to run several Galaxy tools in sequence
and thus correspond to a Galaxy workflow.

Planemo provides two subcommands, “training_init”
and “training_generate_from_wf,” that generate a directory
structure for a new tutorial, containing skeleton Markdown files
defining the tutorials. These files already contain sections and
hands-on boxes for each tool, with the tool inputs and parameters
predefined, ensuring a high level of consistency in the appearance
and quality of the tutorials produced. The training developer can
then take these templates and expand them with additional infor-
mation, questions, diagrams, and citations to produce the com-

pleted training. They also need to provide input data sets, which
are usually stored on Zenodo (https://zenodo.org). To populate a
Galaxy server with these data sets, the training developer should
also provide a data library file, which can be generated using
the “training_fill_data_library” subcommand, including
the Zenodo links and file formats of the data sets.

A major aim of the Galaxy Training Network project is im-
proving accessibility for new contributors, including scientists
who are not comfortable with command-line software. As a result,
the Planemo functionality relating to training material develop-
ment is provided in web server form as the Planemo Training
Development Kit (PTDK). The application is written using Flask
and deployed with Heroku; it can be accessed via https://ptdk
.apps.galaxyproject.eu/. The interface allows the selection of the
same options as the Planemo commands, with the additional op-
tion of specifying a workflow for generating the training using its
ID from one of the major public Galaxy servers.

Discussion

We have presented Planemo, a library and application that has al-
ready achieved widespread usage among Galaxy tool, workflow,
and training material developers; among Galaxy power users;
and as part of numerous automated deployment solutions.
Planemo provides the developers of command-line software with
an easy way to create a graphical interface, taking advantage of
the many features developed by the Galaxy community and the
compute resources provided by public Galaxy instances. We
have described the complex infrastructure the Galaxy community
has developed for creating and interacting with artifacts such as
tools, workflows, and training material. Planemo plays the crucial
role of bridging the gaps between the human and automated

266 Genome Research
www.genome.org

https://training.galaxyproject.org
https://training.galaxyproject.org
https://training.galaxyproject.org
https://training.galaxyproject.org
https://training.galaxyproject.org
https://zenodo.org
https://zenodo.org
https://zenodo.org
https://ptdk.apps.galaxyproject.eu/
https://ptdk.apps.galaxyproject.eu/
https://ptdk.apps.galaxyproject.eu/
https://ptdk.apps.galaxyproject.eu/
https://ptdk.apps.galaxyproject.eu/
https://ptdk.apps.galaxyproject.eu/

Planemo for tool development

components of this infrastructure, freeing members of the com-
munity to devote their time to developing, reviewing, and per-
forming novel scientific analyses.

Methods

Software design

Planemo is implemented as a Python package and distributed via
GitHub, PyPl, and Bioconda (Griining et al. 2018). As already de-
scribed in the Introduction, Planemo is a highly flexible, multi-
functional software, which can be used for (1) different types of
artifacts (e.g., tools, workflows), (2) different workflow/tool lan-
guages and management systems (e.g., Galaxy, CWL), and (3) dif-
ferent tasks (e.g., linting, testing, executing). To handle this
variety, Planemo defines two central abstractions: Runnables and
Engines. Runnables include tools and workflows written for either
Galaxy or CWL; an Engine provides access to an external piece of
software (such as Toil or Galaxy) capable of executing a particular
Runnable. Each Engine has various methods (e.g., run(), test())
that define a particular interaction with a Runnable.

Engines are provided for both local and external Galaxy serv-
ers, as well as for cwltool and Toil. These interact with their respec-
tive workflow management systems via the cwltool and Toil
Python modules (for CWL) and via the BioBlend library (Sloggett
et al. 2013), which provides access to the Galaxy API through
Python. Numerous lower-level functions and classes are provided
to connect the Engines with the underlying functionality.

Some tasks cannot be easily described in the context of these
abstractions; for example, linting of tool or workflow definitions
requires only that the structured document containing the defini-
tion be compared with a schema. Other examples include the
functionality for automatic updates of software dependencies
and generation of training material. Planemo handles these cases
using separate classes and functions.

Planemo is most frequently used as a command-line applica-
tion, using a command-line interface written using the Click pack-
age to provide a straightforward way to access the components
described above. Multiple subcommands expose some of the
most important tasks a user might want to perform. For example,
a user could run “planemo test tool.xml” to test a Galaxy tool
wrapper. Planemo will detect the type of Runnable (Galaxy tool)
represented by the filepath and start the appropriate Engine (tem-
porary local Galaxy instance), execute the Runnable on it, collect
the results, and compare them with predefined test data to deter-
mine a pass or fail status. All subcommands can be configured by
appending flags and options.

Implementation of Cl jobs

Although Planemo is designed primarily with developers and users
in mind, commands often need to be executed as part of automat-
ed CI jobs, for example, testing of newly created Galaxy tools after
submission to a GitHub repository. Galaxy tools and workflows are
hosted over multiple repositories; to ensure a unified approach
to testing, a GitHub CI action is provided. The CI workflow
consists of the following components:

1. Identifying modified tools and repositories using “planemo
ci_find_repos” and “planemo ci_find_tools”;

2. Linting of Galaxy tools using “planemo 1int”;

3. Testing the tools—as this is the most time-consuming step, the
tools found are chunked and multiple jobs run in parallel;

4. Linting of Python and R scripts packaged together with the
tools; and

5. If the PR is approved and merged, deployment to the Toolshed
with “planemo shed_update.”

Definition of terms

Planemo’s features rely on and are interdependent with a variety of
other subprojects within and related to the Galaxy community.
We therefore first outline a few of these.

IUC: The Intergalactic Utilities Commission maintains a central
repository of Galaxy tool wrappers, currently hosted on
GitHub. New wrappers are added by means of a GitHub pull re-
quest, reviewed by IUC members, and tested by automated CI.
After approval, the tool is automatically deployed to the
Galaxy ToolShed. Tools are subject to further automatic updates,
as new versions of software dependencies are released. The IUC
serves as a model for smaller communities developing wrappers
for more specialized tools (e.g., Galaxy-P for proteomics) (Blank
et al. 2018) and has developed a set of guidelines for tool
development.

Bioconda/BioContainers: Each Galaxy tool has certain depen-
dencies, which are typically installed either by using the Conda
package manager (https:/conda.io) or within a container
(Docker [https://www.docker.com] or Singularity [Kurtzer et al.
2017]). Development and maintenance of the necessary
Conda packages or containers is performed by the Bioconda
and Biocontainers (https://biocontainers.pro/) communities,
which collaborate closely with the Galaxy project.

ToolShed: A central “app store” for Galaxy tools any user can
upload to the ToolShed (Blankenberg et al. 2014), but most
high-quality tools are developed collaboratively on an open
platform like GitHub (e.g.,, by the IUC) and deployed
automatically.

IWC: This maintains a set of curated workflows (https://github
.com/galaxyproject/iwc), consisting of multiple component
Galaxy tools, which are hosted on GitHub and deployed to
Dockstore (Yuen et al. 2021) and the Workflow Hub (Goble
et al. 2021), analogously to the development and deployment
of Galaxy tools to the ToolShed by the IUC.

Galaxy Training Network: A repository for tutorials, each de-
scribing a method for data analysis in Galaxy (Afgan et al. 2018).
Each tutorial is made up of multiple steps and therefore corre-
sponds to a Galaxy workflow, which forms the skeleton around
which the tutorial is built.

Continuous Integration (workflow): A workflow runs re-
motely on a build server that tests and deploys Galaxy artifacts
developed. It should not be confused with a Galaxy workflow.

Tool: Artifact defined by a tool wrapper and stored in the
ToolShed, allowing users to access the functionality of the un-
derlying software via Galaxy.

Galaxy tool wrapper: Structured document defining a
Galaxy tool; it maps data set inputs and outputs and other pa-
rameters between the underlying command-line tool and the
Galaxy APIL.

Galaxy workflow: This is a directed acyclic graph in which
nodes can be data set inputs or outputs, parameter inputs, or
tools. More informally, it is a combination of multiple individu-
al tools into a single pipeline, which once assembled can be ex-
ecuted as if it were a single tool.

Collection: This is a group of individual data sets linked together
in a directory-like structure. When a tool is run on a collection,
individual jobs are generated for each of the data sets that make
up the collection. In combination with workflows, collections
allow Galaxy users to scale up analyses to deal with large sets
of data.

Genome Research 267
www.genome.org

https://conda.io
https://conda.io
https://conda.io
https://conda.io
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://biocontainers.pro/
https://biocontainers.pro/
https://biocontainers.pro/
https://github.com/galaxyproject/iwc
https://github.com/galaxyproject/iwc
https://github.com/galaxyproject/iwc
https://github.com/galaxyproject/iwc

Bray et al.

Documentation

Planemo’s documentation is hosted on a ReadTheDocs site: https://
planemo.readthedocs.io. In addition, several tutorials are available
as part of the Galaxy Training Network:

¢ Creating Galaxy tools from Conda through deployment is avail-
able at https://training.galaxyproject.org/training-material/
topics/dev/tutorials/tool-from-scratch/tutorial.html

Creating training material with Planemo is available at https://
training.galaxyproject.org/training-material/topics/
contributing/tutorials/create-new-tutorial/tutorial.html
Automating Galaxy workflows using the command line is avail-
able at https://training.galaxyproject.org/training-material/
topics/galaxy-interface/tutorials/workflow-automation/tutorial
.html

e Test-driven development with Planemo is available at https://
planemo.readthedocs.io/en/latest/writing_advanced.html#test-
driven-development

A frequently asked questions (FAQ) page is available at https://
planemo.readthedocs.io/en/latest/fags.html.

Software availability

Planemo is distributed under MIT free software license and is avail-
able at GitHub (https://github.com/galaxyproject/planemo) and
as Supplemental Code.

Competing interest statement

J.C. and A.N. are cofounders of and hold equity in GalaxyWorks.
The results of the study discussed in this publication could affect
the value of GalaxyWorks.

Acknowledgments

We thank the broader Galaxy community for their support and
software development efforts. This work is funded by National
Institutes of Health grant U41 HG006620 and National Science
Foundation ABI grant 1661497. Usegalaxy.eu is supported by the
German Federal Ministry of Education and Research grants
031L0101C and de.NBI-epi to B.G. Usegalaxy.org.au is supported
by Bioplatforms Australia and the Australian Research Data
Commons through funding from the Australian Government
National Collaborative Research Infrastructure Strategy. The fund-
ers had no role in study design, data collection and analysis, deci-
sion to publish, or preparation of the manuscript.

Author contributions: S.B. and A.N. have written the manu-
script; J.C. pioneered the idea of Planemo and is the principal
maintainer of the software; M.B., N.S., B.B.,, M.V.D.B., H.R,,
M.C., P.J.A.C,, and B.G. have made critical contributions to devel-
opment and maintenance of Planemo codebase.

References

Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J,
Clements D, Coraor N, Griining BA, et al. 2018. The Galaxy platform

for accessible, reproducible and collaborative biomedical analyses:
2018 update. Nucleic Acids Res 46: W537-W544. doi:10.1093/nar/
gky379

Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C,
Bretaudeau A, Brillet-Guéguen L, Cech M, Chilton], et al. 2018.
Community-driven data analysis training for biology. Cell Syst 6: 752—
758.el. doi:10.1016/j.cels.2018.05.012

Blank C, Easterly C, Gruening B, Johnson], Kolmeder CA, Kumar P, May D,
Mehta S, Mesuere B, Brown Z, et al. 2018. Disseminating metaproteomic
informatics capabilities and knowledge using the Galaxy-P framework.
Proteomes 6: 7. doi:10.3390/proteomes6010007

Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, Team G,
Taylor], Nekrutenko A. 2014. Dissemination of scientific software with
Galaxy ToolShed. Genome Biol 15: 403. doi:10.1186/gb4161

Blomer J, Buncic P, Fuhrmann T. CernVM-FS. In ACM Conferences,
Technische Universitit Miinchen, Miinchen, Germany. https://dl.acm
.org/doi/abs/10.1145/2110217.2110225 [accessed March 11, 2022].

Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton], Tijani¢ N, Ménager
H, Soiland-Reyes S, Gavrilovic B, Goble C, et al. 2022. Methods
included: standardizing computational reuse and portability with the
Common Workflow Language. Commun ACM 65: 54-63. do0i:10.1145/
3486897

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C.
2017. Nextflow enables reproducible computational workflows. Nat
Biotechnol 35: 316-319. doi:10.1038/nbt.3820

Goble C, Soiland-Reyes S, Bacall F, Owen S, Williams A, Eguinoa I,
Droesbeke B, Leo S, Pireddu L, Rodriguez-Navas L, et al. 2021.
Implementing FAIR digital objects in the EOSC-Life workflow collaboratory.
https://zenodo.org/record/4605654 [accessed March 11, 2022].

Griining B, Dale R, Sjodin A, Chapman BA, Rowe J, Tomkins-Tinch CH,
Valieris R, Koster], Bioconda Team. 2018. Bioconda: sustainable and
comprehensive software distribution for the life sciences. Nat Methods
15: 475-476. doi:10.1038/541592-018-0046-7

Kurtzer GM, Sochat V, Bauer MW. 2017. Singularity: scientific containers
for mobility of compute. PLoS One 12: e0177459. doi:10.1371/journal
.pone.0177459

Maier W, Bray S, van den Beek M, Bouvier D, Coraor N, Miladi M, Singh B,
De Argila JR, Baker D, Roach N, et al. 2021. Ready-to-use public infra-
structure for global SARS-CoV-2 monitoring. Nat Biotechnol 39: 1178-
1179. doi:10.1038/541587-021-01069-1

Molder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V,
Forster J, Lee S, Twardziok SO, Kanitz A, et al. 2021. Sustainable data
analysis with Snakemake. FIO0O0ORes 10: 33. doi:10.12688/
f1000research.29032.2

R Core Team. 2021. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna. https://www.R-project
.org/.

Siddiqui S. 2021. Learning test-driven development: a polyglot guide to writing
uncluttered code. O'Reilly Media, Sebastopol, CA.

Sloggett C, Goonasekera N, Afgan E. 2013. BioBlend: automating pipeline
analyses within Galaxy and CloudMan. Bioinformatics 29: 1685-1686.
doi:10.1093/bioinformatics/btt199

Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, Pfeil],
Narkizian J, Deran AD, Musselman-Brown A, et al. 2017. Toil enables re-
producible, open source, big biomedical data analyses. Nat Biotechnol
35: 314-316. doi:10.1038/nbt.3772

Wratten L, Wilm A, Goke J. 2021. Reproducible, scalable, and shareable
analysis pipelines with bioinformatics workflow managers. Nat
Methods 18: 1161-1168. doi:10.1038/s41592-021-01254-9

Yuen D, Cabansay L, Duncan A, Luu G, Hogue G, Overbeck C, Perez N,
Shands W, Steinberg D, Reid C, et al. 2021. The Dockstore: enhancing
a community platform for sharing reproducible and accessible compu-
tational protocols. Nucleic Acids Res 49: W624-W632. doi:10.1093/
nar/gkab346

Received May 25, 2022; accepted in revised form January 11, 2023.

268 Genome Research
www.genome.org

https://planemo.readthedocs.io
https://planemo.readthedocs.io
https://planemo.readthedocs.io
https://planemo.readthedocs.io
https://planemo.readthedocs.io
https://planemo.readthedocs.io
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://planemo.readthedocs.io/en/latest/faqs.html
https://planemo.readthedocs.io/en/latest/faqs.html
https://planemo.readthedocs.io/en/latest/faqs.html
https://planemo.readthedocs.io/en/latest/faqs.html
https://planemo.readthedocs.io/en/latest/faqs.html
https://planemo.readthedocs.io/en/latest/faqs.html
https://planemo.readthedocs.io/en/latest/faqs.html
https://github.com/galaxyproject/planemo
https://github.com/galaxyproject/planemo
https://github.com/galaxyproject/planemo
https://github.com/galaxyproject/planemo
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276963.122/-/DC1
https://dl.acm.org/doi/abs/10.1145/2110217.2110225
https://dl.acm.org/doi/abs/10.1145/2110217.2110225
https://dl.acm.org/doi/abs/10.1145/2110217.2110225
https://dl.acm.org/doi/abs/10.1145/2110217.2110225
https://dl.acm.org/doi/abs/10.1145/2110217.2110225
https://dl.acm.org/doi/abs/10.1145/2110217.2110225
https://dl.acm.org/doi/abs/10.1145/2110217.2110225
https://zenodo.org/record/4605654
https://zenodo.org/record/4605654
https://zenodo.org/record/4605654
https://zenodo.org/record/4605654
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/

