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ABSTRACT Starting with the discovery of microRNAs and the advent of genome-wide
transcriptomics, non-protein-coding transcripts have moved from a fringe topic to a central field
research in molecular biology. In this contribution we review the state of the art of ‘‘computational
RNomics’’, i.e., the bioinformatics approaches to genome-wide RNA annotation. Instead of rehashing
results from recently published surveys in detail, we focus here on the open problem in the field,
namely (functional) annotation of the plethora of putative RNAs. A series of exploratory studies
are used to provide non-trivial examples for the discussion of some of the difficulties. J. Exp. Zool.
(Mol. Dev. Evol.) 308B:1– 25, 2007. r 2006 Wiley-Liss, Inc.
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INTRODUCTION

A series of recent studies of the mammalian
transcriptome have dramatically changed our
perception of genome organization. Experimental
studies using a variety of different techniques,
from tiling arrays (Bertone et al., 2004; Kampa
et al., 2004; Cheng et al., 2005; Johnson et al.,
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2005), to cDNA sequencing (Okazaki et al., 2002;
Imanishi et al., 2004; Carninci et al., 2005; Ravasi
et al., 2006), and unbiased mapping of transcription
factor binding sites (TFBSs) (Cawley et al., 2004)
agree that a substantial fraction of the genome is
transcribed and that non-protein-coding RNAs
(ncRNAs), Table 1, are the dominating component
of the transcriptome. It remains unclear, however,
to what extent these ncRNAs are functional;
alternatively they might be ‘‘transcriptional noise’’
(Hüttenhofer et al., 2005) or they could be the
by-product of transcriptional activity that takes
place in order to regulate gene expression at
adjacent loci. As shown by Ravasi et al. (2006), how-
ever, many non-coding cDNA clones are ‘‘derived
from genuine transcripts of unknown function
whose expression appears to be regulated’’.

Non-coding RNAs form a very heterogeneous
group of transcripts: Besides the well-charac-
terized ‘‘ancient’’ classes (such as the spliceosomal
RNAs and tRNAs), the function of several pol-III
transcripts remains unknown. Vault RNAs
(Mossink et al., 2003; van Zon et al., 2003) seem
to play a critical role in multi-drug resistance
(Gopinath et al., 2005) and Y RNAs (Maraia et al.,
’94; Farris et al., ’99; Stein et al., 2005) control the
activity of RNA chaperones as Ro60 and La
(Belisova et al., 2005; Stein et al., 2005).

Several ncRNAs exhibit more or less strong
similarity to retroelements. In mammals, SINEs
are derived from tRNAs and 7SL RNAs and LINEs
from tRNAs (Deininger and Batzer, 2002; Kramerov
and Vassetzky, 2005). Both are able to serve as
source for new ncRNAs, as shown for a set of
microRNAs (Smalheiser and Torvik, 2005; Tanzer
et al., 2005) as well as 4.5SH RNA (Gogolevskaya
et al., 2005) and 4.5SI RNA (Gogolevskaya and
Kramerov, 2002) in rodents. Interestingly, the
ncRNAs are derived from the long terminal repeats
of LINEs, not from their protein coding regions. The
small RNA generating loci in Arabidopsis follow a
similar principle: inverted duplication of target
genes leads to new miRNAs (Allen et al., 2004a).

Genes annotated as, e.g., ‘‘Putative ORF’’ are
good candidates for so-called mRNA-like-ncRNAs

(mlncRNAs). These transcripts are processed just
as normal mRNAs, but carry only very small ORFs
or no ORFs at all. Transcriptional control
(Berteaux et al., 2004, 2005; Carninci et al.,
2005), tissue-specific differential expression
(French et al., 2001), alternative splicing and
polyadenylation (Sawata et al., 2004) of mlncRNAs
do not seem to differ from those of protein coding
polymerase II products, but some of them remain
in the nucleus (Sawata et al., 2004). If amino-acid
sequences are predicted for such transcripts, they
are usually not conserved within a genus (Inagaki
et al., 2005). Several miRNAs (Rodriguez et al.,
2004; Baskerville and Bartel, 2005) and snoRNAs
(Pelczar and Filipowicz, ’98; Makarova and
Kramerov, 2005) reside in introns and even exons
of mlncRNAs. A few examples of functional
ncRNAs that changed their host genes have been
reported, see e.g. (Rodriguez et al., 2004; Bompfu-
newerer et al., 2005). Only a hand full of
mlncRNAs are annotated in databases as in Y2K
(Erdmann et al., ’99, 2000) or RNAdb (Pang et al.,
2005), while most cDNAs that lack a coding
sequence (CDS) remain functionally unassigned
(Carninci et al., 2005).

Long ncRNAs, such as rox in Drosophila or Xist
in mammals are key players in imprinting and
gene dosage compensation (Akhtar, 2003). The
observation that cis-regulatory trithorax response
elements in the Drosophila Ubx gene are tran-
scribed as kilobase-sized ncRNAs, and that tran-
scription activation occurs by recruiting a non-
DNA-binding epigenetic regulator to the template
sequence suggest that direct DNA–RNA interac-
tions may also have an important general function
in gene regulation (Sanchez-Elsner et al., 2006).

Small ncRNAs of only about 20 nt in length seem
to serve as the exchangeable RNA module in
protein complexes allowing them to bind DNA and
RNA in a sequence-specific way. MicroRNAs, one
of the most prominent classes of ncRNA, are found
in plants (Jones-Rhoades et al., 2006) and animals
(Berezikov and Plasterk, 2005; Massirer and
Pasquinelli, 2006; Plasterk, 2006) and play a
fundamental role in virus infections (Sullivan

TABLE 1. Functional RNAs in eukaryotes

Ancient RNAs rRNAs, tRNAs, SRP RNA, RNase P

Repeat associated miRNAs, rasiRNAs, 4.5SH RNA, 4.5SI RNA, LINEs, SINEs
mRNA-like H19, AncR-1, Ntab, U87HG, BIC, Evf-1
mRNA-like associated miRNAs, snoRNAs
Pol-III transcripts snRNA, vRNA, Y RNA, tRNAs, MRP, U6, H1, 7SK, 7SL
Small RNAs miRNAs, siRNAs, rasiRNAs, piRNAs
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and Ganem, 2005; Nair and Zavolan, 2006). They
differ slightly from siRNAs (Du and Zamore, 2005;
Valencia-Sanchez et al., 2006). High expression of
repeat-associated small RNAs (rasiRNAs) was
detected during embryogenesis of D. melanogaster
(Aravin et al., 2003) and later also in Danio rerio
(Chen et al., 2005b).

A new class of presumably testes-specific small
ncRNAs about 26–31 nt in length was detected in
mouse, rat and human. Because of their associa-
tion with members of the PIWI protein family,
they have been termed ‘‘PIWI-interacting RNAs’’
(piRNAs) (Aravin et al., 2006; Girard et al., 2006;
Grivna et al., 2006; Lau et al., 2006). Like siRNAs
and miRNAs they show 50 phosphate and 30

hydroxyl groups indicating a specific but yet
unknown maturation process from precursors
rather than random degradation. Like miRNAs,
piRNA clusters might be transcribed as long
primary transcripts, which then are subjected to
RNase III like enzymes. In contrast to microRNAs,
however, piRNAs are not contained in miRNA like
stem–loop structures or other conserved RNA
secondary structures. The majority of piRNAs
maps to dense, evolutionarily conserved intergenic
regions. Notably, their genomic organization
rather than the individual sequences seems to be
conserved. Two functions were proposed so far: (1)
a role in translational repression (Grivna et al.,
2006; Lau et al., 2006) and (2) a possible function
in pairing of homologous chromosomes and gen-
ome structure (Girard et al., 2006).

Recently, genome-wide surveys for non-coding
RNAs have provided evidence for tens of thou-
sands of previously undescribed evolutionary
conserved RNAs with distinctive secondary struc-
tures (Washietl et al., 2005a; Pedersen et al.,
2006). The conservation of structure indicates that
the molecule functions (also) as an RNA. Taken
together, both the experimental and computa-
tional data provide strong evidence that ncRNAs
are an important, functional component of the
mammalian transcriptome. The elucidation of
these functions, however, remains elusive in
almost all cases.

In this contribution, we discuss the currently
available techniques for finding structured RNAs
and we focus in particular on current approaches
towards their annotation. In Figure 1, we propose
a work flow for annotation of structured non-
coding RNAs. The organization of this contribu-
tion largely follows the same outline. For quite a
few of the individual tasks, there are no estab-
lished software tools. In order to demonstrate the

feasibility of this protocol, we therefore resort our
own pilot studies. This manuscript is thus—
deliberately—organized as a somewhat unusual
mixture of review (where possible) and original
research. Additional material on these parts of
the manuscript is provided in an electronic
supplement.1

COMPUTATIONAL ncRNA DETECTION

Large, highly conserved ncRNAs, in particular
ribosomal RNAs, can easily be found using blast
(Altschul et al., 1990). Similarly, blast can be used
to find orthologous ncRNAs in closely related
species, e.g. (Tanzer and Stadler, 2004; Weber,
2005). In most cases, however, this approach is
limited by the relatively fast evolution of most
ncRNAs. Since RNA sequence often evolves much
faster than structure, the sensitivity of search
tools can be greatly improved by using both
sequence and secondary structure information.

Specialized search methods for particular
RNA classes

Specialized programs have been developed to
detect members of particular ncRNA families.
Examples of this approach include miRseeker for
microRNAs (Lai et al., 2003), BRUCE for tmRNAs
(Laslett et al., 2002), tRNAscan for tRNAs (Lowe
and Eddy, 1997), snoScan (Lowe and Eddy, 1999)
and SNO.pl (Fedorov et al., 2005) for box C/D
snoRNAs, fisher (Edvardsson et al., 2003) and
snoGPS (Schattner et al., 2004) for box H/ACA
snoRNAs, as well as a heuristic for SRP RNAs
(Regalia et al., 2002; Rosenblad et al., 2004).

MicroRNAs in plants can be found by extracting
those hairpin structures that contain sequence
motifs complementary to an mRNA, which is then
a putative target (Bonnet et al., 2004; Jones-
Roades and Bartel, 2004; Adai et al., 2005). In
animals, on the other hand, the situation is more
complicated since miRNAs do not bind with
perfect complementarity to their target. A large
array of different approaches, summarized in
Table 2, has recently been developed to detect
microRNAs, among them our own tool RNAmicro
that has been designed specifically to analyze
large-scale comparative genomics data (Hertel and
Stadler, 2006).

1URL: www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/
06-005/

GENOME-WIDE ANNOTATION OF STRUCTURED RNAs 3

J. Exp. Zool. (Mol. Dev. Evol.) DOI 10.1002/jez.b



General methods for structure-based
searches

A wide variety of different approaches to per-
form homology searches based on both sequence
and structure have been proposed in the last few
years in order to utilize the strong conservation of
secondary structure in many ncRNA families, see
Bompfünewerer et al. (2005) for a recent more
extensive summary of this topic.

Stochastic context-free grammars (SCFGs) can
be used to construct covariance models from a
multiple alignment with structural annotation as
in infernal (Eddy, 2002). The consensus model
can then be used to search for homologs. Similar
in spirit, ERPIN also uses multiple structure-
annotated alignments as input to construct a
descriptor for homology search. Rsearch (Klein
and Eddy, 2003) is a local alignment algorithm
which considers structural and sequence
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constraints. It uses both single nucleotide and
base pair substitution matrices to define align-
ment scores. Rsearch operates on a single input
sequence rather than on an alignment. FastR
(Bafna and Zhang, 2004) combines a pairwise
alignment algorithm with a filtering step to
improve performance. Backofen and Will (2004)
introduced an efficient local sequence–structure
alignment method based on predicted structures.
Beside sequence–local motifs (i.e., motifs that
consist of a subsequence in each molecule), it is
able to find also structure-local motifs, i.e. motifs
that are connected substructures such as a helix
without the connecting hairpin loop.

Simple description languages have been pro-
posed to allow users to define combined sequence/
structure for genome-wide searches. Such
approaches are implemented e.g. in RNAmot
(Gautheret et al., ’90) and Sean Eddy’s rnabob.
Hybrid languages, like HyPaL (Gräf et al., 2001) or
the language used in RNAMotif (Macke et al.,
2001), connect pattern languages with user-
defined approximate rules, which rank the results
according to their distance to the motif.

A number of large-scale surveys have been
performed using one or more of the general-
purpose tools mentioned above, including a micro-
RNA survey using ERPIN (Legendre et al., 2005),
a search for U5 snRNA and RNase P using
RNAmotif (Collins et al., 2004), and a survey of
RNase P RNAs in bacterial genomes (Li and
Altman, 2004).

Alignment-based de novo prediction of
structured RNA motifs

Attempts to predict novel functional RNAs are
in general based on predicted secondary struc-
tures. However, since most RNA sequences will
form extensive structures, the problem of distin-
guishing incidental from functional structures is
non-trivial. It was first suggested by Maizel and
co-workers that functional RNA elements should
have a secondary structure that is energetically
more stable than expected by chance (Le et al.,
1988). However, Rivas and Eddy had to conclude
in an in-depth study on the subject that thermo-
dynamic stability alone is generally not statisti-
cally significant enough for reliable ncRNA
detection (Rivas and Eddy, 2000).

Therefore, all current approaches to de novo
prediction of structured RNAs work compara-
tively, requiring two or more related sequences
as input, typically in the form of a multiple
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sequence alignment. The first reasonably success-
ful attempt to predict structured RNAs from
sequence alignments was qrna (Rivas and Eddy,
2001). This program compares the score of three
distinct models of sequence evolution to decide
which one describes best the given alignment: a
pair SCFG is used to model the evolution of
secondary structure, a pair hidden Markov model
(HMM) describes the evolution of protein coding
sequence, and a different pair HMM implements
the null model of a non-coding sequence. Qrna was
successfully used to predict ncRNAs candidates in
E. coli and S. cerevisiae (Rivas et al., 2001;
McCutcheon and Eddy, 2003), some of which could
be verified experimentally. EvoFold (Pedersen
et al., 2006) is essentially an extension of the qrna
approach to multiple sequence alignments. The
program combines SCFGs for RNA structure
modeling with phylogenetic models that describe
the substitution process along the branches
of a tree.

The RNAz algorithm, in contrast, is based on
thermodynamic RNA folding (Washietl et al.,
2005b). It uses two independent criteria for
classification: a z-score measuring thermodynamic
stability of individual sequences and a structure
conservation index (SCI) obtained by comparing
folding energies of the individual sequences with
the predicted consensus folding. The two criteria
are combined by a support vector machine that
detects conserved and stable RNA secondary
structures with high sensitivity and specificity.
Other recent programs for detecting conserved
RNA secondary structures include ddbRNA

(di Bernardo et al., 2003) and MSARi (Coventry
et al., 2004).

Both RNAz and EvoFold have been applied to
surveying the human genome providing evidence
for tens of thousands of genomic loci with
signatures of evolutionarily conserved secondary
structure (Washietl et al., 2005b; Pedersen et al.,
2006). Further RNAz surveys have been conducted
for urochordates (Missal et al., 2005), nematodes
(Missal et al., 2006) and yeasts (Steigele et al.,
2006). These investigations have produced exten-
sive lists of candidates for functional RNAs with-
out using (or providing) information on
membership in a particular class of RNAs, see
Figure 2.

Alignment-free approaches

Approaches based on pairwise or multiple
sequence alignments are of course limited by the
quality of the input alignment. In regions with
sequence similarity below some 50–60%, sequence
alignments will in general not be structurally
correct, making accurate prediction of consensus
structures impossible (Washietl and Hofacker,
2004). This problem can in principle be overcome
by computing structural alignments, albeit at
significantly higher computational cost. Most
recently, Uzilov et al. (2006) presented a classifica-
tion method based on an updated version of
dynalign (Mathews and Turner, 2002), a re-
stricted variant of the Sankoff algorithm for the
simultaneous computation of alignment and con-
sensus structure (Sankoff, 1985). Using a similar

Known gene

< 10 kb from nearest gene

> 10 kb from nearest gene

Intron of coding region

3 ’–UTR (exon or intron)

1538016860

3745

2866

283011205

5 ’–UTR (exon or intron)

Fig. 2. Summary of a comparative screen of vertebrate genomes, which evaluated conserved genomic DNA sequences for
signatures of structural conservation of base pairing patterns and exceptional thermodynamic stability using the RNAz
program. (Adapted from Washietl et al., 2005a). About half of the structured RNA motifs are found far away from known coding
regions, the other half are located within known protein-coding genes. Two thirds of the latter motifs are intronic, one sixth each
is located in the 50-UTRs and 30-UTR of the mRNA, respectively.

A.F. BOMPFÜNEWERER CONSORTIUM6

J. Exp. Zool. (Mol. Dev. Evol.) DOI 10.1002/jez.b



approach based on their foldalign variant of the
Sankoff algorithm, Torarinsson et al. (2006)
screened a significant fraction of the non-alignable
DNA that could be identified as homologous
between man and mouse by virtue of alignable
flanking sequences. These authors reported sev-
eral thousands of regions without significant
sequence conservation that show evidence for a
conserved RNA secondary structure.

A major limitation of these ‘‘Sankoff-based’’
algorithms is their enormous computational cost.
The computations required to evaluate the
E100,000 genomic regions as described by Torar-
insson et al. (2006) took 5 months on 70 CPUs
with 2 gigabytes of RAM. Uzilov et al. (2006)
estimate that it would take several months on
a similar sized computing cluster to screen
all human/mouse regions with pairwise identity
below 50% using dynalign. Although such
approaches are feasible given sufficient computa-
tional resources, the CPU requirements render
them impracticable for extended analysis tasks.
Moreover, since both dynalign and foldalign
perform pairwise alignments only, one would have
to screen many different pairwise combinations
(e.g. human/mouse and human/rat). A related
approach (Bafna et al., 2006) matches entire
stacks instead of individual base pairs.

Several faster methods for performing structur-
al alignments exist. These approaches often start
from predicted structures in the form of minimum
energy structures, e.g. RNAforester (Höchsmann
et al., 2003) or MARNA (Siebert and Backofen, 2005),
or from lists of likely helices such as SCARNA
(Tabei et al., 2006). Methods that rely of predicted
structures as input are of course plagued by the
inevitable inaccuracies of RNA folding algorithms.
In contrast, the RNAcast program (Reeder and
Giegerich, 2005) is based on coarse grained
structures, so-called abstract shapes, and avoids
the problem of aligning the sequences altogether.
For each sequence it computes near-optimal
shapes and then selects the best shape common
to all sequences as consensus shape.

None of these approaches are feasible at genomic
scales, however, without first identifying homo-
logous regions of moderate size. This could be
achieved for instance by extracting intergenic
regions between pairs of homologous flanking
genes. Alignment-based methods such as qrna,
RNAz and EvoFold are of the same algorithmic time
complexity (essentially cubic with alignment
length). Although effective run time of the
different programs may vary considerably, all

three programs seem to be fast enough to
allow routine analysis of even large mammalian
genomes.

LIMITATIONS OF SEQUENCE
ALIGNMENTS: AN RNAz SCREEN OF

STRAMENOPILES

To-date, genomic screens for non-coding RNAs
have been applied mostly to fairly closely related
organisms, e.g. vertebrates (with a focus on
mammals), rhabditid nematodes or ascidians. In
principle, however, the applicability of RNAz is
limited only by the quality of the input align-
ments, so that highly conserved structures from
distant organisms might still be detectable.

As an example of an RNAz screen of phylogeneti-
cally very distant organisms, we summarize a
survey of the three currently available strameno-
pile sequences. Heterokonts, or stramenopiles,
form a major clade within the eukaryote kingdom
chromista, see e.g. Yoon et al. (2002). Most are
algae, ranging from the giant multicellular kelp to
the unicellular diatoms. However, some are color-
less and superficially resemble fungi. Three
complete genomes have been sequenced: data are
available for two closely related oomycetes
Phytophthora sojae,2 Phytophthora ramorum3

(Gajendran et al., 2006) and the diatom Thalas-
siosira pseudonana4 (Armbrust et al., 2004). Our
protocol closely follows the approach taken in
Missal et al. (2005, 2006).

In the first step an annotation track for P. sojae
was constructed by mapping the available mRNA
and protein sequences back to the genome using
blat. Using blast with a Eo10�10, all non-
protein-coding loci were compared to the entire
P. ramorum genome. We combine blast align-
ments that are separated not more than 30 nt
provided they pass several consistency checks
detailed in Missal et al. (2005, 2006). This leaves
149,375 conserved loci with an average length of
195 nt. Since the two phytophthora sequences are
too similar, we estimate an unacceptably high
estimated false discovery rate for the pairwise
RNAz screen. We therefore compare these loci to
the much more distant diatom T. pseudonana and
obtain 903 homologous non-coding loci with an
average length of about 80 nt. We realigned the
blast hits using clustalw (Thompson et al., 1994)
and screened them using RNAz with window-length

2http://genome.jgi-psf.org/sojae1/sojae1.home.html
3http://genome.jgi-psf.org/ramorum1/ramorum1.home.html
4http://genome.jgi-psf.org/thaps1/thaps1.home.html
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120 nt in steps of 50 nt (for alignments longer than
120 nt). For some loci more than one alignment is
found. These are combined if possible; otherwise
only the alignment with the largest RNAz P-score is
retained so that each genomic locus is covered by
at most one RNA prediction. Details of this
procedure are given in Missal et al. (2006). In
order to estimate the false positive rate and the
false discovery rate, the RNAz screen was repeated
with shuffled alignments as described by Washietl
et al. (2005a) and Missal et al. (2006). The results
are summarized in Table 3.

The 115 RNAz slices that are classified with
pRNAz40.5 map to only 44 distinct loci in the
P. sojae genome. Twenty of these can be identified
as tRNA genes. A comparison with the updated
annotation at the JGI P. sojae site shows that the
remaining loci map to protein-coding regions.
Given the data in Table 3, we expect a substantial
false discovery rate. Furthermore, there is grow-
ing evidence for evolutionarily conserved second-
ary structure also within the coding parts of
mRNAs (Meyer and Miklós, 2005; Steigele et al.,
2006), so that some of these signals could well be
real.

Due to the high degree of sequence divergence,
most of the known ncRNAs do not lead to
significant alignments of sufficient length between
P. sojae and T. pseudonana. This set includes
about 60 loci in the P. sojae genome that can be
identified by comparison with the noncode data-
base. Among them are 13 U2, 30 U4, 1 U5, 1 U6
snRNA and 1 SRP RNA. In addition, tRNAscanSE
predicts 235 tRNA loci.

The low sensitivity of the screen on this data set
highlights the limitations of approaches that are
based on sequence alignments. With genome sizes
of 33–87 Mb, using a structure-based approach
(e.g. dynalign or foldalign) requires excessive
computational resources. As more sequenced
genomes become available, however, the scope of
sequence-alignment-based methods expands for
two reasons: (1) The specificity of methods such as

RNAz increases dramatically with the number of
aligned sequences. (2) Additional genomes in a
suitable evolutionary distance from the currently
available ones can give very good results already
from pairwise comparisons as demonstrated in the
case of ascidians (Missal et al., 2005) and nema-
todes (Missal et al., 2006).

THE IMPORTANCE OF BEING LOCAL

A comprehensive understanding of structured
RNAs requires the analysis not only of ncRNAs
with an often globally conserved structure, but
also of local RNA motifs in larger molecules.
Examples of the latter class are IRES (internal
ribosome entry sites), selenocystein insertion
elements or the Rho-independent termination
signal in E.coli.

From a computational genomics point of view,
there is actually little difference between these
two classes of RNA structures. In a large-scale
screen of genomic sequence, the transcript struc-
ture is typically unknown. As a consequence, both
ncRNAs and structural mRNA motifs appear as
local features in the genomic input sequence. The
ability to compute locally stable secondary struc-
tures is thus a necessary prerequisite for any
genome-wide analysis of structured RNA for both
computational and biological reasons: (i) Long-
range base pairs in large transcripts are disfavored
kinetically (Flamm et al., 2000) (ii) even in long
RNAs most base pairs are local (in 16S and 23S
rRNA 75% of pairs span less than 100 nt) and long-
range base pairs predicted by energy minimization
are very inaccurate (Doshi et al., 2004). (iii) Global
approaches to RNA folding are limited to sequence
length r20,000 on most hardware because of
memory consumption. (iv) In general, the exact
boundaries of the transcript are unknown, so that
global folds cannot add to the accuracy of the
structure prediction relative to folding individual
sequence windows.

Local folds can trivially be obtained by folding
subsequences of length L in a window sliding
along the genomic sequence nucleotide by nucleo-
tide. In practice, however, the sequence windows
have to be shifted by a substantial fraction of L in
order to keep the CPU requirements manageable.
It is well known, however, that the predicted
structures depend strongly on the flanking con-
text, i.e., on the exact window position. In fact, a
recent algorithm for microRNA detection is based
upon the idea to consider the stability of secondary
structure against changes in the immediate

TABLE 3. Summary statistics of the RNAz screen of strame-

nopiles

Threshold P40.50 P40.90 P40.98 P40.99

Specificity per test 0.9861 0.9949 0.9985 0.9996
Candidate alignments 115 60 42 35
Randomized 37 14 4 1
False discovery rate (%) 32 23 10 3
Distinct loci (P. sojae) 44 17 12 11
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environment (Sewer et al., 2005). A large step size
for the window implies poor sampling of the
plausible local structures, hence small step sizes
are important for accuracy.

Combining a global folding algorithm with a
sliding window is also problematic in the context
of ncRNA detection using tools such as RNAz:
Large window sizes are preferable in order to
detect larger ncRNAs, but may actually be detri-
mental for detecting small RNA structures, since
the flanking regions interfere with the signal from
the small structured RNA.

Two modifications of the global RNA folding
algorithm have been developed to address this
problem. RNALfold computes local minimum free
energy structures with base pairs spanning no
more than L bases in OðN � L2Þ time (Hofacker
et al., 2004b). This is equivalent to folding all
windows of size L, while saving a factor L in CPU
time compared to the naive approach. A partition
function variant with the same time complexity,
RNAplfold, computes the probability of a base pair
(i, j) occurring in the structural ensemble, aver-
aged over all sequence windows with a given size
W (Bernhart et al., 2006). To get robust statistics,
the size of the averaging window W should be
chosen somewhat larger than the maximum span

L, resulting in an algorithm with complexity
OðN �W2Þ, see Figure 3.

Both RNALfold and RNAplfold are true ‘‘scan-
ning algorithms’’; requiring only OðN þ L2Þ mem-
ory, and are therefore suitable for genome-wide
surveys. Together with a z-score for the energy of
a sequence window, which could be cheaply
computed in the course of the algorithm (Washietl
et al., 2005b), RNAplfold may be used as a first
crude indicator whether stable RNA secondary
structures can be expected in a given part of the
genome.

In principle, it is straight-forward to generalize
the prediction of consensus structures from
aligned sequences from global structures to local
structures. RNAalifold (Hofacker et al., 2002)
computes the most stable structure that is
common to a collection of aligned sequences.
Algorithmically, only the energy model changes:
one simply has to add up the contributions of
aligned sequence intervals instead of evaluating a
single sequence. This modification can easily be
implemented also in the scanning programs
described in the previous paragraph. The resulting
RNALalifold program will be available with the
next release of the Vienna RNA package. An
example for the partition function case is given

Fig. 3. (a) Local pair probabilities of a human miRNA cluster. (b) Homologs in dog (upper), opossum (middle) and mouse
(lower) to the miRNA cluster in (a). MiRNAs annotated in miRBase are outlined in full lines, putative miRNAs un-annotated in
dashed lines. Note that every putative miRNA almost perfectly aligns to the human counterpart (with one mutation at most).
Dog, opossum: W 5 L 5 100, Mouse: W 5 150, max. base pair span L 5 100. The base pairs on the upper edge of the mouse plot
(long-range base pairs) are less probable than in the other three because of the more robust statistics. (c) RNALalifold partition
function of an alignment of the homologous miRNA clusters in (a) and (b). The noise is considerably reduced as opposed to the
single folds shown above.
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in Figure 3, where the conservation of the miRNA
precursor structures, as opposed to any other
structural features present is shown.
Foldalign (Hull Havgaard et al., 2005; Torar-

insson et al., 2006) implements a scanning local
alignment algorithm. More precisely, this version
of the Sankoff algorithm mutually scans two
sequences of arbitrary length for common local
structures with a maximum motif length. While
the restriction to local motifs speeds up the
algorithm, it is still computationally demanding.

In principle, also the SCFG-based algorithms
QRNA and EvoFold predict local secondary struc-
tures. However, both are not implemented as true
‘‘scanning algorithms’’, and thus still require a
sliding window approach.

WHO IS WHO? — APPROACHES TOWARDS
RNA ANNOTATION

The problem

With the exception of a small number of
evolutionarily very well conserved RNAs (in
particular rRNAs, tRNAs (Lowe and Eddy,
1997), the U5 snRNA (Collins et al., 2004), RNAse
P and MRP (Piccinelli et al., 2005)), most ncRNAs
are not only hard to discover de novo in large
genomes, but they are also surprisingly hard to
recognize if presented without annotation. While
it is often impossible to use relatively faint
sequence homologies to find homologs of known
RNAs in a whole genome, it is usually rather easy
to recognize the same sequences in the output of
genomic ncRNAs screens, due to the enrichment
of true RNAs by several orders of magnitude. As a
consequence, we found in all our RNAz screens,
that a comparison with Rfam alignments using
infernal identifies very few RNAz hits that are not
already recognizable by blast. While homologs of
known sequences can usually be reliably recog-
nized, determining class membership of novel
examples is a much harder problem.

Given an alignment not more than a few
hundred nucleotides in length that is known to
contain a conserved secondary structure, it should
be very easy to decide whether these sequences
belong to a known class of ncRNAs or not.
Conceptually, this is a very simple classification
task that should be solvable efficiently by most
machine learning techniques.

In the case of non-coding RNAs, however,
machine learning approaches severely suffer from
the very limited amount of available positive
training data and the fact that negative training

data are almost never known at all. Even for the
most benign case, microRNA precursors, there is
only a few hundred independent known examples,
namely the miRNA families listed in the mir-base
(Griffiths-Jones, 2004; Griffiths-Jones et al., 2005;
Griffiths-Jones, 2006; Hertel et al., 2006). Over-
training is thus a serious problem. As a conse-
quence, it is necessary to restrict oneself to a small
set of descriptors. These constraints, however,
make the choice of the descriptors a crucial task.

Which direction?

A relatively simple example for such a classifica-
tion task is the problem of strand prediction:
Large parts of the RNA energy model, in parti-
cular the stacking energies for Watson-Crick pairs,
are symmetric when forming the reverse comple-
ment of a sequence and its structure. Asymmetry
is introduced in particular by GU pairs that map to
a non-canonical AC in the reverse complement.
Nevertheless, plus and minus strand of a sequence
often exhibit similar folding energies. In computa-
tional screens for ncRNAs one will usually look at
both the forward and reverse version of any given
alignment, and often a significant signal for a
structural RNA is detected on both strands. RNAz
so far simply estimated the reading direction as
the one that achieved a higher classification
probability for ‘‘structured RNA’’. This method is
quite inaccurate, however, in particular when the
differences in classification probability are small.

An efficient strand detector to be used in
conjunction with RNAz can be constructed from
only six descriptors which moreover are already
computed by RNAz: The difference of the SCI value
for plus and minus strand, the difference of the
RNAalifold consensus energy, the difference in
mean folding energies, and the difference in mean
z-score. In addition, the average sequence con-
servation and the length of the alignment is used.
A support vector machine can then predict the
correct strand with over 96% accuracy. This
method is implemented also as a stand-alone tool
RNAstrand (Missal and Stadler, submitted) that
can be used to re-evaluate earlier ncRNA screens.
Figure 4 shows one such example.

Family membership: H/ACA-Box snoRNAs

In order to assign predicted ncRNAs to a
particular ncRNA family, it seems natural to
include structural descriptors in the classification
procedure. RNA structure prediction, however, is
less than perfect even when co-variation informa-
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tion from an alignment can be used (Hofacker
et al., 2002). This is true in particular when the
exact ends of structured sequences within the
multiple sequence alignment are not known.
Furthermore, most ncRNAs can tolerate devia-
tions from the ‘‘typical’’ structure without loss of
function. The microRNA precursor structure may
for example contain small branching helices,
instead of forming a single stem–loop. These
limitations restrict the usefulness of structure
description languages, in particular, when one is
interested in ncRNAs that are not members of one
of the few well-known families.

Thus, structural descriptors have to be suffi-
ciently fuzzy to allow for imperfect structure
prediction and structural variation. The RNAmi-
cro program for example uses 12 descriptors, only
two of which are derived from the structure,
namely the length of the stem and hairpin loop
region of the miRNA stem–loop structure. Four
descriptors measure sequence conservation in the
loop and stem regions (the loop tends to be very

variable, while the mature miRNA is highly
conserved), another five descriptors measure the
thermodynamic stability, and one measures
sequence composition. This approach was quite
successful, see e.g. Figure 5 for an example.

It seems thus natural to extend this approach to
other classes of ncRNAs. During the work on
RNAmicro we observed that H/ACA-box snoRNAs,
which also form hairpin-like structures, formed a
particularly resilient group of false positives. This
suggests to use the same set of descriptors and
simply train the system with multiple sequence
alignments of H/ACA-box snoRNAs as positive
training set, while a sample of randomized hair-
pins, microRNAs, as well as known stem–loop
structures from other ncRNA classes are used as a
negative training set. This yields a sensitivity of
only about 63% at a specificity of about 75%. This
suggests to include a small number of additional
descriptors that are geared towards specific struc-
tural properties of box H/ACA snoRNAs discussed
e.g. in (Henras et al., 2004).

chrI
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Fig. 4. The RNAz prediction Ce-512233 (Missal et al., 2006) coincides with pre-mir-79. The RNAz prediction favors the
minus strand (top). The correct reading direction is on the plus-strand, however. RNAstrand computes a score of D 5�0.82 for
the RNAz hit, indicating that the direction predicted by RNAz is incorrect. The RNAstrand classification coincides here with the
correct reading direction of the microRNA precursor.
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Fig. 5. RNAmicro annotation (Hertel and Stadler, 2006) of a RNAz survey of nematode genomes (Missal et al., 2006). About
half of the known C. elegans microRNAs are not conserved in C. briggsae and are hence not detected by comparative genomics.
(Adapted from Hertel and Stadler, 2006).
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The snowReport classificator uses nine descrip-
tors, among them the same quantities for asses-
sing folding thermodynamics as in RNAmicro:
energy z-score, SCI, average folding energy of the
individual aligned sequences, ratio of folding
energy and GC content. The stem–loop structures
of snoRNAs are significantly shorter than those of
miRNAs. Thus we include the number of stacked
pairs and the length of the hairpin loop. Further-
more, H/ACA box snoRNAs have a single large
interior loop which is (nearly) symmetric. We
hence add the average symmetry (absolute value
of the length difference between the 30 and 50

unpaired stretches of all interior loops) as well as
the length of the longest interior loop as additional
descriptors. We use libsvm 2.8.2 with the same
settings as RNAmicro, RNAz and RNAstrand.

In contrast to the microRNAs, a sufficiently
large set of snoRNA alignments is not available,
albeit there are several examples in the Rfam
(Griffiths-Jones et al., 2005) and snoRNA-LBME-db
(Lestrade and Weber, 2006) databases. We thus
searched all available vertebrate genomes for
homologs on the known human H/ACA-box snoR-
NAs following the protocol for microRNA homol-
ogy search used by Hertel et al. (2006). This yields
395 alignments containing 2–18 sequences per
alignment.

Using half of this set as positive training set and
half of the microRNA alignments reported by
Hertel et al. (2006) as negative training set
resulted in a sensitivity of 81% and a specificity
of 87%. Afterwards, the test data were used for
retraining the SVM and the training data for
testing it. This resulted in a sensitivity of 91% and
a specificity of 81%. For application to previously
reported RNAz screens, we used the full sets of
positive and negative examples for retraining.
Unfortunately, snowReport misclassifies a large
number of tRNAs and 5S rRNAs as snoRNAs.
Closer inspection shows that in these cases only
structures are recognized. Since the false positives
appear to be restricted almost exclusively to these
well-known ncRNAs, they do not present a serious
problem since they are reliably identified by
sequence homology or tRNAscanSE.

Metazoan box H/ACA usually are composed of
two stem–loop structures (Henras et al., 2004); we
hence classify only those RNAz hits as putative box
H/ACA snoRNAs in which (1) two hairpins
separated by not more than 20 nt are classified
positively by snowReport, and which (2) contain
the H-box motif. Results are summarized in
Table 4. The most interesting observation of this

preliminary screen is the large number of plau-
sible candidates in nematodes in contrast to both
the urochordate and mammalian data. It is
interesting to note in this context that the recent
experimental screen by Deng et al. (2006) identi-
fied dozens of putative snoRNAs in C. elegans.

In contrast to snoGPS (Schattner et al., 2004), we
do not rely on the existence of a known or
suspected target site in an rRNA or snRNA. Our
approach thus predicts a few plausible candidates
of ‘‘orphan’’ snoRNAs, i.e., snoRNAs within un-
known modification target site.

In contrast to RNAmicro, the SVM-based classi-
fication of box H/ACA snoRNAs was only moder-
ately successful. The most significant problem
appears to be the generally low quality of the
predicted consensus structures, which seems to be
at least in part a consequence of problems in the
underlying sequence alignments. Reliable meth-
ods for structure-based or structure-assisted mul-
tiple sequence alignments are thus a necessary
pre-requisite for the successful application of
structural descriptors in automatic ncRNA anno-
tation. Although several approaches exist,
reviewed e.g. in a comparison of techniques for
consensus structure prediction by Gardner and
Giegerich (2004), their suitability for the purpose
of ncRNA annotation has not yet been studied
systematically.

snRNA-like candidates

A recent experimental survey of C. elegans
genome (Deng et al., 2006) identified a class of
snRNA-like ncRNAs that are characterized by a
recognizable SMN-binding site. We have therefore
reanalyzed the results of the RNAz screen of
urochordates (Missal et al., 2005) to identify

TABLE 4. Application of snowReport on sea squirts, nema-
todes and vertebrates

Candidates Urochordata Nematoda Vertebrata

SnowReport 1,553 1,833 5,519
True negatives 203 310 3
Distance constraint 14 255 17
H-box 14 204 12
Known HACA snoRNA 13 10 65
SnowReport 9 9 24

Numbers to distinct loci in the genomes of C. intestinalis, C. elegans
and H. sapiens, resp. The false positives in urochordates and
nematodes are tRNAs and rRNAs, which were excluded from the
training data.
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potential SMN binding sites in these structured
RNA candidates.

We use RNAbob to search for the sequence motif
AUUUYUS followed by a hairpin of rather variable
stem and loop length. This pattern is a common
generalization of the SMN binding sites in the
known Ciona intestinalis snRNAs. In our analysis
we require that the pattern occurs in aligned
positions of the C. intestinalis and Ciona savignyi
ncRNA candidates. This procedure recovers many
of the known snRNAs that we found by the RNAz
screen and in additions identifies 28 plausible
candidates (as well as five copies of tRNA-Ile and
one probable protein coding transcript). One
example is described in some detail in Figure 6.

NEW KIDS ON THE BLOCK

Sequence-based clusters

The simplest approach to identifying multi-gene
families is blastclust. A reinvestigation of the
urochordate RNAz screen (Missal et al., 2005)
shows that about a third of the candidates have
at least one related sequence in the candidate set,

Table 5. As one would expect, individual tRNA and
snRNA families are identified by this approach. In
addition, however, we find three very large
families of candidates. They do not show signifi-
cant homology outside the Ascidians and they are
not associated with a known or predicted family of
protein coding genes. The cluster members are not
uniformly distributed across the genome but
appear concentrated at a few genomic loci. This
pattern is reminiscent of many groups of verte-
brate ncRNAs, including in particular tRNAs and
snRNAs, which appear in multiple, often genomi-
cally clustered, copies. Lineage-specific examples
of functional repeat-derived ncRNAs include, e.g.,
the mouse B2-element (Allen et al., 2004b). Since
the RNAz classification values are very high for
most members of these classes, we speculate that
these groups contain functional ncRNAs that are
associated with an ascidian-specific repeat family.

A similar pattern was observed in C. elegans
(Missal et al., 2006). With slightly different
blastclust setting, 148 clusters containing a total
of 916 RNAz signals as well as 2,756 non-clustered
sequences were found. In contrast to the urochor-
date data, however, all large clusters could be
annotated. It is not clear at this point whether this
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Fig. 6. Secondary structure (top) and genomic location (bottom) of a putative snRNA-like RNA in Ciona intestinalis. The
RNAz predictions 555,803 and 555,804 are located within two introns of an ENSEMBL gene, which match a single locus in the
Ciona savignyi genome. It is the reverse complement of these two sequences, however, which contains the putative SMN binding
site, which is highlighted in the secondary structure. Trimming the alignment to the three distinct sequences, two from
C. intestinalis and a single one from C. savignyi so that only the well-conserved region is retained and rescoring with RNAz yields
p1 5 0.709774 and p�5 0.961678. RNAstrand returns a decision of p 5�0.999999, i.e., an unambiguous vote for the negative
strand.
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difference is biologically meaningful, or whether
sequences with high copy numbers have been
excluded more effectively from the nematode
screen as a consequence of more complete exclu-
sion of repetitive DNA. Not surprisingly, no large
sequence-based clusters were found in the mam-
malian screen (Washietl et al., 2005a) since in
this case the input alignments were already
devoid of multi-copy genes including tRNAs and
snRNAs.

Structure-based clustering

A more general approach to assign ncRNAs to
families is based purely on structural similarity.
Given a set of predicted ncRNAs, one may use a
structural alignment method to compute all
pairwise alignments, and subsequently cluster all
ncRNAs by similarity. In principle, this should
allow not only to assign predicted ncRNAs to
known families, but even to define complete new
ncRNA families. For the pairwise alignment step
one would ideally use a variant of the Sankoff
algorithm which simultaneously computes se-
quence alignment and consensus structure, but
is computationally expensive (Sankoff, 1985).
Performing structural alignments for all pairs of
ncRNA candidates in a set of several ten thousand
is therefore still problematic. Moreover, most
existing implementations can use only two se-
quences (no profile alignments) and compute
global instead of local similarity. A local variant
is described by Hull Havgaard et al. (2005).

The goal of annotation tools that classify
family membership in results of other surveys is
different from the direct search for RNA family
members in genomic data. In the latter case one is
interested in a ‘‘short list’’ of candidates that
contains as few false positives as possible (e.g., for
use in experimental verification). In post-proces-
sing data such as those from RNAz we are
interested in a more balanced trade-off between
sensitivity and specificity similar to that of
annotating protein motifs in known predicted
protein coding genes.

For the purpose of a structural clustering of
ncRNA candidates, we suggest a pipeline consist-
ing of the following three major steps:

* generate all pairwise local sequence/structure
alignments,

* based on this information, hierarchically cluster
the ncRNAs using WPGMA (or any other suited
hierarchical clustering method) into a tree,

* finally, extract relevant clusters and construct
multiple alignments of the ncRNA candidates in
each cluster.

Recent developments in pairwise sequence–
structure alignment allow us to get very close to
the ideal of using Sankoff’s algorithm and in the
same time increase the efficiency dramatically.
Hofacker et al., (2004a) proposed a (global) scoring
scheme that is based on all base pair probabilities
(in the structure ensemble) of the two RNAs. Such
probabilities can be reasonably predicted using

TABLE 5. Sequence-based clustering of Ciona intestinalis ncRNA candidates

Size Annotation Size Annotation Size Annotation

197 (1) 13 tRNA Arg:CCT 8 tRNA Thr:AGT
160 (2) 13 (16) 8 tRNA Val:AAC
144 (3) 12 tRNA Gly:GCC 8
32 5S RNA 11 tRNA Gly:TCC 8
26 tRNA Ile:YAT 11 (19)
22 (6) 11 (20) Size Frequency

20 (7) 9 7 7
18 tRNA Pro:HGG 9 U5 6 1
17 (9) 9 5 10
17 (10) 9 4 13
14 tRNA Leu:WAG 9 3 22
13 U3 8 tRNA Ala:WGC/Ser:GCT 2 83
13 tRNA Arg:ACG 8 1 2065
13 tRNA Leu:TAA 8 tRNA Asn:GTT

Here we used blastclust requiring a sequence overlap of Z50%, 80% identity in the overlap region, and word size of 20, i.e., much less stringent
settings than the defaults. Numbers in parentheses refer to sequence families for which consensus sequences are provided in the electronic
supplement.
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McCaskill’s pair probability algorithm (McCaskill,
1990). Since probabilities reflect thermodynamical
properties of the RNAs, the new scoring scheme
factors in thermodynamics without the need of
computing a full energy model during alignment.
It turns out that this idea can be used to design an
even more time- and space-efficient algorithm that
can also be extended to local alignment (Will et al.,
2006). The resulting new algorithm LocARNA
is ready to manage the envisioned ten thousands
of RNAs. As a test case we consider the 3,332
C. intestinalis ncRNA candidates from Missal
et al. (2005). In contrast to the previous section,
we used here a very stringent sequence-homology-
based pre-processing set that identifies sequences
with more than 90% identity. Pairwise structural
alignments of the resulting 2,804 distinct se-
quences can be computed in about 2 days on 10
dual core CPUs (Fig. 7).

An appropriate distance measure that is based
on both sequence and structure information is
necessary for applying the weighted pair group
method (WPGMA) or any comparable method for
tree construction and cluster extraction. Since the
pairwise alignments are computed together with
their similarity scores, one might naively attempt
to use these scores also for clustering. This is not
appropriate, however, since the local scores reflect
the quality of local structure prediction, not the
similarity of the different alignments.

We therefore used the following normalized
sequence and structure similarity measures of
different alignments of RNAs. On the sequence
level, we use the average sequence identity
between the RNA sequences of the alignment.
For the scoring of the structural similarity, we use
the SCI, which is the ratio between the mean
single minimum free energy (mfe) and the
consensus mfe. The similarities are then trans-
formed into distances and WPGMA is applied onto

the resulting distance matrix to produce the final
tree. Figure 8 shows a subtree that contains
about half of the known tRNA precursors. With
very few exceptions, the tRNAs are clustered
according to their amino acid and anticodon,
demonstrating that the procedure indeed yields
plausible results.

The resulting tree is then cut at a specific
threshold to generate the clusters, from which we
can then extract a common motif using an
appropriate multiple alignment method. Sequence
identity in the identified clusters can be rather low
due to the structure influence in the clustering
(often below 60%). The approach is thus capable of
identifying families of structured RNAs in a range
where global multiple sequence alignment already
yields very poor results.

Interactions with mRNAs

Regulatory RNAs more often than not function
by means of direct RNA–RNA binding via com-
plementary base pairing. This mechanism under-
lies the post-transcriptional gene silencing
pathways of microRNAs and siRNAs (reviewed
e.g. by Nelson et al., 2003) as well as RNAi
(Elbashir and Tuschl, 2001), it is crucial for
snoRNA-directed RNA editing (Gott and Emeson,
2000), and it is used in the gRNA-directed mRNA
editing in kinetoplastids (Stuart et al., 1997).
A wide range of ncRNA regulation in bacteria
is based upon RNA duplex formation (Gottesman,
2004). Synthetic ‘‘modifier RNAs’’ have been used
as experimental techniques for changing the gene
expression patterns independent of the RNAi
pathway (see e.g. Childs et al., 2002; Meisner
et al., 2004; Nulf and Corey, 2004; Paulus et al.,
2004). Recent studies of the transcriptome of
various organisms have uncovered ample evi-
dence for wide-spread anti-sense transcription
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Fig. 7. Pipeline for clustering a set of ncRNAs A,B,C,D and E. Starting from the RNAs with pair probability matrices, all
pairwise alignments are computed, clusters determined and the RNAs of each cluster multiply aligned.
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(Shendure and Church, 2002; Yelin et al., 2003;
Chen et al., 2005a; Katayama et al., 2005; Steigele
and Nieselt, 2005; David et al., 2006). These
transcripts might at least in part be involved in
RNA–RNA interactions.

MicroRNA-mRNA interaction is a rather special
type of interaction mediated by the RISC complex,
which at least in metazoa appears to be governed
by rules that are only partially derived from the
thermodynamics of RNA–RNA interactions, see
e.g. (Brennecke et al., 2005; Isaac, 2005). Several
well publicized tools are available for this task, an
non-exhaustive list is given in Table 6. Since
miRNA target prediction is not primarily con-
cerned with the specific functions of the miRNAs
rather than with the primary annotation tasks, we
will not expand on this topic.

Beyond the realm of microRNAs, RNA–RNA
interactions might be more direct and hence more
directly related to the thermodynamics of RNA–
RNA hybridization. In order to gather evidence for

a possible function of the ncRNAs candidates in
ncRNA–mRNA interactions, we investigated
whether the RNAz predictions show an increased
propensity of interacting with known mRNAs. In
detail, we used the following procedure:

True and shuffled RNAz hits from both genomic
strands were aligned to human mRNA sequences
from RefSeq (NCBI FTP server, March 7) using
NCBI blast (version 2.2.10 with standard para-
meters for blastn except an E-value cutoff of
Er0.1 and filtering set to false). The resulting
alignment was filtered by removing all blast
alignments with a length of less than 20 nucleo-
tides or less than 75% sequence identity. Further-
more, alignments were retained only if the query
matched the antisense strand of an mRNA. Of the
71,970 RNAz hits, this yields 11,112 (15.4%) true
and 1,319 (1.8%) shuffled predicted antisense
interactions. In the control consisting of 71,968
conserved non-coding DNA sequences that were
part of the input set in the vertebrate RNAz screen,
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Some nodes represent groups of almost identical sequences (490% identity) of which only one representative has been used
for clustering.
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we find 9,055 (12.6%) predicted interactions. This
corresponds to an enrichment between true and
random fractions of 1.22.

After blast search, 1,396 of true, none of the
shuffled, and 1,108 of the control hits were
removed because they overlapped the mRNA
sequence that they matched. This step eliminates
potential false positives, but might also exclude
true cis-antisense transcripts. Interestingly, this
step does not affect the enrichment factor of 1.22.

For each RNAz hit, the longest alignment was
kept for further analysis. For these interacting
pairs of RNAz hits and mRNAs, a coarse grained
estimate of the interaction free energy (IFE) was
computed using RNAduplex. This component of the
Vienna RNA Package computes a simplified hybri-
dization of two RNAs which allows only inter-
molecular base pairs (see also Rehmsmeier et al.,
2004; Dimitrov and Zuker, 2004).

IFE distributions of the true and shuffled RNAz
hits were tested against the null hypothesis of a
common distribution using the Kolmogorov–Smir-
nov test from the statistical package R. The null
hypothesis that both IFE distributions of shuffled
and true RNAz sequence originate from a common
distribution was rejected with Po10�16. The
remaining RNAz sequences were co-folded with
their potential target mRNAs using RNAduplex to
determine IFEs. Density plots of the IFE distribu-
tions are shown in Figure 9.

Interactions were classified according to their
calculated IFEs. Class I interactors have an IFE
lower or equal to the empirical 0.05 quantile of the
shuffled IFE distribution, class II interactors
lower or equal to the 0.1 empirical quantile, class
III interactors lower or equal to the 0.25 empirical
quantile and class IV interactions lower or equal
to the empirical median IFE of the shuffled RNAz
hits. Results of this classification are given in
Table 7.

Only 13 of the 11,112 RNAz sequences retained
after Blast search are known miRNAs, and nine of
these are classified as interacting based on IFE.
Four of these sequences have an entry in Tarbase
(Sethupathy et al., 2006), listing experimentally
verified miRNA target mRNAs and in all four
cases our approach would have predicted the
correct target. Four of the predicted interactors
are snoRNAs, which is in line with other reports
that snoRNAs may play a role in mRNA modifica-
tion (Kishore and Sham, 2006).

Consistent with published data, we identify e.g.
the interaction between mir-196a and its target
mRNA HOXB8. This miRNA has an exceptionally
high complementarity to its target mRNAs com-
pared to other miRNAs (Yekta et al., 2004) and
one would therefore expect to find a particularly
strong interaction. Nevertheless, we classify this
interaction as not significantly more stable than
random. This may indicate that microRNA func-
tion is not governed by RNA–RNA interaction
energy but is dominated by structural constraints
imposed by the RISC complex. This view is
consistent with the observation that most
miR–mRNA interactions are far from exact com-
plementarity (Du and Zamore, 2005). At this point
we cannot rule out, however, that the interaction
energy model used here is too crude to properly
describe individual binding patterns.

We have identified here a large number of
evolutionary conserved structured ncRNA candi-
date genes that interact with mRNAs significantly
stronger than random sequences. Almost none of
them belong to one of the established ncRNA
families. This observation stimulates speculations
on the functional role of these transcripts. Given
the stable interactions, one might consider siRNA-
like functions. Alternatively, it is conceivable that
some of these genes act as ‘‘modifier RNAs’’
by influencing mRNA secondary structure

TABLE 6. Tools for microRNA target prediction

Program Source Reference

PicTar http://pictar.bio.nyu.edu/ Grün et al. (2005), Lall et al. (2006),
Krek et al. (2005)

MiRanda http://cbio.mskcc.org/mirnaviewer/ Enright et al. (2003)
TargetScan http://genes.mit.edu/targetscan/index.html Lewis et al. (2003)
RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ Rehmsmeier et al. (2004)
EMBL http://www.russell.embl.de/miRNAs/ Stark et al. (2003), Brennecke et al. (2005)
DIANA-microT http://diana.pcbi.upenn.edu/cgi-bin/micro t.cgi/ Kiriakidou et al. (2004)
MicroInspector http://mirna.imbb.forth.gr/microinspector/ Rusinov et al. (2005)
miRU http://bioinfo3.noble.org/miRNA/miRU.htm Zhang (2005)
MovingTargets available on DVD by request Burgler and Macdonald (2005)
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(Hackermüller et al., 2005). The fact that these
ncRNAs are conserved in sequence and structure
may suggest that other co-factors, such as proteins
which recognize specific structured binding mo-
tifs, are involved in their function. It remains to be
demonstrated whether these observed inter-
actions are restricted to conserved structured
RNAs or are also common among conserved non-
structured RNAs.

Structured RNAs are depleted
in predicted TFBS

A recent study by Drake et al. (2005) demon-
strated that evolutionarily conserved non-coding
sequences are selectively constrained and thus can

be expected to have discernible function(s). These
sequences are most often interpreted as cis-acting
DNA motifs. This class of functional sequence
motifs consists in particular of binding sites for
proteins involved in transcriptional regulation
(Tagle et al., ’88; Davidson, 2001; Butler and
Kadonaga, 2002). In order to corroborate the fact
that the RNAz predictions are indeed functional at
the RNA level, we consider the distribution of
known TFBSs within the RNAz candidates.

We consider a subset of 493 vertebrate TFBS
patterns from the transfac database (Heinemeyer
et al., 1998). These are mapped to the human
sequence of every 10th alignment ‘‘slice’’ that
scored as ‘‘structured RNA’’ in the mammalian
RNAz screen by (Washietl et al., 2005a). For
comparison, 10% of the negatively scored input
alignments as well as shuffled datasets of both the
positive and negative sets were used. The mapping
was performed with pwmatch,5 a re-implementa-
tion of the scoring algorithm published by Kel
et al. (2003), using a cut-off of 0:9. For simplicity,
we will refer to these hits TFBSs in the following,
irrespective of whether the detected sequence
motif is a functional binding site in vivo or not.

We find that TFBSs are slightly enriched in true
versus shuffled data sets. Furthermore, there is a
small enrichment of predicted TFBSs in conserved
non-coding DNA that is not classified as struc-
tured RNA (0.24 TFBS/nt) compared to the
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Fig. 9. Densities of interaction free energy distributions. The density of the interaction free energy distribution of true
RNAz hit—mRNA interactions is shown in black, those of shuffled RNAz hits—mRNA interactions in brown. Dotted lines
indicate the energy thresholds used for classification, at �215.82, �174.28, �126.91 and �91.80 kcal/mol, corresponding to the
0.05, 0.10, 0.25, 0.50 quantiles of the randomized distribution and defining classes I–IV respectively as interactions with energy
lower or equal the threshold.

TABLE 7. Interaction with mRNAs — relative to total number

of RNAz hits

Interaction
True RNAz hits Random RNAz hits

class Number Fraction Number Fraction Enr.

I 2,036 0.028 883 0.012 2.3
II 1,193 0.017 651 0.009 1.9
III 1,949 0.027 1,348 0.019 1.4
IV 2,087 0.029 1,861 0.026 1.1

Absolute numbers of RNAz hit sequences matching a particular
interaction class and the respective fraction of total RNAz hit
sequences (71,970 true, 71,968 random) are given. About 2,451 true
and 3,204 randomized RNAz hits have an interaction energy smaller
than the median of shuffled RNAz hit—mRNA interaction energies
and are not mentioned in the table.

5The pwmatch tool is available from www.bioinf.uni-leipzig.
de/Software/pwmatch.
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putative ncRNAs (0.20 TFBS/nt). Since rando-
mized sequences have only a slightly smaller
density of TFBS (0.18–0.19 TFBS/nt), we conclude
this (high) background level is spurious, i.e., that
most of the computationally predicted TFBS are
not functional. The false discovery rate of the
human RNAz screen was estimated on the order of
10% (Washietl et al., 2005a). The data are thus
consistent with an increased frequency of TFBS in
evolutionarily conserved non-coding DNA, while
structured RNAs approximately behave like ran-
dom background.

CONCLUDING REMARKS:
UNSTRUCTURED RNAs

In prokaryotic genomes, the structure of genes,
and in particular the promotor and terminator
elements are sufficiently well understood that they
help to detect non-coding genes independently of
RNA structure or comparative sequence informa-
tion. In eukaryotes, on the other hand, computa-
tional approaches to de novo ncRNA prediction are
at present limited to structured RNAs.

A substantial number of mlncRNAs, including
Xist and H19, appear to contain one or more
domains with conserved RNA secondary struc-
tures, which can be detected (Washietl et al.,
2005a). Without additional experimental informa-
tion such as EST or cDNA data, however, it is not
possible at present to reliably predict the structure
of such genes from genomic sequence data.
Interestingly, Xist has arisen from the protein-
coding Lnx3 during the formation of the mamma-
lian X-chromosome (Duret et al., 2006). Such
ancient ‘‘pseudo-genes’’ that acquired different

functions, and hence different patterns of se-
quence conservation, could at least conceivably
be detected by means of specialized computational
approaches.

As the example of the non-coding gene Evf-1
(Faedo et al., 2004; Kohtz and Fishell, 2004)
shows, not all well-defined non-coding RNAs have
detectable evolutionarily conserved secondary
structures, see Figure 10. This gene is one of the
few representative of mlncRNAs that has been
studied in some detail. The expression of Evf-1
depends both on the ‘‘Sonic hedgehog’’ (shh) and
Dlx genes. The molecule exhibits splice variants of
similar patterns in human, mouse and rat. The
splice variant Evf-2 (Feng et al., 2006) has two
50 exons, one of which overlaps one of the two
known ultra-conserved enhancer elements that
interact with Dlx-2 to activate transcription of the
two adjacent Dlx genes. Feng et al. (2006) found
that this ncRNA acts as co-activator by directly
interacting with Dlx-2, indicating a novel mechan-
ism whereby transcription is controlled by the
cooperative actions of an ncRNA and a home-
odomain protein. In a similar vain, the trithorax
response element derived transcripts mentioned
in the introduction also show no detectable
conserved secondary structure. Despite the rather
well-defined architecture of such transcripts and
their evolutionary conservation at sequence level,
currently available bioinformatics methods are
insufficient to reliably detect such unstructured
ncRNA genes.

Recent tiling array (Cawley et al., 2004) and
cDNA data (Carninci et al., 2005) strongly suggest
that ncRNAs genes of this type are the rule rather
than the exception. Even in the presence of cDNA
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Fig. 10. Chromosomal region of the Dlx-5/6 bigene cluster (modified from the UCSC genome browser, hg17 assembly). Two
known ultra-conserved enhancer elements, ei and eii, which are targets of Dlx2 (Ghanem et al., 2003), are associated with the
Evf-2 transcript, which in turn interacts directly with Dlx2 as a co-activator of Dlx-5 and Dlx-6 (Feng et al., 2006). None of the
predicted RNA secondary motives (RNAz, EvoFold) in this region is located in an exon of the non-coding RNAs Evf-1, while
EvoFold predicts conserved structure at the two ultra-conserved enhancer location ei and eii.
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and/or EST data, it is not an easy task to
distinguish genes with short ORFs that code for
short peptides from bona fide ncRNAs.

An interesting observation in this context is that
a small class of large ncRNAs (which includes Xist
and Air ) give rise to a substantial number of short
unspliced cDNAs that appear to be internally
primed at A-rich regions of a much longer full-
length transcript. Starting from this property,
Furuno et al. (2006) searched the entire RIKEN
mouse cDNA dataset and characterized 66 ‘‘long
expressed non-coding regions’’ (ENORs) longer
than 10 kb, many of which are involved in
imprinting and/or anti-sense transcription. A
substantial number of these long ncRNAs (42 of
66 ENORs), and notably Xist, contains small
regions with conserved secondary structure as
determined by comparison with the mammalian
RNAz screen by Washietl et al. (2005a).

The distribution of TFBS discussed in the
previous section might provide another starting
point. Further investigations with selected sets of
TF binding motifs will be needed to determine
whether TFBS frequencies can be used to discern
between cis-acting DNA elements and sequence
elements that are functional at transcript level.

In this contribution, we have attempted to
provide an overview of the state of the art in
ncRNA annotation. In summary, both the detec-
tion of functional RNAs in genomic sequence data
and the classification of the candidate sequences is
a challenging problem, despite significant recent
advances in RNA bioinformatics. Reliably auto-
matic annotation that would be applicable routi-
nely on newly sequenced genomes remains elusive
beyond those cases that can be handled by
sequences homology with known ncRNA genes.
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