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Abstract:
The ability of some RNA molecules to switch between different

metastable conformations plays an important role in cellular pro-
cesses. In order to identify such molecules and to predict their con-
formational changes one has to investigate the refolding pathways.
As a qualitative measure of these transitions, the barrier height
marks the energy peak along such refolding paths. We introduce a
meta-heuristic to estimate such barriers, which is an NP-complete
problem. To guide an arbitrary path heuristic, the method uses
RNA shape representative structures as intermediate checkpoints
for detours. This enables a broad but efficient search for refold-
ing pathways. The resulting Shape Triples meta-heuristic enables
a close to optimal estimation of the barrier height that outperforms
the precision of the employed path heuristic.

1 Introduction

RNA plays a central role in living cells. Numerous RNAs are able to switch
between different structures within their life time due to thermodynam-
ics, temperature changes (thermometers), ligand binding (riboswitches)
or other signals [FHMS+01]. Such multistable RNAs regulate gene ex-
pression directly or are connected to regulatory mechanisms, e.g. splicing
[LC93]. For the correct prediction and study of such structural changes it
is necessary to identify the lowest energy refolding pathway in the under-
lying RNA energy landscape. The energy barrier height surmounted along
such paths can be used to estimate refolding probabilities [GFW+08] or
to study the kinetics of the folding process [WSSF+04].

Maňuch et al. have shown that the calculation of the exact barrier height
is a hard, NP-complete problem for RNA secondary structure landscapes
[MTSC09]. Therefore, exact approaches rely on the full enumeration of
the low energy parts of the landscape [SvdPS99, FHSW02, KH05], result-
ing in exponential runtimes. Heuristics have been introduced to avoid the



exponential behaviour while still providing a reasonable estimate of the
barrier height. The first greedy approach by Morgan and Higgs considers
direct paths only [MH98] which are of minimal length. Subsequently, the
barrier estimation was improved via more advanced direct path heuris-
tics [FHMS+01, TOSY06, GFW+08]. In order to avoid the restriction of
direct pathways, heuristics were introduced that allow for minor detours
in the landscape [LFH09, DLVHC10]. Such methods revealed the high
potential of non-direct pathways.

Our Shape Triples approach aims to improve the barrier height approx-
imation of arbitrary path heuristics by splitting the pathway prediction
Ps  Pt into Ps  R Pt, where R is a defined checkpoint for a detour.
We utilize RNA shapes and their representative structures, the so called
shreps [GVR04], to define the detour checkpoints R. RNA shapes group
structures based on their branching pattern such that the number of shape
classes is very small compared to the number of RNA structures. The re-
sulting Shape Triples meta-heuristic, i.e. a high-level strategy that guides
other path heuristics [Bla09], enables an efficient and precise estimation
of barrier heights within RNA energy landscapes.

To evaluate our method, we show for two bistable RNA molecules the
increased precision of the meta-heuristic compared to the employed path
heuristic for a large number of refolding paths. We further show that in
most cases the exact barrier height can be determined using our Shape
Triples approach.

2 Preliminaries

In order to formulate our algorithms and results, we introduce the concept
of energy landscapes, the barrier height problem, and their application to
RNA. This is followed by an overview of RNA shape abstractions.

Energy Landscapes and Barrier Heights

In order to describe and investigate folding processes, the concept of dis-
crete energy landscapes is applied frequently [Wri32, Sta02, FHSW02].
It is defined by a triple 〈X,E,N〉, i.e. a finite set of states X, an as-
sociated energy function E : X → R, and a neighborhood relationship
N : X → P(X), where P denotes the powerset. The folding process is
mainly influenced by the local minima M ⊆ X of the landscape defined
by ∀m∈M∀x∈N(m) : E(m) ≤ E(x).



A folding trajectory corresponds to a walk (or path) w = (x1, . . . , xl) ∈ X l

of length l within the energy landscape that respects the neighborhood
relation (∀i : xi ∈ N(xi−1)). With W (xs, xt) we denote the infinite set of
all possible walks starting in xs and ending in xt.

The barrier height B denotes the lowest energy peak to make two struc-
tures xs, xt accessible to each other, i.e.

B(xs, xt) = min{ max{ E(x ∈ w) | w ∈W (xs, xt) }} . (1)

The barrier height heavily influences the folding probabilities within a
certain energy landscape [FFHS00]. It can be used to derive energy land-
scape abstractions like barrier trees [HS88, FHSW02] and enables studies
of folding kinetics [WSSF+04, GFW+08].

The energy barrier problem is to determine the exact barrier height B of
two given states of an energy landscape.

RNA Secondary Structure Landscapes

In order to investigate the folding behavior of an RNA molecule the en-
ergy landscape of its secondary structures can be used [FFHS00, LFH09].
Given the nucleotide sequence S ∈ {A, U, G, C}n of an RNA of length n, a
secondary structure P is a set of base pairs {(i, j) | 1 ≤ i < j ≤ n} such
that (a) Si, Sj form a Watson-Crick (A-U, G-C) or a G-U base pair, with (b)
at most one base pair per position, i.e. ∀(i,j),(k,l) : j 6= k ∧ (i = k ⇔ j = l),
such that (c) all pairs are non-crossing, i.e. ∀(i,j),(k,l) : i < k < j ⇔ i < l < j.
The free energy of a given structure P can be calculated by a base pair
based decomposition into structural elements [ZS81]. We utilize the im-
plementation from the Vienna RNA Package1 v1.7.2 within the Energy
Landscape Library2 v3.2.0 [MWB07]. All energies are given in kcal

mol where
calculations use parameters “-d2 -T 37”. For details of the method ap-
plied and the energy parameters we refer to literature [ZS81, Hof03].

The neighborhood within an energy landscape reflects small structural
changes along the folding process. To this end we utilize so called sin-
gle moves [FFHS00], i.e. the insertion or deletion of a single base pair.
Thus, the neighborhood of a given structure P is defined by N(P ) =
{P ′ | |bp(P )− bp(P ′)| = 1}, using its number of base pairs bp(P ) = |P |.
The discrete energy landscape of an RNA S is thus defined by X as all
secondary structures P of S, E as the free energy function defined by
Zuker and Stiegler [ZS81], and the single move neighborhood N .

1Vienna RNA Package available at http://www.tbi.univie.ac.at/∼ivo/RNA/
2ELL available at http://www.bioinf.uni-freiburg.de/Software/



Maňuch et al. have shown the NP-completeness of the energy barrier
problem in such RNA energy landscapes [MTSC09].

RNA Shape Abstractions

RNA shapes, introduced by Giegerich et al. [GVR04], are a coarse grained
model of RNA secondary structures. The shape abstraction is a homo-
morphic mapping of the secondary structure set X of an RNA into a set of
compact representations of the different branching pattern covered by X.
Five levels of abstraction are introduced and we denote these πi(P ), the
shape abstraction of the i-th level of a given RNA structure P . For details
on the method we refer to literature [GVR04, SVR+06]. Throughout this
manuscript we use the RNAshapes3 implementation v2.1.5.

Given an RNA energy landscape 〈X,E,N〉, we denote with Πi the set of
all shape abstractions of level i of X, i.e. Πi = { πi(P ) | P ∈ X}. Thus
each shape πi ∈ Πi describes a class of structures of X. The structure
with minimal energy within the class is called the shape representative
structure or shrep R(πi), i.e. ∀P∈X : (πi(P ) = πi)→ E(P ) ≥ E(R(πi)).

In the following we will utilize the RNA shape abstraction concept to
generate a new and efficient meta-heuristic to estimate the barrier height
between two RNA structures.

3 Methods

Since we want to present a meta-heuristic that employs an arbitrary path
heuristic, we briefly review two existing direct path methods for the energy
barrier problem, namely the MH heuristic by Morgan and Higgs [MH98] as
well as a breadth-first-search (BFS) approach [FHMS+01]. Both, the MH

and BFS heuristic, can be implemented in our new RNA Shape Approaches
presented afterwards. The exhaustive Shape Network approach exploits
the potential of the RNA shape abstraction for the energy barrier problem.
This is followed by our efficient Shape Triples meta-heuristic that enables
a fast and precise barrier approximation.

RNA Direct Path Heuristics

Direct path heuristics find an approximate solution to the energy barrier
problem for two RNA structures Ps, Pt. Considering only single moves
(base pair insertion/deletion), a direct path ŵ is a walk w(Ps, Pt) of min-
imal length, i.e. of base pair distance d(Ps, Pt) = |(Ps ∪ Pt) \ (Ps ∩ Pt)|

3RNAshapes available at http://bibiserv.techfak.uni-bielefeld.de/download/



[MH98]. In the following the abbreviation BDP(Ps, Pt) will be used to
denote the barrier height between Ps and Pt estimated by a direct path
heuristic.

The MH heuristic: Morgan and Higgs introduced a simple greedy heuris-
tic to explore direct paths [MH98]. It utilizes an iterative conflict-driven
scheme of base pair insertions and deletions and evaluates the maximal
energy reached within the resulting walk. Applied in several iterations,
while storing the path with lowest barrier found, it returns an upper bound
on the barrier height. For details on the method refer to the literature
[MH98, FHMS+01, GFW+08].

The BFS heuristic: Flamm et al. improved the greedy MH approach
using a limited breadth-first-search (BFS) [FHMS+01]. Starting from the
initial structure Ps, it enumerates all single moves possible in direct walks
towards the target structure Pt. From these walks only the best m can-
didates are considered for extension in the next iteration. This continues
until the full walk length of d(Ps, Pt), and thus the target structure Pt, is
reached. BFS enables better barrier height approximations compared to
MH to the cost of increasing runtime correlated with m [GFW+08]. In the
following, we denote a BFS search with cut-off m with BFSm.

Drawbacks of Direct Paths: Direct path heuristics are fast, but at the
cost of precision, since only a small “corridor” of the energy landscape is
investigated. Thus, the barrier height estimated via direct paths is usually
higher than the exact one, i.e. BDP(Ps, Pt) ≥ B(Ps, Pt) [MH98]. Lorenz
et al. have shown that lowest barrier pathways often contain detours and
that rerouting via non-direct structures can significantly improve barrier
height approximations [LFH09].

Shape Approaches

The central idea of our Shape Approaches is to use energy minimal shrep
structures as intermediate checkpoints to reroute the path calculation of
a given path heuristic, i.e. to go from the start structure Ps via shreps to
target Pt. The resulting non-direct detour paths are more likely to enable
a precise barrier estimate than the employed path heuristic alone. For
simplicity, we exemplify the Shape Approaches employing a direct path
heuristic as MH or BFS.

The Shape Network approach: In order to evaluate the potential
of any Shape Approach we utilize the Shape Network (SN), which uses
the notion of shapes to create an abstraction of the energy landscape.
The Shape Network is a fully connected, labeled graph where each node
represents the shrep R(πi) of a shape πi ∈ Πi of a given fixed shape



abstraction level i. In the following, we ignore the level identifier i and
abbreviate R(πi) = Rπ to ease the presentation. Each edge between two
nodes Rπ, Rπ′ is labeled with a barrier height approximation via direct
paths BDP(Rπ, Rπ′) (e.g. using MH or BFS).

Utilizing a simple variation of the dynamic programming algorithm by
Floyd for the shortest path problem [Flo62], we get the barrier height ap-
proximation BF(Rπ, Rπ′) for any two shreps Rπ, Rπ′ via any path within
the Shape Network. Thus, using this estimate we can get an upper bound
BSN(Ps, Pt) of the barrier height between two RNA structures Ps, Pt in-
cluding detours by

BSN(Ps, Pt) = min
π,π′∈Π

{ max

BDP(Ps, Rπ),
BF(Rπ, Rπ′),
BDP(Rπ′ , Pt)

 , BDP(Ps, Pt) } (2)

The major drawback of the Shape Network approach is the high com-
putational cost to calculate the Shape Network via |Π|2 direct path cal-
culations where computation time depends on the heuristic (see direct
path section). Afterwards the Floyd algorithm runs efficiently in O(|Π|3)
and results in the barrier height approximation BF between all pairs of
shreps. Once calculated, these approximations can be used to estimate
the barrier height between any two structures using BSN from Eq. 2 with
O(2|Π|) path calculations each.

Thus, the Shape Network approach is a useful tool when interested in a
vast number of barrier heights, e.g. to calculate a barrier tree represen-
tation of the energy landscape’s minima [FHSW02]. Beyond that, we can
convert the Shape Network itself into an even coarser barrier tree abstrac-
tion covering the shrep structures that might reflect general properties of
the energy landscape. Finally, the Shape Network approach gives a lower
bound for meta-heuristics based on the Shape Approach idea.

The Shape Triples approach: In the following, we will introduce our
Shape Triples (ST) meta-heuristic which enables a fast and efficient bar-
rier height approximation. It is based on the observation that the majority
of the barrier paths within the Shape Network are very short. We get al-
ready good upper bounds BST(Ps, Pt) on the barrier height when only
investigating detours with one intermediate shape representative Rπ, i.e.

BST(Ps, Pt) = min
π∈Π
{ max

{
BDP(Ps, Rπ),
BDP(Rπ, Pt)

}
, BDP(Ps, Pt) }. (3)

Thus, our two Shape Approaches yield new barrier height approximations
BSN and BST between the two structures Ps, Pt. These estimates are



function GetBST(Ps, Pt,Π)
B ← BDP(Ps, Pt) . initialization of barrier estimate
for all (π ∈ Π) do

if (E(Rπ) < B) then . low energy shreps only
B ← min{ B, max{BDP(Ps, Rπ), BDP(Rπ , Pt)}} . update B if needed

end if
end for
return B . final BST(Ps, Pt) estimate

end function

Figure 1: Scheme for an efficient calculation of BST(Ps, Pt).

related via:

B(Ps, Pt) ≤ BSN(Ps, Pt) ≤ BST(Ps, Pt) ≤ BDP(Ps, Pt). (4)

In order to calculate BST(Ps, Pt) from Eq. 3 we do not have to consider all
shrep structures as possible intermediate checkpoints for detours. Every
indirect path using a shrep R with E(R) > BDP(Ps, Pt) will result in a
worse barrier height estimation than already given by BDP (see Eq. 3).
Thus we can use an adaptive scheme to reduce the computational cost for
calculating BST that considers only shreps with energy below the best bar-
rier height estimation found so far as given in Fig. 1. The scheme can be
further improved when using an energy sorted shape/shrep enumeration:
as soon as a shrep exceeds the current barrier estimate the iteration can
be terminated. Note, the same applies to the Shape Network approach.

4 Results and Discussion

We investigate the Shape Approaches using the RNA molecules L45 and
SL from Tab. 1. SL is the spliced leader RNA from Leptomonas collosoma
taken from [LC93]. It was shown that the ability of this molecule to switch
between two metastable structures heavily influences its splicing behavior.
L45 is a bistable artificial RNA taken from [LFH09].

In order to evaluate the methods, we study the barrier height error, i.e.
the approximated (Eq. 2/3) minus the exact barrier height (Eq. 1). To
this end we pick 5000 random pairs of local minima for SL with structural
distance ≥ 7 and energy ≤ 0. The exact barrier height is calculated using
the exhaustive barriers approach [FHSW02].

Figure 2 (left side) evaluates the Shape Approaches compared to the BFS

direct path heuristics for SL. The Shape Network approach performs best



ID shape i 2 3 4 5 structures

L45 |Πi| = 528 68 57 13 |X| = 5,999,391,327

SL |Πi| = 6305 594 336 49 |X| < 1.725× 1018

L45 S GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU

Ps (((((.....)))))(((((.....)))))(((((.....)))))

Pt ((((((((((.....(((((.....))))).....))))))))))

SL S AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGAGACUUC

Ps ..((...((((((..(((((.((((...)))).)))))..))).)))..)).....

Pt .......................((((((((((((.....)))))..)))))))..

Table 1: RNA shape/structure numbers and sequences S for the energy land-
scapes investigated. For SL we estimated |X| via sequence length n using the

upper bound of 1.07427 ·n−3/2 ·2.35467n from [CKKS09]. The structures Ps/Pt
correspond to the switch structures of the bistable molecules.

among all methods and finds the exact barrier for ≥75% of the pairs
(SN+BFS5). This shows the potential of detour pathways utilizing RNA
shapes. Furthermore, the much simpler Shape Triples heuristic shows
only a slightly higher error on average and still outperforms the direct
path heuristic.

The figure also compares (on the right) the performance of the Shape
Triples approach for different shape levels and direct path heuristics. Here,
BFS clearly beats the MH-heuristic and increasing BFS cut-offs lower the
error (as in [GFW+08]). More importantly, the Shape Triples approach
always yields better results, depicting the robustness of the method and
its independence of the direct path method applied. Finally, increased
abstraction (shape level) reduces the precision of the method. This is
expected since less detours in the landscape are considered (see Tab. 1 for
shape numbers). Nevertheless, the differences get less significant when
employing a more precise path heuristic like BFS5 (in green).

Table 2 evaluates the Shape Triples approach for the structure pairs from
Tab. 1. In most cases BST matches or is close to the exact barrier height B
and improves the upper bound from direct path results (BDP). Note, even
for high shape abstraction levels we gain a significant improvement. First
experiments reveal that an increase of the BFS cut-off can further improve
our BST results (data not shown).

The number of shapes |Πi| grows slowly exponential with increasing se-
quence length (see Tab. 1) [LPC08]. Nevertheless, the percentage of
shapes considered to calculate BST drops drastically as shown by |Πi|% in
Tab. 2. Therefore, even for increasing sequence length, the computation
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Figure 2: Evaluation of the Shape Approaches for RNA SL. (left) Direct path
BFS-heuristic for cut-off 1 and 5 in comparison to Shape Network and Shape
Triples approach at shape level i=3. (right) Performance of the Shape Triples
approach when applying different direct path heuristics and shape levels i.
Boxes cover 50% of the distribution while solid lines mark the median.

effort of the Shape Triples approach remains low.

We compare our results to the κ,λ-neighborhood approach presented in
[LFH09]. There, detours are rerouted through energy minimal structures
within the κ,λ-neighborhood, i.e. via energy minimal structures within
the structural distances κ and λ to the start and target structures, respec-
tively. Using a BFS100 heuristic (R. Lorenz, pers. commun.), Lorenz et
al. are able to estimate the exact barrier height of -7.5 for L45 [LFH09]4.
The Shape Triples approach reproduces the same exact barrier height for
different shape levels (see Tab. 2) while using a much faster BFS5 with
cut-off 5 instead of 100 (see Methods).

5 Conclusion

We have introduced RNA shape based meta-heuristics to estimate the
barrier height between RNA structures, an important problem to study
multistable RNA molecules. The methods utilize shape representative
structures (shreps) as intermediate checkpoints to reroute a given path

4Note, in [LFH09] the energy difference ∆E = (B(Ps, Pt)−E(Ps)) is given. Thus,
the barrier height was recalculated by (E(Ps) + ∆E).



Shape Triples BST(Ps, Pt)

ID B(Ps, Pt) shape i 2 3 4 5

L45 -7.5 only BFS5 -4.87 with BFS5 -7.5 -7.5 -6.4 -6.2

BDP(Ps, Pt) ≥ -4.87 |Πi|% 16.7 33.8 31.6 38.5

SL 0.5 only BFS5 2.6 with BFS5 0.5 0.51 0.51 2.6

BDP(Ps, Pt) ≥ 1.9 |Πi|% 5.9 9.4 14.8 18.4

Table 2: Barrier height evaluation for the Ps/Pt structure pairs from Tab. 1.
Given is the exact barrier B(Ps, Pt), the estimate via only direct path BFS5,
the lowest barrier for such direct paths BDP(Ps, Pt), and the Shape Triples
approximations BST(Ps, Pt) for different shape level using BFS5. |Πi|% denotes
the percentage of |Πi| from Tab. 1 used to calculate BST (see Methods).

heuristic. This enables a broader search in the energy landscape as done
by the employed heuristic alone. We have shown that our Shape Triples
approach is able to estimate barrier heights close to the optimum using
a BFS5 heuristic. The approach scales with the number of investigated
shreps as shown in Fig. 1. Thus, the use of different shape levels enables
a trade-off between barrier precision and computational performance (see
Tab. 2) where the latter depends on the performance of the individual
path heuristic applied.

While being introduced for direct path heuristics only, the method is
applicable to any other path heuristic. Thus, we plan to investigate the
use of the RNAtabupath [DLVHC10], currently using a different RNA
energy scheme, that was shown to yield slightly better results than BFS

by allowing for minor detours. When employing RNAtabupath within
the Shape Triples approach it may be possible to improve the results even
further (see Eq. 4).

We plan to investigate different shrep selection strategies to further speed-
up the method. Possible directions are the structural distance to start and
target structure or a shape distance based evaluation.

Furthermore, the method is basically not restricted to RNA shapes but
open to any sampling of low energy structures of the underlying RNA
energy landscape. Thus, any scheme for an efficient calculation of such a
set of structures can be used to replace the set of shape representatives in
the Shape Triples approach (Fig. 1) and might even improve the results.

Therefore, we consider the Shape Triples meta-heuristic to be a very useful
tool to combine results from different algorithmic fields to gain very precise
barrier height estimates for arbitrary RNA structures.
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