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Abstract

IMS2 is an Integrated Medical Software system for the analysis of Ion Mobility Spectrom-
etry (IMS) data. It assists medical staff with the following IMS data processing steps:
acquisition, visualization, classification, and annotation. IMS2 provides data analysis and
interpretation features on the one hand, and also helps to improve the classification by
increasing the number of the pre-classified datasets on the other hand. It is designed to
facilitate early detection of lung cancer, one of the most common cancer types with one
million deaths each year around the world.
After reviewing the IMS technology, we first describe the software architecture of IMS2

and then the integrated classification module, including necessary pre-processing steps and
different classification methods. The Lung Hospital Hemer (Germany) provided IMS data
of 35 patients suffering from lung cancer and 72 samples of healthy persons. IMS2 cor-
rectly classifies 99% of the samples, evaluated using 10-fold cross-validation.

1 Introduction

Lung cancer is the most common cancer type in men (fourth in women), with ca. 200 000 new
cases and ca. 140 000 deaths each year in the European Union. The 5-year survival rate is
approx. 10% for both sexes [10]. The National Cancer Institute of the United States estimates
ca. 213,000 new cases and ca. 160,000 deaths solely for 2007 in the USA. It is further estimated
that approximately 9.6 billion US dollars are spent in the United States on the treatment of lung
cancer. Nowadays, the screening of blood and urine as invasive standard methods are applied
to potentially diseased patients. Especially for the identification of lung cancer, chest X-ray,
sputum cytology, and spiral computer tomography scans are used. The patient’s chance to
survive is relatively low compared to other types of cancer, partly because of the usually very
late detection of the disease. An early identification of lung cancer would considerably increase
the chance for recovery.

It is well known in the medical community that human exhaled air contains volatile metabolites
that potentially carry information on the health status of the human organism. Hence, a sensitive
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Figure 1: Schematic overview of the working principle of an ion mobility spectrometer.

metabolic profiling of these molecules can provide essential data for the early classification of
lung diseases. The application of spectrometric methods, such as mass spectrometry (MS) and
ion mobility spectrometry (IMS), allows the identification and quantification of molecules in
gases. To detect very small concentrations of volatile metabolites, the detection limit has to be
very low (down to the pptV , pg/L ranges). Nowadays, the most common approaches utilize MS
techniques [3], but these instruments are large and very expensive. If spectrometric methods are
to become widely established beside other clinical tests in hospitals and point-of-care centers,
the instruments have to be small, easy to use, and the price has to be moderate. For these
reasons, the application of miniaturized ion mobility spectrometers is an appropriate, fast, low-
cost, and non-invasive method, which has recently been tested in several clinical studies [1, 9,
8, 11].

IMS Technology. The working principle of IMS is described in detail in [2]. Thus, we just
give a brief summary here.

IMS is based on an appropriate ionization of gaseous analytes and a subsequent separation
of the emerging positive and negative ions at ambient air temperature and pressure. Figure 1
illustrates the main working principle. Ion swarms formed within the ionization region enter
the drift tube for very short shutter opening times (a few microseconds) and are separated
in an electrical field. A drift gas flows towards the ions. The drift velocity v of the ions is
related to the electrical field strength E and the mobility k by v = kE. Hence, the drift
time t, which is measured at a fixed drift length l is inverse proportional to the mobility k.
The mobility depends on the collision rate of the swarm ions with the drift gas molecules, the
temperature, the ion structure, and the collision integral. The collision integral is related to the
ions’ size, structure, and polarisibilities. The measurement of t is performed by means of a
Faraday plate, whose charge variation over time is called the ion mobility spectrum. In contrast
to mass spectrometry, the drift tube has ambient pressure. Hence, beside the ions masses, also
the collisions with neutral molecules influence the drift time. Compared to MS, IMS cannot
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be used for the identification of unknown molecules, but the method is much more sensitive
(ng to pg, ppmV to pptV ), especially when using humid air (as in human breath) and when the
sample is handled directly without any pre-enrichment. Both MS and IMS instruments are often
coupled with gas chromatographic (GC) columns for fast pre-separation: GC/MS or MCC/IMS
(MCC = multi capillary column).

Many other spectroscopic methods are cost intensive, time consuming, error prone, and need
well qualified staff. In contrast, recently the development of IMS technology has provided
a sensitive screening in spite of comparatively low costs. IMS works with ambient pressure,
ambient air, and within milliseconds (ca. 50 ms). A miniaturized IMS instrument is available
for less than 30,000 US dollars, which is inexpensive in comparison to similar technologies.

Our contributions. We contribute an Integrated Medical Software system for the analysis
of IMS data (IMS2). IMS2 is developed to assist the medical practitioner with the following
data processing steps:

1. Acquisition,

2. Visualization,

3. Annotation,

4. Classification,

5. Automatic improvement of classification results.

The last point refers to the aim of an automatic improvement of pre-classified samples, resulting
in a better classification over time.

We present the software architecture along with the used libraries and data processing pipelines.
Afterwards, we introduce and discuss the integrated classification module and evaluate the
system on a dataset provided by the Lung Hospital Hemer (Germany). A discussion concludes
the paper.

2 Methods

2.1 Software architecture

The IMS2 software has two main goals:

• The visualization and enhancement of the measurement

• An automatic improvement of the classification

The first is to present a clear and interpretable view on the measurement taken, which is neces-
sary to control the quality and to ensure that no problems occurred during the data generation.
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Figure 2: Schematic overview of the IMS2 software architecture and the data flow.

This is achieved by applying normalization, histogram spreading, and filtering on the visual-
ized image. After this process, there are possibilities to add previous knowledge based on the
experience of the medical personnel. This could be a general comment or an annotation of a
particular region of interest. This information could later help to determine why a measure-
ment was wrongly classified. After the visualizing and commenting step, the dataset is sent to
a central server which processes and classifies it (see Figure 2).

Multiple clients can upload their data and classification requests at any time. The data is first
sent to the FTP server, after which the client calls a PHP script on the Apache server. This
notifies the data management module that new data is available. Thereupon the client data is
transferred to the central server and stored as being unverified. The connection between FTP
and the Apache server is fastest when running on the same hardware.

The classification of the data is done by the data analysis module. For this purpose, a previously
built classifier, which can be generated by the classification development module, is used. The
classification development module provides methods for a competent user to train and evaluate
classifiers using the verified data.

When the classification is complete, the client can access the classification results, which re-
main on the central server. As soon as new information about a measurement, or more precisely
about the associated patient is available, the doctor is asked to comment and verify the classi-
fication result. This verified data is added to the training set, which can be used to generate a
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new and perhaps improved classifier. This leads to the second main goal of IMS2, an automatic
enhancement of the classification by extending the size of pre-classified sample.

All data transfer is done encrypted and no patient information is sent over the internet. A unique
ID is generated, which can not be traced back to the patient’s identity, because the IMS2 system
is physically unconnected to the hospital’s patient administration network.

We use PHP version 4.3.2, Apache 2.0.49, Java 1.6.0, and WEKA 3.

2.2 Classification of MCC/IMS data

MCC/IMS data can be seen as an image where the peak intensities correspond to different
color values. Hence, methods successfully applied to image processing tasks can also be used
for the classification of this data with respect to some specialities. Therefore we apply several
pre-processing steps to the data, followed by feature selection and classification. Since there is
no need to reinvent the wheel, we use methods available in WEKA [12], a public data mining
library in Java for feature selection and classification.

2.2.1 Pre-processing

First we use a standard two-dimensional Gaussian filter implemented in WEKA to reduce the
effect of background noise. We choose a standard deviation of σ=1.5 and a kernel size of 5.

Secondly, we detect the position of the RIP (Rest Ion Peak), which exists in every MCC/IMS
image as a continuous band from top to bottom. To this end, we use the fact that the RIP
intensities exceed every other peak. For each fixed y-coordinate, we calculate from right to
left the slope between each pair of consecutive points. If the slope exceeds an empirically
determined value, the right point is assigned to the set of points that define the border between
the RIP and the right (important) part of the image. The mean value of all x-coordinates in
this set is used as a cutoff to exclude the left part of the image, which contains only irrelevant
information for the classification. Finally, we linearly normalize all remaining values to the
interval [0, 1].

2.2.2 Feature selection

We compress the data by laying a grid over the relevant part of the image and calculate the
average intensity value within one grid element. For each classification process, we iterate
over the grid size to determine which one is optimal. In this case, each grid element with its
respective intensity value is treated as one feature. By means of these attributes we attempt to
classify the given data. Since using the entire feature set results in very large problems, we
select significant features using the built-in methods in WEKA and compare both approaches
for different classifiers. For a successful feature selection, we need to combine an attribute
evaluator with a search method. Most methods for attribute selection search for the subset that
makes the best predictions as to which class the instance belongs to. We choose two methods
for this purpose which empirically achieve satisfying results on our data. Further information
on the process of feature selection and the methods we use here can be found in [12, pages 288
and 420].
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Best-First Search Method. The best-first method performs a greedy hill climbing with back-
tracking. We use the class ‘weka.attributeSelection.BestFirst‘ with the parameters ‘-D 1 -N 5‘.
Parameter ‘D‘ indicates the direction in which is searched, for our case we search in the forward
direction and start with the empty set. It is also possible to scan backwards from the full set,
or start at an intermediate point and look in both directions. Parameter ‘N‘ denotes how many
consecutive non-improving nodes must be encountered before the system backtracks.

CFS Subset Evaluator. This evaluator individually assesses the predictive ability of each at-
tribute and also evaluates the degree of redundancy between them. It assigns a high significance
to attributes with a high correlation with the class and with a low intercorrelation. We use the
WEKA class ‘weka.attributeSelection.CfsSubsetEval‘.

2.2.3 Classification

We compare the classification performance of the Naive Bayes (NB) classifier, MultiLayer
Perceptrons (MLPs), and the Support Vector Machine (SVM). All of them have been previously
used for data mining with GC/MS data. Hence, they may be applicable to MCC/IMS data as
well. In the following, we very briefly describe the WEKA methods we use, along with the
chosen parameters.

Naive Bayes classifier. The NB classifier is a simple probabilistic method based on Bayes’
theorem. It assumes independent variables, which usually does not reflect reality. However,
it requires just a small amount of data to estimate the necessary means and variances of the
variables; only the variances of the variables for each class need to be determined and not the
entire covariance matrix [7].

We use the class ‘weka.classifiers.bayes.NaiveBayes‘. Further information on the implementa-
tion of the NB classifier in WEKA can be found in [12, p.403].

Multi Layer Perceptron. A MLP is an interconnected group of artificial neurons (neural
network) consisting of multiple layers of interconnected computational units. Each neuron
in one layer has directed connections to the neurons of the subsequent layer with adjustible
weights. The sum of input weights of a neuron is usually transformed by a sigmoid activation
function and then passed on to the next layer. Using the training data, the algorithm iteratively
readjusts the weights of the connections between the neurons (using back-propagation) in order
to minimize the prediction error. The network usually converges to some state where the error
is small; thus the networks learns a target function.

We use the class ‘weka.classifiers.functions.MultilayerPerceptron‘ with the default options ‘-L
0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a‘. Further information on the implementation of MLPs
in WEKA can be found in [12, p.223].

Support Vector Machine. We use the SMO feature of WEKA: an implementation of the
sequential minimal optimization algorithm for training a support vector classifier [6, 4]. The
basic idea is to find a function that approximates the training data by minimizing the prediction
error. The main difference compared to linear regression methods is that all deviations up to a
user-defined threshold are discarded, so that the threshold defines a tube around the function.
The risk of overfitting is reduced by trying to maximize the flatness of the regression function
simultaneously.

Journal of Integrative Bioinformatics, 4(3):75, 2007 6

http://journal.imbio.de/


Journal of Integrative Bioinformatics 2007 http://journal.imbio.de/

We use the class ‘weka.classifiers.functions.SMO‘ with the default options ‘-C 1.0 -L 0.0010
-P 1.0E-12 -N 0 -V -1 -W 1 -K weka.classifiers.functions.supportVector.PolyKernel -C 250007
-E 1.0‘. Further Information on the implementation of support vector regression in WEKA can
be found in [12, p.219].

3 Evaluation Results

3.1 The Dataset

We obtained data on exhaled air of lung cancer patients provided by the Lung Hospital in Hemer
(Germany) that specializes in lung diseases. The data is expertly pre-classified and split into
two groups: 35 MCC/IMS sets (called IMS-chromatograms) of patients suffering lung cancer
and 72 samples of healthy patients as the control group. Furthermore, all test patients have not
been allowed to drink, eat, or smoke within two hours before the experiments.

All measurements of lung cancer patients exhaled breath and of the control group are per-
formed with an ISAS home made 63Ni β-ionization source IMS. Table 1 summarizes the main
parameters of the IMS used in this study.

One IMS chromatogram of the exhaled breath of a lung cancer patient is exemplarily shown in
Figure 3 and visualized using IMS2. The colors refer to different peak heights. To give a clear
and comparable view on the measurement, the medical practitioner can use image processing
methods, such as normalization to values between 0 and 1, and inverting in the case of reverse
measurements. To visualize and define regions of special interest, the user can additionally cal-
culate a histogram using user-defined minimal and maximal values for spreading. These values
can also be determined automatically but for a visual comparison of different measurements it
could be of advantage to use fixed values. Moreover, it is possible to tag regions of interest
manually and to use a peak detection algorithm as well as a Gaussian filter to decrease back-
ground noise. The ’Received Results’ tab panel shows the results gathered from the central
(classification) server.

Parameter Value
Ionization source 63Ni β-radiation source, 510 MBq

Drift region length 12 cm
Electrical field strength 330 V/cm

Drift voltage 4 kV
Shutter opening time 300 µs

Drift gas synthetic air
Drift gas flow 100 mL/min

Sample gas flow 150 ml/min
Temperature ca. 25◦C (ambient)

Pressure 100 kPa (ambient)

Table 1: Main parameters of 63Ni Ion mobility spectrometer.
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Figure 3: Screenshot of the IMS2 client software with a sample lung cancer MCC/IMS result file
visualized. The continuous band on the left side of the visualization is the so called RIP (Rest Ion
Peak), which is present in every MCC/IMS image.

3.2 Classification Results

The classification performance of the classifiers is evaluated by means of 10-fold cross-validation
[5], as implemented in WEKA. We report the percentage of the correctly classified MCC/IMS
spectra against the size of the grids used for data reduction and filtering. We test all classifiers
with and without prior feature selection (FS) for grid sizes between 3 and 150 pixels (px). Due
to the amount of features in the MCC/IMS spectra, we could not perform training on MLPs
without prior data reduction using FS for grid sizes ≤ 25 px.

Figure 4 shows the classification performances for grid sizes between 3 and 40 px in increments
of one and between 40 and 60 px in increments of ten. For grid sizes between 60 and 150 px
significantly worse results are achieved. Table 2 shows the best classifiers. Both MLPs and
SVM provide 99.07% accuracy with very low error rates for both classes. Interestingly, the
classification results do not depend too much on the chosen grid size but more on the used
method. Hence, we suggest to use MLPs or SVM for the classification of lung cancer from
MCC/IMS data using a grid size of approximately 23 px.
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Classifier FS Grid size Correct (%) ROC ErrLC (%) ErrHl (%)
MLP yes 28 99.07 0.986 0 2.9
MLP yes 27 99.07 0.986 0 2.9
MLP yes 18 99.07 0.986 1.4 0
SVM no 27 99.07 0.986 0 2.9
SVM no 24 99.07 0.986 0 2.9
SVM no 23 99.07 0.986 0 2.9
SVM no 21 99.07 0.986 0 2.9
SVM no 18 99.07 0.986 0 2.9
NB yes 24 98.13 0.997 1.4 2.9

MLP no 70 98.13 0.943 0 5.7
SVM yes 28 97.2 0.914 0 8.6
NB no 40 93.46 0.857 2.8 14.3

Table 2: The best classifiers achieve a correct classification of 99.07 % into lung cancer or healthy
patients, which is measured using 10-fold cross-validation. The last 4 lines correspond to the best
results for the other classifier/feature selection combinations. MLPs and SVM perform equally
and in the same grid size range. FS = feature selection, Correct = percentage of correctly classified
samples, ROC = area under the ROC curve, ErrLC = healthy patients falsely classified as lung
cancer, ErrHl = lung cancer patients falsely classified as healthy.

4 Discussion and Conclusion

This paper introduced IMS2, a semi-automatic medical assistance system, which can easily be
used by medical staff for the detection of lung cancer using human breath air measured with
MCC/IMS instruments. A software client provides visualization and annotation features. A
central server is used for all space- and time-consuming calculations: data collection, training,
and classification.

Using the Java-based data mining library WEKA we demonstrated that MCC/IMS data can
be used for the automatic separation of healthy and lung cancer patients. The success of the
method depends (1) on the existence of small metabolites present in breath samples that allow
to distinguish between lung cancer and healthy patients, and (2) on the amount of available
pre-classified sample data for training.

In order not to raise false medical expectations, a few words of caution are in order. First, the
machine learning techniques implemented in IMS2 at present do not allow the direct identifica-
tion of the distinguishing metabolites, even if one or two responsible peaks can be clearly iden-
tified. Additional wet lab experiments would be required to isolate and identify the molecules.
Second, it should be noted that the sample used in this study was collected under well-controlled
conditions. While the classification results are very encouraging, this study does not imply that
its results are directly transferable to clinical practice.

In fact, we want to stress that the classification procedure used is just a module of the IMS2

system, which by itself is an important step towards streamlined data collection and integration:
IMS2 provides an easy-to-use front-end, which assists the medical staff with the data analysis
and interpretation on the one hand but also motivates them to help with the enhancement of the
pre-classified datasets on the other hand. The additional time investment is low when compared
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Figure 4: Comparison of classification results for different grid sizes for the following methods:
Support Vector Machine (SVM), Naive Bayes Classifier (NB) and Multi Layer Perceptron (MLP).
SVM and NB have been evaluated with and without prior feature selection (FS and NOFS respec-
tively). For runtime reasons, MLPs without FS have only been tested for grid sizes ≥ 25 px. The
picture shows that the classification performance is best on grids sizes between 18 and 28 px using
MLPs or SVM.

to that of manually interpreting the results. The more data that has been analyzed with IMS2,
the better the results will be in future.

The described techniques may also be used to screen metabolites for the detection of other
(lung) diseases and airway infections [8], as long as enough data is available for training.

In the future, we plan to establish and extend the system with more data and additional analysis
methods. Furthermore, we plan to extend IMS2 to be applicable to other pulmonary diseases
and infections.
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