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Abstract. We introduce a normalized version of the LCS metric as a
new local similarity measure for comparing two RNAs. An O(n2m lg m)
time algorithm is presented for computing the maximum normalized
score of two RNA sequences, where n and m are the lengths of the
sequences and n ≤ m. This algorithm has the same time complexity as
the currently best known global LCS algorithm.

1 Introduction

Sequence comparison is an extensively studied topic with many applications,
especially in biology. One commonly used metric is longest common subsequence
(LCS) [2,10,11] which measures the longest subsequence of symbols that appears
in both input sequences. While the LCS metric is a suitable metric for global
comparison, in many real-life applications one is often interested in finding local
regions of high similarity [16]. One approach for transforming the global LCS
metric into a local version, is to calculate the normalized longest common sub-
sequence [3,7]. Here, one divides the LCS score of two substrings by the sum of
their lengths. This approach overcomes various weaknesses that are inherent in
the standard local similarity algorithm [16].

In RNA sequences, as in other biological applications, it is not sufficient
to perform pure sequence-based comparisons without respecting the underlying
semantics of the sequences. RNAs are polymers consisting of four nucleotides
A,C,G and U which are connected linearly via a backbone. In addition, the
complementary nucleotides A—U, G—C and G—U can form bonds, which define
the secondary structure of the RNA. In recent years, RNA sequences gained
increasing interest due to numerous discoveries of biological functions which are
associated with them. Consequently, research on small RNAs has been elected
as the scientific breakthrough of the year 2002 by the readers of Science [6].

One major challenge of this research is to find common patterns in RNAs,
since they suggest functional similarities. For this purpose, one has to investigate
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not only sequential features, but also structural features for the following reasons.
First, a major fraction of the function of an RNA is determined by its secondary
structure [14]. Second, it is known that RNA structure is often more conserved
than the sequence during evolution [5].

One promising approach for comparing RNAs while considering their se-
quence and secondary structure is to use appropriate variants of LCS-like met-
rics. This has been widely studied in the literature. One variant which is known
under the term ”longest common subsequence for arc-annotated sequences”
(LAPCS), was first introduced by Evans [8], and then later extensively stud-
ied in [1,9,12]. However, the major downfall of this variant is that a base-pair,
i.e. hydrogen bond, is not regarded as a whole entity. For example, in compar-
ison of two RNAs, one nucleotide in a base-pair can be matched in the LCS,
while the other nucleotide unmatched. In this paper we adopt a different variant
introduced by Zhang [17] which treats base-pairs as a whole. This method is
closer to the spirit of the comparative analysis method currently being used in
the analysis of RNA secondary structures, either manually or automatically.

All known approaches for transferring the LCS metric to a metric of compar-
ing RNA sequences have been restricted to global comparisons so far. However, as
in almost all biological applications, global similarity is inferior to local similarity
when comparing RNA sequences. In this paper, we consider a local variant of the
LCS metric. Specifically, we consider the local normalized LCS metric for RNA
sequences which measures the highest LCS scoring consecutive subsequences di-
vided by their length. The advantages of the normalized approach in the context
of strings [3,7] also apply for RNAs. We present an O(n2m lg m) time algorithm
for this problem which is conceptually inspired by the algorithm given in [7].
Its time complexity origins in the global LCS algorithm presented in [13], which
is used as a preprocessing procedure in the algorithm. Therefore, our algorithm
can compute the local normalized LCS score at the cost of computing the global
LCS score.

This paper is organized as follows. In the following section we introduce def-
initions and terminology which will be used throughout the paper. In Section 3,
we describe methods which provide the basis of our algorithm. The algorithm
itself is later presented in Section 4.

2 Preliminaries

2.1 RNA Sequences

An RNA sequence R is an ordered pair (S, P ), where S = s1 · · · s|S| is a string
over the alphabet Σ = {A, C, G, U}, and P ⊆ {1, . . . , |S|}×{1, . . . , |S|} is the set
of hydrogen bonds between bases of R (i.e. the secondary structure), such that
∀(i, i′) ∈ P : i < i′. Any base in R can bond with at most one other base, there-
fore we have ∀ (i1, i′1), (i2, i′2) ∈ P , i1 = i2 ⇔ i′1 = i′2. Furthermore, following
Zuker [18,19], we assume a model where the bonds in P are non crossing, i.e. for
any (i1, i′1), (i2, i′2) ∈ P , we cannot have i1 < i2 < i′1 < i′2 nor i2 < i1 < i′2 < i′1.
We refer to a bond (i, i′) ∈ P as an arc, where i (i′) is referred to as the left
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(right) endpoint of the arc. Finally, we let |R| denote the number of nucleotides
in R, i.e. |R| = |S|.

We will require a notion similar to that of a substring for RNA sequences.
Therefore, for any 1 ≤ i < i′ ≤ |S|, we let R[i, i′], the consecutive subsequence of
R, be the RNA (S′, P ′) with S′ = Si · · ·Si′ and P ′ = P ∩{i, . . . , i′}×{i, . . . , i′}.
Note that arcs of R with one endpoint in R[i, i′] are absent in R[i, i′]. If there
are no such arcs, then R[i, i′] is said to be arc complete.

2.2 LCS Similarity

This paper deals with comparing two RNA sequences. We denote these two
RNAs by R1 = (S1, P1) and R2 = (S2, P2), and we set |R1| = |S1| = n and
|R2| = |S2| = m. Furthermore, we assume n ≤ m.

A base in one sequence can be matched to an identical base in the other
sequence if they are both non arc endpoints. In the case of arcs, given (i, i′) ∈ P1

and (j, j′) ∈ P2, we require that (i, j) be matched if and only if (i′, j′) is matched.
This captures the notion of arcs as single entities. A match between two left
(right) endpoints of arcs is called a left arc match (respectfully right arc match).
Note that for every left arc match (i, j) there exists exactly one corresponding
right arc match (i′, j′), such that (i, i′) ∈ P1 and (j, j′) ∈ P2. In this case we let
right(i, j) = (i′, j′) and left(i′, j′) = (i, j).
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Fig. 1. Three different ways of viewing an RNA sequence. In (a), a schematic 2-

dimensional description of an RNA folding. In (b), a linear representation of the RNA.

In (c), the RNA as a rooted ordered tree.
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An RNA sequence R′ is a common subsequence of R1 and R2 if it can be
obtained by omitting unpaired bases and arcs (along with their endpoints) in
both R1 and R2. Alternatively, R′ is a set of matches M = (i1, j1), . . . , (ip, jp),
such that ik < ik+1, jk < jk+1 for all 1 ≤ k < p, and (i, j) ∈ M ⇔ right(i, j) ∈
M for any left arc match (i, j). The longest common subsequence (LCS) of
R1 and R2, denoted LCS(R1,R2), is a common subsequence of R1 and R2 of
maximum cardinality.

The non crossing formation formed by the arcs in both R1 and R2 conve-
niently allows representing these RNAs as trees [17]. Each arc is represented
by an internal node in the tree, and each unpaired base by a leaf. The set
of ordered children of an internal node which is associated with the arc (i, i′)
is all unpaired bases i′′ such that i < i′′ < i′, and all arcs (l, l′) such that
i < l < l′ < i′ (see Fig. 1). In [15], an algorithm for tree editing was presented
which was later improved in [13]. This algorithm can be used to determine the
minimum number of unpaired base and arc deletions needed in order to obtain
a common subsequence of R1 and R2 in O(n2m lg m) time, and is currently the
fastest (worst-case) algorithm for computing the global LCS score of two RNA
sequences [4]. Furthermore, an important property of this algorithm is that it
computes the score between every pair of subtrees of the two given trees. In our
setting this means that LCS(R[i, i′],R[j, j′]) is computed between all pairs of
arcs (i, i′) ∈ P1 and (j, j′) ∈ P2 in a single execution of this algorithm. The
importance of this property will become apparent later on.

2.3 Normalized Similarity

We next present an extension of a local similarity metric for strings that uses
normalization [7], to a metric for RNA sequences. Following this, we define the
computational problem considered in this paper.

Definition 1 (Normalized LCS score). The normalized LCS score of two
RNA sequences R′

1 and R′
2 is given by

|LCS(R′
1,R′

2)|
|R′

1| + |R′
2| .

The above definition is of a global nature. We therefore define the local nor-
malized LCS score of two RNA sequences, R1 and R2, as the normalized LCS
score of the two highest scoring consecutive subsequences of R1 and R2. More
formally:

Definition 2 (Local normalized LCS score). The local normalized LCS
score of two RNA sequences, R1 and R2, is the maximal value of

|LCS(R1[i, j],R2[i′, j′])|
|R1[i, j]| + |R2[i′, j′]|

where LCS(R1[i, j],R2[i′, j′]) is also a common subsequence of R1 and R2, and
1 ≤ i ≤ j ≤ n, 1 ≤ i′ ≤ j′ ≤ m.
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Note the requirement of LCS(R1[i, j],R2[i′, j′]) being a common subse-
quence of R1 and R2 is crucial in case either R1[i, i′] or R2[j, j′] are not arc
complete. In this case, the above requirement prevents matching an endpoint of
an arc whose other endpoint is absent in the consecutive subsequence, thereby
ensuring that local solutions are valid also as global solutions.

Furthermore, notice that by the above definition, one single match gets the
optimal normalized LCS score (1/2). To solve this problem, we require that
|LCS(R1[i, j],R2[i′, j′])| ≥ I, where I is some integer (perhaps dependent of n)
predefined according to the application at hand.

Definition 3 (The local normalized LCS problem). Given two RNA se-
quences R1 = (S1, P1) and R2 = (S2, P2), and an integer I, the local normalized
LCS problem asks to compute the local normalized LCS score of R1 and R2.

3 Decomposing Common Subsequences

In the following section we present techniques for decomposing common sub-
sequences of our two RNA sequences R1 = (S1, P1) and R2 = (S2, P2). We
will be interested in a small fraction of such subsequences. These can intuitively
be thought of as locally optimal common subsequences which contain exactly k
matches, for all 1 ≤ k ≤ n. In [7], a k-Chain is defined as a common subsequence
of two given strings which consists of k matches. We adopt this terminology for
our case as follows.

Definition 4. k-Chain(i,j)
(i′,j′) is a common subsequence of R1[i, i′] and R2[j, j′]

which consists of k matches.

– k-Chain(i,j)
(i′,j′) starts at (i, j) and ends at (i′, j′).

– The head of k-Chain(i,j)
(i′,j′) is the first match in k-Chain(i,j)

(i′,j′).

– The tail of k-Chain(i,j)
(i′,j′) is the last match in k-Chain(i,j)

(i′,j′).

– The length of k-Chain(i,j)
(i′,j′) is the sum of |R1[i, i′]| and |R2[j, j′]|, i.e.

j′− j + i′− i.

– The normalized score of k-Chain(i,j)
(i′,j′) is given by k

j′−j+i′−i .

This definition differs from the definition in [7], since k-Chain(i,j)
(i′,j′) is defined

there only when (i, j) and (i′, j′) are matches. Next we define the best scoring
k-Chain that starts at (i, j).

Definition 5. k-Chain(i,j) is k-Chain(i,j)
(i′,j′) with the highest normalized score

(shortest length) over all i′ ≤ n and j′ ≤ m.

A major obstacle in constructing k-Chains, is that any attempt to construct
k-Chain(i,j) simply by tying another match to the tail of (k−1)-Chain(i,j) will



366 R. Backofen et al.

not necessarily result in the optimal k-Chain. We therefore take the opposite
approach. From among all chains which start at (i′, j′), i ≤ i′, j ≤ j and (i, j) �=
(i′, j′), we choose the one that when concatenated to (i, j), creates k-Chain(i,j).

In order to construct k-Chain(i,j), we distinguish between four different cases
depending on (i, j). Indeed, (i, j) can either be a mismatch, a non arc match, a
right arc match, or a left arc match. Note that if (i, j) is a non arc match then
we can assume that it is the head of k-Chain(i,j), since otherwise by replacing
the head with (i, j), we obtain a k-Chain with the same score. Furthermore, if
(i, j) is a right arc match, then (i, j) cannot be the head of k-Chain(i,j), since
the left arc match corresponding to (i, j) is not in k-Chain(i,j), and by definition,
(i, j) cannot appear alone in any common subsequence.

In the following we give further details concerning each one of these four
cases. Later these will provide the basis for a dynamic programming procedure
which we design for solving the local normalized LCS problem.

For a pair of matches (i, j), (i′, j′) ∈ {1, . . . , n} × {1, . . . , m}, we refer to the
value |i′− i| + |j′− j| as the distance between (i, j) and (i′, j′).

Definition 6 (k-closest). The k-closest chain to (i, j) is the k-Chain with min-
imum distance between its tail and (i, j) among all k-Chains starting at (i′, j′)
with i ≤ i′, j ≤ j′, and (i′, j′) �= (i, j).

tail
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Fig. 2. Constructing k-Chains. (a) The matches of two RNA sequences. (b) The con-

struction of 3-Chain(1,2).
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Case 1: (i, j) is a mismatch. In this case, by definition, k-Chain(i,j) consists of
the k matches of the k-closest chain to (i, j).

Case 2: (i, j) is a non arc match. In this case, (i, j) is the head of k-Chain(i,j).
Therefore, k-Chain(i,j) consists of (i, j) and the k−1 matches of the (k−1)-closest
chain to (i, j) starting at (i′, j′) such that i < i′ and j < j′.

Case 3: (i, j) is a right arc match. In this case, (i, j) cannot be the head of
k-Chain(i,j). Furthermore, any match (i, j′) or (i′, j) is also a right arc match.
Therefore, k-Chain(i,j) consists of the k matches of the k-closest chain to (i, j)
starting at (i′, j′) such that i < i′ and j < j′.

Case 4: (i, j) is a left arc match. This is the most delicate case. Indeed, k-
Chain(i,j) may or may not include (i, j). If (i, j) /∈ k-Chain(i,j), then the head of
k-Chain(i,j) can still be (i, j′) or (i′, j) for some i′ > i and j′ > j. Therefore, in
this case k-Chain(i,j) consists of the k matches of the k-closest chain to (i, j).

In case (i, j) ∈ k-Chain(i,j), then (i′, j′) = right(i, j) is also in k-Chain(i,j)

by definition. Therefore, k-Chain(i,j) is of length at least i′− i + j′− j. Let
M = LCS(R1[i, i′],R2[j, j′]). From the optimality of k-Chain(i,j), it follows that
in this case k > |M| − 2, since otherwise there exists a shorter k-Chain which
doesn’t include (i, j) nor (i′, j′). If k = |M|, then k-Chain(i,j) consists exactly
of the matches in M. If k ≥ |M|, then k-Chain(i,j) consists of all matches of
M and all matches of (k−|M|)-Chain(i′,j′). The case k = |M| − 1 is eccentric.
Here, k-Chain(i,j) consists of all but one match of M (which is neither (i, j) or
right(i, j)). In this case, (k + 1)-Chain(i,j) has a higher normalized score than
k-Chain(i,j), and so this case is mentioned only for completeness.

4 The Algorithm

We are now in position to describe our algorithm for computing the local nor-
malized similarity score of our two given RNA sequences R1 = (S1, P1) and
R2 = (S2, P2). Recall that we are looking for the highest normalized scoring
k-Chain such that k ≥ I.

Our algorithm begins in a preprocessing stage which consists of two phases. In
the first phase, for each (i, j) ∈ {1, . . . , n} × {1, . . . , m}, the algorithm classifies
(i, j) as one of the following four types: mismatch, non arc match, right arc
match, or left arc match. In the second phase, the algorithm computes and stores
the longest common subsequence of R1[i, i′] and R2[j, j′] for every (i, i′) ∈ P1

and (j, j′) ∈ P2. As mentioned in Section 2.2, this can be done by a single
execution of the algorithm given in [13].

The second phase is the bottleneck of our algorithm. Nevertheless, this com-
putation is necessary for efficiently constructing k-Chains which start at left
arc matches. According to the fourth case above, if (i, j) is a left arc match
and right(i, j) = (i′, j′), then the computation of k-Chain(i,j) is based on
M = LCS(R1[i, i′],R2[j, j′]). In the dynamic programming computation be-
low, M is computed for any pair of arcs (i, i′) ∈ P1 and (j, j′) ∈ P2. Using [13]
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allows us to compute this efficiently, in some cases at the cost of computing M
for a single pair. On the other hand, in cases where the number of nesting edges
is small, one can use standard LCS algorithms.

After the preprocessing stage is complete, the algorithm computes and stores
the score of k-Chain(i,j), for all (i, j) ∈ {1, . . . , n} × {1, . . . , m} and for all 1 ≤
k ≤ n. More precisely, the algorithm computes and stores the lengths of all these
k-Chains, since the score of a k-Chain can be derived from its length and vice
versa. Let DP k[i, j] denote the length of k-Chain(i,j). For k = 1, the recursion
of DP 1[i, j] is given by:

DP 1[i, j] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 (i, j) is a non arc match,

min

⎧
⎨

⎩

DP 1[i+1, j+1] + 2
DP 1[i, j+1] + 1
DP 1[i+1, j] + 1

Otherwise.

For k > 1, we let (i′, j′) = right(i, j) and M = LCS(R1[i, i′],R2[j, j′]). The
recursion of DP k[i, j] is then given by:

DP k[i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎧
⎨

⎩

DP k[i+1, j+1] + 2
DP k[i, j+1] + 1
DP k[i+1, j] + 1

(i, j) is a mismatch.

DP k−1[i+1, j+1] + 2 (i, j) is a non arc match.

DP k[i+1, j+1] + 2 (i, j) is a right arc match.

min

⎧
⎪⎪⎨

⎪⎪⎩

DP k[i+1, j+1] + 2
DP k[i, j+1] + 1
DP k[i+1, j] + 1
j′− j + i′− i + DP k−|M|[i′, j′]

(i, j) is a left arc match
and k > |M|.

min

⎧
⎪⎪⎨

⎪⎪⎩

DP k[i+1, j+1] + 2
DP k[i, j+1] + 1
DP k[i+1, j] + 1
j′− j + i′− i

(i, j) is a left arc match
and k ≤ |M|.

The final stage of the algorithm consists of analyzing all DP tables and
reporting a solution. Here, the algorithm can either report the normalized score
of the highest scoring k-Chain such that k ≥ I, or the consecutive subsequences
R1[i, i′] and R2[j, j′] that correspond to this chain. Furthermore, if required, the
algorithm can be modified to report all chains with a score higher than some
given threshold, e.g. 80%.

Correctness of our algorithm follows from the discussion in Section 3.

Time complexity. The preprocessing stage can be done in O(n2m lg m) time
using the algorithm in [13]. Furthermore, computing all DP requires O(n2m)
time. Hence, the total time complexity of our algorithm is O(n2m lg m).
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