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RNA enjoys increasing interest in molecular biology; despite this interest fundamental algorithms are
lacking, e.g. for identifying local motifs. As proteins, RNA molecules have a distinctive structure.
Therefore, in addition to sequence information, structure plays an important part in assessing the sim-
ilarity of RNAs. Furthermore, common sequence-structure features in two or several RNA molecules
are often only spatially local, where possibly large parts of the molecules are dissimilar. Consequently,
we address the problem of comparing RNA molecules by computing an optimal local alignment with
respect to sequence and structure information. While local alignment is superior to global alignment
for identifying local similarities, no general local sequence-structure alignment algorithms are cur-
rently known. We suggest a new general definition of locality for sequence-structure alignments that
is biologically motivated and efficiently tractable. To show the former, we discuss locality of RNA
and prove that the defined locality means connectivity by atomic and non-atomic bonds. To show the
latter, we present an efficient algorithm for the newly defined pairwise local sequence-structure align-
ment (lssa) problem for RNA. For molecules of lengthes n and m, the algorithm has worst-case time
complexity of O(n2 · m2 ·max(n,m)) and a space complexity of only O(n · m). An implementation
of our algorithm is available at http://www.bio.inf.uni-jena.de. Its runtime is competitive with global
sequence-structure alignment.
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1. Introduction

The role of ribonucleic acid (RNA) in biological systems was largely underestimated for
a long time. Today, RNA enjoys increasing attention due to recent discoveries such as the
existence of small RNAs, which are strongly involved in cell control (see Cousin1). Despite
increasing interest in RNA, the important problem of comparing RNA molecules in order
to identify local motifs is still unsolved; even its formal understanding is unsatisfying.

We illustrate this problem by means of a typical scenario, where one has to compare
RNA molecules. Suppose we are interested in the RNA motif that binds to a certain protein.
For example, we want to identify the mRNA element SECIS (short for SElenoCysteine
Insertion Sequence) as investigated e.g. by Wilting et al.2, which binds to the protein SelB.
By certain means, e.g. by SELEX (see Klug and Famulok3) we get a pool of RNAs that
contain the motif of interest.

However, for our approach neither the origin of the set of RNAs nor the kind of the
binding motif is limited. Anyway, given a set of RNA molecules, we are left with de-
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Fig. 1. a) Putative SECIS-motif (see Wilting et al.2). The identical bases, which form the minimal local motif, are
highlighted. b) Allowed vs. disallowed exclusions.

termining the similar regions in them. Whereas in such cases today’s biologists compare
the RNA molecules manually, we identify the similarities automatically. To this end, we
introduce the local sequence-structure alignment (lssa); the local comparison of RNAs is
complicated by two particularities.

First, in our example the protein binds to the RNA due to its sequence and structure.
Consequently, the similarity of the bound RNAs is based on sequence and structure. In
general, RNA molecules have a distinct and complex three-dimensional structure, due to
the single strand occurrence of RNA. Sequence and structure of RNA molecules are bio-
logically meaningful and thus conserved in evolution. It is therefore essential to compare
RNA considering both features. Second, as it is the case for the SECIS motif, often simi-
larities between two or several molecules are only local, i.e. some parts of the molecules
share great similarity, whereas other parts are unrelated.

In contrast to the first aspect, which is also subject of the recently developed global
sequence-structure alignment algorithms, the second aspect even lacks proper understand-
ing up to now, which we will elucidate in the following subsection.

1.1. A Note on Locality

Since the meaning of locality is more intricate in the context of sequence-structure align-
ment than of pure sequence alignment, we explain our notion in analogy to sequence align-
ment. A local alignment of sequences is commonly defined as a (global) alignment of one
pair of subsequences of the input sequences. Note that the bases in a subsequence are con-
nected via the backbone, which constitutes a dependency. For RNA, several definitions of
local alignment are possible. If we define the local alignment again as the best alignment
of subsequences, we ignore the RNA structure completely. Hence, in a next step we require
that the subsequences represent complete substructures. (Later we are going to introduce
the term arc-complete for this property.) This kind of locality is required for an appropri-
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ate definition of local sequence-structure alignment. Additionally, one can exclude certain
substructures from a substructure, while the spatial locality is preserved due to connection
of bases by non-atomic H-bonds, in the following called arcs. Our algorithm handles this
form of locality, i.e. connected substructures with excluded substructures. The small exam-
ple in Fig. 1a shows that this indeed is the preferable notion of locality. The figure shows
the putative SECIS-elements in the archaea Methanococcus jannaschii proposed by Wilt-
ing et al.2 (see Fig. 1a, where the putative motif is boxed). Since the apical subsequence
AAUAUAAAAUAAUAC in the left molecule fdhA has no correspondence in fwdB, a correct
local alignment of the two RNAs aligns two pairs of subsequences, which are isolated on
the sequence level but connected by structure.

This should not be confused with the output of local sequence alignment programs
such as BLAST4, which typically yield several isolated pairs of aligned subsequences.
In sequence alignment, these subsequence pairs can be aligned and scored independently
and are just the k best non-overlapping local alignments. However, for sequence-structure
alignment, the dependency created by the arcs forbids this independent treatment. We will
not discuss the analogous extension of sequence-structure alignment for yielding a number
of best non-overlapping alignments here.

Furthermore, it is reasonable to consider only conserved arcs for forming a connection
of two otherwise isolated subsequences. Conserved arcs are those arcs that are matched
by our alignment. In consequence, our locality can be defined only for alignments and not
for single RNA sequence-structures. Additionally, we treat an arc as an entity, i.e. we align
either both bases of an arc or none.

In order to get exactly those connected subsets of bases as local motifs, we allow at
most one exclusion of a substructure in each loop (regardless which kind of loop). Consider
Fig. 1b as an example. Whereas the left structure contains one exclusion and is therefore
an admissible local motif, the right one contains two exclusions in the same loop, thus
producing an unconnected, and hence forbidden motif.

Note that since the exclusion of certain substructures in substructures is algorithmically
most challenging, our presentation and the examples given in this paper focus on this aspect
of locality.

1.2. Related Work

For a proper classification and comparison to related work, we have to discuss RNA struc-
ture more in detail. It is common for RNA algorithms to handle only the secondary structure
of the molecules, i.e. the set of non-atomic bonds (arcs) between pairs of bases within one
molecule. When considering secondary structure, one further differentiates between gen-
eral structures (aka crossing structures) and the class of nested structures, which forbid
pairs of crossing arcs. Often it is only the restriction to nested structures that makes a prob-
lem algorithmically tractable. For example, the most prominent RNA structure prediction
algorithms compute nested secondary structure (see Zuker5, Wuchty et al.6).

Consequently, one distinguishes several RNA alignment problems with different com-
plexity. Namely, these problems are alignment crossing vs. crossing, nested vs. crossing,
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nested vs. nested, as well as alignments of structure vs. plain sequence (see Jiang et al.7).
In this paper, we consider local nested vs. nested alignment.

Recently, Jiang et al.7 defined a global general edit distance of RNA based on sequence
and structure. They give an efficient O(n2 ·m2) dynamic programming algorithm for global
alignment of nested against crossing structures for a specialization of their distance score.
Furthermore, they show that the global alignment of crossing against plain (and in conse-
quence, nested against crossing) RNA is NP-complete for their general distance score.

Despite NP-completeness, there are approaches to align crossing structures against
plain sequence. Lenhof et al.8 give an integer linear programming (ILP) approach to the
alignment of RNA structure to plain sequence. Eddy9 discusses the similar problem of
aligning a sequence against a covariance model — a description of an ensemble of RNA
sequences and structures.

Furthermore, special cases of local alignment of RNAs have been dealt with previ-
ously. Gorodkin et al.10 have identified common stem loops. Improving this significantly,
Hoechsmann et al.11, who handle RNA alignment by tree alignment based on an earlier
work of Jiang et al.12, examine the problem of finding the most similar subtrees. For ex-
ample, both algorithms cannot identify the motif of the RNAs in Fig. 1a as given in the
literature, since in contrast to our approach excluded substructures in a substructure are not
considered.a The tree alignment approach imposes some restrictions on the sequences of
edit operations (and thus the alignments). In order to overcome these restrictions Jiang et
al.7 recently developed a general edit distance, which constitutes the basis for our general
similarity. For further discussion, see Jiang et al.7 and Hoechsmann et al.11.

Finally, protein structure alignment is closely related to RNA alignment. In principle, if
the 3D-structure of the RNAs is known, then methods developed for proteins, as discussed
by Gerstein et al.13, are applicable to RNA as well. However, algorithms based on RNA
secondary structure are generally more efficient for this purpose. The ILP branch and cut
algorithm for protein structure alignment described by Lancia et al.14 uses contact maps of
proteins, a representation of structure that is almost equal to crossing secondary structure
of RNAs. Therefore, the problem there is closely related to crossing vs. crossing RNA
alignment, which is NP-complete. The problem of aligning a plain sequence to a sequence
and structure is called protein threading. When using contact maps as done by Xu et al.15,
protein threading is very close to the alignment of plain RNA sequence vs. RNA with
crossing structure.

1.3. Contribution and Plan of the Paper

We present a sequence-structure alignment method that handles local motifs as shown e.g.
in Figs. 1a and 8, where none of the previously mentioned approaches can be applied.
Therefore, we define the local sequence-structure alignment (lssa) problem and then for-
mulate an efficient algorithm to solve it.

aHoechsmann et al. discuss this issue as well and refer to it as local pattern similarity between trees, which is not
handled by their algorithm.
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In the subsection on similarity, we develop a general similarity, which is as general
as the recently defined edit distance by Jiang et al.7. A similarity score is a necessary
prerequisite for local alignment. A major contribution of this paper is our biologically mo-
tivated definition of local alignments. As discussed previously, the notion of locality is by
no means trivial in the context of RNA alignment. We translate the biological intuition to a
mathematical concept, namely connectivity of a motif graph, and show that our definition
of locality is equivalent to this formalization. To our knowledge the definition of locality
presented here is the first non-trivial and algorithmically tractable one for RNA.

The discussion of similarity and locality then allows a definition of the lssa problem.
Finally, we will show how the lssa problem is efficiently tractable by dynamic program-
ming. We will demonstrate the use of the defined terms and applicability of the algorithm
by giving real world examples in the results section.

2. Local Alignment of RNA

2.1. Preliminaries

A sequence S is a word over the alphabet {A,C,G,U}, S[i] denotes the ith symbol in S. An
arc a is a pair (i, j) ∈ N×N, such that i < j. i and j are called ends of the arc a. We also
use the notations al and ar for i and j, respectively.

A structure P is a set of arcs, such that no end of an arc appears more than once in P.
We call two arcs (i1, i′1),(i2, i

′
2) crossing, if and only if i1 < i2 < i′1 < i′2 ∨ i2 < i1 < i′2 < i′1.

A structure containing at least one pair of crossing arcs is called crossing, otherwise it is
called nested. We call the tuple SSS = (S,P) a sequence-structure. We impose a partial order
≺P between arcs by defining (i1, i′1) ≺P (i2, i′2) if and only if i2 < i1 < i′1 < i′2.

A range [k..k′] is the set of positions {k,k+1, . . . ,k′}. Let I,J ⊂ N denote two arbitrary
sets of positions. The symbol − denotes a gap. An alignment A of two sequences S1 and S2

is a subset of [1..|S1|]∪{−}× [1..|S2|]∪{−}, where for all pairs (i, j),(i′, j′) ∈ A holds 1.)
i ≤ i′ ⇒ j ≤ j′ 2.) i = i′ 6=−⇒ j = j′, and 3.) j = j′ 6=−⇒ i = i′. Intentionally, unaligned
positions in the sequences are allowed, which means that alignments can be local.b

In the following, we fix two sequence-structures SSS 1 = (S1,P1) and SSS 2 = (S2,P2), where
P1 and P2 are nested. Given an arc (i, i′) ∈ P1 (resp. (i, i′) ∈ P2), then the arc (i, i′) is called
aligned in the alignment A if and only if there is an arc ( j, j′) in the other structure P2 (resp.
P1), such that (i, j),(i′, j′) ∈ A (resp. ( j, i),( j′, i′) ∈ A).

I is called arc-complete for a structure P, write acP(I), iff for every arc (i, i′) ∈ P holds
either i, i′ ∈ I or i, i′ 6∈ I. The term arc-complete formalizes our treatment of an arc as an
entity. By restricting ourselves to arc-complete sets, we disallow that the two bases of each
arc are seperated.

Let π1(A) (resp. π2(A)) denote the projection to the aligned positions in the first (resp.
second) sequence of A. Then, we call A arc-complete for P1 and P2, iff πl(A) is arc-complete
for Pl for l ∈ {1,2}.

bIn contrast, the alignment A is called global, if for every 1 ≤ i ≤ |S1| there is an edge (i, j) ∈ A and for every
1 ≤ j ≤ |S2| there is an edge (i, j) ∈ A.
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We define a binary 0/1-function incP, by incP(i) = 1 iff there is an arc a ∈ P ending
with i. Since we fixed the structures P1 and P2, we will write inc1 instead of incP1 in the
following. Analogously, we will use the abbreviations inc2, ac1, and ac2.

2.2. Similarity

Our similarity function differentiates matches, insertions and deletions of bases without
incident arcs as a score for sequence alignment. Furthermore, it scores matches of arcs and
breakings of arcs. Here, we have an arc breaking, whenever either at least one end of an
arc is aligned to a gap or the two ends are aligned to bases that are not connected by an arc.
In contrast, Jiang et al.7 distinguish between arc breaking, arc altering and arc removing,
which we handle as sub-cases of arc breaking.

In the definition of similarity score, the functions sb, sarc, sbr1, and sbr2 have the fol-
lowing semantics. sb(i, j) denotes the similarity between the bases S1[i] and S2[ j]. If i = −

(resp. j =−), then sb(i, j) is the similarity between S[ j] (resp. S[i]) and a gap. sarc(a1,a2) is
the similarity between arcs a1 and a2. Moreover, sbr1(a1, j, j′) is the penalty (i.e. a negative
similarity) for breaking the arc a1 by aligning its ends to j and j′ in sequence S2, where
( j, j′) 6∈ P2, or to gaps. Analogously, sbr2(i, i

′,a2) is defined as penalty for breaking the arc
a2 in P2.

Let A be an (arbitrary) alignment of S1 and S2. We define the general similarity score
of A given by the functions sb, sarc, sbr1, and sbr2 for SSS 1 and SSS 2 as

SIMSCORE(SSS 1,SSS 2,A) = ∑
(i, j)∈A

¬ inc1(i)∧¬ inc2( j)

sb(i, j) + ∑
(i,i′)∈P1,( j, j′)∈P2
(i, j)∈A,(i′, j′)∈A

sarc((i, j),(i′, j′)) (1)

+ ∑
(i,i′)∈P1,( j, j′)6∈P2
(i, j)∈A,(i′, j′)∈A

sbr1((i, i
′), j, j′) + ∑

(i,i′)6∈P1,( j, j′)∈P2
(i, j)∈A,(i′, j′)∈A

sbr2(i, i
′,( j, j′)).

According to this definition the similarity score is a sum of base similarities between
free bases and other free bases or gaps that are aligned by A, the similarities of arcs matched
by A, and the penalties for arc breakings.

Like Jiang et al.7, we use a slightly specialized scoring scheme in the efficient align-
ment algorithm, for which we will use the term similarity score.c Therefore, we restrict the
functions sbr1 and sbr2 by

sbr1((i, i
′), j, j′) = sl

br1(i, j)+ sr
br1(i

′, j′) and sbr2(i, i
′,( j, j′)) = sl

br2(i, j)+ sr
br2(i

′, j′),

where sl
br1(i, j), sr

br1(i
′, j′), sl

br2(i, j), and sr
br2(i

′, j′) are the score contributions of the bro-
ken arc’s left and right ends. For the similarity score, in the case of arc-complete alignments
Equation 1 is equivalently defined by summing over the two ends of broken arcs indepen-
dently. As a technicality, assume that the similarity score is defined in this way for arbitrary
alignments, such that we score halve arc-breaks for non-arc-complete alignments.

cNote that Jiang et al. give only an approximation algorithm using their general score, since the problem is NP-
complete for the general score.
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Fig. 2. A local alignment of two sequence-structures and their motif graphs in the alignment. These graphs,
which represent the aligned, local parts, consist of only the dark nodes and dark grey edges. Nevertheless, for
convenience we show the completed structures and unaligned arcs with light ink.

Note that distinguishing scores for left and right ends causes no additional work in the
algorithm and is biologically justified, since RNA molecules are directed. However, for
simplicity, we will not distinguish the two ends in the following and set for l ∈ {1,2},
sbrl(i, j) = sl

brl(i, j) = sr
brl(i, j).

2.3. Locality

As mentioned in the introduction, our notion of locality implies that all bases in local
motifs are connected. In this subsection, we will make this claim more precise by defining
locality of a sequence-structure alignment and showing that locality is equivalent to the
connectivity of corresponding motif graphs. Fig. 2 illustrates local alignment.

A successor of a base k is defined as an arc (i, i′) ∈ P, such that (i, i′) spans k (i.e.
i < k < i′). The immediate successor of k which is its minimal successor w.r.t to ≺P. For a
range [k..k′], we denote (i, i′) as a successor (resp. immediate successor) of [k..k′] if (i, j)
is a successor (resp. immediate successor) of both k and k′. Note that, since our structures
are nested, any range in a sequence-structure has at most one immediate successor, which
is then determined unambigously.

Before defining lssa, we will introduce further terms. A denotes an alignment. We define
an exclusion of A in sequence l = 1,2 as a range [k..k′], where k≤ k′, such that [k..k′] 6∈ πl(A)

and k−1,k′ +1 ∈ πl(A). Furthermore, we define PA
l as the substructure of Pl that consists

only of arcs that are aligned in A. For a node k in sequence l, we define the immediate
aligned successor for k as the immediate successor of k in PA

l . Similarly, we define the
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immediate aligned successor for an exclusion [k..k′] of A to be the immediate aligned suc-
cessor for both k and k′.

Definition 1 (LSSA Problem). Let SSS 1 = (S1,P1) and SSS 2 = (S2,P2) be sequence-structures
with nested structures. We call an alignment of S1 and S2 local sequence-structure align-
ment (lssa) of SSS 1 and SSS 2, if and only if 1.) A is arc-complete and 2.) any exclusion of A
has a immediate aligned successor a and no second exclusion has a as immediate aligned
successor. Further, given SSS 1, SSS 2, and a similarity score SIMSCORE, the lssa problem is to
determine

argmax
A lssa of SSS 1 and SSS2

SIMSCORE(A,SSS 1,SSS 2).

Now, local alignments are connected in the following sense. Let SSS = (S,P) be a nested
sequence-structure. Define GSSS = (V,E) as the graph where V = {i | 1 ≤ i ≤ |S|}, and E =

{{i, i + 1}|1 ≤ i < |S|}∪ {{i, j} | (i, j) ∈ Pl}. The motif graph of a sequence-structure SSS l

(l = 1,2) in an alignment A is the subgraph GA
l of GSSS l consisting of only the bases and

arcs aligned by A. Thus, the motif graph represents the aligned, local part of the sequence-
structure. Formally, GA

l = (Vl ,El) is the subgraph of GSSS l , where Vl = πl(A) and El = {{i, i+
1}|i ∈Vl , i+1 ∈Vl}∪{{i, j} | (i, j) ∈ PA

l }.

Theorem 1. Let A be an arc-complete alignment of (SSS 1,SSS 2), and GA
l be the motif graphs

of the sequence-structures SSS l (l = 1,2) in A. Then A is local if and only if the graphs GA
l

are connected.

Proof sketch. For clarity, we are hiding some tedious technical details. The first direction,
“local implies connected”, is proven separately for both graphs by induction over the nested
structures PA

l in the ≺PA
l

-ordering. Hence, we fix l ∈ {1,2}. Then, one proofs inductively

for every arc (i, j) ∈ PA
l the connectivity of the subgraphs Gi, j and Gloop

i, j of GA
l , which are

defined as follows. Let (i, j) ∈ PA
l , then Gi, j is the subgraph of GA

l restricted to the nodes
in [i.. j]. An arc (î, ĵ) ∈ PA

l , where the arc (i, j) is the immediate (aligned) successor of the

range [î.. ĵ], is called immediate (aligned) predecessor of (i, j). Gloop
i, j denotes the subgraph

of Gi, j that is restricted to the nodes in the outer multi-loop. Formally, Gloop
i, j is generated

from Gi, j by removing the nodes in [î+1.. ĵ−1], for each immediate aligned predecessor
(î, ĵ) of (i, j). An example of the subgraphs is given in Fig. 3.

Still, (i, j) denotes an arc in PA
l . For the base case of the induction, there is no immediate

aligned predecessor of (i, j). In consequence, Gloop
i, j equals Gi, j. By the definition of locality,

there is at most one exclusion with the immediate aligned successor (i, j). If there is such
an exclusion [k..k′], then the graph consists of the nodes [i..k−1] and [k′ +1.. j]. The nodes
in each of the two subsets are connected, since they are consecutive, and the two subsets
are connected by the arc (i, j).

For the induction step, for each immediate aligned predecessor (î, ĵ) of (i, j), the graph
Gî, ĵ is connected by induction hypothesis. Then, by construction, Gi, j is connected, if the

corresponding loop-subgraph Gloop
i, j is connected.
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8 42
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Fig. 3. The complete graph drawing represents the motif graph GA
1 for the alignment of Fig. 2. Recall that the

motif graph contains only aligned bases and arcs. In particular there is no edge for the arc (7,43) and no nodes for
the excluded bases CUAUAUCUAG. The subgraph G8,42 of GA

1 is shown with black thin line, and the loop-subgraph

Gloop
8,42 of GA

1 is drawn with gray thick line.

By definition of locality there is at most one exclusion [k..k′] with the immediate suc-
cessor (i, j). We discuss the case that there is one. In order to show the connectivity of
Gloop

i, j , we choose two nodes s < t of Gloop
i, j and show that they are connected (by case dis-

tinction). Note that the nodes smaller than k are connected in Gloop
i, j since [k..k′] is the only

exclusion with successor (i, j). The same holds for the nodes greater than k′. Therefore, the
single remaining case is s < k and k′ < t. There, the connection of s and t is only due to the
connection of i and j by the arc (i, j).

Instead of proving the second direction “connected implies local” directly, we prove
its logically equivalent form “non local implies non connected”. If the arc-complete align-
ment A is not local, then there are exclusions which contradict the second condition in the
definition of local alignment. Either, there is one exclusion without a immediate aligned
successor, or there are two exclusions sharing the same immediate successor. In both cases,
we can identify sets of nodes in the motif graph that are isolated, since a connection con-
tradicts the assumption that the structures are nested.

2.4. Dynamic Programming Algorithm

Here, we introduce a dynamic programming algorithm for the lssa problem for sequence-
structures SSS 1 = (S1,P1) and SSS 2 = (S2,P2), where P1 and P2 are nested.

For applying dynamic programming to this problem, we develop several recursion
equations, that recursively define the maximal similarity score of a local alignment of se-
quences S1 and S2. These recursion equations can be efficiently evaluated while filling
matrices, i.e. materializing intermediate results. Finally, we obtain the actual optimal align-
ment by traceback from the matrices. We further argue in this subsection that the equations
imply an O(|S1|

2 · |S2|
2) time and O(|S1| · |S2|) space lssa algorithm.

The recursion scheme presented below has been inspired by an algorithm developed
by Jiang et al.7 for finding global nested/crossing sequence-structure alignments. Whereas
their algorithm is clearly presented by a single recursion equation, we have to introduce
several interlocked recursion equations, in order to handle locality.

In the following, fix arcs a1 ∈ P1 and a2 ∈ P2. For sets I and J, we introduce E(I,J)
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as an abbreviation for the set of edges I ∪ {−}× J ∪ {−}. At the center of our system
of recursion equations, we define D(a1,a2) as the maximal similarity score of a lssa A ⊆

E([al
1..a

r
1], [a

l
2..a

r
2]) of SSS 1 and SSS 2, where the two arcs a1 and a2 match. The scores are

materialized in a matrix D and will be used to compute the maximal score of a lssa of SSS 1

and SSS 2 in the top-level computation step. For the recursive definition of an entry D(a1,a2)

we will introduce four further recursion equations.
To compute a score D(a1,a2) we have to consider sub-sets of local alignments restricted

to bases between the left and right ends of the two arcs a1 and a2. Since the arc-match
between a1 and a2 justifies exclusions in the local alignments, those restrictions, which do
not contain this arc-match, are not necessarily local alignments themselves. Furthermore,
they need not to be arc-complete. We express this by the following definitions. For a
structure P, we define the restriction of P to a set I, write P|I, as {(i, j) ∈ P | i, j ∈ I}. We
call an alignment A ⊆ E([i..i′], [ j.. j′]) of SSS 1 and SSS 2 sub-arc-complete if it is arc-complete
for P1|[i..i′] and P2|[ j.. j′]. A top-level exclusion in sequence l of alignment A (l = 1,2) is an
exclusion [k..k′] in sequence l of A, where neither k nor k′ have a successor in PA

l . A local
sub-alignment A ⊆ E([i..i′], [ j.. j′]) of SSS 1 and SSS 2 is an alignment, satisfying the conditions
of a local alignment except that in each sequence one top-level exclusion is allowed and
the alignment is sub-arc-complete instead of arc-complete (compare to Definition 1).

Now, we define the maximal similarity score of all local sub-alignments A ⊆

E([al
1..i], [a

l
2.. j]) of SSS 1 and SSS 2, where i < ar

1 and j < ar
2, recursively going back to smaller

i and j. As a particularity, we have to ensure that there is at most one top-level exclusion in
each sequence.

For this reason, we count the top-level exclusions by keeping track of four states.
Namely, for i < ar

1 and j < ar
2, we define the maximal similarity score of a local sub-

alignment A ⊆ E([al
1..i], [a

l
2.. j]) of SSS 1 and SSS 2, where the sub-alignment has

(1) at most one exclusion in every sequence (arbitrary local sub-alignment) as x
xMa1

a2
(i, j)

(2) at most one exclusion in the first sequence as x
◦Ma1

a2
(i, j)

(3) at most one exclusion in the second sequence as ◦
xMa1

a2
(i, j)

(4) no exclusions (true local alignment) as ◦
◦Ma1

a2
(i, j).

For applying dynamic programming, we will introduce four recursion equations, one for
each state. Again, the intermediate results are materialized in matrices.

We define the scores in D using x
xMa1

a2
by

D(a1,a2) = x
xMa1

a2
(ar

1 −1,ar
2−1)+ sarc(a1,a2).

Then, it remains to give the recursion equations for x
xMa1

a2
, x
◦Ma1

a2
, ◦

xMa1
a2

and ◦
◦Ma1

a2
.

Since the cases, where no top-level exclusions are involved, are part of all re-
cursion equations, we define a helper function NOEX(Ma1

a2
, i, j) for any matrix Ma1

a2
∈

{◦
◦Ma1

a2
, x
◦Ma1

a2
, ◦xMa1

a2
, x

xMa1
a2
}, where (i, j) ∈ [al

1..a
r
1 −1]× [al

2..a
r
2 −1].

NOEX(Ma1
a2

, i, j) denotes the maximal similarity score of the alignments corresponding
to the matrix entry Ma1

a2
(i, j), which do not end (at the right) with an exclusion in either

sequence. In consequence, we get
◦
◦Ma1

a2
(i, j) = NOEX( ◦◦Ma1

a2
, i, j).
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The maximal score NOEX(Ma1
a2

, i, j) can stem from four classes of alignments. In the first
case, the alignments match S1[i] and S2[ j]. Then, the score is computed as the sum of
Ma1

a2
(i− 1, j− 1), the similarity of the matched bases, and possibly the penalty (negative

similarity) for breaking the arcs, that are incident to i or j. In the next two cases, the align-
ment ends in a gap in the first sequence (resp. the second sequence). The score is the sum
of Ma1

a2
(i− 1, j) (resp. Ma1

a2
(i− 1, j)), the gap dissimilarity, and possibly a term for arc-

breaking. In the last case, an alignment ends in an arc-match. There, we add the maximal
similarity of alignments left of the arc match to the maximal similarity for alignments that
are framed by the arc-match given in D.

In the following definition of NOEX, we use the helper functions inc1 and inc2 for a
compact notation. As defined in our preliminaries incl(i) = 1 if there is an incident arc to
base i in the structure Pl and incl(i) = 0 otherwise (for l = 1,2). Multiplying one term by
incl(i) and another term by 1− incl(i) supports the distinction of cases.

NOEX(Ma1
a2

, i, j) = max



















































Ma1
a2

(i−1, j−1)+(1− inc1(i))(1− inc2( j))sb(i, j)

+ inc1(i)sbr1(i, j)+ inc2( j)sbr2(i, j)

Ma1
a2

(i−1, j)+(1− inc1(i))sb(i,−)+ inc1(i)sbr1(i,−)

Ma1
a2

(i, j−1)+(1− inc2( j))sb(−, j)+ inc2( j)sbr2(−, j)

Ma1
a2

(i′−1, j′−1)+D((i′, i),( j′, j))

iff (i′, i) ∈ P1 and ( j′, j) ∈ P2.

For the initial cases, one of the subsequences has zero length, i.e. if i = al
1 or j = al

2.
Since no top-level exclusions are handled here, we get

NOEX(Ma1
a2

,al
1,a

l
2) = 0

NOEX(Ma1
a2

, i,al
2) = Ma1

a2
(i−1,al

2)+(1− inc1(i))sb(i,−)+ inc1(i)sbr1(i,−)

NOEX(Ma1
a2

,al
1, j) = Ma1

a2
(al

1, j−1)+(1− inc2( j))sb(−, j)+ inc2( j)sbr2(−, j).

Now we define the recursion cases for the remaining matrices x
◦Ma1

a2
, ◦

xMa1
a2

, and x
xMa1

a2
.

Beside the recursion cases, where no new exclusion is inserted, we need additional cases
to introduce new top-level exclusions, which are arc-complete. (Note that one proves by
contradiction that every exclusion of a local alignment A is itself arc-complete.). The addi-
tional cases reflect the insertion of an exclusion that starts with i in the first sequence (resp.
j in the second sequences), and extends to left until some k < i (resp. k < j) such that the
exclusion [k+1..i] (resp. [k+1.. j]) is arc-complete. We need to examine all such values of
kd. This results for (i, j) ∈ [al

1..a
r
1 −1]× [al

2..a
r
2 −1] in the recursion equations

◦
◦Ma1

a2
(i, j) = NOEX( ◦◦Ma1

a2
, i, j),

dSince we already run over these values of k, here it is possible to impose further restrictions on the admissible ex-
clusions, e.g. it seems reasonable to limit the minimal length of exclusions, which can be done without additional
work in the algorithm.
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a 1

i

2a no toplevel excl.

a a2 2+1l l j

a a 11 +1l l

(at most) one toplevel excl.

Fig. 4. Local sub-alignment considered in x
◦Ma1

a2
(i, j). The areas of alignment edges are marked grey.

x
◦Ma1

a2
(i, j) = max







NOEX(x
◦Ma1

a2
, i, j)

max
al

1≤k<i,ac1([k+1..i])

◦
◦Ma1

a2
(k, j),

◦
xMa1

a2
(i, j) = max







NOEX(◦xMa1
a2

, i, j)

max
al

2≤k< j,ac2([k+1.. j])

◦
◦Ma1

a2
(i,k),

and x
xMa1

a2
(i, j) = max























NOEX(x
xMa1

a2
, i, j)

max
al

1≤k<i,ac1([k+1..i])

◦
xMa1

a2
(k, j)

max
al

2≤k< j,ac2([k+1.. j])

x
◦Ma1

a2
(i,k).

Note that for i = al
1 (resp. j = al

2) the maximizations run over empty ranges. We define
such a maximum over an empty range as −∞. For example, this sets the entries (al

1,a
l
2) of

the four matrices to 0. Fig. 4 shows a local sub-alignment handled by equation x
◦Ma1

a2
(i, j).

Finally, we use the our helper function NOEX (and thus implicitly the table D) for
defining recursion equations for the complete alignment, i.e. for the top-level of our align-
ment. Here, we look for the best scoring alignment of a pair of subsequences of S1 and
S2, which is similar to local sequence alignment. In the case of local sequence alignment,
this is done by dropping prefix and suffix alignments with negative scores. However, in our
case the aligned subsequences have to be arc-complete. In consequence, one cannot simply
drop arbitrary prefixes, as it is done in local sequence alignment.

However, we can avoid searching through all possible starting and ending points of the
subsequences. Fortunately, searching over all (al

1 + 1,al
2 + 1) as starting positions, where

a1 (resp. a2) is an arc in P1 (resp. P2) or spans the whole sequence, turns out to suffice. If
we additionally allow the dropping of negatively scored arc-complete prefix alignments in
the recursion equation, we can take account for every pair of arc-complete subsequences.

For defining the top-level recursion, fix start indices i0 and j0. Choose i2 and j2 to be
maximal such that ac1([i0..i2]) and ac2([ j0.. j2]). We define T(i, j) for (i, j) ∈ [i0 −1..i2]×
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ii 0 i min

j min0j j j 2

i 2

optimal lssa

Fig. 5. Example for the last step (“top-level”) of the local alignment. The figure illustrates the meaning of the
indices that are used in the description. The region of the optimal lssa that is scored by T (i, j) is highlighted.

[ j0 −1.. j2] recursively by

T(i, j) = max

(

NOEX(T, i, j),

{

0 if ac1([i0..i])∧ ac2([ j0.. j])
−∞ otherwise

})

.

Note that by limiting the score of arc-complete prefix alignments to be at least zero, we
accomplish the effect of dropping negatively scored prefix alignments. For ac1([i0..i])∧
ac2([ j0.. j]), T (i, j) yields the score of the optimal lssa A ⊆ E([i0..i], [ j0.. j]), where i and
j are aligned and for the minimal positions imin and jmin that are aligned by A, holds
ac1([i0..imin −1]) and ac2([ j0.. jmin −1]). Fig. 5 illustrates the top-level alignment.

Finally, to get the maximal score we search through all i0 = al
1 + 1 and j0 = al

2 + 1
for arc-pairs (a1,a2) ∈ P1 ×P2, and determine the maximal entry (i1, j1) in the matrices T,
where ac1([i0..i1]) and ac2([ j0.. j1]).

Theorem 2. For a similarity score SIMSCORE and sequence-structures SSS 1 = (S1,P1) and
SSS 2 = (S2,P2) with nested structures P1 and P2, there is a O(|S1|

2 · |S2|
2 ·max(|S1|, |S2|))

time and O(|S1| · |S2|) space algorithm for the lssa problem.

Proof sketch. The existence of an algorithm has been shown already. Albeit a rigorous
proof of the algorithm’s correctness has been omitted. Since the scores in the matrices
D, Ma1

a2
, and T are explicitly defined as maximal scores of certain classes of alignments,

the correctness is proven by showing the equivalence of these definitions to the recursion
equations. This is shown inductively.

It remains to discuss the algorithm’s complexity. The algorithm computes and stores the
O(|S1| · |S2|) many entries of the matrix D. For each entry of D, we compute the O(|S1| · |S2|)

many entries of the matrices Ma1
a2

. For computing each of the entries in D, we compute
separate matrices Ma1

a2
. However, since there is no dependency between the matrices Ma1

a2

for different arc-pairs, it suffices to store the matrix D as well as the matrix T and only one
instance of the matrices Ma1

a2
at one time. Hence, we need only O(|S1| · |S2|) space.

Regarding time complexity, in the computation of the matrices Ma1
a2

, we maximize over
all values of k in a certain range, where its size is limited by the sequence length. The com-
plexity of computing D is dictated by the total number of steps we perform in these maxi-
mizations, since the other cases of our recursion equations are evaluated in constant time.
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The worst case time complexity of the algorithm is thus O(|S1|
2 · |S2|

2 ·max(|S1|, |S2|)),
since the top-level computation has a time complexity of only O(|S1|

2 · |S2|
2) and finally

the traceback step, where we recompute the matrices Ma1
a2

, does not increase time or space
complexity.

3. Results

An implementation of the introduced algorithm written in C++ is available on the web-
page http://www.bio.inf.uni-jena.de. We have aligned RNase P from two different organ-
isms Ralstonia eutrophus and Streptomyces bikiniensis. Whereas the algorithm allows for
fine-tuning of parameters, here the scores are chosen ad-hoc.e The example is computed in
about 75 seconds on a Intel Pentium 4 running at 2.4GHz, while the alignment of Fig. 2
is computed in a few milliseconds. Jiang et al.’s implementation needs approximately the
same time to produce a global alignment. The resulting local alignment is shown in Fig. 6.
It shows sequences and structures as well as the aligned bases. Only the bases that are con-
nected by | are aligned. Fig. 8 shows the secondary structures of the two RNA molecules,
where the parts included and excluded by the alignment of Fig. 6 are distinguished.

The sequences and structures are taken from Brown’s RNase P Database16. The reader
may compare our example to a corresponding example given by Jiang et al.7, where the
two RNase P molecules are aligned globally.f As a drawback of giving this opportunity for
a comparison, the two molecules, which were originally chosen for global alignment, have
small dissimilar parts. In consequence, the exclusions are small and there are no unaligned
prefixes or suffixes.

As a further test-case, we used our pairwise lssa algorithm to produce input for T-
coffee17. The result of aligning SECIS elements of M.janaschii from Wilting et al.2 is
shown in Fig. 7.

Acknowledgment

We thank the anonymous referees, who helped to improve the quality of the paper. Fur-
thermore, we thank Sven Siebert for the many discussions on global and local sequence-
structure alignment and his help with the multiple alignment example.

References

1. J. Cousin. Breakthrough of the year: Small RNAs make big splash. Science, 298:2296–97, 2002.
2. R. Wilting, S. Schorling, B. C. Persson, and A. Böck. Selenoprotein synthesis in archaea: Iden-

tification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine
insertion. J. Mol. Biol., 266(4):637–41, 1997.

3. SJ Klug and M Famulok. All you wanted to know about selex. Mol. Biol. Rep., 20(2):97–107,
1994.

eWe are aware that, in general, the quality of predicted alignments depends strongly on the actual parameters for
the similarity score. Unfortunately, there are no theoretical foundations to estimate such parameters systematically.
fJiang et al. refer to the recently renamed organism R. eutrophus by Alcaligenes eutrophus



February 2, 2004 15:33 WSPC/INSTRUCTION FILE local-ssa

Local Sequence Structure Motifs in RNA 15

((((((((((((((((((.(((((((((((....)))))))))))....(((.(((((((((...((((.((((((((((...
AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGCUAA
|||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||
CGAGCCGGGCGGGCGGCCGCGUGGGGGUCUUC GGACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGCUAA
((((((((((((((((((.((((((((((... .))))))))))....(((.(((((((((...((((.((((((((((...

..)))))(((((....)))).)((...(((((........... (((((((((((((....)))))))))))))........
CAGCCAUCCACGGCAACGUGCGGAAUAGGGCCACAGAGACGAG-UCUUGCCGCCGGGUUCGCCCGGCGGGAAGGGUGAAACG
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CGGCCACCCGGGGUGACCCGCGGGACAGUGCCACAGAAAACAGACC--GCCGGGGACCUCGGUCCUCGGUAAGGGUGAAAC G
..)))))(((((....)))).)((...(((((............(( (((((((((....)))))))))..))....... (

.)))..)))))))))))))...((((.....
CGGUAACCUCCACCUGGAGCAAUCCCAAAUA
|||||||||||||||||||||||||| ||||

GUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCAGGCGGCUAGGUAAACCCCACUCGGAGCAAGGUC AAGAGGGGACACC
(((((.......))))))((((((((((....)))))))).)).)))..)))))))))))))...(((( ....((((((((.

. ((((((... (((((. ))))))))))))))).....))))......((((((((....)))))))).
G-GCAGGCGAU GAAGCG GCCCGCUGAGUCUGCGGGUAGGGAGCUGGAGCCGGCUGGUAACAGCCGGCC
||||||||||| ||||| |||||||||||||||||||||||||||||||||||||||||||||||||||

CCGGUGUCCCUGCGCGGAUGUUCGAGGG CUGCUCGCCCGAGUCCGCGGGUAGACCGCACGAGGCCGGCGGCAACGCCGGCCC
...))))))))..((((((....((((( (.)))))))))))))))).....))))......((((((((....)))))))).

.... .....)))))))(((((((((((( ........ ))))))))))))......)))))))).).))))))))))....
UAGA GGAAUGGUUGUCACGCACCGUUUG-CCGCAAGG CGGGCGGGGCGCACAGAAUCCGGCUUAUCGGCCUGCUUUGCUU
|||| || |||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||
UAGAUGG AUGGCCGUC--GCCCCG-ACGACCGCGAGGUCC--CGGGG---ACAGAACCCGGCGUACAGCCCGACUCGUCUG
....... ..))))))) .((((( .((..........)) ))))) ......)))))))).).))))))))))....

Fig. 6. Local sequence-structure alignment of RNase P of R.eutrophus and S.bikiniensis. The sequences and
structures are taken from the RNase P Database by Brown16 . Only the bases that are shown connected by |
are aligned. The algorithm correctly identifies and excludes substructures that occur only in one of the RNA
molecules.
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Fig. 7. Alignment of SECIS elements from Methanococcus janaschii using lssa. The bases, which supposedly
belong to the common motif are colored, where we further mark the bases that occur in both sequences identically.
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Fig. 8. Secondary structures of RNase P molecules. We show the parts of the structures that are not aligned by
our algorithm only lightly. Notably, in the presented form, the algorithm produces small exclusions, which can be
prevented easily, if wanted. Please also see Footnote d on page 11 on this issue.
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