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Abstract.
Simplified protein models are used for investigating general properties of pro-

teins and principles of protein folding. Furthermore, they are suited for hierarchical
approaches to protein structure prediction. A well known protein model is the HP-
model of Lau and Dill [33], which models the important aspect of hydrophobicity.
One can define the HP-model for various lattices, among them two-dimensional
and three-dimensional ones. Here, we investigate the three-dimensional case. The
main motivation for studying simplified protein models is to be able to predict
model structures much more quickly and more accurately than is possible for real
proteins. However, up to now there was a dilemma: the algorithmically tractable,
simple protein models can not model real protein structures with good quality and
introduce strong artifacts.

We present a constraint-based method that largely improves this situation. It
outperforms all existing approaches for lattice protein folding in HP-models. This
approach is the first one that can be applied to two three-dimensional lattices,
namely the cubic lattice and the face-centered-cubic (FCC ) lattice. Moreover, it is
the only exact method for the FCC lattice. The ability to use the FCC lattice is a
significant improvement over the cubic lattice. The key to our approach is the ability
to compute maximally compact sets of points (used as hydrophobic cores), which we
accomplish for the first time for the FCC lattice.

Keywords: protein structure prediction, HP-model, face-centered cubic lattice,
constraint programming

1. Introduction

Proteins, the molecular machines of the cell, perform and control the
essential functions in living organisms. Therefore, the investigation of
their structure, the forming process of this structure, and finally their
function is vital for our understanding of life.

1.1. Proteins

Viewed on the molecular level, proteins are chains composed of single
building blocks. More specifically, a protein is a linear polymer formed
by connecting monomers, which are called amino acids. An amino acid
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is a molecule of the form shown in Figure 1. All amino acids share
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Figure 1. General structure of an amino acid.

the same general structure and differ only in the chemical group R.
The central carbon atom is called the α-carbon (short Cα), the left
group NH2 is called the amino group, and the right group COOH
is called carboxy group. In living organisms occur 20 different amino
acids, which have different chemical properties. Especially, they vary
in hydrophobicity, size and charge.

In a protein the amino acids are linearly arranged and thereby form
a chain. The order of amino acids is called sequence of the protein and
is specific for each protein. Note that by simple combinatorics, this
allows for a huge variety of different proteins.

In order to form a chain, every two amino acids are connected via
a peptide bond, where the carboxy group of the first amino acid reacts
with the amino group of the second. The result of connecting two amino
acids is a molecule as shown in Figure 2.
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Figure 2. Two amino acids connected by a peptide bond.

The peptide bond itself, which is indicated with a grey rectangle in
Figure 2, is planar, which means that there is no free rotation around
this bond.1 There is more flexibility for rotation around the N-Cα-bond

1 There are two conformations for the peptide bond, namely trans (corresponding
to a rotation angle of 180◦), and cis (corresponding to a rotation angle of 0◦). The
cis conformation is rare and usually occurs only in combination with the amino acid
Proline.
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(called the φ-angle), and around the Cα–C bond (called the ψ-angle).
But even there, the allowed values of combinations of φ and ψ angles
are restricted to small regions in natural proteins.

Using this freedom of rotation, the protein can form a huge variety of
different three-dimensional structures. Due to thermodynamics, some
of them are energetically more favorable than others, i.e. these confor-
mations have lower energy and therefore are more stable than the other
ones. As of yet, the details of this energy function are not completely
clear and a matter of intensive research. It is commonly assumed that
for a natural protein, there is one distinguished conformation that
has minimal energy, which is uniquely determined by the sequence
of amino acids. For this reason, one speaks of the native structure
of a protein denoting this distinguished conformation. Protein folding
denotes the conformational search of a protein, which culminates in
finding the native conformation. This term is distinguished from the
term protein structure prediction, which denotes the computation of
the native structure from the sequence. In this paper, we deal with
structure prediction and are not concerned with kinetic aspects of the
protein folding process.

Finally, the native structure and sequence determine the function of
the protein, due to the general mode of operation of proteins.

1.2. Structure Prediction

Here, we discuss to which extent the three-dimensional structure of a
protein can be computationally inferred from its sequence alone.

To assess the value of computational structure prediction, it should
be mentioned that experimental structure determination is still difficult
and time consuming2. In consequence, current biochemical methods
have difficulty to keep pace with the rapid growth of the number of
known protein sequences.

Therefore, protein structure prediction is one of the most important
problems of computational biology, which is however still unsolved in
general. We specify this problem in the following way. Given a protein
by its sequence of amino acids, what is its native structure? Since as
already discussed the native structure is the structure with minimal
energy, protein structure prediction is reasonably modeled as an op-
timization problem. The NP-completeness of this problem has been
proven for many different formal, in general simplified, protein models
including lattice and off-lattice models. [15, 20]

2 Here, the structure is determined by using either X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy.
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These results strongly suggest that the protein folding problem for
real proteins is NP-hard. Therefore, it is unlikely that a general, efficient
algorithm for solving this problem can be given. In fact, one is not able
to answer this question definitively, since too little is known about the
general principles of protein folding.

Knowing these general principles not only would improve our capa-
bilities to predict a structure of a protein, but it is also of paramount
importance for rational drug design, where one faces the difficulty to
design proteins that have a unique and stable native structure.

1.3. Simplified Models of Proteins

We will discuss mainly the most important sub-class of simplified pro-
tein models, although parts of this sub-section apply to simplified mod-
els in general. The models in this class are called lattice models. The
simplifications commonly used in this class of models are:

− each monomer is modeled by only one point,

− the positions of the monomers are restricted to lattice positions,

− all monomers have equal size,

− all bonds are of equal length, and

− a simplified energy function is used.

For the aim of structure prediction, gaining insight into the re-
lationship between sequence and structure of proteins is of utmost
importance. Simplified protein models, also known as low-resolution or
coarse-grained protein models, were proposed to study this relationship.
Furthermore, they can be used to tackle structure prediction directly.

For both areas of application, the following consideration motivates
the use of simplified models. Since simplified models model only some
aspects of the protein’s structure and energy, it is in general easier
to compute optimal structures for the model’s proteins than for real
proteins. The same applies for solving related problems like the design
of sequences that fold to a given structure.

For the latter application area of direct structure prediction, sim-
plified models have been successfully used by several groups in the
international contest “Critical Assessment of Techniques for Protein
Structure Prediction” (CASP, see the meeting review of CASP3 [32]).
There, the models are used in hierarchical approaches for protein fold-
ing [46] (see also Figure 3). In general, these approaches use simplified
models in a filter step as follows. Given a protein sequence, first a
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set of good structures in the simplified model is generated (e.g. 10 000
structures). In subsequent steps, these candidate structures are fine-
tuned using more computationally involved methods. Usually, these
methods incorporate biological knowledge and simulation of protein
folding on full atomic detail (i.e. molecular dynamics simulation).
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Figure 3. Hierarchical Approach to Protein Structure Prediction

Apart from their use in structure prediction and regarding the re-
lationship of sequence and structure, lattice models have become a
major tool for investigating general properties of protein folding. They
constitute a genotype (protein sequence) to phenotype (protein confor-
mation) mapping that can be handled using computational methods.
An interesting application of such a mapping is the exploration of
evolutionary processes. An example is [17], where the arrangement of
sequences in neutral nets is shown. A neutral net consists of sequences
that all code for the same structure and that are connected by point
mutations. In neutral nets there is a prototype sequence, which encodes
the common structure in the most stable way. For the sequences of
the net, this stability decreases with their distance to the prototype
sequence. The assumed universality of this principle feeds the hypoth-
esis of superfunnels in the sequence space with direct implications to
protein design. Another exciting question in this context is whether
one can switch between two different neutral nets using only a small
number of amino acid substitutions. This could help to explain how the
diversity of protein conformations evolved, which is observed in nature.

In the literature, many different lattice models, (i.e., lattices and
energy functions) have been used (see related work). Of course, the
question arises which lattice and energy functions have to be preferred.
There are two (somewhat conflicting) aspects that have to be evaluated
when choosing a model: 1) the accuracy of the lattice in approximating
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real protein conformations, and the ability of the energy function to
discriminate native from non-native conformations, and 2) the avail-
ability and quality of search algorithm for finding minimal (or low)
energy conformations.

While the first aspect is well-investigated in the literature (e.g.,
[38, 22]), the second aspect is underrepresented. By and large, mainly
two different heuristic search approaches are used in the literature. The
first approach is an ad hoc restriction of the search space to compact
or quasi-compact conformations. A good example is [34], where the
search space is restricted to conformations forming an n × n × n-
cube. The main drawback here is that the restriction to a compact
conformation is not biologically motivated for a complete amino acid
sequence (as done in these approaches), but only for the hydrophobic
amino acids. In consequence, the restriction either has to be relaxed
and then leads to an inefficient algorithm, or is chosen too strongly
and then may exclude minimal conformations. The second approach
is to use stochastic sampling as performed by Monte Carlo methods
with or without simulated annealing or genetic algorithms. Here, the
degree of optimality for the best conformations and the quality of the
sampling cannot be determined by state of the art methods.3

1.4. Contribution of the Paper: A Constraint-based
approach

We discuss protein structure prediction in an important class of lattice
models, which is know as the class of HP-models. In this work, we
introduce a constraint-based approach that greatly improves over all
existing approaches in HP-model lattice protein folding.

Originally, the term HP-model has been introduced by Lau and Dill
in [33] to denote a two-dimensional square lattice model with an energy
function that is simplified as strong as possible. In this model, the 20
letter alphabet of amino acids is reduced to an alphabet of two letters,
namely H and P. H represents hydrophobic amino acids, whereas P
represents polar or hydrophilic amino acids. The energy function for
the HP-model is given by the matrix of Figure 4(a). It simply states
that the energy contribution of a contact between two monomers is
−1 if both are H-monomers, and 0 otherwise. Two monomers form a
contact in some specific conformation if the Euclidian distance of their

3 When using stochastic local search methods, the partition function of the
ensemble (which is needed for a precise statement) remains in general unknown.
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a) H P

H -1 0

P 0 0

b)

Figure 4. Energy matrix and sample conformation for the HP-model

positions is 1 and they are not connected via a bond.4 A conformation
with minimal energy (also called optimal conformation) is just a con-
formation with the maximal number of contacts between H-monomers.
NP-completeness of the structure prediction problem has been shown
even for the HP-model [15, 20].

A sample conformation for the sequence PHPHPPHHPH in the two-
dimensional square lattice with energy −2 is shown in Figure 4(b). The
white beads represent P, the black ones H monomers. The two contacts
are indicated via dashed lines.

Originally, the HP-model was defined for the two-dimensional square
lattice. However, the extension to other lattices is straightforward. For
example, an HP-model using the face-centered cubic lattice (FCC) is
investigated in [3].

As we will explain in the following, our structure prediction ap-
proach outperforms other approaches in several ways, namely flexibility,
completeness and efficiency.

Concerning flexibility, our method is the only one that works for
two different important three-dimensional lattices. These are the cubic
lattice and the face-centered-cubic lattice. The cubic lattice is the most
intensively studied three-dimensional lattice. However, the ability of
the cubic lattice to approximate real protein conformations is poor.
Furthermore, as [3] pointed out, there is a parity problem in the cubic
lattice. This means that every two monomers with chain positions of the
same parity cannot form a contact. Nevertheless, we support the cubic
lattice due to its wide-spread use in literature and for comparability of
our method to other structure prediction approaches.

In contrast, the FCC overcomes the discussed drawbacks of the cubic
lattice. It lacks the parity problem and models real protein conforma-
tions with good quality (see [38], where it was shown, that the FCC
lattice can model protein conformations with coordinate root mean
square deviation of 1.78 Å, whereas the cubic lattice achieves a devia-

4 Note that this second condition can be dropped without changing the optimiza-
tion problem, since it adds only a constant number of contacts. Actually, we will do
this later.
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tion of 2.84 Å there). Recently, [13, 14] have shown that neighborhood
of amino acids in proteins closely resembles a distorted FCC-lattice, and
that the FCC is best suited for modeling proteins. This is an immediate
effect of hydrophobic packing. Just recently, it was shown that the
FCC is the lattice allowing the densest packing of identical spheres,
approximately 400 years after the original conjecture by Kepler [41, 19]
(see Figure 5 for an illustration of the FCC lattice).

a) b)

z

x
y

Figure 5. a) The unit cell of the FCC. b) A cut-out of two layers of the
face-centered-cubic lattice (FCC). The layers can be seen as two square lattices,
which are shifted such that every position in the first layer has contacts to 4 positions
in the second layer and vice versa (shown as dashed lines). Since the FCC lattice is
continued by stacked layers of the square lattice that are shifted each time, every
position of the FCC has twelve neighbors (four within the same layer, four to the
previous layer, and four to the next layer).

Concerning completeness, we find optimal structures that can not be
computed by all other comparable approaches. The fact that the HP-
model is degenerated5 allows for a direct comparison of completeness.
The degeneracy (i.e. the number of optimal structures) of a sequence
can be computed by enumerating all optimal conformations. Only for
the cubic lattice, there is one other method that claims to completely
enumerate optimal conformations [48] in a large class of conformations
and proves their optimality. In [48], Yue and Dill give a lower bound for
the number of such conformations for some sequences, by enumerating
as many structures as their algorithm can find. For these sequences
we can significantly improve their lower bound, which shows that the
CHCC method is incomplete. Note that an incomplete algorithm can
not only miss optimal conformations, but even fail to determine the
optimal energy for structures of a sequence.

Concerning efficiency, we have successfully applied our algorithm
to sequences up to length 200 in the face-centered cubic lattice (FCC).
For several sequences of length 200, we found a minimal energy con-

5 In a degenerated model there are usually many optimal conformations for one
sequence, instead of only one optimal conformation as it is assumed for real proteins.
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formation and proved its optimality. For the FCC, so far there existed
only heuristic algorithms (for an example of a genetic algorithm for
arbitrary Bravais lattices see [12]). Usually, these algorithms are ap-
plied to sequence of length of at most 80 (where they usually find only
a low but not minimal energy conformation). Since the search space
for conformations in the cubic lattice grows with approximately 4.5n

(where n is the length of the sequence), this implies that our method
handles a search space that at least by the factor 4.5120 higher than
the search space handled by other methods for the face-centered cubic
lattice.6

1.5. Related Work

A discussion of simplified protein models and their benefit can be found
in [22]. There is a number of groups working with lattice proteins.
Examples of how lattice proteins can be used for predicting the native
structure or for investigating principles of protein folding are [44, 1, 24,
43, 30, 27, 2, 37]. Most of them use heuristic methods, ranging from
Monte-Carlo simulated annealing (e.g. [35, 24]) to genetic algorithms
(e.g. [43]), purely heuristic methods like hydrophobic zipper [23] and
the chain growth algorithm [16], as well as complete enumeration (often
restricted to subset of all conformations, e.g. [44, 46]).

First steps have been made to improve the situation on the algo-
rithmic part. The first improvement was the introduction of an ex-
act algorithm for finding minimal energy conformations in the cu-
bic HP-Model [48]. The algorithm is called CHCC for “Constraint
Hydrophobic Core Construction”. Note that albeit its name, the ap-
proach does not use constraint-based methods. This method works only
for the cubic lattice, but not for the FCC-lattice which is much better
suited for modeling real protein conformations. The second improve-
ment is the appearance of approximation algorithms [29, 3] for different
lattice models. Despite their indisputable merits, their approximation
ratio is still too weak to be used in practice.

An approach of predicting structures using a FCC lattice-model
and also constraint-technology is the work of [25]. There, secondary
structure annotations, i.e. which amino acids form α-helices and β-
sheets, are employed to restrict the search space for finding solutions
in a lattice models. Despite some superficial similarities to our ap-
proach, both methods have different application areas in mind. The

6 The number 4.5n has been estimated for the cubic lattice [36]; for the FCC, we
are not aware of a good estimation of the number of conformations. However, due to
the increased degrees of freedom in the FCC lattice this number is certainly higher
than the number of conformations in the cubic lattice.
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aim of their work is to find not necessarily optimal solutions in a rather
detailed protein model, i.e. they compute only an approximation to
the prediction problem. Although their method cannot guarantee the
quality of found solutions, the method is slow and is only applicable
to short proteins. In contrast, we trade some detail of the model for
predicting structures, which are provably optimal and can be computed
much faster. Therefore, our approach is suited for applications in large
scale. In particular, we bring to mind statistical studies and generating
topological models in hierarchical structure prediction.

2. Overview of the Constraint-Based Approach

In Sub-section 2.1, we describe a straightforward constraint model for
the protein structure prediction problem. The simple model is then
followed by an overview of our more sophisticated approach in the next
sub-section.

2.1. A First Constraint Model

The following ideas are applicable to the HP-model in arbitrary lattices.
However for simplicity, we introduce the formal model for the cubic
lattice only. The description for other lattices, e.g. the face-centered-
cubic lattice, is analogous, especially since every lattice has an integral
representation, which allows using the finite domain constraint system
(for details of the application to the FCC lattice see [5]).

A sequence is a word of the alphabet {H,P}. With si we denote the
ith element of a sequence s. We call two lattice points ~p and ~p′ (lattice)
neighbors if and only if ~p and ~p′ have the minimal euclidian distance
between any two lattice points, which is 1 in the cubic lattice.

A conformation (also called a structure) c of a sequence s is a
function c : [1..|s|]→ Z3 such that

for all 1 ≤ i < |s|, c(i) and c(i + 1) are neighbors (bonds)

and for all i 6= j, c(i) 6= c(j). (excluded-volume)

By the bond constraint, two successive monomers have to be lattice
neighbors. The second condition, the excluded-volume constraint, claims
that a conformation is self-avoiding, i.e. it does not overlap itself.
Thus, the two constraints formulate the common requirements for a
conformation in the HP-model.

Given a conformation c of a sequence s, the number of HH-contacts
HHContacts(s, c) in c is defined as the number of pairs (i, j) with 1 ≤
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i < j ≤ |s|, where

si = H, sj = H, and c(i) and c(j) are neighbors.

The energy of c is commonly defined in terms of the contacts as

−HHContacts(s, c) + h,

where h is the number of pairs (i, i + 1), for 1 ≤ i < |s|, where si =
H and si+1 = H. Note that since the number h is constant for a
given sequence, maximizing the number of HH-contacts is equivalent
to minimizing the energy.

Now, we can use constraints for defining the set of possible structures
of a given sequence. When we give this constraint encoding in the
following, please note that all constraints can be expressed using the
constraint system over finite integer domains and furthermore Boolean
and reified constraints, which are defined in the following.

A reified constraint is a constraint x ↔ φ, where φ denotes an
allowed constraint. Semantically, by the constraint x ↔ φ the truth
of φ is reified in the value of the Boolean variable x, i.e. x is 1 if φ holds
and 0 otherwise. Furthermore, we use entailment constraints of the form
φ → ψ with the semantic φ implies ψ. For handling both constraints,
the solver needs to implement the entailment test. A constraint is called
entailed if φ is satisfied by every valuation that satisfies our constraint
problem. The constraint is disentailed if its negation is entailed. The
reified constraint x ↔ φ is then handled by determining the value of
x, when the solver derives that φ is entailed or disentailed. φ → ψ is
handled by imposing the constraint ψ, when φ is known to be entailed.

Our constraint model can be directly implemented in the language
Oz [42], since this programming system supports Boolean and finite
domain constraints, the entailment test, and a programmable search
module.

For the actual constraint model, we introduce for every monomer i
new variables Xi, Yi and Zi, which denote the x-, y-, and z-coordinate of
c(i). Since we are using a cubic lattice, we know that these coordinates
are all integers. The domains are also finite, since we can restrict the
possible values of these variables to [ 1 .. 2|s| ].7 This is expressed by
introducing the constraints

Xi ∈ [ 1 .. 2|s| ] ∧ Yi ∈ [ 1 .. 2|s| ] ∧ Zi ∈ [ 1 .. 2|s| ]
7 We even could have used the domain [1..n]. However, the domain [ 1 .. 2|s| ] is

more flexible since we can assign an arbitrary monomer the vector (n, n, n), and still
have the possibility to represent all possible conformations.
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for every 1 ≤ i ≤ n. The excluded-volume constraint is just given for
i 6= j by

(Xi, Yi, Zi) 6= (Xj , Yj, Zj).
8

For expressing that two successive monomers are lattice neighbors,
we introduce for every monomer i with 1 ≤ i < |s| three finite domain
variables Xnexti, Ynexti and Znexti. Then, we can express the bond
constraint by

Xnexti = |Xi − Xi+1| Znexti = |Zi − Zi+1|
Ynexti = |Yi − Yi+1| Xnexti + Ynexti + Znexti = 1.

The previously described constraints span the space of all possible
conformations. Every valuation of Xi, Yi, Zi satisfying these constraints
is an admissible conformation for the sequence s, i.e. a self-avoiding
walk of s.

In order to search for conformations with maximal number of HH-
contacts, we add constraints for counting HH-contacts. Then, one can
optimize the number of HH-contacts by enumerating the variables Xi, Yi
and Zi. For the counting, one introduces a Boolean variable Contacti,j
for each 1 ≤ i < j ≤ |s| that is 1 if i and j have a contact in every
conformation that is compatible with the valuations of Xi, Yi, Zi and 0
otherwise. Then, for 1 ≤ i < j ≤ |s|, we introduce new FD-variables
Xdiffi,j, Ydiffi,j, and Zdiffi,j and constrain them by

Xdiffi,j = |Xi − Xj| Zdiffi,j = |Zi − Zj|
Ydiffi,j = |Yi − Yj| Contacti,j ∈ {0, 1}

Contacti,j ↔ (Xdiffi,j + Ydiffi,j + Zdiffi,j = 1). (1)

Finally, the variable HHContacts counts the number of contacts
between H-monomers, and is defined by

HHContacts =
∑

i<j
si=sj=H

Contacti,j. (2)

Now for computing a structure with maximal number of HH-contacts,
we apply constraint-based enumeration of the variables Xi, Yi, and
Zi. There, we use a branch-and-bound scheme in order to optimize
HHContacts.

The previous formulation is general enough to be easily upgraded
to other lattices or more complex energy functions. However, when

8 This cannot be directly encoded in Oz [42], but we reduce these constraints to
difference constraints on integers.
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we use the previously described approach alone, the search space will
be restricted only poorly. We want to give some explanation for the
unsatisfying performance. For the previous approach, an efficient con-
straint solver is too weak in detecting whether a partial structure has
the potential to achieve sufficiently many contacts. For improving this
ability, one needs to introduce additional constraints to get bounds
on the number of contacts. However, we do not see how to define
good bounds using the previous approach. Furthermore, in order to
apply branch-and-bound optimization, one needs a search heuristic that
prefers low-energy conformations. Again, it seems unlikely to find such
a heuristic.

Consequently, for strongly improving over the previous constraint
model, we can not simply enhance this model. Instead, we develop a
completely new approach, which is described in the following section.

2.2. New Structure Prediction Approach

The whole approach relies on the notion of hydrophobic cores. The
hydrophobic core of a protein structure is the set of positions of the
hydrophobic amino acids. One observes that native structures tend to
have very compact hydrophobic cores. In fact, the energy of a structure
in the HP-models is completely dictated by the number of contacts in
its hydrophobic core C, which is defined by

contacts(C) =
1

2
|{(~p, ~p′) | ~p, ~p ∈ C ∧ ~p and ~p are neighbors}|.

Thus, the native structure for an HP-sequence s has a hydrophobic core
which is as compact as possible for s.

Let nH denote the number of H-monomers in s. Then usually, the
number of contacts in the hydrophobic core of the native structure of
s is very close to the maximal number of contacts between nH lattice
points. This observation allows for a new structure prediction strategy.

For predicting an optimal structure of s, one tries to find structures
of s that have one of the most compact point sets as hydrophobic core.
If this fails, one goes on to less compact point sets until one finds a
structure of s. If we find a first structure for s by this strategy, we
have already proved that it is an optimal structure, since we search
exhaustively and in each iteration decrease the number of contacts of
the point sets only by one.

In order to follow this new strategy in our approach, we need to solve
two separate problems. First, we need to generate compact point sets
(also called cores). This core construction is a complex combinatorial
problem of its own and is therefore preceeded by a preparation step,
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which reduces this complexity by computing core descriptions (later
called frame sequences). Second, we need to thread an HP-sequence to
a core, such that the core becomes the hydrophobic core of the resulting
structure.

The resulting approach of predicting optimal structures for an HP-
sequence s is depicted in Figure 6. This figure shows, that we finally
end up with three steps bounding, core construction, and threading.
Furthermore it shows the possible iteration, which relaxes the number
of contacts in the cores by one, if threading fails.

Core Construction

Relaxation

Bounding Threading
Number

of Hs
Frame 

sequences

HP Sequence

Figure 6. Schematic overview of the structure prediction approach.

An immediate advantage of our approach is that the cores can be
constructed independently of an actual sequence and can be stored for
later use in structure prediction. That is, the first two steps bounding
and core construction can be regarded pre-computation steps and do
not influence the run-time for actual structure prediction, where we
access already computed and stored cores.

The most challenging part of the method is the construction of
compact point sets, where we want to enumerate the point sets of a
given size that have maximally many or (slightly) less contacts.

A direct enumeration of such point sets seems to be not feasible,
since we are faced with a huge search space. However, if we get infor-
mation about the shape of such point sets, we can enumerate the cores
due to the restriction of the search space.

The first idea for restricting possible cores is to define the surround-
ing cuboid that contains the hydrophobic core. If one has a very tight
cuboid, then the hydrophobic core in this cuboid must be rather com-
pact. This claim obviously holds for the cubic lattice and is also of some
use for the FCC.

However, this approach is not fine-grained enough for the FCC as
well as for sub-optimal hydrophobic cores in the cubic lattice. There-
fore, we introduce a tighter bound on the number of contacts, which is
obtained by splitting the lattice into layers. Here, a layer is a plane that
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is orthogonal to the x-dimension. For each layer, we define the frame to
be the minimal rectangle around all positions of the core in this layer.
The corresponding frame sequence consists of the height and width of
each frame in each layer, together with the number of H-monomers
in this layer (see Figure 7). Please note that the exact position of the
frames is not part of the frame sequence. For each frame sequence, there
is an upper bound on the number of contacts in every hydrophobic core
that has this frame sequence. It is possible to efficiently compute the
set of frame sequences for n monomers that all have at least a bound c.
Then, each core of size n with c contacts must have one of these frame
sequences.

Using this information, we perform a constraint-based search for
enumerating all hydrophobic cores of size n with c contacts. This search
is strongly restricted by the frame sequences for n H-monomers with a
bound of at least c contacts.

a) b)

Figure 7. Hydrophobic cores and frame sequences. a) a hydrophobic core with
frames. b) the corresponding frame sequence. ai is the width and bi is the height of
the frame in the i-th layer. ni gives the number of H-monomers in this layer.

Note that hydrophobic cores for structure prediction were first used
in the CHCC algorithm of Yue and Dill [47]. CHCC works only for the
cubic lattice and not for the FCC lattice. For the cubic lattice, both
methods, CHCC and our approach, bound the number of contacts.
However, CHCC only computes the cuboids that surround the cores
with a certain number of contacts. By further considering the distribu-
tion of elements to layers, our method yields even stronger constraints
on the compact cores than CHCC. This is especially important for the
enumeration of sub-optimal cores. For FCC, there is no method that,
as it is done for the cubic lattice by CHCC, directly computes the
cuboid-analogous, sphere-like shapes that surround the compact cores.

Threading of an actual HP-sequence to a core is illustrated in Fig-
ure 8. Threading can be modeled as a constraint satisfaction problem
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16 R. Backofen and S. Will

and is then solved by constraint-based search. As well as the search that
is used for core construction, this search profits very much from the use
of a symmetry breaking scheme that is described in [8, 11]. There, we
introduced the first general method for the breaking of symmetries in
constraint-based search, which now has become a standard method.

Figure 8. Threading of the HP-sequence ’HHPPPPHHHHPHHHPHHHPPHHPHH-
PPPHHHPH’ to a hydrophobic core in the FCC lattice. The figure shows the core
(on the left) and the resulting structure (on the right), where H-monomers are shown
as black beads and P-monomers as white ones.

In the next sections, we will discuss the single steps of our prediction
method. The highly lattice-specific bounds on contacts will be described
in a section of their own. After the description of the bounds, we will
explain the construction of the hydrophobic cores, and finally describe
the threading method.

3. An Upper Bound for Frame Sequences

As prerequisite for the enumeration of hydrophobic cores, we investigate
the problem of generating the set of all frame sequences for a given
number of points with a bound of at least c contacts.

The first step is to define the upper bound on contacts for a given
frame sequence (a1, b1, n1) . . . (al, bl, nl), which is discussed separately
for the cubic lattice and the FCC lattice. We will start with the less
complex case of the cubic lattice. Note that for the cubic lattice, there
exists a previous bound on contacts by Yue and Dill [47]. However,
we present our new bound for two reasons. First, we can improve over
their bound by investigating the distribution of H-monomers to layers.
Second, the bound is instructive for understanding the more intricate
case of the FCC lattice, since both bounds share a similar structure.
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a)

layer contacts

interlayer contacts
x=2x=1

b) Layer1 Layer2

a1 = 2 a2 = 2

b1 = 3 b2 = 2

n1 = 5 n2 = 4

Figure 9. a) Layer and Interlayer Contacts b) Corresponding Frame Sequence

3.1. A Bound for Frame Sequences in the Cubic Lattice

In Figure 9a), a hydrophobic core for the cubic lattice is shown, where
we explicitly mark its two layers. Figure 9b) gives the corresponding
frame sequence. All contacts between positions in the same layer are
called layer contacts. All contacts between positions in successive layers
are called interlayer contacts. The upper bound on the number of con-
tacts in any core satisfying the given frame sequence is defined as the
sum of separate bounds for the number of layer and interlayer contacts.

In order to bound the layer contacts in the cubic lattice, we employ
the concept of surface, which was used by [47] before. If we define a
surface pair of a core C as a pair (~p, ~p′) of lattice points that have unit
distance, where ~p ∈ C and ~p′ 6∈ C. Then, the surface of a core C is the
number of its surface pairs.

Now, imagine a single layer x = k of the lattice that intersects the
core. Then, we define the layer surface of a hydrophobic core C in layer
x = k as the number of surface pairs of C, where both positions are in
this layer.
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Figure 10. The figure shows a layer of the cubic (or FCC) lattice that has one cavity
(grey oval). In general, a cavity of a core (resp. layer) is a non empty set of positions
on one line that are not in the core, but are framed by two core positions on this
line.

We assume that there are n core elements in this layer x = k and
these positions are contained in a minimal rectangle of size a×b, which
is called the frame of the layer. Then, the surface and layer contacts
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are related via the equation

4 · n = 2 · Contacts + Surface (3)

since every core element ~p has four neighbors in the same layer and
each of these neighbors ~p′ is either in the core or not. In the former
case, (~p, ~p′) (but also (~p′, ~p)) contributes to the number of contacts by
1
2 , in the latter case (~p, ~p′) contributes to the surface by 1.

Hence, minimizing the surface maximizes the number of contacts.
Yue and Dill [47] observed for the cubic lattice that minimizing the
surface is easier than directly maximizing the number of layer contacts.
In particular, if there are no cavities in the core (see Figure 10 for the
meaning of cavity), then the layer surface is given by 2·(a+b) (compare
Figure 11). Thus, 2 · (a+ b) is a lower bound on the surface. Using this
in Equation 3 yields an upper bound on the number of contacts from
a, b, and n.
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Figure 11. Horizontal and Vertical Surface. Every horizontal and vertical line
through the hydrophobic core produces at least two surface pairs (or exactly two
surface pairs, if there are no cavities in the core). The grey ovals mark the pairs of
surface points and corresponding core positions.

For the cubic lattice, there is a straightforward upper bound on the
number of interlayer contacts. Given two successive layers x = k and
x = k + 1, every position in layer x = k has exactly one neighbor
position in x = k + 1 and vice versa. Hence, there can not be more
than nk or nk+1 interlayer contacts between x = k and x = k + 1.
Thus, for two successive layers with nk and nk+1 core positions, there
are at most min(ni, ni+1) interlayer contacts.

3.2. A Bound for Frame Sequence in the FCC lattice

Our key to bounds for the FCC lattice is to partition the face-centered
cubic lattice into layers that each form a square lattice (as in the cubic
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lattice). In the FCC, these layers are arranged in a way that every point
in one layer has four neighbors in the next layer (see Figure 5). Note
that due to the partitioning, the definitions from the cubic lattice of
layer sequences, layers, and interlayer contacts apply also for the FCC
lattice. Furthermore, we can use the same bound for the layer contacts
as in the case of the cubic lattice.

For the interlayer contacts in the the face-centered-cubic lattice, the
situation is more intricate than in case of the cubic lattice since every
position in a layer can form a contact with up to four neighbors in the
next layer. The problem of bounding these contacts was only recently
solved in [5, 10].

The key problem for bounding the total number of interlayer con-
tacts is the bounding of interlayer contacts between two successive
layers x = k and x = k + 1. Obviously, it is not feasible to search
through all possible pairs of layers that satisfy the parameters ak, bk, nk
and ak+1, bk+1, nk+1 in order to obtain a tight bound.

However, imagine that we know the distribution of monomers in
the layer x = k. Then, we can count how many points in the layer
x = k + 1 form 1, 2, 3 and 4 contacts to the first layer. Formally, we
define a position ~p in layer x = k + 1 to be an i-point for the core C in
layer x = k (with i = 1, 2, 3 or 4) if ~p has i neighbors that are contained
in layer x = k and C (see Figure 12). We get a bound on the number
of interlayer contacts by distributing the nk+1 elements of the second
layer to these i-points. There, we fill the positions greedily, i.e. starting
with 4-points and continuing with decreasing i.

x=1 x=2

2−point

4−point

3−point

Figure 12. Definition of i-points.

In [10], we argue that there is a relation between the frame a × b,
the number of elements n, and the numbers of i-points of a layer. Only
three further parameters of the layer, denoted by mno,mnc, and mx,
are sufficient to determine the numbers of i-points exactly. Here, the
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additional parameters characterize a layer in the following way. See
Figure 13 for an illustration of the terms. The points of a layer can
be grouped into lines that each include all layer points with the same
y-coordinate. We call two successive lines in a layer overlapping if there
are two points of the two lines with the same z-coordinate. Similarly,
we call two successive lines connected if there are two points of the two
lines, where their z-coordinates differ by 0 or 1. An x-step is a set of
four neighbored lattice points that form a square, where exactly three
of them are elements of the layer. Then, mno denotes the number of
pairs of non overlapping successive lines, mnc is the number of pairs of
not connected successive lines, and mx refers to the number of x-steps
of a layer.

a) Distance 1 b) Distance > 1 c)

Figure 13. Additional terms for more detailed description of frames. a) The first
and second line (from the top) do not overlap, but are connected. The second and
third line are connected and overlap. The number of pairs of successive lines that
do not overlap is denoted by mno, i.e. here mno = 1. b) The first and second line
do not overlap and are not connected. The number of such pairs of successive lines
is given by mnc, i.e. here mnc = 1. c) A layer with three x-steps, which are marked
by squares. The number of x-steps is denoted by mx, i.e. here mx = 3. An x-step
is characterized by three points in the layer which form a square together with a
fourth point that is not element of the layer.

The numbers of i-points, written #i, for i = 1, . . . , 4 are given by

#4 = n− 1

2
s+ 1 +mno

#3 = mx − 2(mno −mnc)

#2 = s− 4− 2#3− 3mno −mnc

#1 = #3 + 2mno + 2mnc + 4.

First, note that always mno ≥ mnc holds since an overlap of suc-
cessive lines implies their connection. Furthermore, in order to obtain
an upper bound we can replace mnc by its bound mno for the aim of
eliminating one parameter. In this way, we get

#3′ = mx

#2′ = s− 4− 2#3′ − 4mno

#1′ = #3′ + 4mno + 4.
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Thereby, the number of 4-points is unaffected and #3′ and #1′ possibly
overestimate the numbers #3 and #1, which is compensated by an
underestimation of #2 by #2′.

Now, the bound on the interlayer contacts of the layer with frame
a×b, n elements, mno non-overlapping lines, andmx x-steps to a further
layer with n′ elements is obtained by distributing the n′ elements to
positions that form as many interlayer contacts as possible. Formally,
if we define four auxiliary variables by

b4 = min(n′,#4)

b3 = min(n′ − b4,#3′)

b2 = min(n′ − b4 − b3,#2′)

b1 = min(n′ − b4 − b3 − b2,#1′),

then the bound is simply given by 4 · b4 + 3 · b3 + 2 · b2 + b1.
Finally, if every other parameter is fixed, this bound is maximized

if the number of x-steps is maximal. In [5], a closed formula is given
for the maximal number of x-steps in overlapping layers. [10] extends
this to layers with non-overlapping lines by giving a recursion formula,
which is efficiently evaluated using dynamic programming.

This allows us to compute a bound by only enumerating the possible
values of mno instead of enumerating the exponentially many possible
layers.

3.3. Generating Frame Sequence Sets

Now, we discuss the generation of a set of frame sequences for cores
with given size n and a bound of at least c contacts. This generation is
discussed for both lattices uniformly.

We start by computing a bound BC(n, n1, a1, b1) on the number of
contacts in cores of size n and a first layer x = 1 that has n1 elements
and the frame a1 × b1. This can be done efficiently for all n up to
some upper limit and all n1, a1, b1 at the same time using a dynamic
programming (DP) algorithm. This algorithm fills a four-dimensional
matrix for evaluating the recursion of Equation (4) (Figure 14 pro-
vides an illustration). We define two functions BLC and BILC, which
denote the lattice specific bounds as they are described above. The
function BLC(n1, a1, b1) (resp. BILC(n1, a1, b1, n2, a2, b2)) denotes the
upper bound of the contacts on layer contacts for layers with param-
eters n1, a1, b1 (resp. interlayer contacts between the two layers with
parameters n1, a1, b1 and n2, a2, b2).
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a1

b1

n1
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B  (n,n1,a1,b1)

B      (n1,a1,b1,n2,a2,b2)

B  (n,n2,a2,b2)C C

LC
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B     (n1,a1,b1)

n2

Figure 14. Illustration of Equation 4. Recursively, the equation reduces the bound
for cores with first layer x = 1 to a bound of cores with first layer x = 2. The
recursion equation abstracts from the continuation of the core in layers x = 3, 4, . . . ,
which allows for efficient evaluation.

BC(n, n1, a1, b1) = max
n2,a2,b2




BLC(n1, a1, b1)
+ BILC(n1, a1, b1, n2, a2, b2)
+ BC(n− n1, n2, a2, b2)


 (4)

The frame sequence sets are generated by trace-back through the
resulting four-dimensional matrix. Since we are interested in the frame
sequences with at least a bound of c contacts, these sequences are not
necessarily optimal. Note that we also generate these sub-optimal frame
sequences from the DP-matrix, which is done by tolerating a limited
deviation from the optimal path when computing the trace-back.

The interested reader will find a more complete discussion of the
generation of bounded frame sequences in [10] and further detail in [7].

4. Constructing the Hydrophobic Cores

In order to construct the hydrophobic cores of size n with at least c
contacts, we use the corresponding complete set of frame sequences to
restrict a constraint-based search.

Given the set of frame sequences, we know that each core must have
one of these frame sequences. Otherwise it could not form the required
number of contacts c, due to our bound of the previous section. For the
cubic lattice, it is furthermore straightforward that each core must have
one of the frame sequences in every possible layer decomposition, i.e.
either a decomposition along the x-axis into x-layers, one into y-layers,
or one into z-layers.

Now, for gaining the maximal information from the sequences also
for FCC, one has to understand how the x-, y-, and z-layers are oriented
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Figure 15. Two representations of a single hydrophobic core in the FCC lattice.
The cores are embedded in a cubic structure to emphasize the building principle
of this lattice as face-centered-cubic. We have marked the x-layers (resp. y-layers)
by showing their layer contacts. The use of light and dark ink emphasizes the layer
structure.

to each other in the FCC lattice. Figure 15 illustrates that the layers of
different dimensions x,y, or z are orthogonal to each other as in the cubic
lattice. However, in contrast to the cubic lattice, they can be imagined
as being rotated by 45◦. Due to this arrangement, for the FCC lattice
we can apply the same constraint as for the cubic lattice, i.e. that one
of the frame sequences must be satisfied in either dimension.

The previous constraint is introduced in the form of a disjunction.
Note that since general constructive disjunction is computationally
expensive, we have to use a specialized approach to extract informa-
tion out of this special disjunction and improve the propagation by
generating element constraints.

In order to enumerate the cores, we start by fixing the length of
the frame sequence in every dimension. Since we search for connected
cores, the lengths immediately tells us the dimensions of a minimal
surrounding cuboid that contains all points of the core and furthermore
contains no empty layers.9

Notably, not all combinations of sequence lengths can be satisfied,
which is however hard to detect at this stage of the search. Therefore in
case of the FCC lattice, we simply perform a complete enumeration of
frame sequence lengths. For the cubic lattice, the CHCC algorithm of
[47] provides means to restrict the dimensions of the cuboid by an upper
bound on the number of contacts. Here, we combine our own bound
with a bound that we derive from this part of the CHCC algorithm.
However, we had to enhance CHCC in order to handle the case of cores
with sub-optimally many contacts completely.

9 Note that we construct only connected cores; unconnected cores can still be
composed from connected ones.
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As soon as the surrounding cuboid is fixed, we introduce boolean
variables CorePos~p for every lattice point in the cuboid. These variables
tell whether the point belongs to the core. The variables CorePos~p
are constrained to the (still partially known) frame dimensions and
elements in each layer. Furthermore, the variables are constrained to
the number of contacts in each layer and in total. For this aim, for each
pair of points ~p and ~q, a boolean variable Contact~p,~q is introduced. For
example, the constraint for the total number of contacts is then easily
expressed as

∑
Contact~p,~q >= c.

Before enumerating the boolean variables directly, it is advantageous
to introduce boolean variables for each line along the lattice vectors that
intersects the cuboid. These variables tell whether the points of the
line are occupied. Then, these variables are enumerated first. Finally,
constraints that count the overlapping and connection of lines, as well
as constraints that relate the surface of layers and the whole core,
improve the constraint propagation during the search. Further details
of this approach are given in [45] where we discuss the core construction
problem for the FCC lattice.

5. Threading the sequence to a hydrophobic core

The final problem is the threading of the sequence to a hydrophobic
core (see Figure 8), which yields the structures where the H-monomers
build the given hydrophobic core. This is discussed independently of the
actual lattice. We define a self-avoiding walk as a sequence of lattice
positions where successive positions are lattice neighbors and no posi-
tion occurs twice. Shortly, the threading problem asks for a self-avoiding
walk where all H-monomers are placed on core positions.

When given an HP-sequence s of length n and a core C, we model the
problem as CSP using the finite domain constraint system. We start
by introducing finite domain variables X1 . . . Xn. The values of these
variables are the positions of the corresponding monomers in the FCC
lattice. Therefore, a valuation can encode a protein structure in our
model. First note that these variables have indeed finite domains. This
is a consequence of the fact that the positions of H-monomers are in the
finite core C and the P-monomers are connected to the H-monomers.
Regarding the implementation, note that we can still use a standard
finite domain constraint system with integer domains if we assign a
unique number to each position.
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The restriction of the H-monomers to core positions is now simply
expressed by unary constraints10

Xi ∈ C for 1 ≤ i ≤ n, si = H. (5)

The self-avoiding property of a conformation means that all posi-
tions of monomers have to be different, which is directly expressed by
an all-different constraint on X1 . . . Xn. Hence we introduce

AllDiff(X1, . . . , Xn). (6)

Technically, we use the constraint of difference a la Regin [39] for
the H-monomers, which ensures hyper-arc consistency11, and a weaker
propagating constraint for the P-monomers. Thus, we use the com-
putationally expensive complete all-different constraint only where it
propagates most efficiently.

The walk property claims that successive monomers must occupy
neighboring positions. To ensure this property, we introduce the con-
straint Walk(X1, . . . , Xn). We investigate now how we can guarantee
hyper-arc consistency for this constraint. By a general result of Freuder
[26], arc consistency amounts to global consistency in a tree-structured
network of binary constraints. The next lemma is an instance of this
result.

LEMMA 1. Let X1, . . . , Xn be variables. Walk(X1, . . . , Xn) is hyper-arc
consistent if and only if for 1 ≤ i ≤ n− 1 all constraints Walk(Xi, Xi+1)
are arc consistent.

Due to this lemma, the hyper-arc consistency of the n-ary walk con-
straint is reduced to the arc consistency of the set of all 2-ary walk
constraints Walk(Xi, Xi+1).

We observed that the propagation is still rather weak if self-avoiding
walks are modeled using the two separate constraints AllDiff(X1, . . . , Xn)
and Walk(X1, . . . , Xn) that communicate only over the domains of the
variables. To improve the propagation, we discuss the combined con-
straint

SAWalk(X1, . . . , Xn) = AllDiff(X1, . . . , Xn) ∧Walk(X1, . . . , Xn).

Unfortunately, we are not aware of any efficient arc consistency algo-
rithm for this combined constraint in the literature. Furthermore, it

10 A unary constraint depends on only one variable.
11 A constraint is hyper-arc consistent, if all domain values of its variables are

supported by an assignment of all variables to their domain values that satisfies
the constraint. Arc consistency denotes the special case of hyper-arc consistency for
2-ary constraints.
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is unlikely that there exists one. It is well known that many prob-
lems involving self-avoiding walks, especially counting of such walks,
are intrinsically hard and there are no efficient algorithms to solve
them [36].

For this reason, we have investigated in [9] a relaxation of the self-
avoiding walk constraint that provides better propagation but is still
tractable. For variables X1, . . . , Xn, SAWalk(X1, . . . , Xn) introduces the
condition that all variables have different values, which makes con-
straint propagation hard. Obviously, we can reduce the complexity if
we enforce the all-different condition only for smaller subsets of the
variables. We observed that a reasonable choice is to guarantee the
self-avoiding property only for each set of k successive variables. In
order to formalize this, we introduce the concept of k-avoiding walks,
which are walks that are self-avoiding for every sub-walk of length k
(but not necessarily for the complete walk). Figure 16 shows a walk
that is 4-avoiding, but neither 5-avoiding nor self-avoiding. The con-
straint Walk[k](X1, . . . , Xn) constrains the variables X1, . . . , Xn to form
a k-avoiding walk.

In our constraint model, we can now combine the all-different con-
straint with the k-avoiding walk constraint instead of combining it
with the walk constraint. Note that both constraint formulations are
equivalent, i.e. they have the same set of solutions. However, the in-
terplay of Walk[k](X1, . . . , Xn) and AllDiff(X1, . . . , Xn) provides much
better propagation than the one of the two constraints Walk(X1, . . . , Xn)
and AllDiff(X1, . . . , Xn). This can be seen in the following example.
The cubic lattice has the property that if we consider an HPH subse-
quence, then the middle P monomer must be contained in the frame
that contains also the surrounding H-monomers (see Figure 17). The
reason is that the only way we could have the P outside is to go back
and forth, which is not allowed by the self-avoiding condition. This
property is detect via propagation of the 3-avoiding constraint, but not

Figure 16. A walk that is not self-avoiding but 4-avoiding. Encircled is a sub-walk
of length 4. Every sub-walk of length 4 is self-avoiding.
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using separate propagation on the constraints AllDiff(X1, . . . , Xn) and
Walk(X1, . . . , Xn).

Figure 17. All possible conformations for an HPH subsequence. The black lines
indicate the minimal frame boundaries. This illustrates that the P must be within
the frame enclosing the two surrounding H-monomers.

Due to a generalization of Lemma 1, we render Walk[k](X1, . . . , Xn)
hyper-arc consistent by computing the hyper-arc consistency of the
n − k + 1 many constraints SAWalk(Xi, . . . , Xi+k−1) for all 1 ≤ i ≤
n−k+1. Notably, in the special case k = 3, the consistency of the 3-ary
constraints SAWalk(Xi, Xi+1, Xi+2) is computed in only time O(2b · d),
where d is the domain size of the variable Xi+1 and b is the constant
number of neighbors of each lattice point, namely b = 6 for the cubic
lattice and b = 12 for the FCC.

6. Results

We have successfully applied the approach for predicting optimal struc-
tures for sequences up to length 200. When folding an HP-sequence,

Table I. Example runtimes for the threading of three random sequences of
length 200 onto a hydrophobic core of size 100 in the FCC lattice (on a
Pentium 4 at 2.4GHz).

Sequence length runtime

PPPHPHHPHHPPPHPHPPPPHPHHPPHPHHHHHPPHHPPHHHHHHPPHPP
HHPPHPHPHHHHHPHHPHHHPPPHHHPHHPPHPHPPHPPPHPPHPPHPPH
HHPHHHPHPPHPHHPHHHHPHPHHHPHHHPPPPPPHHHHHHPPPPPPPPH
HHPPHPHPPPHPHPHPHHPPHHPPPPHHHHHHPPPHHPPPPPHPPPHHPP

200 6.1 s

HPHHPPHPPPPPHHPHPHPHHPPHPPPPHHHHHHPPPHPPHHHPPHPPPP
HHPPHHHPHPHHHPPHPHHPPHPHHPPPPHHPPHPPHHHHPPPPPHHHPP
PPHPPPPPPHPPHHPHHHHPHHHHHHHHPPHHPPPHPHHHPHHHHHPHHP
HHHPHPHHPPPPHPHHPHHHPHPPPPHPPPPPPHPHHHHHPHHPPPHPPH

200 52.6 s

HPHHHPHHPHPHPPPHHHHHPHPHPHHHHPPPHHPPPPPPHHPPPPHPHH
HPPPPHPPPHHPHHPPPHPPHPPPHHHHPHHPHPPPPHHPPPHHPPHPPP
HPPHHHPHHHPHPPHPHHHHPPHHPPPPHHHPHHPPHPPHHHHPPHPHPP
HPHPPPPPHPHPHHHHHHHPHPHHHHHHPHHPPPPHPPPPHPPPHHHPHH

200 17.6 s
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only the work for the threading step has to be done, since the hydropho-
bic cores are pre-calculated. Runtimes for the threading step are given
in Table I. The approach can be tested on our WWW-page:

http://www.bio.inf.uni-jena.de/Software/Prediction

In Table II, a comparison with other approaches is given. Usually, no
search times are given in the literature. For that reason, we have listed
the maximal sequence length handled in the references. Beside the HP
model on the two-dimensional square, the three-dimensional cubic and
the three-dimensional FCC lattice, there are models that distinguish
a larger number of amino acids and thus more types of interactions
than just the hydrophobic/hydrophobic interactions in the HP-model.
These models are commonly called ”Hetero” models. In [40, 44], the
interactions were even generated by a random model resulting in one
specific type of interaction for every pair of amino acids. Models of
this kind are used to make prediction about general properties of the
protein folding problem.

Table II. Results for different lattice models by other groups.

Authors Model Dim. maxlen Algorithm Comment

Structure Prediction Algorithms

Shakhnovich et al. [40]
and Sali et al. [44]

cubic Hetero
(max. compact)

3 27 compl. enum fixed shape

Yue&Dill [47] cubic HP 3 36 b&b proves optimum

Yue&Dill [48] cubic HP 3 88 b&b proves optimum

Xia et al. [46] tetrahedral Hetero 3 ? enumeration restricted shape

Kaya&Chan [31] cubic Hetero 3 55 monte carlo

Cui et al. [21] square HP 2 18 compl. enum

Approximation Algorithms

Hart&Istrail [29] cubic HP 3 — approx. 3
8

of optimum

Hart&Istrail [28] FCC-HP side chain 3 — approx. 86% of optimum

Agarwala et al. [3] FCC-HP 3 — approx. 3
5

of optimum

When comparing the sequence lengths in Table II, it is important
to keep in mind the type of the algorithm, which is specified in the
last two columns. The table lists references for all kinds of approaches
ranging from complete enumeration to stochastic optimization meth-
ods. Complete enumeration is necessarily restricted. The enumeration
approaches either can be applied only to small sequence lengths (≤ 18),
or to models where the search space has been restricted artificially. An
example here is the approach by [40, 44] where only maximally compact
conformations are enumerated for computing the optimal structure.
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Namely, only conformations on a 3×3×3 cube are taken into account,
which drastically reduces the search space. In consequence, they con-
sider only sequences of length 27, which equals the number of positions
in a 3×3×3 cube. For this model, one has to enumerate only all 103 346
maximally compact conformations [18].

Finally, we compare our work with the CHCC-algorithm [47, 48],
which is the only other approach that can find provably optimal con-
formations in the cubic lattice HP-model and in the same time prove
their optimality. The HP-model is not designed to generate one single
minimal energy conformation for each sequence. Instead, commonly
there are a lot of minimal energy conformations. The number of this
minimal energy conformations for a specific sequences s is called the
degeneracy of s. In [49], Yue et al. have given a lower bound on the
degeneracy of some sequences. We have largely improved these bounds
(see Table III). Only for one sequence (third entry of Table III), CHCC
found approximately12 as many optimal structures as we could find.
Note that we also tested the validity of our results by an independent
program, which checked the generated optimal structures for unique-
ness (where symmetric structures are considered equal) and correct
energy.

Table III. Comparison of lower bounds on the degeneracy from
our algorithm to bounds that are computed using CHCC [49]. The
degeneracies for CHCC are cited as given in the reference.

Sequence Degeneracy

CHCC [49] our approach

HPHHPPHHHHPHHHPPHHPPHPHH

HPHPHHPPHHPPPHPPPPPPPPHH
1.5 × 106 10, 677, 113

HHHHPHHPHHHHHPPHPPHHPPHP

PPPPPHPPHPPPHPPHHPPHHHPH
14 × 103 28, 180

PHPHHPHHHHHHPPHPHPPHPHHP

HPHPPPHPPHHPPHHPPHPHPPHP
5 × 103 5, 090

PHHPPPPPPHHPPPHHHPHPPHPH

HPPHPPHPPHHPPHHHHHHHPPHH
188 × 103 580, 751

12 Since numbers for CHCC were not given with full precision in the reference, we
can not know whether the numbers match exactly or only approximately.
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7. Conclusion

We introduced the first approach to exact protein structure prediction
in a FCC lattice model. For the cubic lattice, we improved strongly
over previous approaches. Due to the advances in efficiency it is for
the first time possible to use three-dimensional exact protein structure
prediction in a large scale and for realistic sizes. For studies of the
sequence structure relation, it was up to now not feasible to make use
of three-dimensional models that are not artificially restricted. The
completeness of our approach is crucial for many of those studies.
The flexibility of the approach allows applying it to the cubic and the
face-centered cubic lattice. Finally using the FCC lattice, which closely
approximates real protein structures, the approach could be suited as
a filter step in hierarchical protein structure prediction.
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