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Abstract

We developed a dynamic programming approach for computing common exact se-
quential and structural patterns between two RNAs, given their sequences and their
secondary structures. An RNA consists of a sequence of nucleotides and a secondary
structure defined via bonds linking together complementary nucleotides. It is known

that secondary structures are more preserved than sequences in the evolution of
RNAs.

We are able to compute all patterns between two RNAs in time O(nm) and space
O(nm), where n and m are the lengths of the RNAs. Our method is useful for
describing and detecting local motifs. It is especially suitable for finding similar
regions of large RNAs that do not share global similarities. An implementation is
available in C++ and can be obtained by contacting one of the authors.

Key words: RNA pattern matching, sequence/structure alignments, RNA local
motifs

1 Introduction

RNAs are polymers consisting of the four nucleotides A,C,G and U which are
linked together by their phosphodiester bonds. Bases (which are part of the
nucleotides) form hydrogen bonds within the same molecule leading to struc-
ture formation. In recent years, RNA molecules gained increasing interest since
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) hairpin loop

Figure 1. Structure elements of an RNA secondary structure.

a huge variety of functions associated with them was found. Consequently, re-
search on small RNAs has been elected as the scientific breakthrough of the
year 2002 by the readers of the science magazine |[6].

One major challenge is to find common patterns in RNAs since they sug-
gest functional similarities of these molecules. For this purpose, one has to
investigate not only sequential features, but also structural features for the
following reasons. First, a major fraction of the function of an RNA-molecule
is determined by its (secondary) structure. The structure in combination with
the sequence of a molecule dictates its function. And second, it is known that
RNA-structure is often more conserved than the sequence.

Most approaches for finding RNA sequence/structure motifs are based on
(locally) aligning two RNAs of lengths n. They use dynamic programming
methods with a high complexity between O(n*) and O(n®) (see e.g. [10], [15]
and [2]). Hence, these approaches are only suited for RNAs of moderate sizes.
For that reason, we want to use a general approach that is inspired by a
common approach in sequence alignment, which uses sequence segments that
can be aligned without gaps. In the multiple sequence alignment method DI-
ALIGN |[17], these segments are generated in a first step for all pairs of input
sequences. In a second step, these segments are used (and extended) to build
a single multiple alignment.

So far, there exists no analogous method for finding common sequential and
structural segments in two RNAs that can be aligned without using gaps.
To solve this problem, we first give a formal definition of exact patterns in
Sections 3 and 4. Then, we present a dynamic programming approach for
finding this kind of patterns in the following sections. We can list all exact
patterns between two RNAs in time O(nm) and space O(nm), where n and
m are the lengths of the RNAs.

We have several applications for our method in mind. First, it can be di-
rectly used to find pairs of related pieces of RNAs in large genomes. This
is neither possible via sequence alignment since structural information is ig-



nored, nor via advanced RNA sequence/structure alignment methods due to
their high complexity. Fig B.1 in the appendix shows the largest local exact
pattern found in two sequentially different microRNAs from related species.
This pattern covers the major part of the corresponding microRNA contained
in the sequence. MicroRNAs are a newly discovered large class of regulatory
genes that do not encode proteins (see e.g. [1| for a review). Second, our
method can be used as a filter for the more advanced but time consuming
RNA sequence/structure alignment methods (e.g. [10,15,2]). The basic idea
is to generate a set of position pairs that are promising starting candidates
for the more complex sequence/structure alignment methods. Here, one would
not search for a single exact pattern but for several non-overlapping patterns
that together cover larger parts of the RNAs. Fig. B.2 in the appendix shows
the four largest patterns for two rev response elements (RRE) in HIV. Filter-
ing has already been used successfully in the FASTR system [4]. They used
a purely structural filtering method, whereas we consider both sequential and
structural information. Finally, one could think of using our approach to build
the analogue of the DIALIGN system for RNAs.

The dynamic programming method is based on the notion of nested RNA
structures, where for any two base-pairs (i1,72) and (ji,j2) either i1 < iy <
J1 < jJe or iy < j; < jo < ig. Thus, it is possible to describe secondary
structures not only as base-pair interactions but at a higher level of struc-
ture elements known as hairpin loops, right bulges, left bulges, internal loops
or multi-branched loops (see Figure 1). These structure elements have their
own stacking order, which are defined by their depth of nucleotide positions
concerning the number of base-pairs to the start/end of an RNA. The com-
putation of the RNA patterns is then performed on these structure elements
in an inside to outside manner.

A naive attempt is to consider all combinations of positions i in the first RNA
and positions j in the second RNA and to extend these starting patterns by
looking at neighboring nucleotides sharing the same sequential and structural
properties. If these properties are fulfilled then the nucleotides are taken into
the pattern. At a first glance, this idea may work, but the crucial point are
the loops. Consider e.g. the case shown in Figure 2. Suppose the algorithm
starts at position 1 in the first RNA and position 1 in the second RNA and is

Figure 2. Alternative matching



working towards the multiple loop in the first RNA. The lower stem has been
successfully matched. But now there is no clear decision to match the upper
part of the stem-loop of the second RNA either to the left side or to the right
side of the multiple loop. This decision depends on how a common pattern is
defined, of course, and how to reach a maximally extended pattern. Therefore,
the only solution is to make some pre-computations of sequential and struc-
tural components of RNAs. Finally, we end up with a dynamic programming
approach that compares inner parts of RNAs first, stores the results in dif-
ferent matrices and builds up the solutions successively. Note that it is also
a mistake to compute common sequential parts first and then to recompose
these parts by their structural properties. This problem is obviously a compu-
tationally intractable problem since we need to consider all combinations of
subsets of sequence parts.

Related Work

Related work on pattern analysis of RNAs has been done mostly for RNAs
with nested secondary structures. That is, if RNAs are represented as graphs
preserving a linear vertex order, then the base-pairing edges which are drawn
in the upper half plane do not cross.

Wang et al. [20] published an algorithm for finding a largest approximately
common substructure between two trees. This inexact pattern matching al-
gorithm is also suitable for RNA secondary structures. Hochsmann et al. [13]
gives a method for finding local patterns in a tree-representation of RNAs.
A survey of methods for computing the similarity between RNAs with and
without secondary structures until 1995 is given by Bafna et al. [3]. Gramm
et al. [9] formulated the arc-preserving problem: given two nested RNAs S,
and Sy with lengths n and m (n > m), respectively, does S, occur in S; such
that Sy can be obtained by deleting bases from S; with the property that the
arcs are preserved? This problem can not be seen as biologically motivated
because the structure of S5 would be found split in S;. It has been shown
by Jiang et al. [14,15| that finding the longest common arc-preserving subse-
quence for arc-annotated sequences (LAPCS), where at least one of them has
crossing arc structure, is MAXSNP-hard. Exact pattern matching on RNAs
has been done by Gendron et al. [8]. They propose a backtracking algorithm,
which is similar to an algorithm from Ullman [18] that solves the subgraph
isomorphism problem from graph theory with a complexity of (O(n?)). It aims
at finding recurrent patterns in a single RNA.



Plan of the Paper

The paper is organized as follows: In section 2, we introduce definitions and
notations of RNAs. In section 3, we define matchings between two RNAs such
that they can be described by matching and matched paths. In Section 4, bond
preserving matching is proposed which is used for the dynamic programming
matrices. These matrices and their recursion equations are given in section 5.
Finally, the pseudo code is given in section 6.

2 Definitions and Notations

An RNA is a tuple (S, P), where S is a string of length n over the alphabet
Y ={A C,G,U} . We denote S(i) as the base at position i. P is a set of
base-pairs (i,7'), 1 <i < i < n, such that S(i) and S(i') are complementary
bases. Here, we refer to Watson-Crick base-pairs A—U and C—G, as well as

the non-standard base-pair G—U. In the following, we write ¢ i’ instead
of (i,4") € P meaning that the two bases S(i) and S(i') are linked together by
a bond in the structure P.

Definition 2.1 (Nested Structure) A set P of base-pairs is called nested
E j'oeither i < i < j < j

iof for any two base-pairs 1 i' and j
(independent) or i < j < j' < i’ (nested)

A non-nested secondary structure is called a pseudoknot. The structure pre-
diction problem for pseudoknots is known to be NP-complete [16]. Therefore,
most of the secondary structure prediction programs restrict themselves to
nested structures. For the rest of the paper, we will assume that secondary
structures are nested. This allows us to partially order the bases of an RNA.

Definition 2.2 (Stacking Order) Let (S, P) be an RNA. The stacking or-

der of a base S(i) (abbreviated. as stordp(i)) is the number of bonds k —
with k < i <, plus one.

Thus, we are able to partition a secondary structure into structure elements
with the same stacking order. We call them loops (see Figure 1 for various
types of loops). For calculating the sequence/structure alignment, we have to
look at neighboring bases belonging to the same loop. This is achieved by a
function right (left) of an RNA (S, P), with

. ) J if (i, j) cP
ht p—
rightp(7) {z + 1 otherwise.



See Figure 3 for an example. leftp(i) is defined analogously. The function
right’, (i) (resp. left},(i)) is a short term for applying the right function (resp.
left) k-times to i. We define lbdp(i) (resp. rbdp(i)) to be true if there is
a bond i i’ (resp. —_ i), false otherwise. We define bdp(i) to be
rbdp(i) V Ibdp(i). For an RNA (S, P), the loop which is enclosed by a bond
e ! (written loop(i —_ i')) is the set of positions {r | i <r < ATk :
r = right®(i)}.

Figure 3. The right p(-) function is applied to a base belonging to a loop. The chain
of successive right p(-) applications traverses this loop.

3 Matchings

In this section, we will define formally what we understand under “common
sequential and structural segments in two RNAs that can be aligned without
gaps”. Suppose we are given two RNAs (51, P;) and (Ss, P2). The sets V; =
{i |1 <i<|Si}and V5 = {j |1 < j < |Ss|} contain the positions of
both RNAs. In the following, we will define matchings between two RNAs
that implicitly work on two graphs with nodes V; and V5. The edges in these
implicit graphs are the backbone and bond connections of the two RNAs. L.e.,

Py

two nodes (7,7') € V; form an edge if either i =i+ 1, i i’ or i’ i
An exact pattern (without gaps) corresponds then to a matching (with some
properties) that maps a connected component of the first implicit graph to a

connected component of the second one.

Definition 3.1 (Matching) A matching M between two RNAs (Sy, P1) and
(So, Ps) is a set of pairs M = {(i,j) | i € ViAj € Va} which describes a partial
bijection from Vi to Vo and satisfies the following conditions:

(1) structure cond.:V(i,j) € M, rbdp, (i) < rbdp,(j)A lbdp, (i) < 1bdp,(j)
(2) base cond.: V(i,j) € M, —bdp, (i) = Si(i) = Sa(j)

Note that the structure condition implies —bdp, (i) = —bdp,(j) for any (7, j) €
M since Vk € {1,2}Vi, bdp, (i) < rbdp, (i) VIbdp, (7). The structure condition
guarantees that specific biological entities (namely stems, which consist of a
sequence of stacked bonds) are handled in a correct way (see Figure 4).



Figure 4. Matching excluded by the structure condition. The red lines indicate
matches that do not satisfy the structure condition. They would map bases from
stems 1 and 3 of the first structure to the same stem 1 of the second structure, which
is biologically unreasonable.

The base condition is applied to unbound (or single) bases. The reason is that
we want to treat basepairs as units. Furthermore, we want to have different
treatments of basepairs depending on our application. In some applications,
we are not interested in preserving the type of basepairs in matchings. Thus,
we could match a A== bond onto a G C'. In this case, we don’t need
to extend the definition of matchings further. Fig. B.2 in the appendix shows
patterns that can be detected using this definition of matchings.

If, on the other hand, we want to preserve the bond type, then we need to add
the following condition.

Definition 3.2 (Matching (Cont.))

P

3) bond cond.: for each {(i,7), (7, 7))} C M with i i and j === i’ we
(3) NG j j

have S1 (1) = S2(j) A S1(7') = S2(5")
The range of positions matched in the first RNA is defined by
rany (M) ={i |35 : (i,5) € M},

and rany(M) is defined analogously. Given an element i € ran; (M), we denote
by M (7) the uniquely determined element j with (i, j) € M. Similarly, given an
element j € rany(M), we denote by M~1(j) the uniquely determined element
i with (4, 7) € M.

Note that so far, we have not added the condition that a matching must
preserve the order of the bases (i.e., i < ' and (i,5),(7,7) € M implies
Jj < j'). We will show later in Lemma 3.8 that this is a consequence of our
definition of connected matchings. As we will discuss in this and the next
section, it is not sufficient that the ranges of a matching in both RNAs are
connected. Instead, some of the connections (namely bonds) themselves have
to be preserved.



When considering an RNA as a graph, we have two different kinds of edges,
namely backbone connections and bonds. To define paths through this graph,
we define the transition type of an edge connecting two positions ¢ and ¢’ to be

1, 2, 3 or 4, depending on whether i =i+ 1, i’ =i — 1, i == i’, or 7' ;.
A path in an RNA is a sequence of positions i . .. i, such that the bases S(i;)
and S(ij4q) for L =1,...,k —1 are connected by the backbone or by bonds in
the RNA.

Definition 3.3 (Matching/Matched Path) Let (S, P;) and (Sa, P,) be two
RNAs and M a matching between them. An M-matching path is a list of pairs
(t1,71) - - - (ig, Jk) € M such that

(1) iy...1 is a path in (S, Py);
(2) ji...Jk is a path in (S2, Py); and
(8) for each 1 <1 < k the transition types of (i;,4141) and (ji, jix1) are equal.

A matching is connected if there is an M-matching path between any two
pairs in M. A path in only one of the RNAs consisting of only matched bases
18 called an M-matched path.

We define an M-matching path in structure 1 (resp. structure 2) to be the
corresponding restriction of an M-matching path to the elements in V; (resp.
V). If the structure is clear from the context, we omit “in structure 7”.

Figure 5. Matchings with unpreserved bonds (backbone and secondary). a.) i is

matched to j, but the backbone bond between i — 1 and i is not preserved. b.)
Py

1,7 is matched with j, 7/, respectively, but the bond ¢ 7’ is not preserved. The
matching is indicated by blue and green nodes. In both cases, the corresponding
bases in the second structure are connected with nodes (in red) that are not part of
the matching.

Note the difference between matching paths and matched paths. A matched
path is a path occurring in one structure, but there must not be necessarily
a corresponding path in the other structure. Furthermore, the restriction of
matching paths to some structure clearly produces a matched path. But the
contrary is not true. To clarify this, consider the simplest matched paths,
which are edges (backbone connections or bonds) between matched bases. By
definition, they are matched paths, but there might not be a matching path
associated with them. This happens for bases which mark the “ends” of the



matching. The two cases for backbone edges and bond edges are shown in
Figure 5.

Before we proceed, we want to show some properties required for the calcula-
tion of maximally extended matchings. They will be calculated by a dynamic
programming method, using an ordering combined from the stacking order
and backbone order. From the definitions of matchings, it is not yet clear
whether they respect stacking and backbone ordering.

Proposition 3.4 Let (i1,71) ... (k. jx) € M be a matching path. Then the
path preserves the relative stacking order, i.e. for all 1 < r < k we have
stordp, (i1) — stordp, (j1) = stordp, (i,) — stordp, (j,)-

Proof. By induction. Consider 4,1, j,1-

ir41 =1, + 1 A =bdp, (i) . Then stordp,(i,) = stordp,(i,,1). Furthermore, we
have j,41 = j + 1 A =bdp, (j-), which immediately implies stordp, (j.) =
stordp, (jr+1)-

irr1 =1, — 1L A =bdp, (i,41) Same as the last case.
2 iry1 (resp. iy41 ir) - Then stordp, (i,) = stordp, (i,,1). Since we

consider a matching path, the transition of j,. to j.,; must be of the same

Py

Uy

matching type. Hence, j, = Jre1 (resp. jri1 — Jjr), which implies im-
mediately stordp, (j,) = stordp,(j,+1)-

ir+1 =1, + 1 Albdp, (i,): Then we know stordp,(i,;1) = stordp, (i,) + 1. Fur-
thermore, we have j..; = j, + 1 Albdp, (j.) and therefore stordp, (i,+1) =
stordp, (i) + 1.

The other cases (i,41 = i, + 1 Arbdp, (i), (i41 = i — 1 Albdp, (i,41)) and
(tr41 =i, — 1 Arbdp, (i,41)) are analogous to the last case. O

Since we are considering only connected matchings in the following, it imme-
diately follows that matchings preserve the stacking order. For the backbone
order, we need one additional technical construction.

Definition 3.5 For a matching M, we define the sub-matching M =" of stack-
ing order < r to be the subset of M containing only pairs (i, j) with stordp, (i) <
r. Analogously, we define M=" and M".

Note that we considered in the definition only the stacking order in the first
structure. We will later show that the stacking order is preserved by connected
matchings. Furthermore, note that by definition, M =" is the empty set.

In the following, we will show that M=" is connected. In principle, it suffices
for that purpose to show that the minimal matching path that visits both
endpoints of a bond consists of the bond itself.
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Proposition 3.6 Let: i be two elements that are matched. If there is a

matching path using only positions k with i < k <i’, then M (i) — M(7).

P>

Proof. By the structure property, we know that M (7) jand j/ =2 M(7)
for some j, j'. Since stordp, (i) = stordp, ('), we know by Proposition 3.4 that
stordp, (M (i)) = stordp, (M(i')). By the nestedness, we get M (i) < j < j' <
M(i"). If j = M(i') and j' = M(i), then the claim holds.

So suppose that j # M (i'), which implies j' # M (7). L.e., we have the situation
as depicted in Figure 5b. Consider a matching path that uses only bases be-
tween k with ¢ < k <4’ in P;. Then the corresponding path in P; will contain
exactly two bases with the same stacking order as stordp, (i), namely i itself
and /. On the other hand, the corresponding path in P, will contain at least
4 bases with the same stacking order than stordp, (M (7)), namely M (i), 7,5’
and M (7"), which is a contradiction to Proposition 3.4. O

Lemma 3.7 Let M be a connected matching, and let M=" be a sub-matching
of order < r with r > 1. Then M<" is connected.

Proof. Via induction on the stacking order. For the base case, there is nothing
to prove since M=" = (). For the induction step, consider the set of added ele-
ments ran; (M) = ran; (M=""")\ran; (M=) in the first RNA. By induction
hypotheses we know that M=" is connected.

Let 1 < ¢ be any two elements in ran;(M"™!), and let ¢ = 4;...4, = 7
be the shortest M-matching path between 7 and i’ in P;. We will show that
every position in the connecting path in {¢; ...4,,} has stacking order < r+1,
which implies {i; ...7,} C ran;(M=""1). By Proposition 3.4 it then follows
that M="*! is connected.

So suppose that there is a 7,1 with stacking order > r+2. Let 7;;1 be minimal
with this property. We have the following cases according to the bond type of
the connection between ;.1 and ¢; used in the shortest M-matching path:

P

i;11: By our assumption, 7; € ran;(M"!), which implies stordp, (i;) <
r 4+ 1. Since 7;,7 must have the same stacking order as #; by definition, we

get immediately 7,1 € ran;(M"!), which is a contradiction.
P

i

141 1; Analogous to the last case.

i141 = 4 + 1: Since we have supposed that 7, & ran;(M"™!), we get immedi-
ately that stordp, (i) = r+ 1 and stordp, (i;41) = 7+ 2. This is only possible
if there is a bond 7 L & with iy < ipy1 < k. Since stordp, (i,,) < r+1,
we know that any path from 4;,1 to i’ must go through i, or k. In the first
case, we get an immediate contradiction to the assumption that we have
used the shortest matching path. In the second case, we know that & must
be contained in ran;(M) and therefore in ran; (M"™).

10
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k is a matched path. Furthermore, we can apply Proposi-
P

Hence, i,

tion 3.6, from which we get that i, k is also a matching path. But this
is a contradiction to the assumption of a shortest matching path.
1101 = 9y — 1: Analogously to the last case.

Now we are able to show that the backbone order is preserved as well.

Lemma 3.8 (Backbone Order) Let M be a connected matching, and (i,1),
(7,7)) € M. Then i <1 if and only if 7 < j'.

Proof. Via induction on M=". So let M=" be any sub-matching, and let the
claim hold for any (k, k'), (I,I') € M=". Consider any (i, M(i)), (i', M(i')) €
M7+, Since M is connected, so is M="*! by Lemma 3.7. Hence, there must
be a shortest matching path from i to ¢’ in ran; (M=""'). We will show the
claim only for the case 7 € ran;(M"™'), 7/ € ran;(M=") and i < 7. The other
cases are similar.

Let k < i <[ be the bond with largest stacking order enclosing ¢ (which must
exist). Then k, [ have stacking order r. Since any element in |k../[ has stacking
order > r + 1 and ¢’ € M<" with 7 < ¢/, we know that k < [ <4'.

Now any M="t!l-matching path between i,i must go either via k or [. In
the first case, we know that M (i) < M(l) since the shortest connecting path
can use only transitions that increase the positions in both structures. By
induction hypotheses we know that M(l) < M(i'), from which the claim
follows immediately.

In the second case, there must be a bond &/ < k < [ < [’ that is matched,
since any path between i and ¢’ using & must go through such a bond. Let
1 =11...15 = k be the matching sub-path connecting 7 and k. Since we have
assumed the shortest path, we know by Proposition 3.6 that ¢;...7,_; have
all stacking order r + 1. Then by Proposition 3.4, all M (i1)...M(is_1) have
the same stacking order ¢ + 1, where ¢ is the stacking order of M (k). Since
M (k) must satisfy lbdp, (k), has stacking order ¢ and is connected with i; via
elements having stacking order ¢ + 1, we get immediately M (k) < M(i;) =

M(i) < g, where M (k) =

g- This implies
M(K) < M(k) < M(i) < g < M(I') < M(i)

by induction hypotheses and the nestedness of structures. O

11



4 Bond Preserving Matching

As Figure 5b indicates, a matched bond i —L— i/ which does not correspond to
a matching path occurs if we have a stem in the first structure that is matched
to a multiple loop in the second structure (or vice versa). This does not make
sense in a biological interpretation, since it is very unlikely that this pattern
could have been generated by evolution. For that reason, we are interested in
matchings that preserve bonds.

Definition 4.1 (Bond-Preserving Matching) A connected matching M
1s said to be bond-preserving if every matched bond in P, or P, is also a
matching path, i.e. if {(i,7),(@, 7))} € M and i = = j', and
vice versa.

7', then j

In the following, we will consider bond-preserving matchings. We say that a
connected, bond-preserving matching M is maximally extended, if there is no
M’ such that M C M’. We are interested in finding all (non-overlapping) max-
imally extended matchings. The following proposition allows us to decompose
the problem of finding a maximally extended matching into subproblems of
finding maximally extended loop matchings.

Proposition 4.2 Let M be a connected matching with ran, (M) Uloop(i —_
i') # (0. Then M restricted to loop(i —_ i"YU{i, '} is a connected matching.

Py

Proof. Let r = stordp, (i) + 1 be the stackorder of the elements in loop(i

i'). We have already shown in Lemma 3.7 that M=" is a connected matching
Py

if M is. Now let j < j’ be two elements in loop(i i"). Now either there is

directly a matching path between j and ;' using only loop(i = ), or the
matching path M=" has to use both bond ends ¢ and i’ to connect j with j'.
In this case, i — i’ is a matching path due to the bond-preserving property,

and there is a matching path using only elements from loop(i i yud{i, '}
O

Dynamic Programming Matrices

We want to find all non-overlapping, maximally extended, bond-preserving
matchings. For overlapping matchings, we choose the one with maximal size.
If there are overlapping matchings of the same size, then only one is selected.

We use a dynamic programming approach by filling a matrix M(r,s), with
the following interpretation. Since our matchings preserve backbone as well as

12



stacking order, we define an order < on elements as follows:

oy i<j if stordp, (1) = stordp, (j)
i =
J stordp, (i) < stordp, (j) otherwise

For pairs (r, s) and (k,[) we define (r,s) < (k, 1) if and only if r < k. Then

M is a maximally extended matching
M(r,s) =max{ |M| | with (r,s) € M and there is no
(r',s") € M with (1, s") < (r,s)

contains the size of a maximal matching. For simplicity, we assume the max-
imum value over an empty set to be 0. Note that the size is stored only for
the left-most, bottom-most pair (r,s) in M. For calculating M (r, s), we will
additionally need auxiliary matrices M"—¢"¢, M*®* and M™™, which are defined
as follows.

Definition 4.3 (Auxiliary Matrices) Let Ry = (S1, P1) and Ry = (Ss, P»)

P . P

be two RNAs. Let r (resp. s) be an element of loop(i i") (resp. loop(j
j")). Then M?Op('r’, s) is the size of the mazimal matching within the loops that
contain (r,s), and is extended to the right or above (r,s), i.e.

M C [i..i'] x [5..7"] is a matching with (r,s) € M
M-l_<00p(r7 s) =max q |M|| such that M restricted to loop(i — i') is connected

and V(r',s") € M\{(i,i),(5,7)} : (r,s) 2 (1, ¢)

In addition, we define for every i, j such that =Ry and j e j' the matriz
element M (i, j) to be the mazimal matching that matches the bonds i !
and j === j' i.e.

M Ci.d] x 5.5 is a
M™(i, j) = max |M| | connected matching with
(i,7) € M and (i/,5') e M
In addition, we define M™(i', ') to be the mazimal matching containing the
right partners i’ and j' of the bonds only, i.e.
Mefi+1.4] x[j+1..j]
M™ (i, j') = max |M| | is a connected matching

with (i',§') € M

13



M_l_fgp (r,s) will be calculated for a matching of two loops associated with

the bonds i === i’ and Jj = 4, given that M, M and M™ is already
calculated for all bonds that are contained in the two loops. For calculating
M*®(i,7), we use additional auxiliary variables. The variable RDist stores the
loop distance to the right-end of the loop. Thus, for given RDist, we consider
elements r and s which have distance RDist to ¢ and j’, respectively. Looking
from the right end (7', j') of the loop this implies that

r=lefti”* (')  and s = lefti”"*(j).

First, we need to know whether there is a matching connecting (r, s) with the
right ends of the loop (7', j):

true if there is a connected matching
M C [i..d'] x [5..j'] with (r,s) e M
and (i,j') e M

false otherwise

Reach™“"“(RDist) = (1)

Since we don’t need the matrix entries any further, we only store the current
value in the variable Reach. In addition, we store the size of the matching that
is used in the definition of Reach’—*"*(RDist). If Reach”-*"(RDist) is false,
then we use the size of the last entry Reach™“"¢(RDist') with RDist' <
RDist and Reach™-“"¢(RDist') = true. Technically, this is achieved by an
array M"—"(RDist) with

M C [i..i'] x [j..j'] is a connected
i',j') € M and

(
V(r',s') € M\{(i,7), (5,5)} we
have (r,s) =< (', 5)

| M

J » matching with
M"™-"*(RDist) = max

Proposition 4.4 If Reach™“"*(RDist)

= true, then M"™-“"(RDist) = M_?OP(T’ s),
where r = leftgf%“(i’) and s = leftgfm(j’).

5 Recursion Equations
For the recursion equations, we introduce the following predicates. Given two
positions ¢ and j, then

match(i, ) = |S(i) = S(j) A (Ibdp, (i) < Ibdp,(j)) A (tbdp, (i) < tbdp, ()]

14



denotes bases that satisfy the structure and base conditions (see Def. 3.1). The
Py

predicate match(i i’ ] = j') denotes basepairs that can be matched.
If we do not require that the matching preserves the bond type (i.e. if we
are considering matchings according to Def. 3.1 only), then this predicate is

defined by

i === A [j ==
Otherwise, if we consider matchings according to Definitions 3.1 and 3.2, then
we have

[i —— 4] A [j === ] A [S1(0) = Sa(5)] A [S1(i') = Sa(5")].

Note that for the rest of the paper, it does not make any difference which
P, . P
(W)

definition of match(i j') we are using.

The auxiliary matrices and arrays can be easily calculated via the following
recursion equations. For M_l_fOp (r,s) we have

M_l_fgp(r, s) = (3)
M (r,s) + Mljmp('r” + 1,84+ 1) if match(r BN s')
Mr(r,s) + Mg"’p('r’ +1,s+1) else if rbdp, (r) Arbdp,(s) A match(r, s)
1+ MYP(r+1,5+1) else if match(r, s)
0 otherwise

Figure 6. Extension to next loop.

Py

Py

Note that if r and s are the left ends of the bonds r A s s', but
the bonds are not matchable, then this case is covered by the third case. Here,
r+ 1 and s+ 1 are not in the same loop as r, s. Therefore, we consider the
case where the maximal matching extends to the next loop via the left ends
of two bonds. This case is depicted in Figure 6. r and s do match, whereas
the bonding partners " and s’ do not match. The currently considered loop
is encircled. Since r + 1 and s 4 1 in the contiguous loop do match, we know
that we can calculate M (r, s) recursively by calculating MY (r +1, s+ 1).

As the next step, we define the auxiliary arrays Reach™"¢(RDist) as well as
Mr-"4(RDist) for a given loop. RDist is the distance to the right end of the

15



© :
© : N
T 'S
I “' 1d - o . @0 O@
o e e@ ee
&5t B3l _
LI G

Figure 7. The two possible cases for M (i Ly ) == 7"

closing bond. Consider the case where we want to match two loops associated

with the bonds ¢ 7 and j L] Let len be the minimum of the two
loop lengths, and 0 < RDist < len. Then

1 if match(', j')
0 otherwise

true  if match(7', ')

Reach™(0) = { and M"-"(0) = {

false otherwise

For 1 < RDist < lenm, let r = lefti?*(i') and s = left;”**'(j') be the two
positions with distance RDist to the right end of the considered loops. Then
we obtain

Reach’-“"*(RDist) = Reach”™“"*(RDist — 1) A match(r, s)
MY (r, 5) if Reach™"*(RDist)

M"-"(RDist) = . , .
Mr—¢"“(RDist — 1) otherwise.

The matrix M (i, j') then is simply

max {Mr—e"d(RDist)}

0<Rdist<lenmin

For the M® matrix, there are two different cases as shown in Figure 7. In the
first case a.), the extensions from the initial matching (7,7’) to the right, and
the extension from (j,j') to the left do not overlap, whereas they do overlap
in the second case b). For the second case, we do not know exactly how to
match the overlapping part. Hence, we have to consider all possible cuts in
the smaller loop, marking the corresponding ends of the extensions from the
left ends and from the right ends of the loop. The extensions from the right
ends are already calculated in the M"-°"¢ matrix. Only for the definition
of the recursion equation, we define M'-"¢(LDist) and Reach'-"¢(LDist)
analogously to equations (2) and (1), respectively. For the implementation,
we need to store only the current values M'-"? and Reach'-¢"?.

Now let len;; (resp. len; ;) be |loop(i —_ i")| (resp. |loop(i —_ i')]), and
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let len,,;, = min{len; s, len; i }. Then we have

oo M'-emd(L Dist)
M™ (i, j) = max (4)
0< LDist < Lenain | + M"="4(RDist)
with right 5% (i) is not

a left end of a bond

, len; — LDist if lenim = len, i,
where RDist = ’ . : ;
len;;» + (len; # — len; y) — LDist  otherwise.

The condition right]LDf%St(i) s not a left end of a bond guarantees that we do
not cut in the middle of a bond, which is excluded since we are considering
bond-preserving matchings only. The term (len; ; — len; ;) in the second part
of the definition of RDist is to compensate for the longer length of the first
loop.!

Finally, we consider the M (r, s) entries. Let r and s again be two bases of the
loops defined i 2 i and Jj = j’ with distance RDist to the right loop
ends ¢’ and j’, respectively. The values of M(r, s) and Mloop(r, s) are equal for
all entries M (r,s) # 0. M(r,s) is zero if there is some (r',s’) < (r, s) that is
matchable. This leads to the following equation: M(r, s) = 0 if =match(r, s) or
match(leftg, (), leftr,(s)) or Reach™"*(RDist), and M?Op('r’, s) otherwise.

6 Pseudo-Code

The main procedure consists of two for-loops, each calling a base-pair from
the first and second RNA, and performs the pattern search from inner to

outer loops. It calls the procedure START-LOOP-WALKING which initiates the
P Py

calculation of all matrices except M%(i, j) for two bonds i i’ and j
j', assuming that all matrix entries for loops above are already calculated. In
addition, it calculates the loop length of the smaller loop and the distance
of the two loop lengths (which is done in the sub-procedure CALC-REMAIN-
LOOP-LEN, see appendix).

The real calculation of these matrices is done in the sub-procedure LOOP-
WALKING, which traverses the loop from right to left (via the application of
left.(-) function). The function LOOP-WALKING has two modes concerning
whether we started the loop-traversal with both right ends ¢, 7' or not. In

. P . .
1 In the case that i === i’ is the smaller loop, then overlapping of the left and
right match extensions is already excluded by definition, and we do not need to
compensate for it
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1: procedure START-LOOP-WALKING(i,7, 7, j)

2 reach = INIT-LOOP-MATRICES(7', j', 7', 7)

3 (loop _size,loop _dist) := LOOP-WALKING(?', j',4, j,4', j', reach, true)
4: k=1

5: while k£ > i+ 1 do

6 k = leftp, (k)

7 INIT-LOOP-MATRICES (K, 5,7, §')

8 LoorP-WALKING(k, j', 1, 4,7, 7', false, false)

9

: end while
10: l:=7
11: while [ > j+ 1 do
12: [ = leftg, (1)
13: INIT-LOOP-MATRICES(7, [, ', j')
14: LOOP-WALKING (¢, 1,14, 7,7, ', false, false)
15: end while
16: return (loop size,loop dist)

17: end procedure
Figure 8. Starting points of loop walking

the first mode (initiated in line of START-LOOP-WALKING), we calculate also
the array M"-"¢, and move the M(r,s) down to (i, ;') for all (r,s) where
Reach™—"? is true. This part is done by the sub-procedure LOOP-REACH
(listed in the appendix). In the second mode, when LOOP-WALKING is called
with only one right end (lines 8 and 14 of START-LOOP-WALKING), then
we know the right ends cannot be in any matching considered there. In this

1: procedure LOOP-WALKING(r, s,1, 7,4, j', reach, right _ends)

2 RDist =0

3 while r > 1A s> j do

4: ri=mr; =3 ri=lefty (1'); s:=leftg,(s)

5: RDist = RDist + 1

6: if BASE-MATCH(r, s) V BOND-MATCH(r", 7, s", s) then

7 MLOOP-RECURSION(7", 1, s", )

8 M(r,s) == M(r,s); M(@',s) =0

9: If right _ends then LOOP-REACH(r, 5,1, %', j', reach, RDist)
10: else

11: M?Op(r, s):=0; M(r,s):=0; reach:= false
12: If right_ends then M"—"(RDist) := M"-"%(RDist — 1)
13: end if

14: end while

15: if right ends then

16: return CALC-REMAIN-LOOP-LEN(r, s, 1, j, RDist)
17: end if

18: end procedure

Figure 9. The procedure loop walking is going from one base to the next
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case, we may not calculate the M"—°"¢ array. The sub-procedure MLOOP-
RECURSION is just an implementation of recursion Equation (3) for M? >

The sub-procedure INIT-LOOP-MATRICES of START-LOOP-WALKING just ini-
tializes the matrices for the starting points. In most cases, the initial values
are 0 (since we cannot have a match if we do not start with the right-ends
due to the structure condition). The only exception is if we start with both
right ends, and these rights ends do match. In this case, we initialize the cor-
responding matrix entries with 1. The sub-procedure INIT-LOOP-MATRICES
is listed in the appendix.

The next step is to calculate M®(i, j), which is done by the procedure LoOP-
MATCHING. LOOP-MATCHING is called after START-LOOP-WALKING is fin-
ished. In principle, this is just an implementation of the recursion equation (4).
Since we do not want to maintain another array M'-°"¢(LDist), we store only
the value for the current LDist in the variable M'-¢"¢. The procedure main-
tains three neighboring cells (!, s), (r,s) and (", s"). (!, s') corresponds to
LDist — 1, and (r,s) to LDist. The cut will be between (7, s) and (r", s").

1: procedure LOOP-MATCHING (4,7, 7, j',i_i'_lens,lens_dist)
2: LDist :=0

3 if BOND-MATCH(i, 7, j,j') then
4 M!-end .= 0;  Reach'-*"* .= true
5: rri=4; ri=14 rli=i s:=j; s:=j; s:i=j
6 while 7" < i/ A s” < j' A Reach'-“"* := true do
7 rti=ry ro= " " = righty (r7); 8= s s = 87 8T =
rightp, (s");
: if BASE-MATCH(r, s) V BOND-MATCH(7", 1, s", s) then
9: M'-emd = MLEND-RECURSION(7!, 7, 7", 5!, 5, 57, M!-end)
10: else Reach'-“"? := false endif
11: if Reach!-°"? A ~BOND-MATCH(r!, 7, s!, s) then
12: FILL-MBB(4, 7, j,j', M'-*"? LDist,i_ i len,lens dist)
13: end if
14: LDist := LDist +1
15: end while

16:  else M*(i,j) := 0 end if
17: end procedure

Figure 10. Calculation of M

The sub-procedure FILL-MBB sets the entry of M®(i,j) to the current max-
imum according to equation 4 (see appendix). The sub-procedure MLEND-
RECURSION is in principle only an implementation of the recursion equation
for M'-¢"? ynder the condition that Reach!-°"? is true. It is assumed that
M'-end ig already calculated up to (7!, s') when MLEND-RECURSION is called,
and that we want to calculate it for the right neighbors (r, s) of (r!,s!). The
currently considered cut in LOOP-MATCHING is between (r, s) and their right
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neighbors (r", s").

As can be seen from the definition of M"™-"? in Equation (2), the recur-
sion equation under this condition is in principle analogous to the recursion
equation for MY given in Equation (3). There are two differences. First,
the analogous case (with right and left exchanged) shown in Figure 6 cannot
happen since we have Reach!-"¢. Since this case is not treated separately in
Equation (3), we do not see any differences here. Second, the recursion re-
quires to evaluate three cells (first case in Equation (3). These three cells are
here given by (r!,s!), (r,s) and (1", s"), respectively. But we do not have the
corresponding three Reach!-"¢ entries. We have only the current Reach!-¢"
(corresponding to cell (1!, s')), and the one we are currently calculating (cor-
responding to cell (r, s)). This can be solved by looking in the “future”, which
is done in line 5 of procedure MLEND-RECURSION.

1: procedure MLEND-RECURSION(r!, 7, 7", s!, s, s", M'-*"d)
2 if BOND-MATCH(r!, 7, s!, 5) then
3 Ml_end = Ml_end + Mbb(r, 8)
4: else if 1bdp, () A lbdp,(s) A BASE-MATCH(r, s) then
5: if “-BOND-MATCH(r,7",s,s") then
6 Miend .= pploend ] 4 MYP(r 41,5+ 1))
7 end if -
8 else if BASE-MATCH(r, s) then
9: Mliend = Mliend + 1
10: end if

11: return M-

12: end procedure

Figure 11. Auxiliary function MLEND-RECURSION

The maximally extended matchings are finally calculated from the M(r,s)
matrix by an usual traceback. The space complexity of the algorithm is O(nm).
The time complexity is O(nm) for the following reason. Every pair (7, s) with
1 <r <|S)|and 1 < s < |9,] is considered at most twice in START-LOOP-
WALKING and LOOP-WALKING, with an O(1) complexity for calculating the
corresponding matrix entries. Similarly, every pair (r, s) is considered at most
twice in LOOP-WALKING. Since there are O(nm) many pairs (7, s), we get a
total complexity of O(nm).

7 Conclusion

We have presented a fast dynamic programming approach in time O(nm)
and space O(nm) for detecting common sequence/structure patterns between
two RNAs given by their sequence and secondary structures. These patterns
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are derived from exact matchings and can be used for local alignments (|2]).
The most promising advantage is clearly to investigate large RNAs of sev-
eral thousand bases in reasonable time. Here, one can think of detecting local
sequence/structure regions of several RNAs sharing the same biological func-
tion.
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A Listing of Sub-Procedures

A.1  Sub-Procedures for LOOP-WALKING

1: procedure LOOP-REACH(r, s,1, j,4', j', reach, RDist)
2 if reach then

3 M(,j") = M(r,s); M(r,s):=0

4: Mr-md(RDist) := MY (r, s)

5: M"™(i ") := M"-<"(RDist)

6 else

7 Mr-end(RDist) := M"-"(RDist — 1)

8 end if

9: end procedure

1: procedure INIT-LOOP-MATRICES(k, [,4', j)

2: right_ends:= (k=17 Nl=j")

3: if right ends A BASE-MATCH(7', j') then

4: MY (k1) :=1; M™(k1):=1; M(k,1) =1,
5: MT-e"(0) := 1; reach := true

6: else if right _ends then

7 MY (k1) :=0; M™(k,1):=0; M(k,1)=0;
8: MT-"4(0) := 0; reach := false

9: else
10: MLOOp(k, [):=0; M(k,1)=0; reach:= false
11: end if
12: return (reach)
13: end procedure

1: procedure CALC-REMAIN-LOOP-LEN(r, s, 1, j, LDist)
2: Loop_Len_Dist :=0

3: if r =i then

4: while s > j do

5: s = leftp,(s)

6: Loop _Len__Dist := Loop__Len_Dist + 1

7 end while

8: return (LDist — 1, Loop_ Len_ Dist)

9: else
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10: while » > i do

11: r = leftg, ()

12: Loop Len Dist := Loop Len_Dist + 1

13: end while

14: return (LDist + Loop _Len_Dist — 1, —Loop_Len__ Dist)
15: end if

16: end procedure
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A.2  Sub-Procedures for LOOP-MATCHING

1: procedure FILL-MBB(4, ', j, j/, M'-“"? L Dist,i i len,lens dist)

2:
3:

8:
9:

if lens_dist > 0 then
RDist =i i len — LDist > Bond i—i’ has
smaller loop
else
RDist =i_i' _len+lens_dist — LDist > Bond j—j’ has
smaller loop
end if
Mbb(iv ])
Ml-end 4 Mr—_end( R Dist)
M(i, j) = M™(i, j)
M@, 5)=0

M® (3, j) := max

10: end procedure

B Examples
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Figure B.1. Two microRNAs from the mir-129 precursor family (accession numbers:
BX649263.6,AC072048.4, Rfam database [5]). The two RNAs are folded into their
optimal structures using RNAfold [12]. The largest exact pattern common to both
RNAs is highlighted in blue. The largest approximate pattern is highlighted in pink.
The last pattern contains in addition to the exact pattern bonded pairs of nucleotides
not satisfying the bond condition in definition 3.2.
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Figure B.2. Two Rev Response elements (RRE), (accession numbers M14100,
U36876, Rfam database [5]) encoded within the HIV-env gene. Our program was
performed on their optimal structures. The four largest, exact patterns are high-
lighted. A clearly visible one-to-one correspondence between the patterns shown as
different colors detects a high similarity among those RN As. Notice that the running
time and the space complexity are only O(nm).
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