
Protein similarity search under mRNA structural constraints:
application to targeted selenocysteine insertion

Rolf Backofen∗ N.S. Narayanaswamy† Firas Swidan
Oettingenstrasse 66, 80538 Munich, Germany

Tel: +49 89 2178 2213 Fax: +49 89 2178 2238
Email: {backofen,swamy,swidan }@informatik.uni-muenchen.de

Abstract

Selenocysteine is the 21th amino acid, which occurs in all kingdoms of life. Selenocysteine is en-
coded by the STOP-codon UGA. For its insertion, it requires a specific mRNA sequence downstream the
UGA-codon that forms a hairpin like structure (called Sec insertion sequence (SECIS)). We consider the
computational problem of generating new amino acid sequences containing selenocysteine. This requires
to find an mRNA sequence that is similar to the SECIS-consensus, is able to form the secondary structure
required for selenocysteine insertion, and whose translation is maximally similar to the original amino
acid sequence. We show that the problem can be solved in linear time when considering the hairpin-like
SECIS-structure (and, more generally, when considering a structure that does not contain pseudoknots).
Keywords: Selenocysteine, SECIS, Protein Engineering

1 Introduction

1.1 Selenoprotein and Selenocysteine Insertion

Selenocysteine(Sec) is a rare amino acid, which was discovered as the 21st amino acid [Böck et al., 1991]
about a decade ago. Proteins containing selenocysteine are consequently calledselenoproteins. The discov-
ery of selenocysteine was another clue to the complexity and flexibility of the mRNA translation mechanism.
Selenocysteine is encoded by the UGA-codon, which is usually a STOP-codon encoding the end of transla-
tion by the ribosome. It has been shown [Böck et al., 1991] that in the case of selenocysteine, termination of
translation is inhibited in the presence of a specific mRNA sequence in the 3’-region after the UGA-codon
that forms a hairpin like structure (called Sec insertion sequence (SECIS), see Figure 1). Selenoproteins
occur in all domains of life.

Selenium is very important for human health. The more than 30 known human selenoproteins are essen-
tial components for several major metabolic pathways, including antioxidant defense systems and immune
function (for an review, see [Brown and Arthur, 2001]). Albeit the process of selenocysteine-insertion in
mammalian selenoproteins is not sufficiently understood yet, it is known that it requires the existence of a
SECIS-element in the 3’ UTR region of the mRNA with a distance from the UGA-element that naturally
varies from 500 to 5300 nucleotides [Low and Berry, 1996]. It has been shown that selenocysteine insertion
requires some additional factor, namely the SECIS-binding-protein (SBP2) [Copeland et al., 2000], albeit
the exact interaction between SBP2 and the SECIS-element is not yet completely understood. In addition,
a special elongation factor mSelB has been proposed recently [Fagegaltier et al., 2000]. Corresponding the
specifity of the 3’ UTR-region, it has been shown that the 3’-UTR of three different selenoproteins are
interchangeable, albeit there is only little sequence homology between their SECIS-elements. But the corre-
sponding predicted structures show a high similarity (see [Low and Berry, 1996] for an review). In archaea,
∗Partially supported by the DFG within the national program SPP 1087 “Selenoprotein – Biochemische Grundlagen und klinische

Bedeutung”
†Supported by DFG Grant No. Jo 291/2-1

1

the SECIS-elements are located in the 3’ UTR region of mRNA like in the case of eukaryotes (for an review
see [Rother et al., 2001]).

In bacteria, the situation is quite different. The SECIS-element is located immediately downstream
the UGA codon [Zinoni et al., 1990]. A displacement of the SECIS-element by more than one codon, or
a displacement not preserving the reading-frame results in a drastic reduction of selenocysteine insertion
efficiency [Heider et al., 1992]. ForE.coli, the mechanism of selenocysteine insertion is well understood,
and all corresponding factors are identified [Sawers et al., 1991]. The selenoprotein synthesis requires the
products of four genesselA–selD, which encode a selenocysteine synthase (SELA), a special elongation
factor SELB, a specific tRNA for selenocysteine (tRNASec, which is the product of geneselC), and a se-
lenophospate synthetase (SELD), required to produce selenophospate (the selenium donor to the tRNA)
from selenide (see [B̈ock et al., 1991] for an review). SELB [Forchhammer et al., 1989] is a protein con-
sisting of 4 domains, where the three N-terminal domains are homologous to the elongation factor Tu
(EF-Tu). The 4th C-terminal domain shows no known homology and is the binding site for the SECIS-
element [Kromayer et al., 1996]. So far, the structure of SELB is unsolved (only a structural model for the
N-terminal domains homologous to EF-Tu exists [Hilgenfeld et al., 1996]).

Since the selenoprotein biosynthesis is a complex organism specific pathway, there are some barri-
ers for the heterologous expression of genes encoding selenoprotein. On the positive side, it was found
that there is a high degree of conservation of the selenoprotein biosynthesis throughout the enterobacte-
ria [Heider et al., 1991].

There has been quite some effort to characterize the nature of the SECIS-element forE.coli. The lower
region of the hairpin, which comprises the first 11 nucleotides following the UGA codon is not required
for SelB bindingin vitro [Kromayer et al., 1996] and has been suggested to function by enhancing the sta-
bility of the loop structure and/or to prevent binding of release factor 2 [Hüttenhofer et al., 1996]. It has
been shown that deviations in the primary sequence of this distal part of the SECIS did not disturb UGA
readthrough [Heider et al., 1992, Liu et al., 1998], but variations in its length (deletion or extension of three
or six nucleotides) significantly reduced or abolished UGA decoding [Heider et al., 1992, Liu et al., 1998].
The upper part consisting of 17 nt offdhF mRNA (18 nt of fdnG mRNA) is much more specific in pri-
mary sequence and secondary structure. This region is recognized and bound by SELB [Baron et al., 1993,
Kromayer et al., 1996]. In addition, binding specifity of SELB (or more specificly of the 4th domain of
SELB) has been investigated by in vitro selection approaches (artificial evolution). These experiments in-
dicate that there is some variation of mRNA sequences that are bound [Klug et al., 1997, Klug et al., 1999].
Furthermore, there have been successful efforts of generating mutants of SelB that where capable of recog-
nizing mutated SECIS-elements that are not recognized by the original SelB [Kromayer et al., 1999].

Selenocysteine is more reactive than cysteine. There has been quite some interest in comparing the
enzymatic activity of proteins containing selenocysteine, and similar proteins not containing selenocysteine.
On the one hand, it is simple to replace Sec by Cys. If the replaced selenocysteine is in the active site,
this usually results in a reduction of enzymatic properties. Another source for comparison are homologous
versions in different organisms (for an review, see [Stadtman, 1996]). For the other direction, namely the
production of artificial selenoproteins by genetic methods, there were only two successful experiments. In
both case, cysteine was replaced by selenocysteine by inserting a SECIS-element at the proper position.
The inserted SECIS-element was identical to the wild type in [Heider and Böck, 1992], and engineered in
[Hazebrouck et al., 2000].

UGA

SECIS

Figure 1: Translation of mRNA requires a SECIS-element in case of selenocysteine.

Concerning bioinformatics approaches in the area of selenoproteins, we have the following situation. An

2

obvious problem is to search for existing but unknown selenoproteins. Since both sequence and structure is
important for selenocysteine incorporation, and the different selenoproteins do not have a pronounced con-
sensus sequence (on the amino acid level), the usually BLAST and FASTA search tools will not have enough
selectivity. Therefore, new algorithms have to be devised. An example is SECISearch [Kryukov et al., 1999],
which searches for mammalian selenoproteins by recognizing the corresponding SECIS-element using a hi-
erarchical approach. First, one searches for sequences that satisfy the SECIS-consensus sequence, and allow
for the secondary structure required for the SECIS-element. In an additional step, the minimal free energy of
the sequences is estimated using the RNAfold program of the Vienna-RNA-Package [Hofacker et al., 1994].
The program is capable of finding all the known mammalian SECIS elements. On the other hand, the authors
also noticed that a significant portion of SECIS-elements found by the program are pseudo-SECISes.

However, we consider a different problem, namely modifying existing bacterial proteins (or proteins that
can be expressed in a bacteria, usuallyE.coli) such that selenocysteine is incorporated instead of another
amino acid (usually cysteine) at a given position. To achieve this, the mRNA of the protein has to be
modified such that a SECIS is formed at the required position. In most cases, the produced SECIS element
cannot be a wild-type SECIS, but must be an engineered SECIS element.

There are two possible reasons for wanting such modifications. First, it provides a possibility of gen-
erating new, functionally modified selenoproteins. Experimentally, this has been done successfully forE.
coli in [Hazebrouck et al., 2000], where the mRNA sequence of a protein not containing selenocysteine was
engineered (by hand) such that it forms aE. coli SECIS (while preserving maximum similarity on the amino
acid level). The engineered protein now had a selenocysteine in place of a catalytic cysteine (at position 41),
and showed a 4-fold enhanced catalytic activity. Second, and more important, seleno-variants of proteins
could be used for the phase determination in an X-ray crystallography (or in the NMR-analysis) of a given
protein.

In this paper, we consider the computational properties of substituting one position by a selenocysteine
in a given amino acid sequence. LetS = S1 . . . S3n be the consensus of the SECIS-element, and letA =
A1 . . . An be the original amino acid sequence following the position where we wish to insert selenocysteine.
By modifying an mRNA sequence to insert a selenocysteine the sequenceA may be modified. We have to
find an appropriate mRNA sequenceN = N1 N3n, which is a SECIS element and encodes an amino
acid sequenceA′ = A′1 . . . A

′
n that has maximum similarity withA. Thus, we have the following picture:

A = A1 . . . Ai . . . An

∼ ∼ ∼

A′ = A′1 . . . A′i . . . A′n
↑ ↑ ↑

N =
︷ ︸︸ ︷

N1N2N3 . . .
︷ ︸︸ ︷

N3i−2N3i−1N3i . . .
︷ ︸︸ ︷

N3n−2N3n−1N3n

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

S = S1 S2 S3 . . . S3i−2S3i−1S3i . . . S3n−2S3n−1S3n.

The similarities on both the amino acid (Ai ∼ A′i) and nucleotide level(Nj ∼ Sj) will be measured by
functionsFS3i−2S3i−1S3i

Ai
(N3i−2N3i−1N3i), and we search anN that maximizes

n
∑

i=1

F
S3i−2S3i−1S3i
Ai

(N3i−2N3i−1N3i),

(referred to assimilarity) and satisfies the constraints given by the SECIS structure. These constraints are
given by the bonds formed by the structure. If there is a bond between positionr ands in the SECIS, then
every validN has to satisfy thatNr andNs are complementary.

Using the fact that the structure of the SECIS element is a hairpin, we show that the described problem
can be solved in linear time. The property that makes the problem computationally easy is that in the
linear embedding of the hairpin structure, no edges cross. We have shown that it isNP -hard to solve the
problem optimally if every linear embedding has crossing edges [Backofen et al.,]. This case can occur
if we have pseudoknots as an underlying structure. Pseudoknots as an mRNA-structure are not important
for selenocysteine insertion, but e.g. for programmed frameshifts, which allow to encode two different

3

amino acid sequences in one mRNA sequence. This mechanism has been identified in viruses as well as in
prokaryotes and eukaryotes [Farabaugh, 1996, Giedroc et al., 2000].

2 Preliminaries

We follow graph theoretic notations and definitions as presented in the standard text by Harary [Harary, 1972].
A labeled graphG(V,E,Lab) is an undirected graphG(V,E) along with a functionLab : E → X, where
X is a finite set whose elements are callededge labels. In this paper,X = {1,−1}. An undirected graph
is said to beouter-planarif it can be drawn satisfying the following conditions: 1.) all the vertices lie on a
line, 2) all the edges lie on one side of the line, and 3.) two edges that intersect in the drawing do so only at
their end points. Such a drawing is called an outer-planar embedding of the graph.
The solution to the problem we address in this paper is a string whose letters are from the set{A,C,G,U}.
The elements of this set are referred to asnucleotides, and an element of{A,C,G,U}3 is referred to as a
codon. A andU are complements of each other and so areG andC (forming the standard Watson-Crick
bonds). In addition, there are the non-standard bonds formed byG andU , which implies that we considerG
andU as complements of each other, too. The complement set of a variable is denoted by the superscriptC,
i.e.,AC = {U}, CC = {G}, GC = {U,C}, UC = {G,A}. Now our problem can be stated as follows:

Input: An edge labeled graphG = (V,E,Lab) on 3n vertices,V = {v1, . . . , v3n}. For every edge
{vk, vl} ∈ E, the labelLab(vk, vl) is either1 or −1. If Lab(vk, vl) = +1, then we have a bond between
the nucleotides at positionsk andl in the mRNA. Otherwise, there must not be a bond between positionsk
andl. n functions,f1, . . . , fn are also part of the input.fi is associated with{v3i−2, v3i−1, v3i}, 1 ≤ i ≤ n,
and is a function defined on{A,C,G,U}3 and takes rational values.

Output: Find vector(N1, . . . , N3n) ∈ {A,C,G,U}3n s.t.Nk is assigned tovk and

1. {vk, vl} ∈ E(G) andLab(vk, vl) = 1 implies thatNk ∈ NC
j .

2. {vk, vl} ∈ E(G) andLab(vk, vl) = −1 implies thatNk 6∈ NC
j .

3.
∑n
i=1 fi(N3i−2, N3i−1, N3i) is maximized. This function is referred to as thesimilarity of the assign-

ment at which it is evaluated.

We denote the above problem byMRSO(G, f1, . . . , fn). The short form MRSO stands formRNA Structure
Optimization. In the following, we will refer to conditions 1 and 2 together as thecomplementarity condition.
We will call edges that are labeled with1 bonds, and edges labeled by−1 prohibited bonds. Prohibited
bonds are necessary since the SECIS also needs some bulged nucleotides. Since it is not necessary to add
prohibited bonds for nodes that are part of a bond, we assume in the following that{vk, vl} ∈ E(G) and
Lab(vk, vl) = −1 implies thatvk, vl are not part of a bond (i.e., there is no nodev different fromvk, vl such
that(vk, v) ∈ E(G) ∧ Lab(vk, v) = 1 or (vl, v) ∈ E(G) ∧ Lab(vl, v) = 1).

About Graphs: G is referred to as thestructure graph. A structure graph that specifies only bonds is
called anRNA-graph. For RNA-graphs, the degree of every node is at most one. Given a structure graphG,
we define theimplied graphGimpl to be a graph on the verticesV(Gimpl) = {u1, . . . , un} with

E(Gimpl) =
{

{ui, uj} ∃r ∈ {3i− 2, 3i− 1, 3i} :
∃s ∈ {3j − 2, 3j − 1, 3j} : (vr, vs) ∈ E(G)

}

.

Note that in the implied graph, every node has degree at most 3 if the input graphG is a graph with degree
at most 1.1 This means that up to 3 edges can be emerging from a node in the implied graph. We follow
the convention that, independent of the subscript or superscript,u denotes a vertex fromV(Gimpl) andv
denotes a vertex fromG. GivenI ⊆ {1..n}, UI denotes{uj | j ∈ I}. E(Gimpl)|I denotes the edge set
of the induced subgraph ofGimpl on UI . E(G)||I denotes the edge set of the induced subgraph ofG on
{v3i−2, v3i−1, v3i | i ∈ I}.

1i.e., an RNA-graph, or a graph with at most one prohibited bond for each node.

4

About Codons: Given a sequence of codonsL1 . . . Ln, letN1 . . . N3n be the corresponding nucleotide se-
quence obtained by replacingLi by the corresponding nucleotide representationN3i−2N3i−1N3i. L1 . . . Ln
is said tosatisfyE(G) iff the corresponding nucleotide representation{N3i−2N3i−1N3i}ni=1 satisfies the
complementarity conditions forG. Li andLj are said to bevalid for {ui, uj} w.r.t. E(G) if the correspond-
ing nucleotidesN3i−2N3i−1N3i andN3j−2N3j−1N3j satisfies the complementarity condition imposed by
E(G).

3 Algorithm for SECIS-like Structures

We present a linear time recursive algorithm to solve MRSO whenGimpl is outer-planarandevery node in
G has degree at most 1.2 The hairpin shape of the SECIS is captured by the outer-planarity ofGimpl. The
algorithm is based on a recurrence relation that we prove in this section. Also, the algorithm solves MRSO
even when the functions can take arbitrary values.

We fix u1, . . . , un as the ordering of the vertices from left to right on the line in an outer-planar embed-
ding ofGimpl. For each1 ≤ i ≤ n, let fi be the function associated withui. Having fixed an embedding of
the graph on the line, we do not distinguish between a vertex and its index. That is, the interval[i, . . . , i+ k]
denotes the set of vertices{ui, . . . , ui+k}.

We now define the notion of compatibility between codonsLi andLj assigned to verticesui anduj ,
respectively. We denote compatibility by≡E(G).3 The three lines in≡ serve to indicate that the comple-
mentarity conditions dictated byE(G) should be satisfied. For1 ≤ i, j ≤ n, define(i, Li) ≡E(G) (j, Lj)
by

(i, Li) ≡E(G) (j, Lj) =

true if {ui, uj} 6∈ E(Gimpl)
true if {ui, uj} ∈ E(Gimpl) and

Li andLj arevalid for {ui, uj} w.r.t. E(G)
false otherwise,

(i, Li) 6≡E(G) (j, Lj) denotes that(i, Li) ≡E(G) (j, Lj) is false. We now define the following function:

w(i, i+ k, Li, Li+k) = max
Li+1,...,Li+k−1

∑

i≤j≤i+k

fj(Lj) |
Li, . . . , Li+k
satisfiesE(G)||[i..i+k]

.

If the set over which the maximum is taken is empty, the value of the function is considered as−∞. This
function forms the central part of our algorithm to solve the problem becausemax

L1,Ln
w(1, n, L1, Ln) is the

value that we are interested in computing. The base cases forw is the following:

w(i, i+ 1, Li, Li+1) =

{

fi(Li) + fi+1(Li+1) if (i, Li) ≡E(G) (i+ 1, Li+1)
−∞ otherwise.

We solve the problem on an interval[i..i+k] by splitting[i..i+k] into two parts and solving the resulting
subproblems. If there is no edge betweeni and any vertex in the interval[i..i + k − 1], the interval is split
into [i..i+ 1] and[i+ 1..i+ k]. Otherwise, we choose the farthest vertexp in [i..i+ k− 1] which is adjacent
to i. The edge(i, p) is called themaximaledge inE(Gimpl)|[i..i+k−1]. Then, the interval is split into[i..p]
and[p..i+ k] (see Figure 2). Hence, definenext(i, i+ k) for k ≥ 2 by

next(i, i+ k) =

{

i+ r if {i, i+ r} is maximal inE(Gimpl)|[i..i+k−1]

i+ 1 otherwise.

2This implies that we may add only one prohibited bond for every node inG, which is sufficient for SECIS structures.
3Note: To read, associate the symbol≡ with the wordcompatible.

5

ui up ui+k

maximal in E(Gimpl)j[i::i+k�1]

Figure 2: Def. ofnext(i, i+ k)

Theorem 3.1 (Recurrence)Let (G, f1, . . . , fn) be instance of the MRSO. Fork ≥ 2, 1 ≤ i ≤ n − k, let
p = next(i, i+ k). Then

w(i,i+ k, Li, Li+k) =

−∞ (i, Li) 6≡E(G) (i+ k, Li+k)

max
Lp

w(i, p, Li, Lp)
+ w(p, i+ k, Lp, Li+k)
− fp(Lp)

 if (i, Li) ≡E(G) (i+ k, Li+k),

Proof. For the case when(i, Li) 6≡E(G) (i + k, Li+k), the result is true because we follow the convention
that the maximum over an empty set is−∞. So we consider the case when(i, Li) ≡E(G) (i+k, Li+k). Let
k ≥ 2. We wish to evaluate,

max
Lp

(

w(i, p, Li, Lp) + w(p, i+ k, Lp, Li+k)− fp(Lp).
)

The above term is equal to

= max
Lp

max
Li+1,...,Lp−1

(
∑

i≤j≤p

fj(Lj) | Li, . . . , Lp satisfiesE(G)||[i..p])

+ max
Lp+1,...,Li+k−1

(
∑

p≤j≤i+k

fj(Lj) | Lp, . . . , Li+k satisfiesE(G)||[p..i+k])

− fp(Lp)

Now we show that this equals max
Li+1,...,Li+k−1

∑

i≤j≤i+k

fj(Lj) |
Li, . . . , Li+k
satisfiesE(G)||[i..i+k])

We first observe that there are no edges between vertices in the interval[i + 1..p − 1] to vertices in
the interval[p + 1, i + k]. This is because we have assumed as input an outer-planar drawing ofGimpl.
Therefore, the above two quantities are equal because the maximum for the problem in the region[i..i+ k]
for a fixedLi, Lp, Li+k can be obtaining by findingw(i, p, Li, Lp) andw(p, i + k, Lp, Li+k). We make
this statement precise now. LetL′i+1, . . . , L

′
p−1 be some codon sequences such thatLi, L

′
i+1, . . . , L

′
p−1, Lp

satisfiesE(G)||[i..p], andL′′p+1, . . . , L
′′
i+k−1 be a codon sequence such thatLp, L

′′
p+1, . . . , L

′′
i+k−1, Li+k

satisfiesE(G)||[p..i+k]. We have to show thatLi, L′i+1, . . . , L
′
p−1, Lp, L

′′
p+1, . . . , L

′′
i+k−1, Li+k satisfies

E(G)||[i..i+k]. Li andLi+k are compatible since we have assumed(i, Li) ≡E(G) (i + k, Li+k). The
compatibility within regions[i..p] and [p..i + k] hold by assumption. The compatibility for vertex pairs
(ur, us) with r ∈ [i..p−1], and the second point is ins ∈ [p+ 1..i+k] holds since(i, p) is a maximal edge,
and there are no edges inE(Gimpl) betweenr ∈ [i+ 1..p− 1] ands ∈ [p+ 1..i+ k]. 2

3.1 Algorithm Based on the Recurrence

This theorem gives us a recursive algorithm to find the optimum value and an assignment of codons attaining
that value for an input(G, f1, . . . , fn). We present the properties of the algorithm at the top-most level of

6

the recursion. Recall that our goal is to computemax
L1,Ln

w(1, n, L1, Ln) and a corresponding assignment

of codons. Letp = next(1, n). Since each vertex inGimpl has degree at most 3,p can be found in at
most 3 steps. Ifw(1, p, L1, Lp) andw(p, n, Lp, Ln) is known for all choices ofL1, Lp, Ln, then we can
computemax

L1,Ln
w(1, n, L1, Ln). Observe that we can find a codonLp that achieves this maximum value.

This computation takes constant time (643 + 3 to be exact). In particular, we can computew(1, n, L1, Ln)
for all choices ofL1, Ln and a corresponding assignment toLp.

Now we have to check how many subproblems will be generated. First, note that the subproblems,
which are generated, are determined by the result of thenext(·, ·) function. SinceGimpl is an outer-planar,
the application ofnext(·, ·) in some specific subproblem will always return a new position (i.e., a position
that has not been considered in any other subproblem). Hence, we get onlyn subproblems, and each one
takes only at most643 + 3 time. Therefore, we can computemax

L1,Ln
w(1, n, L1, Ln) and an assignment of

codons attaining the optimum value in(643 + 3)n time.

3.2 Results

We have implemented the program in the constraint programming language Oz [Smolka, 1995]. We have
then used our program to search for proteins allowing selenocysteine incorporation in the complete genome
of E. coli. Using our program, we have found modifications of several proteins that have high similarities to
both the original amino-acid sequence, and to the SECIS-element, and allow to form the hairpin structure as
required. These results are shown below in Table 1.

name PAM orgAmino modAmino mRNA
yahE 53 RRWLSPTLQM RRWLVPSLDL CGACGAUGGUUGGUACCAAGUCUGGACCUA
mhpC 56 RIWLVKRQNR RIWLVRRRDR CGAAUAUGGUUGGUACGCAGGCGCGACCGA
ybdJ 53 LWFLVLGAIE LWFLVPGPVE CUAUGGUUCCUCGUACCGGGUCCGGUCGAG
ybiW 54 PWWRGQTVQD PWWRVRSLDE CCAUGGUGGCGCGUACGAAGUCUCGACGAG
ycaI 54 PEWQLPPVLR PEWQLPSLVR CCAGAAUGGCAGCUACCAAGUCUGGUGCGG
hyaF 54 GLWRVRRRRG PLWRVRRRDG CCAUUAUGGCGCGUACGCAGGCGCGACGGG
holB 53 RLHYLAPPPE RLHYLASPPE CGAUUACACUACCUAGCGAGUCCGCCGGAA
ymfO 53 QRWPEGDRRE QRWPVGGRRE CAACGAUGGCCCGUAGGCGGUCGCCGCGAG
hnr 59 QIWGTGGRLR QIWGVGGRLR CAAAUAUGGGGGGUAGGCGGUCGCCUCCGC
yciS 53 GLFWLRVRVS PLFWLRSRVP CCAUUAUUCUGGCUACGCAGUCGCGUGCCA
yeeP 53 HEWDMAGIQP HEWELAGLQP CACGAAUGGGAGCUAGCAGGUCUGCAGCCC
b2085 53 RWYLMGEGEM RWYLLGSPQL CGAUGGUACUUGCUAGGGAGUCCCCAGCUA
b2710 53 QWIYDPAKGE QWIYVPSRGE CAAUGGAUAUACGUACCCAGUCGGGGCGAA
ygcX 54 DWYRLRHEEA QWYRLRRREA CAAUGGUACCGCCUACGCAGGCGCGAGGCG
recC 53 RYYWGDIKDP RYYWVPSRDP CGAUACUACUGGGUACCCAGUCGGGACCCA
b3027 57 GWWLFWGRFI PWWLLRGRVV CCAUGGUGGCUCCUACGCGGUCGCGUGGUG
yhcR 54 LFYLISRLFV LFYLVARLLV CUAUUCUACCUCGUAGCAAGGCUGCUCGUG
yrfG 53 LDYWSEQLGL LDYWVPRLGL CUAGACUACUGGGUACCAAGGCUGGGCCUA
yidL 53 SEAWLRRLFL PEAWLRRLVL CCAGAAGCAUGGCUACGAAGGCUCGUGCUA
yieN 54 LWYDAQSLNL LWYEVRSLDL CUAUGGUACGAGGUACGAAGUCUCGACCUC
yjiM 53 PYFYFSDLVV PYFYLPGLVV CCAUACUUCUACCUACCAGGUCUGGUGGUA

Table 1: Some Results forE. coli genome

4 How hard is it to solve MRSO?

In the previous section, we have designed an efficient algorithm forMRSO whenGimpl is an outer-planar
graph. This algorithm is suitable for our goal of selenocysteine insertion. In order to show the computational
properties that makes the problem simple, and given that theMRSO model attempts to capture more than
selenocysteine insertion, we consider the case whenGimpl is not necessarily outer-planar. We will just
outline NP-hardness of this more general problem (for details, the reader is referred to [Backofen et al.,]).
Note that our algorithm in the previous section depends heavily on the outer-planarity of the given graph.

We observe that when the graph is not restricted to be outer-planar,MRSO is at least as hard as
3SATwhich is a special case ofboolean satisfiability[Garey and Johnson, 1979]. To show this, we re-
duce an instance of the3SAT problem to an instance ofMRSO. It will follow easily that this reduc-

7

tion is a polynomial time reduction. Consequently, any polynomial time algorithm forMRSO can be
used, with an additional polynomial time effort, to solve3SAT . The3SAT problem is defined as follows
[Garey and Johnson, 1979]
3-Satisfiability (3SAT)
Instance: CollectionC = {c1, . . . , cm} of clauses on a finite setU of variables such that|ci| = 3 for
1 ≤ i ≤ m. For example,(x1 ∨ x2 ∨ ¬x3) is a clause whose variables arex1, x2, andx3. These variables
take values from the set{0, 1} and the clause evaluates to true if at least one of its terms takes the value 1.
¬x3 is the complement ofx3, that is if¬x3 = 1− x3.
Question: Is there a truth assignment ofU that satisfies all the clauses inC?
For example,(x1 ∨ x2 ∨ ¬x3) is a clause whose variables arex1, x2, andx3. These variables take values
from the set{0, 1} and the clause evaluates to true if at least one of its terms takes the value 1.¬x3 is the
complement ofx3, that is if¬x3 = 1− x3.

Reduction We present a simple example of the reduction as a representative of the general principles in
the formal reduction. Letφ be(¬x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x1 ∨ ¬x5). The variablex1 is the only variable that
has two different occurrences. Variables that occur more than once require a special treatment.

To construct an instance ofMRSO fromφ, first note thatφ can be replaced equivalently by an extended
formula, namely

(¬y1 ∨ y2 ∨ y3) ∧ (y4 ∨ y5 ∨ ¬y6)
︸ ︷︷ ︸

∧ Equal(y1, y5)
︸ ︷︷ ︸

.

φC φV
(1)

Here,Equal(x, y) is just a new boolean function expressing thatx andy have the same valuation. The
variablesy1 andy5 (written in grey) are variables whose occurrences correspond tox1. Thus, it is clear that
their valuation must always be equal.

Now we will construct an instance ofMRSD from φC ∧ φV . We need to express the satisfiability of
φC ∧ φV by just using similarity functions and complementarity conditions. For this purpose, we use func-
tions of the formf : {0, 1, 2, 3}3 → {0, 1} as similarity functions (for simplicity we associate{0, 1, 2, 3}
with {A, T,C,G}; note thatA andT are associated with0, 1, which implies that in this case, the boolean
complement coincide with the nucleotide complement). Since the range of these functions is{0, 1}, we can
combine them using Boolean operators. The complementarity condition will be expressed by introducing for
every variabley also a variableyC , which will always have an assignment complementary to the assignment
of y.

ForφC as given in (1), we introduce functionsCf1(x, y, z) andCf2(x, y, z) with

Cf1(x, y, z) =

0 if x > 1 or y > 1 or z > 1
1 else if¬x ∨ y ∨ z is true
0 otherwise.

Cf2(x, y, z) =

0 if x > 1 or y > 1 or z > 1
1 else ifx ∨ y ∨ ¬z is true
0 otherwise.

The satisfiability ofφC is captured by assignments that evaluateCf1(y1, y2, y3) ∧ Cf2(y4, y5, y6) to 1.
For expressingEqual(y1, y5), we introduce additional variablesz1 andz2, and a functionEf : {0, 1, 2, 3}3 →

{0, 1} with

Ef(x, y, z) =

0 if x > 1 or y > 1 or z > 1
1 else ifx = 0 ∧ y = z = 1
1 else ifx = 1 ∧ y = z = 0
0 otherwise.

Ef(x, y, z) guarantees thatz is equal toy, and thatx is the (boolean) complement ofy. ForEqual(y1, y5), it
suffices to expressEqual(yC1 , y

C
5) for our purpose. UsingEf(x, y, z), we can now expressEqual(yC1 , y

C
5)

by
Ef(zC1 , y

C
1 , z2) ∧ Ef(zC2 , y

C
5 , z1).

8

The satisfiability of equation (1) is now captured by

Cf1(y1, y2, y3) ∧ Cf2(y4, y5, y6) ∧ Ef(zC1 , y
C
1 , z2) ∧ Ef(zC2 , y

C
5 , z1).

Thus, we have to construct and instance ofMRSO from this equation. Note that each variable or comple-
mented variable occurs exactly once in the above formula. To complete, we define a graphG on the vertices
{y1, y2, y3, y4, y5, y6, z

C
1 , y

C
1 , z2, z

C
2 , y

C
5 , z1}, which connects the complementary variables. I.e.,G has the

form

y1 y3 y5 z2zC1 yC5y2 y4 y6 z1yC1 zC2

The similarity functions are just defined by

f1 = Cf1, f2 = Cf2, f3 = Ef, f4 = Ef.

Therefore, fromφwe have constructed(G, f1, f2, f3, f4) as an instance of MRSO. To complete the example,
we observe that a satisfying assignment forφ yields a maximizing assignment to the instance ofMRSO
obtained fromφ and vice versa.

5 Acknowledgment

The first author likes to thank Prof. Böck from the Institute of Microbiology for explaining to him the bio-
chemical background of selenocysteine, for many suggestions and the fruitful cooperation on the problems
discussed in this paper. Furthermore, he likes to thank Prof. Clote for pointing out the problem, and for
initiating the collaboration with Prof. B̈ock. He would also like to thank Sebastian Will for many discussion,
and for reading draft versions of this paper. The authors thank the anonymous referees for their detailed
comments.

References

[Backofen et al.,]Backofen, R., Narayanaswamy, N., and F.Swidan. On the complexity of protien similarity
search under mrna structure constraints. InProceedings of STACS 2002, LNCS 2258:274-286,2002.

[Baron et al., 1993]Baron, C., Heider, J., and Böck, A. (1993). Interaction of translation factor SELB with
the formate dehydrogenase H selenopolypeptide mRNA.Proc. Natl. Acad. Sci. USA, 90(9):4181–5.

[Böck et al., 1991]Böck, A., Forchhammer, K., Heider, J., and Baron, C. (1991). Selenoprotein synthesis:
an expansion of the genetic code.Trends Biochem Sci, 16(12):463–467.

[Brown and Arthur, 2001]Brown, K. M. and Arthur, J. R. (2001). Selenium, selenoproteins and human
health: a review.Public Health Nutr, 4(2B):593–9.

[Copeland et al., 2000]Copeland, P. R., Fletcher, J. E., Carlson, B. A., Hatfield, D. L., and Driscoll, D. M.
(2000). A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein
mRNAs. EMBO J, 19(2):306–14.

[Fagegaltier et al., 2000]Fagegaltier, D., Lescure, A., Walczak, R., Carbon, P., and Krol, A. (2000). Struc-
tural analysis of new local features in SECIS RNA hairpins.Nucleic Acids Res, 28(14):2679–89.

[Farabaugh, 1996]Farabaugh, P. J. (1996). Programmed translational frameshifting.Microbiology and
Molecular Biology Reviews, 60(1):103–134.

9

[Forchhammer et al., 1989]Forchhammer, K., Leinfelder, W., and Böck, A. (1989). Identification of a novel
translation factor necessary for the incorporation of selenocysteine into protein.Nature, 342(6248):453–
6.

[Garey and Johnson, 1979]Garey, M. R. and Johnson, D. S. (1979). Computers and intractability: A guide
to the theory of NP-completeness.W.H.Freeman.

[Giedroc et al., 2000]Giedroc, D. P., Theimer, C. A., and Nixon, P. L. (2000). Structure, stability and func-
tion of rna pseudoknots involved in stimulating ribosomal frameshifting.Journal of Molecular Biology,
298(2):167–186.

[Harary, 1972]Harary, F. (1972). Graph theory.Addison Wesley.

[Hazebrouck et al., 2000]Hazebrouck, S., Camoin, L., Faltin, Z., Strosberg, A. D., and Eshdat, Y. (2000).
Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid
hydroperoxide glutathione peroxidase expressed inescherichia coli. Journal of Biological Chemistry,
275(37):28715–28721.

[Heider et al., 1992]Heider, J., Baron, C., and Böck, A. (1992). Coding from a distance: dissection of the
mrna determinants required for the incorporation of selenocysteine into protein.EMBO J, 11(10):3759–
66.

[Heider and B̈ock, 1992] Heider, J. and B̈ock, A. (1992). Targeted insertion of selenocysteine into the alpha
subunit of formate dehydrogenase from methanobacterium formicicum.J Bacteriol, 174(3):659–63.

[Heider et al., 1991]Heider, J., Forchhammer, K., Sawers, G., and Böck, A. (1991). Interspecies compati-
bility of selenoprotein biosynthesis in enterobacteriaceae.Arch Microbiol, 155(3):221–8.

[Hilgenfeld et al., 1996]Hilgenfeld, R., B̈ock, A., and Wilting, R. (1996). Structural model for the
selenocysteine-specific elongation factor SelB.Biochimie, 78(11-12):971–8.

[Hofacker et al., 1994]Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, S., Tacker, M., and Schuster, P.
(1994). Fast folding and comparison of rna secondary structures.Monatshefte f. Chemie, 125:167–188.

[Hüttenhofer et al., 1996]Hüttenhofer, A., Westhof, E., and Böck, A. (1996). Solution structure of mRNA
hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction
with special elongation factor SELB.RNA, 2(4):354–66.

[Klug et al., 1999] Klug, S. J., Ḧuttenhofer, A., and Famulok, M. (1999). In vitro selection of RNA aptamers
that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major
interaction domain at the carboxyl terminus.RNA, 5:1180–1190.

[Klug et al., 1997] Klug, S. J., Ḧuttenhofer, A., Kraomayer, M., and Famulok, M. (1997). In vitro and in
vivo characterization of novel mrna motifs that bind special elongation factor selb.Proc. Natl. Acad. Sci.
USA, 94(13):6676–6681.

[Kromayer et al., 1999]Kromayer, M., Neuhierl, B., Friebel, A., and Böck, A. (1999). Genetic probing of
the interaction between the translation factor SelB and its mRNA binding element in Escherichia coli.
Mol Gen Genet, 262(4-5):800–6.

[Kromayer et al., 1996]Kromayer, M., Wilting, R., Tormay, P., and Böck, A. (1996). Domain struc-
ture of the prokaryotic selenocysteine-specific elongation factor SelB.Journal of Molecular Biology,
262(4):413–20.

[Kryukov et al., 1999]Kryukov, G. V., Kryukov, V. M., and Gladyshev, V. N. (1999). New mammalian
selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion
sequence elements.J Biol Chem, 274(48):33888–33897.

10

[Liu et al., 1998] Liu, Z., Reches, M., Groisman, I., and Engelberg-Kulka, H. (1998). The nature of the min-
imal ’selenocysteine insertion sequence’ (secis) in escherichia coli.Nucleic Acids Research, 26(4):896–
902.

[Low and Berry, 1996]Low, S. C. and Berry, M. J. (1996). Knowing when not to stop: selenocysteine
incorporation in eukaryotes.Trends in Biochemical Sciences, 21(6):203–208.

[Rother et al., 2001]Rother, M., Resch, A., Wilting, R., and Bock, A. (2001). Selenoprotein synthesis in
archaea.Biofactors, 14(1-4):75–83.

[Sawers et al., 1991]Sawers, G., Heider, J., Zehelein, E., and Böck, A. (1991). Expression and operon
structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate
dehydrogenase isoenzyme.J Bacteriol., 173(16):4983–93.

[Smolka, 1995]Smolka, G. (1995). The Oz programming model. In van Leeuwen, J., editor,Computer
Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin.

[Stadtman, 1996]Stadtman, T. C. (1996). Selenocysteine.Annual review of biochemistry, 65:83–100.

[Zinoni et al., 1990]Zinoni, F., Heider, J., and B̈ock, A. (1990). Features of the formate dehydrogenase
mRNA necessary for decoding of the UGA codon as selenocysteine.Proc. Natl. Acad. Sci. USA,
87(12):4660–4.

11

A Pseudocodes for Programs

Node(
i: int
j: int
p: int
values: array[64][64]
trace: array[64][64]
ipnode: Node
pjnode: Node)

Figure 3: Node structure.

Node data type: The Node data type is used to computemax
Li,Lj

w(i, j, Li, Lj). A variable of this data type

has fields to storei, j, andp = next(i, j). In addition, it stores two pointersIPnode, PJnode to variables of
Node data type which store information to compute
max
Li,Lp

w(i, p, Li, Lp) and max
Lp,Lj

w(p, j, Lp, Lj), respectively. The value and trace fields are64 × 64 ma-

trices which are indexed by pairs of codons(Li, Lj). For each pair of codons(Li, Lj), value[Li][Lj] =
w(i, j, Li, Lj). Similarly, trace[Li][Lj] stores the first encountered codonLp such thatw(i, j, Li, Lj) =
w(i, p, Li, Lp) + w(p, j, Lp, Lj)− fp(Lp).

Program The input to the program isn and an instance(G, f1, . . . , fn) ofMRSO. The program proceeds
by constructing a rooted binary tree whose vertices are variables of the Node data type. Each vertex has an
interval associated with it. The root vertex corresponds to the interval[1..n]. A vertex is a leaf if the
interval associated with it is of unit length. Otherwise, a vertex in the tree with an associated interval
[i..j] has two children: the vertex associated with[i..p] (the left child) and the vertex associated with[p..j]
(the right child) where,p = next(i, j). The two main subroutines of the program aregenerate and fill
andcalc trace rec (for the pseudocode of the program and its subroutine, see Appendix). The subroutine
generate and fill constructs the tree recursively starting with the root vertex and fills the value and trace
entries of the leaf vertices it encounters. The value and trace matrices of the non-leaf vertices in the tree
are filled by the subroutinecalc with sub in a bottom up manner (by a post order traversal of the tree).
After the tree has been constructed, the maximum value of similarity is obtained inmain from the value
matrix of the root vertex of the tree. A codon assignment that attains the maximum value is obtained by the
subroutinecalc trace rec. calc trace rec is a recursive implementation of the inorder traversal of a tree
and an optimum codon assignment is written into the global variableassignment.

Variables: The global varaibleassignmentis an array and contains an optimal soluton in the end.

12

Program A.1 The main program

main(n,G, f1, . . . , fn)
begin

N = generate and fill(1,n)
assignment = array[n]
max = −∞ maxL1 = undef max Ln = undef
for (L1, Ln) = (1, 1) to (64, 64)

if (N.values[L1][Ln] > max) then
max = N.values[L1][Ln]
maxL1 = L1

maxLn = Ln
endif

end
assignment[1] = max L1; assignment[n] = max Ln
calc trace rec(N,max L1,max Ln)

end

Program A.2 Subroutine generateandfill generates the tree ofw entries

subroutine generate and fill(i,j)
begin
N = new Node; N.i = i; N.j = j

if (j = i+1) then
N.p = -1
N.values = new array[64][64]
for (Li, Lj) = (1, 1) to (64, 64)

if (i, Li) ≡E(G) (j, Lj) then
values[Li][Lj] = fi(Li) + fj(Lj)

else
values[Li][Lj] = −∞

endif
end

else
N.p = next(i,j)
N.ipnode = generate and fill(i,p)
N.pjnode = generate and fill(p,j)
(N.values,N.trace) = calc with sub(i,j,p,N.ipnode,N.pjnode)

endif
return(N)

end

13

Program A.3 calc with sub fills value and trace array for a single node

subroutine calc with sub(i,j,p,IPnode,PJnode)
begin

values = new array[64][64]; trace = new array[64][64]
for (Li, Lj) = (1, 1) to (64, 64)

if (i, Li) 6≡E(G) (j, Lj) then
values[Li][Lj] = −∞ trace[Li][Lj] = -1

else
max=−∞
maxLp = undef
for Lp = 1 to 64

val = IPnode.values[Li][Lp] + PJnode.values[Lp][Lj]
- fp(Lp)

if (val > max) then
max = val
maxLp = Lp

endif
end
values[Li][Lj] = max
trace[Li][Lj] = max Lp

endif
end

return(values,trace)
end

Program A.4 calc tracerec calculates the arrayassignment

subroutine calc trace rec(N,max Ll,max Lr)
begin

p = N.p
if (p = -1) then return
else

maxLp = N.trace[Ll][Lr]
assignment[p] = max Lp
calc trace rec(N.ipnode,max L1,max Lp)
calc trace rec(N.pjnode,max Lp,max Ln)

endif
end

14

