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REVIEW REVIEW

Introduction: The Challenge of Computational  
Prediction of Regulatory Small RNAs  

and their Targets

Due to divergence in functions, sequences and structures, there 
are no common identifiers for bacterial sRNAs. Even widely 
accepted characteristics, such as small size (<200 nt) and lack-
ing coding capacity, do not always apply, as is demonstrated by 
the example of Staphylococcus aureus RNAIII, which clearly is a 
regulatory RNA, but is 514 nt in size and does code for a short 
peptide as well.1,2 Notwithstanding these facts, we will use the 
term “sRNA” in this review throughout for the class of bacterial 
regulatory RNA.

Parameters used in conventional genome annotation and gene 
modeling are meaningless for the prediction of sRNA genes and 
consequently there is no universal method for the detection of all 
classes of bacterial sRNAs. Nevertheless, after less than ten years 
of research in this field, advantages and shortfalls of the different 
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approaches are becoming increasingly clear, which has led to 
various algorithms that provide reliable sRNA predictions in a 
more focused context, as well as program packages which can be 
applied to large scale biocomputational analysis. We will describe 
these approaches and associated studies (see Table 1 for overview) 
in more detail in the first part of this review and summarize the 
evidence for a high number of sRNA genes in bacterial genomes 
which await functional characterization.

In the second part of this review, we summarize the state of 
the art of predicting the possible targets of bacterial sRNAs (see 
Table 2 for overview). Given the high number of different sRNAs 
in the average bacterial genome, probably several hundred, the 
identification of their targets now becomes the really critical 
bottleneck for further progress in this field. Biocomputational 
predictions of sRNA targets are the key to efficiently elucidating 
sRNA functions and correctly assigning them within the cellular 
regulatory infrastructure. The main challenges are that targets 
are frequently encoded far away, at different genomic loci and 
that some sRNAs have single targets whereas other are true mas-
ter regulators with a multitude of mRNAs under their control.  
A big problem is that the interacting sequence elements are mostly 
only short sequence stretches of imperfect similarity, which can 
reside in any part of the sRNA and can even be formed through 
the joining of sequence elements from two separate domains.

Experimental approaches for the discovery and characteriza-
tion of bacterial regulatory sRNAs and their targets have been 
reviewed recently3-7 and are outside the scope of this review.

Prediction of sRNAs

Prediction based on comparative genomics. The standard pro-
cedure for the prediction of bacterial sRNAs by comparative 
genomics consists of four steps. First, conserved sequences are 
identified in intergenic regions. Then, these are clustered and 
compared in pairwise or multiple alignments. Finally, these 
alignments are scored based on predicted RNA structural fea-
tures, using RNAz,8 eQRNA9 or evofold,10 for example.

The pioneering studies on sRNA prediction in E. coli (see 
Table 1 for overview) were based on comparative genome analy-
sis of closely related enterobacteria11 and included, in one case, a 
search for promoters and Rho-independent terminators in inter-
genic regions.12 The idea to score conservation of RNA secondary 
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There is probably no major adaptive response in bacteria which 
does not have at least one small RNA (sRNA) as part of its reg-
ulatory network controlling gene expression. Thus, prokary-
otic genomes encode dozens to hundreds of these riboregula-
tors. Whereas the identification of putative sRNA genes during 
initial genome annotation is not yet common practice, their 
prediction can be done subsequently by various methods and 
with variable efficacy, frequently relying on comparative ge-
nome analysis. A large number of these sRNAs interact with 
their mRNA targets by antisense mechanisms. Yet, the com-
putational identification of these targets appears to be chal-
lenging because frequently the partial and incomplete sequence 
complementarity is difficult to evaluate. Here we review the 
computational approaches for detecting bacterial sRNA genes 
and their targets, and discuss the current and future challenges 
that this exciting field of research is facing.
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Table 1. Genome-wide biocomputational sRNA screens in diverse bacteria

Species Method for prediction and reference
Number of predicted/experimen-
tally verified RNAs (when tested)

Enterobacteria

E. coli (Salmonella typhimurium, S. typhi, 
S. paratyphi, Klebsiella pneumonia, 

Yersinia pestis)

Comparative genomics plus identification of σ70 promoters 
and Rho-independent terminators12 24/14

E. coli (Salmonella enteritidis, S. thyphi, 
S. typhimurium, S. paratyphi, Klebsiella 

pneumonia, Yersinia pestis)
Comparative genomics11 58/17

Escherichia coli
Promoter-terminator prediction,  
Gapped Markov Model Index33

87 sRNA, 46 antisense  
RNA candidates/8 and 4

E. coli (Salmonella typhimurium, 
Klebsiella pneumonia)

Comparative genomics and scoring the conservation of RNA 
secondary structures13 275

Escherichia coli
Identification of σ70 promoters and Rho-independent  

terminators plus further filtering steps using RNAMotif22

144 new sRNA candidates, 32 previously 
described sRNAs/7

Escherichia coli
Neural network classifier using only sequence  

and structure-based features derived from the genome70 601/3 (of 6 tested)

Escherichia coli Boosted genetic programming37 135 novel sRNA candidates plus 152 that 
overlap predictions in the literature/12

Several prokaryotic  
and archaeal genomes

Machine learning approach; neural networks and support vec-
tor machines were used to extract the shared features  
of known sRNAs for the prediction of new candidates36

370 in E. coli

Vibrio cholerae
sRNAPredict (sequence conservation and prediction  

of Rho-independent terminators)28 32/6

Vibrio cholerae, V. parahaemolyticus,  
V. vulnif icus

Search focused on σ54 promoter/Rho-independent  
terminators in intergenic regions and conservation  

in three genomes25

Four or five in each of the three genomes 
predicted and verified

Cyanobacteria

3 Prochlorococcus & Synechococcus 
WH8102

Comparative genomics and scoring the thermodynamic  
stability values derived from consensus folding15 18 high-scoring sRNA candidates/7

Synechocystis sp. PCC6803, 
Microcystis aeruginosa, 

Thermosynechococcus elongatus, 
Synechococcus elongates

Comparative genomics, scoring by ALIFOLDZ and RNAz17 109 clusters of sRNA candidates  
in the four species/5 (in Synechocystis)

Synechocystis sp. PCC6803 Rho-independent terminators34 713 candidate terminators/11 antisense 
RNAs and 27 sRNAs

Proteobacteria

Pseudomonas aeruginosa
Pattern searches for Fur-consensus binding sites in intergenic 

regions, combined with predictions  
for Rho-independent terminators26

Two (PrrF1 and PrrF2)/2

Pseudomonas aeruginosa  
(comparison of genomes from  

10 different Pseudomonas)
Comparative genomics, scoring by RNAz21

115 (221) sRNA candidates of which 101 
(85) were previously known and 14 (136) 

were novel based on NcDNAlign (MultiZ)

Pseudomonas aeruginosa sRNAPredict229 17

Pseudomonas aeruginosa  
(+5 additional Pseudomonas)

QRNA71 130/8

Sinorhizobium meliloti  
(+4 additional genomes)

Comparative genomics, Intergenic Sequence Inspector, 
QRNA, sRNAPredict272 60/14

Sinorhizobium meliloti  
(+8 related α-proteobacteria)

Comparative genomics, scoring by eQRNA and RNAz73 32/8

Bacilli

Bacillus subtilis  
(+7 different additional genomes)

Comparative genomics, QRNA for scoring74 8 (from 12 tested)
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structure-conserved elements in intergenic regions of the 
unicellular model cyanobacteria Synechocystis PCC6803, 
Synechococcus elongatus PCC6301, and Thermosynechococcus elon-
gatus BP1, plus the toxic Microcystis aeruginosa NIES843.17 After 
the removal of transposon-associated repeats, 341 sequences were 
left, belonging to 109 clusters of related RNA elements in the 
four species. Experimental analysis of selected sRNA candidates 
in Synechocystis PCC6803 validated five of the new sRNAs,17 
including new members of the Yfr2 family that accumulate to 
very high RNA concentrations and occur in up to nine copies per 
genome in some marine Synechococcus species.18

Applying RNAz for scoring and using ten different 
Pseudomonas genome sequences for comparative genomics, 115 
sRNA candidate loci were predicted in Pseudomonas aeruginosa 
when using NcDNAlign19 to construct multiple sequence align-
ments and 221 candidate loci when the less restrictive MultiZ20 
was used (Table 1).21

Non-comparative screens. A systematic scan for promoters 
and Rho-independent terminators in intergenic regions as a tool 
for sRNA discovery was first employed by Argaman et al. (2001)12 
as part of a more complex search strategy. Chen et al. (2002)22 
demonstrated that many additional sRNAs could be found when 
screening intergenic regions of E. coli for possible σ70-type pro-
moter and Rho-independent terminator pairs that lie within a dis-
tance of 45–350 bp. The authors used RNAMotif, an algorithm 
that searches nucleic acid databases for RNA structure motifs23 
to find the terminators and to identify possible open reading 
frames. Applying several filters reduced the rate of false-positives 
and removed known sRNA genes, ending up with 144 candidates. 
From these, seven out of eight tested candidates were confirmed in 
northern blots to be new sRNA species. Interestingly, only ten of 
the forty sRNAs known at the time were recognized by the search 

structure rather than of primary sequence was introduced by 
Rivas et al. (2001).13 Structure prediction was combined with 
comparative analysis of closely related enterobacterial genomes; 
mutational patterns were evaluated in pairwise sequence align-
ments and classified into three classes: compensatory base muta-
tions, which are typical of conserved RNA secondary structure; 
synonymous mutations, mainly third codon position substitu-
tions as observed among conserved protein-coding regions; and 
mutations at random, characteristic for other conserved sequence 
elements, such as transcription factor binding sites. This approach 
yielded 275 candidate loci for structural RNAs and these ideas 
were combined in the program QRNA.13

Incorporating thermodynamic stability values. Biocompu-
tational approaches were also successfully applied to scan the 
genomes of bacteria not closely related to E. coli. At the time 
of these studies, more efficient scoring methods were sought to 
apply the powerful methods of comparative analysis to eukaryotic 
genomes. In particular, it was found that thermodynamic stabil-
ity values derived from the consensus folding of aligned sequences 
allow effective prediction of functional RNAs.8,14 Based on such a 
strategy, Axmann et al. (2005)15 scored alignments of intergenic 
regions extracted from the genomes of four closely related marine 
cyanobacteria of the Prochlorococcus-Synechococcus lineage 
using ALIFOLDZ.8,14 Expression analysis of the highest-scoring 
candidate regions under various growth and stress conditions 
confirmed seven new sRNAs in Prochlorococcus sp. MED4, 
several of which had homologues in the other three strains and 
which, therefore, were called Yfr1-7 for cYanobacterial Functional 
RNAs (Table 1). One of these sRNAs, Yfr7, later turned out to be 
the cyanobacterial ortholog of the 6S RNA.16

More recently, this approach was extended to the biocom-
putational prediction of sRNA genes and other sequence/ 

Table 2. Summary of target prediction tools and some related software mentioned in the text

Model and reference Program download URL for web-accessible tools

TargetRNA45,75 - http://snowwhite.wellesley.edu/targetRNA/

Sequence-based scoring 
combined with stacking46

Available as available as a supplementary material file 
(Document S3) from the publisher’s website:

http://nar.oxfordjournals.org/cgi/content/full/gkl1096/DC1
-

IntaRNA61 http://www.bioinf.uni-freiburg.de/Software/ http://rna.informatik.uni-freiburg.de

RNAplex52 http://www.tbi.univie.ac.at/~htafer/ -

sRNATarget58,59 http://www.biosun.org.cn/srnatarget/ http://ccb.bmi.ac.cn/srnatarget/

RNAup60 http://www.tbi.univie.ac.at/~ulim/RNAup/index.html http://rna.tbi.univie.ac.at/cgi-bin/RNAup.cgi

RNAhybrid50 http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/

Table 1. Genome-wide biocomputational sRNA screens in diverse bacteria

Staphylococcus aureus N315 Intergenic Sequence Inspector39 191/12

Streptococcus pneumoniae
Search for CiaR binding sites in intergenic regions, combined 

with predictions for Rho-independent terminators27 5

Actinomycetes

Streptomyces coelicolor  
(+7 bacterial genomes  

for comparative genomics)

Hidden Markov model to combine primary sequence data 
(dinucleotide frequency information and Rho-independent 

terminators) with comparative genomics30

114 sRNA candidates, 20 tested/6

(continued)
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binding sites. Also building off of this idea, Swiercz et al. (2008)30 
developed sRNAFinder. This program uses a hidden Markov 
model to integrate primary sequence data with comparative 
genomics information when predicting sRNA genes. The primary 
sequence data include dinucleotide frequency information and 
Rho-independent terminators. Comparative genomics informa-
tion includes evidence of compensatory basepair mutations that 
conserve RNA secondary structure. The authors focused on the 
multicellular, differentiating actinomycete Streptomyces coelicolor, 
and compared the sequences against seven different genomes. A 
total of 114 sRNA candidates were predicted, 20 tested and 6 
experimentally confirmed (Table 1).

Applying sRNAPredict2 to the growing database of bacte-
rial genome sequences, Livny et al. (2007)31 predicted more than 
2,700 previously unannotated candidate sRNA loci. Further fol-
lowing this approach, SIPHT was developed to conduct searches 
for putative sRNA-encoding genes in all 932 bacterial replicons 
present in the NCBI database at that time. These searches yielded 
nearly 60% of previously confirmed sRNAs, hundreds of previ-
ously annotated cis-encoded regulatory RNA elements such as 
riboswitches, and over 45,000 novel candidate intergenic loci 
which await experimental verification.32

Finding cis-encoded antisense RNAs. Computational screens 
have been used successfully for the prediction of non-coding 
RNA in various eubacteria, but much less often to find antisense 
RNAs. Yachie et al. (2006)33 combined predictions for intergenic 
non-coding RNAs and antisense RNAs in E. coli, resulting in 87 
sRNA and 46 antisense RNA candidates, of which, respectively, 
eight and four candidates could be experimentally verified. The 
employed prediction strategy was a combination of promoter and 
Rho-independent terminator prediction using the newly intro-
duced Gapped Markov Model Index (GMMI), followed by experi-
mental analysis. The GMMI takes into account sequence patterns, 
nucleotide biases and higher order base relations, as they occur, for 
example, through base pairing in structured RNA molecules. This 
is a reasonable approach for the prediction of intergenic sRNAs, 
yet it is less suitable for a prediction focusing on antisense RNAs, 
as these function mainly by mere sequence complementarity rather 
than specific sequence or structural features. When rigorously 
tested by using tiling microarrays, an approach to finding anti-
sense RNAs based on Rho-independent terminators turned out 
to be less productive. In the cyanobacterium Synechocystis 6803, 
Georg et al. (2009)34 found that 11 out of 73 asRNAs, but 27 
out of 60 intergenic sRNAs with high microarray expression levels 
had been predicted using this approach. Thus, this strategy worked 
relatively well for sRNAs transcribed from intergenic regions (45% 
correctly predicted), whereas the rate of true positives for the anti-
sense RNAs was only 15%.34 As the most likely reason for this 
difference, the authors assumed either sequence constraints from 
the protein-coding region or more frequent or more complex RNA 
processing in the case of antisense RNAs.34 It is also known that 
some trans-acting sRNAs, such as 4.5S, 6S and DicF are processed 
from poly- or di-cistronic transcripts, and therefore lack an Rho-
independent terminator.35 It is possible that such 3'-processed RNA 
species are more frequent among antisense RNAs, making their 
correct computational prediction technically challenging.

algorithm. RNAMotif was also successfully used to evaluate the 
distribution of the sRNA Yfr1 throughout the cyanobacterial 
radiation.24

When screening for transcriptional signals, it is a logical step to 
include as an additional search criterion a certain transcription fac-
tor binding site and consequently restrict the computational pre-
diction of sRNA candidates to a distinct regulon. Following this 
idea, intergenic regions in Vibrio cholerae were scanned for pairs 
of relatively well-defined σ54 binding sites and Rho-independent 
terminators.25 The rationale for this approach was the observation 
that the mRNAs for the quorum-sensing master regulators LuxR 
and HapR were destabilized in an Hfq-dependent fashion, and 
that this process would be controlled by the sigma factor σ54. To 
restrict the analysis further, the candidate sRNAs were required to 
be conserved in three related Vibrio species. Indeed, four (Vibrio 
cholera) and five sRNAs (V. parahaemolyticus, V. vulnificus) were 
finally found and shown to constitute an ultrasensitive regulatory 
switch that controls the transition into the high cell density, quo-
rum-sensing mode of the cell.25

That it is feasible to include in the search the binding sites of 
real transcription factors (as opposed to a sigma factor recogni-
tion sequence) was demonstrated by the identification of sRNAs 
controlled through Fur, the Ferric uptake regulator, and CiaR, the 
response regulator which is part of the two-component regulatory 
system CiaRH controlling beta-lactam resistance, maintenance of 
cell integrity, competence and virulence in Streptococcus. A pat-
tern search for Fur-consensus binding sites in intergenic regions 
of the Pseudomonas aeruginosa genome, combined with the pre-
diction of Rho-independent terminators, yielded the two sRNAs 
PrrF1 and PrrF2, which are more than 95% identical to each 
other.26 Similarly, in Streptococcus pneumoniae five sRNAs were 
fortuitously identified during analysis for CiaR binding sites.27 
These small non-coding RNAs, designated csRNAs for cia-
dependent small RNAs, are 87 to 151 nt in size, and show a high 
degree of sequence similarity.

These studies clearly demonstrated that systematic screens for 
transcription factor binding sites can be very useful when focusing 
on a certain class of sRNAs. They not only added the additional 
criterion of searching for a specific transcription factor binding 
site to the portfolio of parameters, but also provided impressive 
functional information, because they started right from the begin-
ning with a hypothesis for the respective sRNA’s function.

Joining the search for termination signals with comparative 
genomics. In several earlier studies, the set of possible transcrip-
tional units in intergenic regions was filtered against the sequences 
of closely related bacterial genomes.12,25 Consequently, Livny et al. 
(2005)28 reasoned that sRNA genes can be predicted solely by rely-
ing on sequence conservation of intergenic regions and predictions 
of Rho-independent terminators, without any further information. 
Implementing this idea in a program called sRNAPredict2, they 
identified 32 novel sRNAs in Vibrio cholera, from which nine were 
tested and six confirmed,28 and 17 sRNAs in Pseudomonas aerugi-
nosa (Table 1).29 This is of more general relevance because the 
successful use of bioinformatics to identify sRNAs is frequently 
rendered impossible in non-enterobacteria due to the lack of infor-
mation on promoter consensus sequences and transcription factor 
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overview on the different methods) the search for regions both in 
the mRNA and the sRNA that are complementary to each other. 
However, the “strength” of complementarity of these regions is 
measured in many different ways. In contrast to microRNA, 
there are currently few additional steps (such as conservation of 
specific regions or the enforcement of a seed region) that are used 
on a regular basis. It appears that sRNA-mRNA interactions are 
even more flexible than those between miRNAs and mRNAs. 
This fact makes it hard to determine single significant features 
for sRNA-mRNA interactions, which would be comparable to 
the 6–8 nt long seed region found to be important for the predic-
tion of miRNA targets.41,42

For the evaluation of complementarity, pure sequence-based 
methods like BLAST43 can be used to search for long stretches 
of complementarity. However, it is important to consider also 
the non-Watson-Crick G-U-pairs, which can be done using 
GUUGle.44 Therefore, the most simple mode of TargetRNA,45 
namely the individual base pair model, can be considered an 
entirely sequence-based approach. Here A-U and G-C base pairs 
are given the same score. For this reason, Mandin et al. (2007)46 
introduced a similar model but differing in the scoring of individ-
ual base pairs, which is inspired by the strength of the respective 
base pair. In addition, the scoring takes stacking into account. 
Thus, the scoring of a perfect duplex corresponds to the associ-
ated energy. This difference is especially important for genomes 
with low GC-content, such as Listeria.47 The main advantage 
of these approaches is their simplicity, since the computational 
costs usually grow at most geometrically with the input length. 
Another advantage is that one can easily calculate the significance 
of the found matches, which will be discussed later.

Thermodynamic scoring of mRNA-sRNA mixed duplexes. 
The next step in complexity involves approaches that do not score 
the base pairs of the interaction independently but uses a scor-
ing system that is known from the prediction of RNA secondary 
structures, namely the scoring of stacked base pairs and internal 
loops. This leads to the thermodynamic scoring of mixed duplexes 
consisting of mRNA and sRNA sequences, and can be considered 
a restricted and specialized version of full RNA-secondary struc-
ture folding (like Mfold48 and RNAfold49). The first approach in 
this direction was RNAhybrid50 (also implemented as RNAduplex 
in the Vienna RNA Package), whose main application area is the 
prediction of microRNA targets. Here the scoring of a base pair 
(i, k), where i is a position in the mRNA, and k is a position in 
the sRNA, depends on the immediately following base pair (i', 
k'), where i'> i and k < k' (assuming that both mRNA and sRNA 
are notated 5' → 3', and the interaction is anti-parallel as usual). 
If i' = i + 1 and k' = k - 1, then the two base pairs form a stack, 
which is usually energetically favorable. Otherwise, the two base 
pairs close an internal loop or bulge. The energy parameters for 
this scoring are the same as in RNA secondary structure fold-
ing, and represent free energies (in kcal/mole) that were derived 
from experimental data using the nearest neighbor model by 
Mathews et al. (1999).51 Later, a similar approach was used in 
TargetRNA with applications to the prediction of sRNA targets. 
Both approaches use a restriction on the length of internal loops 
in the mixed duplexes, since long internal loops are energetically 

Large scale approaches. Serious effort has been invested in 
automating sRNA identification and targeting a large num-
ber of genomes at once. In a machine learning approach, neu-
ral networks and support vector machines were used to extract 
the shared features of known sRNAs for the prediction of new 
candidates in several prokaryotic and archaeal genomes.36 This 
approach depends less on prior knowledge of the specific RNA 
gene features of a given organism. The underlying algorithm 
employed both compositional parameters (nucleotide and dinu-
cleotide composition) and structural motif parameters to dis-
criminate functional RNAs from random non-coding sequences. 
The screen by Carter et al. (2001)36 predicted 370 novel sRNA 
candidates in the E. coli genome.

Automatic discovery of sequence patterns by boosted genetic 
programming was used to create sRNA classifiers to distinguish 
non-coding functional RNA sequences from other intergenic 
sequences.37 This approach resulted in the prediction of 135 
novel sRNA candidates and of 152 loci that overlapped previ-
ous predictions in the literature. In this study, twelve of sixteen 
candidates were experimentally shown to be actual sRNAs and 
six of the twelve verified candidates had not been predicted in 
any of the previous studies. The relatively high confirmation rate 
was taken as evidence that many of the predicted sRNAs actually 
exist, and that in a well-studied model such as E. coli many more 
sRNA genes are still to be characterized.37

An automated sRNA screening procedure for the extraction, 
selection and visualization of candidate intergenic regions has 
been implemented in the software package ‘Intergenic Sequence 
Inspector’, or ISI.38 This program filters intergenic regions accord-
ing to variable input parameters, including length or GC content, 
and can select those with significant sequence conservation among 
phylogenetically related bacteria. In the gram-positive bacterium 
Staphylococcus aureus, ISI identified 191 sRNA candidates, which 
were rigorously tested by microarrays and northern blots, leaving 
a minimum of 12 expressed sRNA genes in S. aureus.39

Computational Prediction of sRNA Targets

In the first part of this review, we summarized the various 
approaches to the prediction of sRNAs and the evidence for a high 
number of sRNA genes in bacterial genomes awaiting functional 
characterization. The critical bottleneck is the identification of 
the targets of these sRNAs. Experimental approaches for the 
detection of sRNA targets include standard genetic screens, gene 
knockouts and overexpression of the sRNA of interest, followed 
by proteomics and microarray analysis, the co-immunoprecipita-
tion of direct interaction partners and the characterization of rel-
evant ribonucleoprotein particles. However, all of these methods 
require a large amount of effort and are very time-consuming. 
Therefore, methods for highly sensitive biocomputational target 
prediction, followed by focused experimental analysis, are highly 
desirable. Previous reviews, which considered such aspects to 
some extent, were provided by Pichon and Felden (2008)40 and 
Vogel and Wagner (2007).5

Target prediction based on sequence. Concerning computa-
tional target prediction, the initial step is always (see Table 2 for 
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which is an important parameter when con-
sidering the stability of duplexes. Second, 
these approaches are very fast because their 
computational complexity is comparable 
to simple local sequence alignment. Third, 
one can easily calculate the significance (i.e., 
p-values) of the found hits, again due to their 
similarity to local sequence alignment. It is 
well known that the score of an optimal local 
alignment follows an extreme value distribu-
tion where local scores can be regarded as the 
maximum of a set of independent variables.53 
Therefore, assuming an extreme value distri-
bution with a location parameter u and a scale 
parameter s for the length-normalized hybrid-
ization scores, one can estimate these two 
parameters by fitting the extreme value distri-
bution to an empirical distribution generated 

from normalized hybridization scores for a large set of randomly 
generated sequences, where the sequences are generated using the 
actual dinucleotide frequency of the mRNA space of interest. It is 
important to use dinucleotide instead of mono-nucleotide shuf-
fling because the energy of duplexes depends on the dinucleotide 
frequencies, due to base pair stacking. The scores have to be nor-
malized according to length because longer putative target and 
sRNA sequences will tend to have more negative energies.

The main disadvantage of these approaches is that they 
neglect intra-molecular base pairs. This can have two effects. 
First, neglecting these pairings could predict biologically impos-
sible interactions where one of the interacting regions is buried in 
a stable intra-molecular structure (Fig. 1). Second, methods that 
ignore these pairings tend to predict interactions that are too long 
because it is usually more favorable to extend interactions if the 
effect of breaking intra-molecular base pairs is ignored.

Approaches based on RNA secondary structures. The obser-
vations outlined in the previous chapter lead to the introduc-
tion of several other approaches that incorporate the effects of 
the internal structures of both mRNA and sRNA. There are two 
classes of approaches. The first class of approaches, with pairfold,54 
RNAcofold,55 and the method presented by Dirks et al. (2007)56 
as part of the NUpack package being representatives, consider 
joint structures of mRNA and sRNA that are generated by con-
catenating the two sequences using a special linker character. 
Then, a modified version of the usual RNA-folding algorithm (as 
in MFOLD48 and RNAfold49) is applied. Basically, the recursive 
structure is the same but loops that contain the linker symbol are 
treated specially. This is because an internal loop containing the 
linker element is in fact not an internal loop, but consists only of 
external bases (Fig. 2). As a result, these approaches predict joint 
structures which are nested in the sequence, stemming from the 
concatenation of the two input sequences, since this is a restric-
tion crucial for the recursive calculation of the joint structure. In 
the following, we will refer to this class of approaches as concat-
enation approaches. Figure 1 on the right side shows an example 
of a possible joint structure that cannot be predicted using these 
approaches.

unfavorable and increase computational complexity, where the 
maximal loop length L contributes quadratically to the run 
time. RNAplex52 has a similar energy model as RNAduplex and 
RNAhybrid, except for internal loops. Whereas explicit energy 
tables are used for small internal loops, big internal loops are usu-
ally evaluated using a logarithmic length term and an asymmetry 
penalty. In RNAplex, the length dependent term is replaced by 
an affine gap penalty, which removes the quadratic factor intro-
duced by the maximal loop length L.

Compared to entirely sequence-based approaches, this simple 
energy model offers several advantages. First, it provides a much 
more realistic model of RNA-RNA interaction, as compared to 
approaches based on sequence complementarity, and allows the 
user to take many variables into account, such as temperature, 

Figure 1. (A) Physiologically impossible structure that might be predicted by simple duplex 
scoring. (B) A non-nested structure that cannot be predicted by concatenation approaches.

Figure 2. Joint structure of two RNAs using concatenation with a 
linker element (in green). Without special treatment of the linker ele-
ment, the associated loop would be scored as a bulge, giving rise to a 
high positive energy contribution. With the special treatment of the 
linker, this sequence has only external bases with associated dangling 
end contributions.
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concentration-dependent melting temperatures, which can then 
be compared to experimental data.

An interesting application of the concatenation approach is 
presented in Cao et al. (2009)58 and Zhao et al. (2008).59 It 
addresses the problem that most practical approaches for inter-
action prediction restrict the search to a region around the start 
codon. However, many different settings concerning the length 
and position of this region are also possible. Here a classification 
method was used to solve this problem. First, multiple over-
lapping regions were considered, and the joint minimum free 
energy structure for all the overlapping regions was calculated 
using a simple concatenation approach (without special treatment 
of the linker sequence). The minimum free energy structure of 
a region is then used to extract different features such as per-
cent composition of bases in interior loops, bulge loops, etc. In 
addition, sequence features like percentage of A + U bases (since 
Hfq is supposed to bind to AU-rich regions) were used. In total, 
10 features for 1,000 overlapping sequences in the region +30 
to -30 around the start codon were computed, giving rise to a 
secondary structure profile. These features were then used to 
train two classifiers (based on Naive-Bayes and SVM) on a data 
set of 46 positive samples and 86 negative samples.

Handling accessibility in mRNA-sRNA interactions. 
Because the concatenation approaches are predicting joint struc-
tures that are nested, they cannot handle important structural 
elements like double kissing hairpins. For that reason, another 
class of approaches have been introduced that can handle this 
class of interactions. The basic idea here is not to predict a single 
joint structure (or an ensemble of joint structures) but to inves-
tigate first the ensemble properties of the single sequences that 
are important for a putative interaction. Basically, an interac-
tion site must be accessible (i.e., not covered by intra-molecular 
base pairs) because the positions in the interaction site will be 
bound by the interaction partner. Thus, for any two positions 

Concatenation approaches. An advantage of the concat-
enation approach is that all techniques regularly used in plain 
RNA-secondary structure prediction can be transferred to the 
cofolding approach. Hence, it is also possible to calculate the par-
tition function of all joint structures, as well as base pair prob-
abilities (intramolecular as well as base pairs between the two 
sequences) using a variant of McCaskill’s approach.57 The parti-
tion function Z(S) for a sequence S (which might be composed 
of two sequences joined with a linker symbol) is the sum of all 
Boltzmann-weighted energies of all structures R the sequence S 
can take, i.e.,

Z(S) = Σ
R structure of S

 e-E(S)/RT

Once the partition function can be calculated, as in the case 
of RNA folding, then the Boltzmann probability of a specific 
structure can be calculated by

e-E(S)/RT/Z

Even more importantly, the probability of a base pair (i; j) 
(where i, j are positions in either of the sequences) can be calcu-
lated using a modification of the partition function computation 
to sum up the Boltzmann-weighted energies for all structures 
that contain the base pair, i.e., to calculate

Z (i,j) = Σ
R contains (i,j)

 e-E(S)/RT;

The probability of the base pair (i,j) is then given by 
Z(i,j)/Z. Furthermore, in the case of two interacting molecules 
A and B where one can calculate the partition functions for 
the single molecules, for the homo-dimers (A bound to A 
and B bound to B) and for the hetero-dimer as this is the 
case for the concatenation approaches, it is possible to calculate 

Figure 3. Energy landscape and accessibility. Given a putative interaction site between positions a and b, there are several structures where this site 
is single-stranded (denoted by a blue oval), whereas others cover the interaction site. The latter ones cannot be structures that are adopted in a joint 
structure. The partition function Zsg(a,b) for the ensemble of structures where the subsequence between a and b is single stranded would be the sum of 
all Boltzmann-weighted energies for the structures with horizontal ovals.
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ED(a,b) = Esg(a,b) - E
all

Note that the above term is positive and thus can be consid-
ered a penalty. Now, approaches like RNAup60 and IntaRNA61 
use pre-calculated ED-values for all possible interaction regions 
to calculate a combined energy of the ED-values and the energy 
given by the duplex. Thus, an interaction of two regions i..i’ of 
the first sequence with a region k..k’ of the second region is evalu-
ated as shown in Figure 4. The ED-values for all regions in one 
sequence can be pre-calculated with basically the same complexity 
as the calculation of base pair probabilities in normal RNA fold-
ing using the RNAplfold approach.62,63 For the combined energy 
E, the recursion is basically similar to the entirely sequence-based 
approach in RNAhybrid, with the exception that one has to do 
it for all possible right end points separately, since one needs to 
know the complete regions for determining the ED-values. This 
approach, which is used in RNAup, leads to a quadratic overhead 
depending on the maximal length of interaction site considered. 
In IntaRNA, this overhead is avoided by applying a heuristic 
approach. Nevertheless, the prediction quality of RNAup and 
IntaRNA are basically equal because IntaRNA uses an additional 
seed condition.

When comparing the concatenation approaches (RNAcofold, 
PairRNA and NUpack) and the approaches working with acces-
sibility (RNAup and IntaRNA), both restrict the set of joint 
structures that are taken into account. In the case of the concat-
enation approaches, one can predict only joint structures where 
the interaction arcs (i.e., the base pairs between two RNAs) are 
not covered by intra-molecular base pairs. An equivalent condi-
tion is that the interaction arcs may only occur at external posi-
tions. A position k is external in a structure if there is no base 
pair (i, j) in the structure that covers k (i.e., where i < k < j). 
Given a joint structure, the external positions are those that are 
external in the two substructures generated by restricting the 
joint structure to the single sequences. The approaches using 
accessibility, on the other hand, assume a single interaction site, 
which may not contain any intra-molecular base pair or end of 
an intra-molecular base pair. The reason for this restriction is 
simply that the unrestricted problem (i.e., finding the best joint 
structure of two interacting RNAs without any restriction on the 
type of structures) is computationally a very hard problem. Just 
recently, it was shown in Alkan et al. (2006)64 that the general 
problem is NP-complete, which means in practice that an exact 
algorithm would require exponential time [The precise definition 
of NP-complete is more complex. NP is a class of problems that 
are currently believed to be different from the class P of problems 
that can be solved in polynomial time. Unless NP = P (which is 
believed to be very unlikely), there cannot be an algorithm that 
exactly solves the general interaction problem in polynomial time 
for all instances. However, there might be algorithms that solve 
the problem in reasonable time for most practical instances]. 
However, there are known classes of interactions like the interac-
tion of OxyS and fhlA, which have two or more kissing hair-
pins (Fig. 5). This kind of interaction cannot be predicted by the 
concatenation approaches, nor can it be predicted by approaches 

a < b in a sequence, one computes the energy that is required 
to make the sequence stretch between a and b free of intra-
molecular base pairs. Then, one calculates the partition func-
tion Zsg(a,b) for the ensemble of structures that leave the putative 
interaction site single-stranded (Fig. 3). Next, one calculates 
the ensemble energy by the formula Esg(a,b) = -RT ln(Zsg(a,b)). 
Defining the energy of the ensemble of all structures by E

all
 = 

-RT ln(Z), where Z is the total partition function, we get the 
energy ED(sg(a,b)) that is required to make the interaction site 
accessible as

Figure 4. Evaluation of an interaction in RNAup and IntaRNA. The 
ED-values are precalculated for all possible regions in both sequences.

Figure 5. Interaction components of OxyS and fhlA as presented in 
Argaman et al. (2000).76
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fast heuristic method to predict the specific (multiple) binding 
sites of two interacting RNAs.

Concluding Remarks

In recent years, the comparative genomics-based prediction of 
sRNA genes has become a standard method used to search for 
such genes within bacterial genomes (see Table 1 for overview). 
However, comparison to transcriptomic datasets suggests that 
despite the impressively high number of correctly predicted can-
didates, diverse sRNA genes have still been excluded from these 
predictions, whatever the scope or the approach taken. Although 
none of the existing sRNA gene finders is able to identify all 
the experimentally validated sRNA genes, they provide a fairly 
good starting point for an analysis of the sRNA complement in a 
prokaryotic genome.

The current focus is on developing tools to correctly pre-
dicting sRNA targets. Several such tools have been designed  
(see Table 2 for overview) but there are still considerable devel-
opments to be made. This problem is even more complex than 
that of finding sRNAs due to several reasons. First, target 
interactions show surprising variability. Second, experimental 
testing of target prediction is still a very laborious task. Third, 
the problem of RNA interaction prediction is computation-
ally complex, requiring restrictions in the respective models. 
This leads to the introduction of a variety of procedures. Up 
to now, four prediction models have been presented, of increas-
ing complexity and prediction quality (Table 2), and substan-
tial improvements are likely to occur in the near future. Once 
sRNAs and targets are known, the next challenge will be the 
successful integration of regulatory RNA in the existing mod-
els of regulatory networks. This would allow the unraveling of 
pathways that involve sRNA-induced regulation. It would also 
be a further important step for the functional characterization 
of the many found sRNAs.
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using the accessibility of one single interaction site. For that rea-
son, new methods have been introduced that extend the class of 
allowed joint structures. The IRIS tool65 introduced a new recur-
sive scheme which allowed for the first time considering more 
than one kissing hairpin. It uses an energy model that maximizes 
the number of base pairs. Then, the extension to a more realistic 
energy model was considered,64 inspired by the standard nearest 
neighbor energy model of single RNA sequence folding.

Furthermore, a precise definition of the class of structures 
treated by each approach was given.64 Both approaches can 
handle the OxyS-fhlA interaction, and both approaches predict 
a single structure with the minimum free energy (the structure 
with the maximal number of base pairs, in the case of IRIS). 
However, as already observed in the folding of a single RNA, the 
MFE structure is often wrong. The standard way to overcome 
this problem is to use a partition function variant, as already 
described above, for the concatenation approaches. Since one 
has to calculate the sum over all possible joint structures, it is 
necessary to reformulate the recursion equations such that every 
joint structure is decomposed in a unique way. This problem was 
solved independently by Chitsaz et al. (2009)66 and Huang et al. 
(2009).67 Thus, both approaches allow calculation of important 
quantities like melting temperatures and base pair probabilities. 
As demonstrated,66 the melting temperatures calculated by the 
algorithm are in good agreement with the experimentally mea-
sured ones, as exemplified in the case of OxyS:fhlA interaction for 
the wild-type and three mutated constructs. The above described 
tools for the prediction of a joint structure still have a very high 
computational complexity [the computation time is on the order 
of O(n6), where n is the length of the input sequence(s)]. Thus, 
there were attempts to reduce this complexity by considering an 
approximation to the original problem. A very intuitive way is to 
use accessibility (a.k.a. RNAup/IntaRNA), but allowing the use 
of more than one interaction site. The ED-value for measuring 
the energy required to make a site accessible can be calculated 
from the probability that this site is single-stranded. Now it is 
immediately clear that these probabilities are not independent for 
different interaction sites. Thus, conditional probabilities have 
to be used instead. Although this problem is deemed to be too 
complex to be calculated, a Bayesian approximation of these con-
ditional probabilities was introduced by Chitsaz et al. (2009)68 
and Salari et al. (2009).69 Their approximations allowed a fast 
calculation of these conditional probabilities, and resulted in a 
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