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Abstract.  The protein structure prediction problem is one of the most (if not the most) important problem
in computational biology. This problem consists of finding the conformation of a protein with minimal energy.
Because of the complexity of this problem, simplified models like Dill’s HP-lattice model [15], [16] have
become a major tool for investigating general properties of protein folding. Even for this simplified model, the
structure prediction problem has been shown to be NP-complete [5], [7]. We describe a constraint formulation
of the HP-model structure prediction problem, and present the basic constraints and search strategy. Of course,
the simple formulation would not lead to an efficient algorithm. We therefore describe redundant constraints to
prune the search tree. Furthermore, we need bounding function for the energy of an HP-protein. We introduce
a new lower bound based on partial knowledge about the final conformation (namely the distribution of
H-monomers to layers).
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1. Introduction

Proteins are sequences composed of an alphabet of 20 amino acids. An amino acid is a
chemical group of the form

H H o
N
/N—C——C\
H ,.J\ OH
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where R is a chemical group (called chain residue) specifying the type of the amino-acid.
The central carbon atom is the a-carbon (short Ce), the left NH, groups is the amino
group, and the left COOH the carboxy group. There are 20 different chain residues,
which have different chemical properties. Residues can be hydrophobic or hydrophilic,
small or large, charged or uncharged.

Two amino acids can be connected via a peptide bond, where the carboxy group of
the first amino acid reacts with the amino group of the second. The result is a group of
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Using the peptide bond, long sequences of amino acids (i.e., proteins) can be generated.

The peptide bond itself (indicated with a grey rectangle in (1)) is usually planar,
which means that there is no free rotation around this bond.! There is more flexibility
for rotation around the N-Ca-bond (called the ¢p-angle), and around the Ca—C bond
(called the i-angle). But even there, the allowed values of combinations of ¢ and ¢
angles are restricted to small regions in natural proteins (which are displayed on so-
called Ramachandran plots).

Using this freedom of rotation, the protein can fold into a specific three-dimensional
structure (called conformation). In natural proteins, the final structure that is achieved
is uniquely determined by the sequence of amino acids. For this reason, one speaks of
the native structure of a given amino acid sequence. The native structure itself uniquely
determines the function of the protein. The protein structure prediction problem is the
problem of determining the native structure of a protein, given its sequence of amino
acids. On the one hand, there are physical/chemical method for determining the native
structure. One standard procedure consists of producing a pure solution containing only
the protein, then crystallizing the protein, followed by an x-ray crystallography. The
major limitation is the crystallization process. One needs enough material of the protein,
and the solution containing the protein must be very pure (since the purity of the solution
determined the exactness of the analysis). This step itself is very time consuming. The
crystallization step itself is limited to a subclass of proteins (e.g., in general the interesting
membrane proteins do not crystallize at all).

For this reason, the protein structure prediction with computer methods is one of most
important problems in computational biology. There are several results showing that
structure prediction problem is NP-hard. These results indicate that it is unlikely that
one will find a general, efficient algorithm for solving this problem. But the situation is
even worse, since one does not know the general principles why natural proteins fold
into a native structure. Artifical proteins usually don’t have a native structure (i.e., there
is no stable structure that will be achieved by the protein).

To attack this problem, simplified models have been introduced, which became a
major tool for investigating general properties of protein folding. An important class of
simplified models are the so-called lattice models. The simplifications commonly used
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in this class of models are

1. monomers (or residues) are represented using a unified size

2. bond length is unified

3. the positions of the monomers are restricted to positions in a lattice, and
4. a simplified energy function

There are different lattices, which can approximate real proteins arbitrarily close. The
simplest used lattice is the cubic lattice, where every conformation of a lattice protein is
a self-avoiding walk in Z*. A discussion of lattice proteins can be found in [8]. There
are a lot of groups working with lattice proteins. Examples of how lattice proteins can be
used for predicting the native structure or for investigating principles of protein folding
are [21], [1], [10], [20], [14], [11], [12], [2], [17].

An important representative of lattice models is the HP-model, which has been intro-
duced by [15], [16]. In this model, the 20 letter alphabet of amino acids (and the cor-
responding manifoldness of forces between them) is reduced to a two letter alphabet,
namely H and P. H represents hydrophobic amino acids, whereas P represent polar or
hydrophilic amino acids. The energy function for the HP-model is given by the matrix

H P
H|-1]0}|
PO 0

which simply states that the energy contribution of a contact between two monomers is
—1 if both are H-monomers, and 0 otherwise. Two monomers form a contact in some
specific conformation if they are not connected via a bond, but occupy neighboring
positions in the conformation (i.e., the distance vector between their positions in the
conformation is a unit vector). A conformation with minimal energy (in the following
called optimal conformation) is just a conformation with the maximal number of contacts
between H-monomers. Just recently, the structure prediction problem has been shown to
be NP-complete even for the HP-model [5], [7].

A sample conformation for the sequence PHPPHHPH in the two-dimensional lattice
with energy —2 is

The white beads represent P-, the black ones H-monomers. The two contacts are indicated
via dashed lines. A more complex conformation in Z* of another HP-sequence is shown
in Figure 1.
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Figure 1. Native conformation of an HP-sequence of length 48 found by our algorithm. H-monomers are
displayed using dark beads.

Problem 1.1 (Problem 1.1 (HP Structure Prediction Problem).) Given a sequence s €]}
{H, P}*, find a conformation of s in Z* having maximal number of contacts between
H-monomers.

An example of the use of lattice models is is the work by Sali, Shakhnovich and
Karplus [21]. They investigate under which conditions a protein folds into a native struc-
ture. For this purpose, they have performed the following computer experiment on pro-
teins in the cubic lattice:

1. Generation of 200 random sequences of length 27.

2. Determination of the native structures on the 3 x 3 x 3-cube. The 3 x 3 x 3-cube has
exactly 27 position, which was the reason for using a sequence length of 27 (in a
later paper [10], the authors considered proteins of length 125).

3. Simulation of protein folding on the lattice model using a Monte-Carlo method with
Metropolis criteria. The Monte-Carlo method is as follows. Initially, a random con-
formation of the sequence is generated. Starting from this initial conformation, the
algorithm performs so-called Monte Carlo steps in order to search for the mini-
mal conformation. A single Monte Carlo step consists of the following operations:
First, a local move is selected at random until a move is found that produces a valid
conformation (i.e., a self-avoiding conformation). Two examples of allowed
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moves are

Here, the positions of the shaded monomers are changed, and the positions of the
other monomers are kept unchanged.

Second, the resulting conformation is evaluated according to the Metropolis cri-
terion. If the energy of the resulting conformation is lower than the energy of the
previous one, then the conformation is always accepted. Otherwise, the conforma-
tion is accepted by random, where the probability of accepting the new conformation
depends on the energy difference.? For every initial conformation, 50,000,000 Monte
Carlo steps are performed.

Now a protein folds in that framework, if the Monte Carlo method finds its native
conformation. The authors have found that a protein folds if there is a energy gap between
the native structure and the energy of the next minimal structure. Note that the same
lattice model has been used by several other people, such that [1], [20], [2], [12].

In performing such experiments, it is clear that the quality of the predicted principle
depends on several parameters. The first is the quality of the used lattice and energy
function. The second, and even more crucial point, is the ability for finding the native
structure as required by Step 2. For the energy function used by [21], there is no exact
algorithm for finding the minimal structure. This problem can be overcome by restrict-
ing the search for the native structure on the 3 x 3 x 3-cube, as done in Step 2. But this
approach has some drawbacks: 1.) The energy function had to be biased to hydropho-
bicity (i.e., the average contact energy between any two amino acids must be attractive;
only then one gets proteins whose native structure is on the 3 x 3 x 3-cube with high
probability (see [21])); 2.) even then, it is not guaranteed that the minimal conformation
is on this cube (for examples in the HP-model see [24]); 3.) the length of the proteins
cannot be arbitrarily chosen.

1.1. Previous Work

In the literature, several algorithms were proposed for the HP-model, and we will discuss
some of them. One class of algorithm consists of heuristic methods. There are heuristic
approaches such as the hydrophobic zipper [9], the genetic algorithm by Unger and
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Moult [19] and the chain growth algorithm by Bornberg-Bauer [6]. Another example
is an approximation algorithm as described in Hart and Istrail [13], which produces
a conformation, whose number of contacts is known to be at least % of the optimal
number of contacts, in linear time. And there is one exact algorithm, namely the CHCC
(Constrained Hydrophobic Core Construction) of Yue and Dill [22], which finds all
optimal conformations.

Our algorithm is motivated by the CHCC-algorithm [22]. The main idea of CHCC is
that the surface area of the hydrophobic core is easier to estimate (given partial infor-
mation about the final conformation) than the number of HH-contacts, and that the core
surface area and the number of contacts are related one-to-one. Using this observa-
tion, in a first step, CHCC enumerates all possible shapes of the region containing all
H-monomers of the given sequence (i.e., all core shapes). This enumeration is done in a
way such that core shapes with a smaller surface area are enumerated before core shapes
with a larger surface area. For every core shape, CHCC enumerates all positions of the
monomers that fit into the given core shape. CHCC uses some conditions (or constraints)
to reduce the size of the search tree. The major drawback of CHCC is that it is a spe-
cialized algorithm tailored for the HP-model in the cubic lattice. It is not seen how ideas
from CHCC can be used for other energy functions or lattices.

1.2. Contributions of the Paper

We provide a declarative formulation of the HP-structure prediction problem in order to
be able to extend the algorithm to other lattice models. Using our approach, we were
able to extend the algorithm to a lattice model with more complex energy functions [4],
namely the HPNX-model [6]. We are currently working to extend this formalization to
another lattice, namely the face-centered-cubic lattice (FCC).

‘We have transformed the protein structure prediction problem to a constraint minimiza-
tion problem with finite domain variables, Boolean variables, and reified constraints. We
have then implemented this constraint problem using the language Oz [18].

Since a simple constraint formulization does not provide an efficient search algorithm,
we investigate ways to prune the search trees. First, we introduce redundant constraints
that allow to prune the search tree by removing invalid search branches (i.e., branches
that do not lead to a valid conformation) early. Second, we give a search strategy that
enumerates low energy conformations earlier in the search tree. This is important, since
the overall search algorithm is a combination of branch-and-bound with generate-and-
constraint. Thus, finding low energy conformations early in the search tree is necessary
for the branch-and-bound. Another problem, which is not discussed in this paper, but
in [3], is the exclusion of symmetries. The reason is that for every solution found in the
search tree, there are 47 symmetric solutions that are found by the search procedure if
no method for excluding symmetries is applied (for details, see [3]).

To use the branch-and-bound approach, it is necessary to find bounding functions for
the energy of a conformation, given partial information derived in the search so far.
For this purpose, we introduce a new lower bound on the surface of the set of all H-
monomers given the distribution of H-monomers to planes orthogonal to the x-axis (i.e.,
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the planes can be described by the equation x = ¢). This results in an upper bound on the
number of contacts, and therefore on the energy. The lower bound on the surface uses
a property of lattice models, namely that for any sequence s and any conformation of s
in 73, two monomers 1 < i, j < length(s) can form a contact if and only if |i — j| > I,
and i is even and j is odd, or vice versa. We have found a simple formula to calculate
a lower bound without using extensive search.

1.3. Plan of the Paper

In Section 2, we introduce the basic definitions for the structure prediction problem. Fur-
thermore, we explain that maximizing the number of contacts is the same as minimizing
the surface of all H-monomers. In Section 3.1, we introduce the constraint minimization
problem (since we minimize the surface to maximize the number of contacts) modeling
the structure prediction problem. We introduce the variables and basic constraints, and
describe the search strategy. Section 4 explains, which symmetries occur in the structure
prediction problem. In the following Section 5, we prove the new lower bound on the
surface given the distribution of H-monomers to layers. Finally, in Section 6, we present
results for some HP-sequences taken from the literature, show search times and number
of search steps.

2. Basic Definitions

A sequence is an element in {H, P}*. With s; we denote the ith element of a sequence
s. We say that a monomer with number i in s is even (resp. odd) if i is even (resp. odd).
A conformation ¢ of a sequence s is a function

c:[l1.s]] = z¢

(where d =2 or d =3 depending on whether we consider a 2-dimensional or a 3-
dimensional lattice) such that

1. VI<i<]|s|:|lc(i)—c(i+1)||]=1 (where ||-]| is the euclidic norm on Z%)
2. and Vi j:c(i) # c(j).

The first condition is imposed by the lattice constraint and implies that the distance vec-
tor between two successive elements must be a unit-vector (or a negative unit-vector) in
every admissible conformation. The second condition is the constraint that the confor-
mation must be self-avoiding.

Given a conformation ¢ of a sequence s, the number of contacts Contact,(c) in c is
defined as the number of pairs (7, j) with i+ 1 < j such that

5= HAs;=HAlle()) - c(j)]| =1

(in other words, the number of pairs of H-monomers that have distance 1 in the confor-
mation ¢, but are not successive in the sequence s). The energy of c is just —Contact,(c).
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With ¢,, €, and ¢, we denote the unit vectors (1,0, 0), (0, 1,0) or (0,0, 1), respectively.
We say that two points p, p’ € Z* are neighbors if ||p— p'|| = 1. This is equivalent to
the proposition that p = p'+¢ with ¢ € {¢,, ¢, ¢,}. Given a conformation c, the sur-
face Surf (c) is defined as the number of pairs of neighbor positions, where the first is
occupied by an H-monomer, but the second not. Le.,

si=HA|p—c(@]=1

Surf,(c) = |3 (c(i), p
| R PSRRI

Figure 2 gives an example of the surface of a sample conformation in two dimensions.
Yue and Dill [22] made the observation that there is a simple linear equation relating
surface and energy. This equation uses the fact that every monomer has 2 - d neighbors
in the Z¢, each of which is in any conformation either filled with either an H-monomer,
a P-monomer, or left free. Let n}, be the number of H-monomers in s, then we have for
every conformation c that

2.d-nj; =2-[Contact,(c) + HHBonds(s)] + Surf,(c) (2)

where HHBonds(s) is the number of bonds between H-monomers (i.e., the number of
H-monomers whose successor in s is also a H-monomer). 2[Contact,(c)+ HHBonds(s)]
counts the number of times an H-monomer has an H-monomer at the neighbor position,
and Surf (c) counts the cases where the neighbor position of an H-monomer is occupied
by a P-monomer, or left free. Since HHBonds(s) is constant for all conformations ¢ of
s, this implies that minimizing the surface is the same as maximizing the number of
contacts.

In a later section, we will consider a lower bound on the surface given partial knowl-
edge about a conformation c. Given the above, the lower bound on the surface yields an
upper bound on the number of contacts (which generates in fact a lower bound on the
energy since the energy is defined as —Contact,(c)).

Given a conformation, the frame of the conformation is the minimal rectangular box
that contains all H-monomers of the sequence. Given a vector p, we denote with (p),,
(p), and (p), the x-, y- and z-coordinate of p, respectively. The dimensions (fr,, fr,, fr,)

Figure 2. Vertical and horizontal contributions to the surface of a conformation in Z>. The surface of this
conformation is 10. Every pair of positions that contribute to the surface is enclosed by a grey oval.



PROTEIN STRUCTURE PREDICTION PROBLEM 231

of the frame are the numbers of monomers that can be placed in x-, y- and z-direction
within the frame. lL.e.,

fro=max{|(c(i) —c(j)),| |1 =i, j <length(s) As,=HAs; =H}+1
fry=max{|(c(i) —c(j)),| | 1 <i,j <length(s)As;,=HAs; =H}+1
fro=max{|(c(i) —c(j)),|| 1 <i,j <length(s) As; =HAs; =H}+1.

We define s, to be min{c(i), | 1 <i,j <length(s) As; = H}. s, and s, are defined
analogously. (s, s, s.) is called starting point of the frame.
A position p € Z3 is a caveat in a conformation ¢ of s iff

1. p is not occupied by an H-monomer,

2. p has two neighbor positions occupied by a H-monomer that are on a straight line
parallel to one of the axis.

E.g., the following conformation contains a caveat:

/ caveat

3. Constraint Formulation
3.1. Structure Prediction as a Constraint Problem

We start with the basic constraint formulation that underlies our search algorithm. Our
algorithm is based on constraint optimization, which is the combination of two principles,
namely generate-and-constraint with branch-and-bound. For using constraint optimiza-
tion, we have to transform the structure prediction problem into a constraint problem. A
constraint problem consists of a set of variables together with some constraints on these
variables. In the following, we fix a sequence s of length n.

Our constraint problem consists of finite domain variables. We use also Boolean con-
straint, entailment constraints and reified constraints. With reified constraints we mean
constraints of the form

(x=1) < (¢),

where X is a Boolean variable and ¢ is a finite domain constraint. X is 1 if the constraint
store entails ¢, and O if the constraint store disentails ¢. A constraint store entails a
constraint ¢ if every valuation that makes the constraint store valid also makes ¢ valid.
It disentails ¢ if the conjunction of ¢ with the constraint store is not satisfiable. We
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use also entailment constraints of the form ¢ — ¢, which are interpreted as follows.
If a constraint store entails ¢, then ¢ is added to the constraint store. Finite domain
constraints and reified constraints can be encoded directly in many modern constraint
programming languages.

Now we can encode the space of all possible conformations for a given sequence
as a constraint problem as follows. We introduce for every monomer i new variables
X;, Y; and Z;, which denote the x-, y-, and z-coordinate of c¢(7). Since we are using a
cubic lattice, we know that these coordinates are all integers. But we can even restrict
the possible values of these variables to the finite domain [1..2n].> This is expressed by
introducing the constraints

X; € [1..(2-length(s)) ] AY; € [1..(2length(s)) | A Z; € [1..(2- length(s))] 3)

for every 1 <i < n. The self-avoidingness is just (X;,Y;, Z;) # (X;,Y;, Z;) for i  j.* Next
we want to express that the distance between two successive monomers is 1, i.e.

”(Xi’ Yi7 Zi) - (XH—lv Yi+1’ Zi+l)|| =1

Although this is some sort of constraint on the monomer position variables X;,Y;, Z,
and X, ,,Y,,,,Z;,,, this cannot be expressed directly in most constraint programming
languages. Hence, we must introduce for every monomer i with 1 <i < length(s) three
variables Xdiff;, Ydiff, and Zdiff,. These variables have values 0 or 1. Then we can

express the unit-vector distance constraint by
Xdiff; = X, =X, | Zdiff, =12, -7,
Ydiff, =|Y,-Y, | 1=Xdiff,+Ydiff, +Zdiff,.

The constraints described above span the space of all possible conformations. IL.e., every
valuation of X;, Y;, Z; satisfying the constraints introduced above is an admissible confor-
mation for the sequence s, i.e. a self-avoiding walk of s. Given partial information about
X;,Y,, Z, (expressed by additional constraints as introduced by the search algorithm), we
call a conformation ¢ compatible with these constraints on X;,Y,, Z; if ¢ is admissible
and c satisfies the additional constraints.

But in order to use constraint optimization, we have to encode the energy function.
For HP-type models, the energy function can be calculated if we know for every pair
of monomers (i, j) whether i and j form a contact. For this purpose we introduce for
every pair (i, j) of monomers with i+1 < j a variable Contact, ;. Contact, ; is 1 if i
and j have a contact in every conformation which is compatible with the valuations of
X;,Y;, Z,, and O otherwise. Then we can express this property in constraint programming

as follows:
Xdiff, ; = X, —X;| Zdiff, ,=1Z,—Z;]
Ydiff, ; = |[Y,-Y,| Contact,; €{0,1}
(Contact; ; = 1) <> (Xdiff, +Ydiff, +Zdiff;, = 1) )
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where Xdiff; ;, Xdiff, ; and Zdiff; ; are new variables. The constraint (4) is an example
of a reified constraint.

Using the variables Contact, ;, we can now easily encode the energy function, which is
subject to constraint optimization. For the HP-model, we introduce a variable HHContacts
which counts the number of contacts between H-monomers. Thus, HHContacts is defined
by

HHContacts= )"  Contact, ;. (5)

i+1<jn
s(iy=HAs(j)=H

We can now define a variable Energy, where we have the constraint
Energy = —HHContacts.

Thus, we have encoded self-avoiding walks together with a variable Energy.

Now we can describe the search procedure, which is a combination of generate-and-
constraint and branch-and-bound. In a generate step, an undetermined variable var out
of the set of variables {X;,Y;,Z;|1 <i < n} is selected (according to some strategy). A
variable is determined if its associated domain consists of only one value, and unde-
termined otherwise. Then, a value val out of the associated domain is selected and the
variable is set to this value in the first branch (i.e., the constraint var = val is inserted),
and the search algorithm is called recursively. In the second branch, which is visited
after the first branch is completed, the constraint var # val is added.

Each insertion of a constraint leads through constraint propagation to narrowing of
some (or many) domains of variables or even to failure, which both prune the search tree
by removing inconsistent alternatives. Thus, the search is done by alternating constraint
propagation and branching with constraint insertion. The generate-and-constraint steps
are iterated until all variables are determined (which implies, that a valid conformation
is found). If we have found a valid conformation ¢, then the constraints will guarantee
that Energy is determined. Let E,. be associated value of Energy. Then the additional
constraint

Energy < E, (6)

is added, and the search is continued in order to find the next best conformation, which
must have a smaller energy than the previous ones due to the constraint (6). This implies
that the algorithm finally finds a conformation with minimal energy.

At every node n of the search tree, we call the set of constraints introduced by the
search algorithm so far the configuration at node n. Every conformation that is found
below node n in the search tree must be compatible with the configuration at n, and
vice versa. A bounding function for Energy is a function that takes a configuration of
some node n, and yields some value E, where every conformation compatible with the
configuration of n has an energy greater than E.
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3.2. Pruning

Clearly, the above described constraint problem generated from a sequence s is not
sufficient to yield an efficient implementation. For efficiency, one needs

1. constraints that allow the early elimination of invalid configurations, and

2. the ability for implementing a search strategy that tends to enumerate low energy
conformations first.

Under 1.), we subsume both bounding functions (which allow to eliminate configura-
tion yielding only conformations that have a higher energy than previously found con-
formations; such a configuration is invalid to the bound constraint (6)) and constraints
that eliminate configurations which do not yield a self-avoiding walk.

3.2.1 Additional Variables and Constraints

We start with defining the additional variables used in our formulation. We have sum-
marized the variables and their description in Table 1. As we have already mentioned,
it is easier to get a bound on the H-surface instead of directly bounding the energy.
Hence, we use an additional variable Surf, which is related to Energy as described in
Equation (2).

With (Frx, Fry, Frz), we denote the dimension of the frame. A frame is uniquely
determined by its dimensions and its starting point. Yue and Dill [22] provided a method
to calculate a lower bound on the surface when all H-monomers are packed within a
frame having a specific dimension. Thus, there are usually only a few frames to be
searched through to find the optimal conformation, since often bigger frames have a
higher lower bound for the surface than an optimal sequence found in a smaller frame.
The assumption of a frame that contains all H-monomers is an efficient way of exclud-
ing many non-optimal conformations. Note that also some of the P-monomers must be
included within this frame, namely those P-monomers whose left and right neighbor in
the chain is an H-monomer. The reason is just that one cannot include the surround-
ing H-monomers into the core without also including the middle P-monomer. These
P-monomers are called P-singlets.

Hence, we start with setting the frame dimension (Frx, Fry, Frz). If these variables
are determined, we fix the frame starting point (s,, s,, s.).> Having this, we can add for
every monomer i which is either an H-monomer, or a P-singlet, the constraints

s, <X; <s,+Frx—1
s, <Yy; <s,+Fry—1
5, <2z <s,+Frz—1.

The remaining variables consider the different positions that a monomer can occupy.
The first set of variables is related to planes parallel to the ones of the coordinate axis. An
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Table 1. The finite domain variables and their description

Caveats Boolean; is 0 if the conformation contains no caveats

Frx, Fry, Frz dimensions of the frame

X, Y, Z x-, y-, and z-coordinate of the ith monomer
(where 1 <i <length(s))

E;.seh, E;.soh number of even and odd H-monomers of the jth x-plane (or x-layer)
in the frame, respectively (where 1 < j < Frx)

E,.sep, E;.sop number of even and odd P-singlets of the jth x-layer
in the frame, respectively

Elem;* membership of monomer i in the plane defined by x = c,

where s, < ¢ <s,+Frx—1; the constraint Elem;* will
be defined only if i is an H-monomer or a P-singlet

type of the frame position p; the type Htype; of the
position p is either 1, if it is occupied by an H-monomer,
and O otherwise

Htype

i

Of? for every position p of the frame and every monomer i;
O“iJ has Boolean value, and is 1 iff monomer i occupies
the position p of the frame
Surfg surface contribution between neighbor positions p and
s Surfg/ = 1if p is occupied by an H-monomer and
P’ is not occupied by an H-monomer. Otherwise, Surfg, =0.
Thus, p must be within the frame, and p’ can be
within the frame or outside the frame with distance 1 from
the frame boundaries
Surf complete surface of the conformation

x-layer is a plane defined by the equation x = ¢ for some integer c. y-layers and z-layers
are defined analogously. For the membership of monomers to layers, we introduce addi-
tional Boolean variables. For every monomer i and every integer s, <c¢ <s,+Frx—1,
we introduce a variable Elem” . Elem is 1 if the monomer is in the x-layer defined
by x = c¢. Thus, we have the reified constraint

(Elem“=1) < (X, = ¢).

The distribution of monomers to X-layers is restricted by the following constraints valid
for the cubic lattice. If two monomers i and i 42 are in the same X-layer, then i 4 1 must
also be in the same x-layer. L.e., for every s, < c¢ <s,+Frx—1 we have

(Elem ‘=1 AElem;5 = 1) — (Elem;| =1).

If two monomers i and i+ 3 are in the same x-layer, then i+ 1 and i +2 must also be
in one x-layer. Le., for every s, <c <s,+Frx—1 we have

(Elem“ =1AElem;5=1) > X, =X,1».

We treat y-layers and z-layers analogously.® Furthermore, there is a special treatment of
P-singlets, which may not be buried into the core (forming a caveat) in order to achieve
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an optimal conformation. Thus we can state for every P-singlet i that

(Elem”“ =1 AElem;| =0ACaveats =0) — Elem | =1
(Elem;“ = 1 AElem;| = 0ACaveats =0) — Elem;| = I.
Using Elem;“, we can define E;.seh by
E.seh= Y Elem "'
i even,s;=H
and analogously for the others. Clearly, we have
frx Frx
> E;.soh=|{i|li odd and s, = H}| ) E,.sop = |{i|i odd P-singlet}|
Jj=1 j=1
Frx Frx
> E,.seh=|{ili even and s, = H}| ) E;.sep = |{ilieven P-singlet}|.
j=1 j=1

Then we have for every layer j that E;.soh+E;.seh+E;.sop+E;.sep < Fry-Frz.

Finally, we have variables related to positions that can be occupied by monomers. Let
p=(p, Py» P,) be some position and i be a monomer. The occurrence variable 07 is a
Boolean variable that is 1 if the monomer i occupies the position p, and 0 otherwise.
This variable can be defined by

(07 =1) < (Elem’™ =1 AElem " = 1 AELem’™ = 1).

With the constraint

(5=
1<i<n

we guarantee that every position may be occupied by at most one monomer.

Since major part of the search tree is spanned over all possible assignments of
monomers to positions, it is important to exclude invalid assignments as soon as pos-
sible. We do this by relating the different occurrences of neighbor positions. For every
positions p and every monomer 1 < i < n, we introduce the constraint

0 =1) - (( > 0?;1> zl) (7)
p’ neighb of p

(Of=1>+<< > Of}>zl). ®)
p’ neighb of p

For i = 1 we introduce only the first constraint, for i = n only the second. This constraint
just states that i can only occupy the position p if both monomers i — 1 and i+ 1 occupy

and
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a neighbor position of p. This generalizes the concept of the tether length as introduced
in [22] and extended in [23], which only states which H-monomers can occupy which
positions in the H-frame, not taking into account where the neighbor monomers can be
placed. Thus, our constraint prunes the search tree given partial distribution of monomers
to positions, which is not true for the tether constraint.

The next set of constraints relates occurrence variables and the energy variable in
various ways. For every position p in the frame, we introduce the Boolean variable
Htype;. This variable is 1 if the position is occupied by an H-monomer. Thus, Htype;
is defined by

(Htype; = 1) < (( > 05> > 1) )

Additionally, we have } ;Htype; = ny(s), where ny(s) is the number of H-monomers
in s.

Now we have constraints relating the type variables of positions and H-surface contri-
butions. As already mentioned, the number of HH-contacts can be more easily approx-
imated from the surface of all H-monomers. Thus, we introduce the Boolean variables
Surfgl for all neighbor positions j and p’, which is defined by

(Surfi =1) < (Htype; = 1 AHtype; = 0).
Of course, we get

Surf= Surf’;.

p, p' neighbours

The variable Surf is then used to constrain the variable Energy as described by
Equation (2).

Now the surface contributions and the Caveats variable can be related using reified
constraints. For every line /i in Z* parallel to one of the coordinate axis, which intersects
with the frame, we define the Boolean variable Caveat,; by

(Caveat, =1) < (( > Surfé’) >: 2).
p#p on li

Clearly, in the above summation we need only to consider all p # 1;’ on /i which are an
element of the frame or within distance 1 of the frame. Then

lines /i

(Caveats =1) < < > Caveat, > 1).
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3.2.2 Search Strategy

Our search strategy is as follows. We select the variables according to the following
order (from left to right)

Frx E;. zgﬁ ) X

Caveats < Fry < EJ < Elem® < 07 < Y,
Frz 3-5¢P Z;

E;.sop !

It is a good strategy to set Caveats to O in the first branch, since in almost every case
there is an optimal conformation without a caveat. The frame dimensions are chosen
ordered by surface according to the lower bound given in [22]. After having determined
the variables E;.seh, E;.soh, E;.sep, and E,.sop, we calculate a lower bound on the
surface. Given a conformatlon c, we dlstmgulsh between X-surface and yz surface of c.
The x-surface can be defined as the sum over all variables Surf” where p — p is +é..
The yz-surface is

Surf, — x-surface of c.

Since even H-monomers can form contacts only with odd H-monomers, a lower bound
for the surface in x-direction is given by

E,.soh+E,.seh+E;,.soh+E; . .seh
+ Y. (|E.son—E,,,.seh|+|E,.seh—E,,,.soh]).

1<j<Frx

For the yz-surface, the first observation is that given a conformation ¢ such that ¢ contains
E,.soh+E;.seh H-monomers in the jth layer, then the surface in that layer is given by
the minimal rectangle enclosing the monomers in that layer. Thus, consider the following
two conformations, where the positions occupied by H-monomers in the jth layer look
as follows:

|

+ -
s00o0e
XXX X
TXXY X B
eso0 e
eoocee

: *

!

"

Both have the property that E;.soh+E;.seh = 29. But the yz-surface in the jth layer is
2-74+2-7 =28 for the first conformation, and 2-5+2-6 =22 for the second. Hence,
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even odd odd
O @ (9\
- .’
] s O
9 Positions can
oy ) only be occupied
o ot by even monomers
Ejseh=1 Ejsoh=1 Ejseh=0 Ejsoh=2
MinBox dimension: <2,1> MinBox dimension: <2,2>
Surface =6 Surface =8

Figure 3. Minimal enclosing box for two different assignments of E;.soh and E;.seh.

given n}, =E,;.soh+E,.seh, then a lower bound for the yz-surface of the jth layer is
given by 2-a-+2-b, where

o= e[ 4].

But we can provide a better lower bound by considering the different parity of H-
monomers. For any conformation ¢ of s, every pair of odd monomers i, and i, in s
satisfy x; +y; +z; =x;, +y;, +z;, mod 2, where (x; ,y;,z;)=c(i)and (x;,;,2;,) =
¢(i,). This implies that either all odd monomers occupy odd positions (where a position
p=(x,y,2) is odd iff x4+ y+z is odd), or all odd monomers occupy even positions
(and similarly for the even monomers). Hence, the distribution of monomers E;.seh and
E,.soh may enforce a greater yz-surface (see Figure 3 for a simple example). This will
be described in Section 5.

In the following step, we assign H-monomers and P-singlets to the different layers
according to Ej.seh, E]-.soh, Ej.sep and Ej.sop. Here, we select the monomers by con-
sidering P-singlets first (since their placement yields more propagation), and then the
remaining H-monomers using first-fail. If all H-monomers and P-singlets are assigned to
layers, we search for the positions of these monomers within the frame. The final step
consists of assigning X-, y- and z-values to all monomers which are neither H-monomers
nor P-singlets.

4. Excluding Geometric Symmetries

In the structure prediction problem, we are faced with a lot of symmetries consisting of
rotations, reflections and combinations of them. These symmetries are all affine mappings
S: 72 — 77 with S(X) = AgX + Ug that map the Z* onto Z°. le., the matrix A is
an orthogonal matrix with the property that the columns v, U, and v; of Ay satisfy
Vi e [1.3]:v; € {£e,,*e,, £e }. For instance, the 90°-rotation around the z-axis is
defined by the matrix

0 -10
I 0 0
0 0 1
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Since the dimension of Ag must be 3, we have 6 x 4 x 2 matrices, and henceforth 47
non-trivial symmetries. Of course, these kind of symmetries occur in any approach to
structure prediction.

We have introduced a new method for excluding symmetries in [3], which is based
on the constraint programming paradigm. We have successfully applied this method in
our case. To our knowledge, in approaches to structure prediction that use complete
enumeration, either no symmetry exclusion was done (thus, these approaches enumerate
also symmetric solutions), or the search was performed by an approach that is by and
large a brute force technique (brute-force enumerations are currently able only to find
conformations for sequences of length smaller than 20). In the latter case, one can
perform a trivial symmetry exclusion.

5. A New Lower Bound

Let ¢ be some conformation of s with frame dimension (Frx, Fry, Frz). We now distin-

guish between surface contribution in x-direction (x-surface), and surface contributions
in the single x-layers (yz-surface). For this purpose, we define

SN N = s;=HApPp—c(i)==e,

st 0= ||co.n| ol o0s

s _ N o ss=HA|p—c()]|=1
Surf,_(c) = H(C(l), P)I A (i), = k= p, AHtype (5) =0

where Htype_ (p) is defined by Htype (p) =1 < 3i: (s; = H A c(i) = p). Clearly, we
have

Surf,(¢) = Surfi(c)+ > Surfi,_ (c).

1<k<2-n

Given a point (x,y,z) € Z°, we say that (x,y, z) is odd (resp. even) if x+y+z is
odd (resp. even). We write (x,y,z) = (x',y,7) iff x+y+z=x"+y 4z mod 2.

Proposition 5.1 Let ¢ be a conformation of s. Then c(i) = c(j) iff i = j mod 2.

From this we get the following lower bound on Surf’ (c), provided that we know how
many even and odd monomers are placed on the jth layer. It is easy to see that the
E,.soh monomers generate E,.soh surface points in —x direction. Furthermore, there are
E,.soh points in +x direction, which are candidates for surface points. But all these
candidates are even points. If E,.soh > E,.seh, then we have minimal E,.soh —E,.seh
surface points in the second layer. If E,.soh < E,seh, then a similar argumentation shows
that we have at least E,.seh —E,.soh surface points in the first layer. Continuing this, we
get the following lemma.
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Lemma 5.2 Ler (E,.soh, E,.seh, ..., E;,.soh, B, .seh) be the number of H-
monomers of ¢ that are placed in the different layers through the frame. Then

Surfi(c) > E,.soh+E,.seh
+ > |E;.soh—E, ,.seh|+|E;seh—E, ,.soh

l<j<Frx

+Ep.S0h+Ep,.seh

For calculating the yz-surface of a specific layer, we introduce the concept of a color-
ing. A coloring just states which points are occupied by some H-monomer. A coloring is
a function f: 7> — {0, 1}. We say that a point (x, y) is colored black by f iff f(x,y) = 1.
In the following, we consider only colorings different from the empty coloring f, (which
satisfies Vp : f,(p) = 0). Given a coloring f, define

e(f) =0, »If(x,y) =1 and x+y even}|
o(f) ={(x, »If (x,y) = 1 and x+y odd}.

The surface Surf(f) of a coloring f is defined by

NN B | — 1
Surf(f) = |{(P.P )PP €eZ>Af(P)=0AFf(P )=An}]|
Given a pair (e, 0) of integers, we define
Surf(e, 0) = min{Surf(f)|f coloring with e(f) =eAo(f) =0}

The next lemma relates the surface of colorings with the yz-surface of a conformation.

Proposition 5.3 Let ¢ be a conformation of s having E;.seh even and E;.soh odd points
in the jth x-layer. Furthermore, let s, be the minimal coordinate of the frame. Then
Surf{,_, ;1 (c) > Surf(E;.seh, E;.soh).

Thus, Lemma 5.2 together with Proposition 5.3 provide a lower bound on the sur-
face. Since Surf(e, 0) = Surf(o, e), it is sufficient to treat the case where e < o. In the
following theorem, we handle the simple case where |e —o| < 1.

Theorem 5.4 Let (e, 0) be a pair of integers with |e —o| < 1. Let a = [/e+ o] and
b = [££2]. Then Surf(e, 0) = 2a+2b.

Because Surf(e, 0) = Surf(o, ¢), the remaining case is to calculate Surf(e, 0) where
e < 0— 1, without the need to search through all possible colorings f. A point (x, y) € Z*
is a caveat in f if f(x,y) =0 and (x, y) is contained in the hull (over Z?) of the points
colored black in f. We handle only caveat-free colorings in this paper. The case of a
coloring with caveats can be reduced to the caveat-free case.
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Given a coloring f, we denote with the frame (a, b) the maximal dimension of the
coloring in y- and x-direction. Since we are considering caveat-free colorings, we get that
the surface of f is 2-a+2-b, where (a, b) is the frame of f. Hence, we can calculate
the surface of (e, 0) by finding a minimal frame (a, b) such that there is a coloring of
(e, 0) having this frame. The first condition is clearly that ab > e+ o. This condition is
exactly the case that is treated in Theorem 5.4. But in the case that we have e <0 —1,
this condition is not sufficient. The reason is that given a fixed frame (a, b), it may well
be that we can color e+ 1 even and o odd points in the frame (a, b), but not e even
and o odd. E.g., consider a fixed frame of size (4, 4). Grey points indicate even points,
black ones odd points. We define d(f) = o(f) — e(f). Then three maximal colorings for
different values of d(f) are

veve Ted e @ id—— P
XX 0o 0o
c0ae® 200 e ceae®
e e e °oc e
d(H=0 d(f)=2 d(f)=3

If we have the same number of even and odd points (d(f) = 0), then we can color at
most 16 points in that frame. If d(f) = 2, then we can color at most 14 points. But if
d(f) =3, we can color at most 11 points, because we have to remove one odd position
(e.g. p) before we can reduce the number of even positions. This leads to the following
definition.

Definition 5.5. The partial order < on caveat-free colorings is defined by f < f” if and
only if height(f) = height(f"), length(f) = length(f"), d(f) = d(f’) and f’ extends f,
Le. e(f)+o(f) =e(f)+o(f).

Now we have f < f’ implies that f, f’ have the same surface. The nice thing is that
=<-maximal colorings have a simple normal form, from which d(f) can easily be read
off. An example of such <-maximal coloring (called simple coloring) f is

(10)

Again, we use black beads for odd positions colored by f, and grey for even. (a, b)
is the frame of f, and i,,...,i, are the side length of triangles excluded at the cor-
ners. The tuple (a, b, i}, i,, i3, i,) is called the characteristics of this coloring (here it is
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(10, 12,2, 3,3,4)). We investigate simple colorings in more depth, finally showing how
they can be used to provide the desired bound.
Let f be some coloring. With min,(f) we denote the integer

min{x € Z|3y e Z: f(x,y) = 1}.
max, (f), min,(f) and max,(f) are defined analogously. Furthermore, we define

length(f) = max(f) —min(f)+1
height(f) = max(f) —min(f) + 1.
y y

The pair (height(f), length(f)) is called the frame of f. We say that a point (x, y) € Z>
is within the frame of f if min,(f) < x < max,(f) and min,(f) <y < max,(f). Given
1 < i < height(f), then the ith row (denoted (row(i, f))) is the coloring r defined by

Furthermore, we define

indent, (i, f) = min(row(i, f)) — min(f)
indent, (i, f) = max(f) — max(row(i, f)).

For a row r =row(i, f) with 1 <i < height(f), we write yval(r) for min,(r)
(= max,(r)). The line y = yval(r) contains all points colored black by the row r. The
leftmost (resp. rightmost) point in a row r is the leftmost (resp. rightmost) point colored
black by r, i.e., the point (min,(r), yval(r)) (resp. (max,(r), yval(r))).

Proposition 5.6 Let f, f' be two caveat-free colorings with f < f'. Then Surf(f) =
Surf (f).

Proof:: Since both f and f' are caveat-free, we know that Surf(f) = 2height(f) +
2length(f). Similarly, we get Surf(f’) = 2height(f)+ 2length(f’). Since f < f’, we have
height(f) = height(f’) and length(f) = length(f’), which implies Surf(f) =
Surf(f). W

We will show that every f can be extended to a <-maximal coloring f’ (which has
the same surface by the last proposition). This implies that the surface of <-maximal
colorings extending f is a lower bound on the surface of f. To calculate the surface of
<-maximal colorings, we can show, that every <-maximal coloring f has a simple form,
as e.g. shown in (10). The properties of this simple form is defined as follows.
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Definition 5.7. Let f be a caveat-free coloring with d(f) > 1. Then f is called simple
iff it satisfies the following conditions:

1. forall 1 <i < height(f) we have

indent, (i, f) # O Vvindent,(i+ 1, f) #0

= |indent, (i + 1, f) —indent, (i, f)| = 1 (11)
indent, (i, f) #0Vvindent,(i+1, f) #0
lindent, (i + 1, f) —indent, (i, f)| = 1. (12)

2. the leftmost and the rightmost point of the first and the last row are odd.

Proposition 5.8 Let f be a simple coloring. Then
e indent,(i, f) # 0 = the leftmost point of row(i, f) is odd;
e indent, (i, f) # 0 = the rightmost point of row(i, f) is odd;

Proof:: Follows directly from Condition 2 together with Condition 1 of the definition
of a simple coloring. W

Definition 5.9. Let f be a simple coloring with frame (a, b) = (height(f), length(f)).
Then the tuple

(a, b, indent, (1, f), indent, (1, f), indent,(a, f), indent,(a, f))

is called the characteristics of f. A tuple (a, b, i,, i,, I3, i;) is called a characteristics if
it is the characteristics of some simple coloring.

First, we show some easy correlation between simple colorings and their characteris-
tics.

Proposition 5.10 A simple coloring f is uniquely determined (up to translation) by its
characteristics, i.e., for two simple colorings f, f' having the same characteristics, there
is a vector v € 7% such that

VoeZ?:[(f(p)=1) & (f(p+D)=1)].

Proof (sketch):: E.g., consider the left lower corner. Now Equation (11) implies that

the rows 1 to i+ 1 have left indents i,i—1,...,0, where i = indent,(1, ). The same
holds for the other corners. Since f simple, this uniquely determines f (up to translation).
]

Proposition 5.11 Let C = (a, b, i\, i,,I5,i,) be a tuple. Then C is a characteristics if
and only if

1. a—i,—iz;>1l,a—i,—i,>1, b—ij—i,>1land b—iy—i,>1;
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2. and

aodd = (iy=i; mod2)A(i,=i, mod?2)
aeven = (i, Zi; mod 2)A (i #i, mod?2)
bodd = (iy=i, mod2)A(i;=i, mod?2)
b even= (i, #i, mod2)A(i;#i, mod?2)

Proof (sketch):: Claim 1 follows directly from the definition of a characteristics of a
simple coloring. Claim 2 follows from the fact that the leftmost and rightmost point of
the first and last row must be odd, which implies that the first and last row must have
an odd number of points colored black. The same argument can be applied to the first
and last column. W

Corollary 5.12 Let (a, b, iy, iy, i3, i,) be a characteristics. Then the top and bottom point
of the first and last column are odd.

The advantage of a simple coloring f is that one can easily calculate e(f)+ o(f) and
d(f) out of the characteristics, as stated in the following theorem.

Theorem 5.13 Every coloring f can be extended to a simple coloring f' with the
same surface such that d(f) = d(f’). Let f be a simple coloring with characteristics
(a, b, iy, iy,13,1,). Then

Surf(f) =2a+2b

i +1
e(f)+o(f)=ab— %
j=1
iy iy iy iy

1
> +

d(f) =
This can be used for calculating Surf(e, 0) as follows. We start with the minimal
frame (a, b) for e+ o as stated in Theorem 5.4. Then we search for numbers i,, i,, is,
i, satisfying the above constraints. As we will show in Theorem 5.16, we do not have
to search through all possible numbers for i,, i,, i5, i,. We can restrict the search to
numbers i, i,, i3, i, where differences between the number is smaller than 2. If we
find an appropriate valuation for i, i,, i3, iy, then the Surf(e, 0) is given by 2a+ 2b.
Otherwise, we have to search for the next bigger frame (i.e., enlarge a or b by 1). For
the proof of this theorem we need an additional lemma.

Proposition 5.14 Let f be a connected, caveat-free coloring with height(f) = a. Then

d(f) =a—|{i | the leftmost point of row(i, f) is even}]

— |{i | the rightmost point of row(i, f) is even}]|
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Proof:: Via induction on a = height(f). For the base case a = 1, it holds trivially. For
the induction step, let f be a coloring with height(f) = a+ 1. Let f’ be the coloring
which is generated by deleting the a + Ist row in f. Then height(f’) = a, and we get

d(f’) = a—|{i] the leftmost point of row(i, f) is even}|

— |{#] the rightmost point of row(i, f) is even}|
by induction hypothesis. Let r =row(a+1, f). Then

0 if the leftmost and rightmost point of r are odd
d(f)=d(f')+1— {2 if the leftmost and rightmost point of r are even
1 else,

which proves the claim. W

The remaining part is to show that a <-maximal coloring is simple. We will first show
that this holds for a subclass of caveat-free colorings, namely connected colorings. We
say that a coloring f is unconnected if there is an i such that there is a gap between the
ith and i+ 1st row, i.e., they have the form

gap gap
@ e or e ®

We say that a coloring is connected otherwise.

Lemma 5.15 Let f be a connected, caveat-free coloring with d(f) > 1 that is <-
maximal. Then f is simple.

Proof:: First, we show that Condition 1 of Definition 5.7 is satisfied by every <-
maximal coloring. Suppose that f does not satisfy (11). Then there is some 1 <i <
height(f) with

(indent, (i, f) # 0 Vvindent,(i+ 1, f) # 0)
and
lindent,(i 4+ 1, f) —indent, (i, f)| # 1.

We distinguish the following cases:

1. |indent,(i + 1, f) —indent,(i, f)| > 1. Since f is connected, the ith and i+ lst row
of f have the form
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®
®
[ ]
®
o
3
v

with positions p; = (x;, y;) and p, = (x,; + 1, y,) (for some x,, y,) being free. Now p,
and p, are positions with distance 1, which implies that they have different parities.
Define f’ by

1 if (x,y)=p, or (x,y)=p,
f(x,y) else.

Since f is caveat-free, we know that f’ is also caveat-free. Furthermore, we know
that length(f) = length(f”) and height(f) = height(f’). Since p, and p, have dif-
ferent parity, we know that

e(f)=e(f)+1and o(f) =o(f)+1.

Hence, d(f) = d(f’), which implies f < f’. But this is a contradiction to the <-
maximality of f.

f’(x,y)={

2. indent,(i + 1, f) = indent,(i, f). This case can be reduced to the previous one by
rotating f by 90°.

The case that f does not satisfy (12) is analogous.

Now suppose that f does not satisfy the Condition 2. Let a = height(f),
b = length(f), i, = indent,(1, f), i, = indent,(1, f), i; = indent,(a, f) and i; = indent,
(a, f). After possibly applying reflections, we can assume that the leftmost point of the
first row is even. We distinguish the following cases:

1. i, #0. Let r =row(1, f) and define
py = (min(r) — 1, yval(r))

(the point left to the leftmost point of ). Then p, is an odd point and within the
frame of f. Since d(f) > 1, Proposition 5.14 implies that there must be a j such that
the row ' =row(J, f) starts or ends with an odd point, and has non-empty indent.
If row r' starts with an odd point, then take

Py = (min(r') — 1, yval(r')),
otherwise define
D= (mfx(r/) + 1, yval(r')).
Then p, is an even point which is within the frame of f. Define f’ by

f(p) ifp#p orp#p,
1 else

f(p)=

Then f’ is caveat-free and connected with f < f’, which is a contradiction.
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2. i, =0. Since d(f) > 1, we know that by Proposition 5.14 that not all of i,, i5, iy can
be lower or equal 1. Suppose that i, > 2. By the last case, we can assume that last
point of the first row is odd. Hence, the first three rows of f are of the form

where again black beads indicated odd positions (x, y) with f(x,y) =1, and grey
beads represent even positions. Let f’ be the coloring which is f except for the first
three rows, where f’ is of the form

@ oo X X min (D41
ooty /™M e
miny(l) . T
maxy (f)-12+1
maxy )-i,+2
Le., f' is defined by
0 if (x,y) = (min,(f), min,(f))
1 if (x,y) = (min,(f), max,(f) —i,+1)
fey)=11 if (x, y) = (min,(f), max,(f) —i,+2)
1 if (x, y) = (min, (f) + 1, max,(f) —i, +2)
f(x,y) celse

It is easy to check that d(f) = d(f’). Since we didn’t change the height or length
of f, and since we have added two points, this implies
r=r.

But this is a contradiction to the <-maximality of f. The other cases i; > 2 and
i, > 2 are analogous. M

Now we can prove our theorem.
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Proof of Theorem 5.13:: The first part of the theorem follows from the definition of
<, Proposition 5.6 and Lemma 5.15.

For the second part, let f be a simple coloring as defined by the theorem. Then
e(f)+o(f) is just the number of points p € Z> with f(p) = 1. But this is exactly ab
minus the points that are excluded at the corners. Given the indents i, ... ,i,, we get
that we exclude exactly

24: i(i;+1)
Jj=1 2
points at the corners.

For proving that d(f) = (i, +i,+i;+1,)/2+ 1, we have to count the number of times
the starting (resp. end point) of the row(i, f) is even (according to Proposition 5.14).
This happens only if indent, (i, f) (resp. indent, (i, f)) is zero. Now there are a — i, — i,
integers i with indent,(i, f) =0, and a — i, — i, integers i with indent, (i, f) = 0. Since
they all have indent 0, one can see that exactly every second row starts or ends with an
even point. Furthermore, Corollary 5.12 guarantees that

1. a—i,—i; and a—i, —i, are both odd; and
2. that there are more i’s with indent, (i, /) = O that start with an odd monomer.

The same holds for the right side. Hence, we get

i —ii—] i—i—1
d(f):a—a 11213 _a 12214
a—ij—i3—14+a—i,—is—1
=da—
2
DU i — i —i e
—u_ a I —l3—1, l4:l1+12+l3+l4+1.
2 2 u

We can even further restrict the characteristics of <-maximal colorings.

Theorem 5.16 Let f be a connected, <-maximal coloring such that d(f) > 1. Then f
has a characteristics (a, b, i, iy, i, i,) such that

Vi, 1e[1.4]: i, —i| <2.

Proof:: Let f be <-maximal with characteristics (a, b, i,, i, i3, i,). Assume that f does
not satisfy the condition of the lemma. Le., there is a i, and i, with k # [ € [1..4] such
that

i <iy—2
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After applying possibly reflection or rotation, we can assume that

i, =minfi,, i, iy, i}.

and that there is an i, € [2..4] with i, < i, —2. Note that by definition of characteristics,
a—i,—i;>1and b—i, —i, > 1. We distinguish the following cases:

1.

a—i,—iy>1and b—i,—i, > 1. By Condition 2 and Corollary 5.12, this implies
that a—i, —i; >3 and b—i, —i, > 3.

Suppose that i, satisfies i; < i, —2. Consider C = (a, b, i}, i}, i3, iy) with i} =i, +2
and i, = i, —2. By Proposition 5.11 we know that C is a characteristics, which
implies that there is some simple coloring f’ having characteristics C. By Theorem
5.13, we know that
(1 +2)+(—2)+i+i, g i +is+i

a(f) = . ;

+1=d(f).

Since f and f’ have the same length and height, we need only to show that e(f") +
o(f") > e(f)+o(f) for showing that f < f’. This is equivalent to show that

nd(f', f) = e(f) +o(f") —e(f) —o(f) > 0.

By Theorem 5.13, we get

nd(f' f):ab_<ii(ii+1>+ié(ié+1)+i3(i3+1)+i4(i4+1)>

2 2 2 2
_<ab_iM>
=2

_ G+ +3) = (b =2) (= D+ i (b + D+ i +1)

2
= 4+544+6) = (3 =30, +2)+ii i, +i3+i,
B 2
—4i, +4i,—8
- 2
=2((i,—2)—14)

> 0 (since i, < i, —2 by assumption)
Hence, f < f’, which is a contradiction. The other cases i; <i;—2 and i; < i, —2
are analogous.

a—i,—i;=1and b—i, —i, > 1. Note that by condition a —i; —i; = 1, we cannot
just enlarge i; without simultaneously decreasing i; by the same value. Hence, we
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can consider only characteristics of the forms

(a,b,i,+k, i+ iy—k,iy,—1) or (a,b,i,+k,iy—1,is—k,iy+])

We distinguish the following cases:

(a)

(b)

(©

i; <i;—2. We can then show that there is an f’ with f < f’ by considering
the characteristics (a, b, i; +2, iy, iy — 2, i,) similar to the previous case.

L > =2A( <i,—=2)V (i <i,—2).

Suppose that i; < i, —2. Since a—i;, —i; =1 we get iy =a—i, — 1. By
i, =min{i,...iy},a—i;—iy=1,i;>i;—2and i, <i,—2 we get a—i, —i, < .
Hence,

h<a—i,—l<a—(,+2)—1=i;-2 (13)
Consider the tuple C = (a, b, i, +1,i,—1,i;—1,i,+ 1), which is a character-

istics by Proposition 5.11. Hence, there is a simple f” having the characteristics
C. We get again d(f) = d(f’), and we have to show that

nd(f', f) =e(f)+o(f') —e(f)—o(f) > 0.
By Theorem 5.13, we get

(D +2) = (= Di— (5= 1)i— (i +1) (4 +2)

nd(f',f)= )
+i1(i1+1)+i2(i2+1)+i3(i3+1)+i4(i4+1)
2
=—ﬁ—35—2—§+5—§+g—ﬁ—3u—2
2
B+ +5+i+i5+is+i+iy
+
2

=20 420y +2iy—2i,—4

2
=iy — i tiy—i,—2

>2+42—-2=2 since i; <i,—2 and i, <i;—2 by (13).

which shows that f < f'.

The case that i; < i, —2 can be proved analogous to the case that i, < i, —2.
We can then show that i, < i5, and prove the existence of an f’ with f < f’ by
using the characteristics (a, b, i, +1,i,+1,i3—1,i,—1).

a—i,—i;=1and b—i, —i, =1. Analogous to the previous case. W
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Finally, we have to treat colorings that are caveat-free, but that are split into uncon-
nected parts. For simplicity, we will only sketch the proofs for these kind of colorings.

Lemma 5.17 Let f be a caveat-free coloring that is not connected. Then there is a
coloring f' with f < f'.

Proof (sketch):: Let f have frame (a, b). If one has n unconnected subparts with
frames (a,, b,), ..., (a,, b,), then the caveat-freeness of f implies that

a=a,+---+a, and b=b+---+b,.

Then one can show that one finds always a characteristics for the frame (a, b) which
has the same difference than the sum of differences of the characteristics of the subparts
of f, but which has more points colored black. W

6. Results

We have implemented our approach using the constraint language Oz [18]. We have
tested the program on all sequences presented in [22]. For each of those we found an
optimal conformation. In Table 2, we have listed the test sequences together with the
optimal conformation found, its sequence length and its optimal surface. For comparison,
the runtimes (on a Sun4) of the algorithm in [22] for all optimal conformations are 1 h
38 min for L1, 1 h 14 min for L2, 5 h 19 min for L3, 5 h 19 min for L4 and 20 min
for LS5, respectively. There is a newer, more efficient version of this algorithm reported
in [23], but there are no explicit runtimes given for these or others sequences. In Table 3,
we have listed the number of steps to find a first conformation (and a second, if the first
was not optimal), the number of steps needed to prove optimality, and the runtime on
a Pentium 180 Pro. Currently, we are working to transform our approach to a more
realistic lattice model, the face-centered cubic lattice (FCC).

Table 2. Test sequences

Sequence and Sample Conformation Length Optimal Surface
L1 HPPPPHHHHPPHPHPHHHPHPPHHPPH 27 40
REDBLLFRFUBULBDFLUBLDRDDFU
L2 HPPPHHHHPHPHHPPPHPHHPHPPPHP 27 38
REDLLBUURFDLLBBRURDDFDBLUB
L3 HPHHPPHHPPHHHHPPPHPPPHHHPPH 27 38
RFLDLUBBUFFFDFURBUBBDFRFDL
L4 HHPHHPHHPHHHHHHPPHHHHHPPHHHHHHH 31 52
RRFDBLDRFLLBUFLURFDDRFUBBUFRDD
L5 PHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHP 36 327

RFDBDRUFUBRBLULDLDRDRURBLDLULURBRFR

Below every sequence, we list an optimal conformation. Every conformation is represented as a sequence of bond
directions (R = right, L = left, F = forward, B = backward, U = up and D = down).
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Table 3. Search time and number of search steps for the sample sequences

1st Conf. 2nd Conf.
Seq. # Steps Surface # Steps Surface Total # Steps Runtime
L1 519 40 (opt.) — — 921 3.85 sec
L2 1322 40 1345 38 (opt.) 5372 1 min 35 sec
L3 1396 38 (opt.) — — 1404 4.09 sec
L4 35 52 (opt.) — — 38 0.68 sec
L5 1081 32 (opt.) — — 1081 4.32 sec

1st Conf. 2nd Conf.
Seq. # Steps Surface # Steps Surface Total # Steps Runtime
L1 139 40 (opt.) — — 159 3.35 sec
L2 43 38 (opt.) 61 1.53 sec
L3 217 38 (opt.) — — 218 1.17 sec
L4 28 52 (opt.) 28 1.05 sec
L5 25 32 (opt.) — — 25 440 ms

The first table are the results for an earlier implementation without symmetry exclusion. The second table shows the
results for the current implementation containing symmetry exclusion, which contains also some other optimisations.
The main reduction in the number of search steps (and the corresponding reduction in time) is due to the symmetry
exclusion. Only for L4, the older implementation achieves a better result. The reason is that for this sequence, both
implementations actually do not have to perform a search to find the optimal conformation. In this special case, the
symmetry exclusion is clearly an overhead, which slows down the computation.
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Notes

1. There are two conformations for the peptide bond, namely trans (corresponding to a rotation angle of
180°), and cis (corresponding to a rotation angle of 0°). The cis conformation is rare and occurs usually
in combination with a specific amino acid, namely Proline (which is in fact an imino acid).

2. To be precise, the new conformation is accepted with a probability e£/%7), k, is the Boltzmann constant,
and T is the folding temperature.
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We even could have used [1..n]. But the domain [1..2n] is more flexible since we can assign an arbitrary
monomer the vector (n, n, n), and still have the possibility to represent all possible conformations.

This cannot be directly encoded in most constraint programming languages, but we reduce these constraints
to difference constraints on integers.

This can always be done in a way which is compatible with (Frx, Fry, Frz) and the constraint (3).
Mainly, the variables Elem”* and Elem;“ are introduced to have a uniform description.

Yue and Dill [22] have stated that the optimal surface is 16, but this is a typo since the conformation they
have shown for this sequence has a surface of 32.
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