
Ex
luding Symmetries in Constraint-Based Sear
hRolf Ba
kofen and Sebastian Will�(fba
kofen,willsg�informatik.uni-muen
hen.de)Institut f�ur Informatik, LMU M�un
henOettingenstra�e 67, D-80538 M�un
henAbstra
t. We introdu
e a new method,
alled symmetry ex
luding sear
h (SES),for ex
luding symmetries in
onstraint based sear
h. To our knowledge, it is the �rstde
larative method that
an be applied to arbitrary symmetries. The SES-methodis based on the notion of symmetri

onstraints, whi
h are used in our modi�
ationof a general
onstraint based sear
h algorithm. The method does not in
uen
e thesear
h strategy. Furthermore, it
an be used with either the full set of symmetries,or a subset of all symmetries.We proof
orre
tness,
ompleteness and symmetry ex
lusion properties of ourmethod. Then, we show how to apply the SES-method in the spe
ial
ase of ge-ometri
 symmetries (rotations and re
e
tions) and permutation symmetries. Fur-thermore, we give results from pra
ti
al appli
ations.Keywords: Symmetry Ex
lusion, Geometri
 Symmetries, Permutation Symme-tries, Constraint-Based Sear
h, Symmetry Ex
luding Sear
h (SES)1. Introdu
tionIn many sear
h problems, one is fa
ed with the existen
e of symmetries.Symmetries give rise to many di�erent solutions found by the sear
hpro
edure, whi
h are all
onsidered to be equivalent. Often, one isnot interested in also getting all these symmetri
 solutions to everyfound solution. Without ex
lusion of symmetries, whenever a solutionis found or proven to be in
onsistent with the sear
h problem, thesear
h algorithm still
onsiders all symmetri
 solutions. In
onsequen
e,those symmetries give rise to an (often exponential) ampli�
ation of thesear
h spa
e. Hen
e, symmetry ex
lusion promises to eÆ
iently prunethe sear
h tree.For example,
onsider
onstraint problems, where �nite domain vari-ables have a geometri
 interpretation su
h as in the N-queens problemor the square-tiling problem (where a set of squares of given sizes must�t exa
tly into a �xed square). A more
omplex, real-world problemis the latti
e protein stru
ture predi
tion problem. In [2℄, it is shownhow to �nd solutions for this problem using
onstraint programmingte
hniques. In this
ase, di�erent solutions are symmetri
 if they
an begenerated using re
e
tions or rotations. In other problems, symmetri
� supported by the PhD programme GKLI of Deuts
he Fors
hungsgemeins
haft.

 2001 Kluwer A
ademi
 Publishers. Printed in the Netherlands.

2 R. Ba
kofen and S. Willsolutions
an be generated by performing permutations on variablevaluations (like in the map
oloring (or graph
oloring) problem).In the following, we
onsider sear
h problems that stem from
on-straint satisfa
tion problems (CSP). A
ommon approa
h is to trans-form (problem spe
i�
ally) a CSP C1 into a CSP C2 that ex
ludes atleast some of the symmetries of the original problem C1.Unfortunately, symmetry ex
lusion was often not straightforwardto implement. Even then, it had to be redesigned for every spe
ialproblem or enumeration strategy. This led to an in
exibility in theprogram stru
ture on
e it was introdu
ed. Thus, the widespread usageof symmetry ex
lusion was strongly hindered by its
omplexity. Oftensymmetry ex
lusion was not done at all or only for a small set of sym-metries. In other
ases, where symmetry ex
lusion was implemented itdistra
ted the programmers attention from more important tasks.In this paper, we present a new approa
h for symmetry ex
lusion,
alled symmetry ex
luding sear
h (SES), whi
h works by modifying thesear
h algorithm. The te
hnique of modifying the sear
h algorithm toex
lude symmetries was already used in the literature. In
ontrast toprevious approa
hes, SES is (to our knowledge) the �rst de
larativemethod that
an be applied to arbitrary symmetries, whi
h
an be de-�ned de
laratively. Furthermore, it does not restri
t the sear
h strategy(i.e., the symmetry ex
lusion
an be done independently of the sear
hstrategy). This is important, sin
e in many
onstraint problems majorpart of the knowledge of the problem is en
oded in the sear
h strategy.We have implemented our method in the
on
urrent
onstraint pro-gramming language Oz [10℄ using the programmable sear
h enginedes
ribed in [9℄. However, the method
an be implemented in anysystem that handles impli
ation (via entailment) and allows to modifythe sear
h pro
edure su
h that additional
onstraints are added in onebran
h of a bran
hing step.Related Work. Previous work on symmetry ex
lusion by modifyingthe sear
h algorithm handled only restri
ted forms of symmetries. In [7℄,the notion of inter
hangeable values is introdu
ed. Two values a and bare inter
hangeable for a variable V i� for every solution that maps Vto a, the
orresponding valuation that maps V to b is also a solution.The method in [3℄ handles only permutations of domain values inthe
ase of binary
onstraints (thus, e.g. the all-distin
t
onstraint hasto be translated into binary inequalities, whi
h implies that eÆ
ientpropagation methods for all-distin
t
annot be applied). Furthermore,it works by introdu
ing a symmetry ex
luding form of
onstraint prop-agation, whi
h is a modi�ed form of domain propagation (thus, themethod
annot make use of interval propagation).

Ex
luding Symmetries in Constraint-Based Sear
h 3[1℄ and [4℄
onsider only propositional
al
ulus. The symmetriesthere are permutations of Boolean variables. These methods do notapply to general
onstraint satisfa
tion problems.The work presented in [8℄ is essentially an implementation and ap-pli
ation of our method to solve pra
ti
al problems. Their work is
ompared to the SES-method in greater detail in Se
tion 2.An example of a symmetry ex
lusion method that works by a (prob-lem independent) transformation of the
onstraint satisfa
tion problemis [5℄. They introdu
e symmetry breaking predi
ates, whi
h are trueonly for the smallest solution within an equivalen
e
lass (where theordering is �xed in advan
e). Thus, if the sear
h strategy enumerates anon-minimal (a

ording to the pre-�xed ordering) solution �rst, then itwill be ex
luded by the symmetry breaking predi
ates. In
onsequen
e,not every sear
h strategy remains possible given the pre-�xed ordering.In
ontrast, there is no pre�xed ordering in whi
h symmetri
al so-lutions will be ex
luded by our method. This implies that we respe
tuser-de�ned sear
h strategies as mu
h as possible.1Overview of the paper. The formal de�nition of symmetry ex-
luding sear
h trees as wells as
ompleteness and
orre
tness proofsare presented in Se
tion 2. Additionally, we show that our methodguarantees to ex
lude all spe
i�ed symmetries. Se
tion 3 dis
usses anoptimized implementation of symmetry ex
luding sear
h. In Se
tion 4,we treat geometri
 symmetries and present the results of applying theproblem to a
omplex problem. In Se
tion 5, we
onsider symmetrieswhi
h are generated by permuting the values of the variables. For ex-ample, su
h symmetries o

ur in the graph
oloring problem. We proof,that in this
ase, it is suÆ
ient to ex
lude the subset of transpositions inorder to ex
lude all permutations and present results for graph
oloring.Introdu
tory Example. We start with a simple example to explainthe main
on
epts. Consider the N-queens problem, where we have anarray Q[0::N ℄, whose elements
an take values from 0::N . Q[i℄ = jstates that there is a queen at position (i; j). Now
onsider the symme-try
orresponding to the re
e
tion at the axis y = N2 , whi
h is parallelto the x-axis (in the sequel denoted by Rx). Clearly, for every solution ofthe N-queens, the Rx-symmetri
 version is also a solution of N-queensand thus should be ex
luded.To use our method, �rst we have to introdu
e symmetri
 versions ofthe
onstraints whi
h are inserted by the sear
h pro
edure. One kindof
onstraint is Q[i℄ = j. If we have any distribution of queens on1 Clearly, if the sear
h strategy depends on the
onstraint store, then any methodof symmetry ex
lusion that prunes the sear
h tree must in
uen
e the way solutionsare en
ountered (sin
e the
onstraint store is
hanged by the symmetry ex
lusion).

4 R. Ba
kofen and S. Willthe board satisfying Q[i℄ = j, then the Rx-symmetri
 distribution willsatisfy Q[i℄ = N � j. Hen
e, the
onstraint Q[i℄ = N � j is the Rx-symmetri
 version of the
onstraint Q[i℄ = j. Similarly, we get that theRx-symmetri

onstraint of Q[i℄ � j is Q[i℄ � N � j. In the following,we write SRx(
) to denote the Rx-symmetri

onstraint to
.Our method works by inserting additional
onstraints at the rightbran
hes of the sear
h tree, whi
h ex
lude the symmetri
 solutions thatare enumerated in the right bran
h. Consider the following sear
h treefor the 11-queens problem, where we indi
ate the
onstraints added bysymmetry ex
lusion via frames: ?Q[2℄ = 3Q[1℄ � 5 Q[1℄ > 5^ :Q[1℄ � 10� 5 � :SRx(Q[1℄ � 5)Q[2℄ 6= 3^ Q[1℄ � 10� 5 ! Q[2℄ 6= 10 � 3� �SRx(Q[1℄ � 5) :SRx(Q[2℄ = 3)This
an be interpreted intuitively as follows. In the topmost bran
h,if we sear
h for a solution in the right bran
h satisfying Q[1℄ > 5, thenthe Rx-symmetri
 solution will satisfy Q[1℄ < 5. Hen
e, the symmet-ri
 solution was already en
ountered earlier in the left bran
h (underQ[1℄ � 5), whi
h is the reason that we
an
lose the topmost rightbran
h. For the se
ond right bran
h labeled Q[2℄ 6= 3, we want again toex
lude the Rx-symmetri
 solutions found in the right bran
h. Hen
e,we would like to add the
onstraint :SRx(Q[2℄ = 3) to the right bran
h.But this would ex
lude too many solutions. The prerequisite of theRx-symmetri
 solution to be found in the right bran
h is that boththe solution and its Rx-symmetri
 version satis�es Q[1℄ � 5. Now theonly solutions that satisfying this
onditions are solutions that satisfyQ[1℄ = 5. Hen
e, we
an add :SRx(Q[2℄ = 3) under the
onditionthat Q[1℄ = 5. But this is exa
tly the e�e
t that we a
hieve by adding(Q[1℄ � 10 � 5) ! (Q[2℄ 6= 10 � 3) at the se
ond right bran
h (sin
ethe
onstraint store
ontains already Q[1℄ � 5).Preliminaries. We �x a �rst-order signature � in
luding the equality:= and a set of variables V. Constraints are literals, and
onstraintformulae are quanti�er-free formulae over �. We identify t := t0 witht0 := t. C denotes the set of all
onstraints. A set of
onstraints C � C isinterpreted as the
onjun
tion of the
onstraints
ontained in C, and wewill freely mix set notation and
onjun
tion. The set of free variablesof C is denoted by V(C).We �x a standard interpretationA with domain DA, whi
h des
ribesour
onstraint theory. In the following, we assume a �xed
onstraintset CPr des
ribing the problem to be solved. An assignment � in A

Ex
luding Symmetries in Constraint-Based Sear
h 5is a partial fun
tion � : V ! DA . We say that a (possibly partial)assignment � satis�es � (short � j= �) if there is a total assignment�0 � � with A; �0 j= �. We write � j= if for every � we have � j=�! . A
onstraint set C (synta
ti
ally) determines a set of variablesX to an assignment � i� for all x 2 X exists a ground term t su
h thatx := t 2 C and �(x) = tA.In many problems, one is interested only in a subset of all variables.DEFINITION 1 (Solution Variables). Let X � V be a set of variables.X is a solution variables set for C if for all ��dom(�) = X ^� j= C�) �9!�0 : � � �0^dom(�0) = V(C)^�0 j= C�;where 9!��(�) ('exists a unique � satisfying �(�)') is short for theexpression 9�(�(�) ^ 8�0 : �(�0)) � = �0). For a solution variablesset X , we say that � is a X -solution for C if dom(�) = X and � j= C.With kCkX we denote the set of X -solutions of C.In the following, we �x X . Hen
e, we use the term 'solution' as shortfor 'X -solution for C', and we write kCk as short for kCkX .DEFINITION 2 (Symmetry). A symmetry s for CPr is a bije
tivefun
tion s : kCPrk ! kCPrk. A symmetry set S for CPr is a set ofsymmetries for CPr. A symmetry group S is a symmetry set for CPrwhi
h is a group.Note that for every symmetry s for CPr, also s�1 is a symmetry forCPr. We denote the identity fun
tion on kCPrk with idCPr (whi
h is asymmetry by de�nition). Clearly, the set of all symmetries for CPr is agroup. In many
ases, we do not want to
onsider all symmetries, sin
eeither there are too many of them, or some of them do not have anintuitive
hara
terization.2. Symmetry Ex
luding Sear
h TreesUsually, a sear
h tree in
onstraint programming is a labeled tree,where the nodes are labeled with the
onstraints in the
onstraint store,and the edges are labeled by
onstraints or negated
onstraints. Nodesare labled by
onstraint stores. The root node is labeled with P (CPr)(where P (�)) des
ribes the e�e
t of propagation). For a binary nodewith
onstraint store Cstore that bran
hes over the
onstraint
, theleft (resp. right) subnode has the
onstraint store P (Cstore ^
) (resp.P (Cstore ^ :
).

6 R. Ba
kofen and S. Will(Cp ^
; Cn; Clstore)
 :
(Cp; Cn; Cstore)(Cp; Cn ^ :
; Crstore)Figure 1. General form of binary sear
h nodesWe need a more general form of sear
h trees, whi
h allow us toex
lude some solutions (namely symmetri
al ones). In addition, we needat a node v the positive and negative
onstraints that have been usedalong the path from the root to v to generate the node v.DEFINITION 3 (Sear
h Tree). Let t be a �nite, binary, rooted andordered tree, whose edges are labeled by literals, and whose nodes arelabeled by triples of
onstraint sets. The tree t is a sear
h tree for CPrif the following
onditions are satis�ed:1. The root node has the label (;; ;; P (CPr)),2. every binary node has the form as given by Figure 1, where C lstore j=Cstore ^
 and Crstore j= Cstore ^ :
.Intuitively, the reason for distinguishing between positive and neg-ative
onstraints is just that the negative
onstraints Cn des
ribe thepreviously found solutions, i.e. 8v0 �t v8� 2 kCstore(v0)k : (� j= :Cn).Here, we denote with �t the partial ordering of nodes indu
ed by t.Note that we do not for
e C lstore (resp. Crstore) to be equivalent toCstore ^
 (resp. Cstore ^ :
). The reason is that we must add someadditional
onstraints during sear
h for ex
luding symmetries. Sin
eCstore des
ribes all
onstraints valid at some node v, we set kvk =kCstorek for a node v in t with label (Cp; Cn; Cstore).DEFINITION 4 (Expanded, CPr-Complete and S-Redu
ed Trees).The sear
h tree t is
ompletely expanded if for every unary node v =(Cp; Cn; Cstore), either ? 2 Cstore, or kvk = f�g and Cstore synta
ti
allydetermines X to �. A sear
h tree t is CPr-
omplete if for every � 2kCPrk there is a leaf v in t with f�g = kvk. Let S be a symmetry setfor CPr. A sear
h tree is CPr-
omplete w.r.t. S if for every � 2 kCPrkthere is a leaf v su
h thatkvk = f�g _ 9s 2 S : kvk = fs(�)g:A sear
h tree is S-redu
ed if for every leaf v with kvk = f�g we have8s 2 S 8leafs v0 with v0 �t v : (kv0k = f�0g) s(�0) 6= �): (1)

Ex
luding Symmetries in Constraint-Based Sear
h 7Note that whenever S is
losed under inversion, (1) is equivalent to8 s 2 S 8 v0 6= v : kv0k = f�0g) s(�0) 6= �:Before we
an show how to produ
e an S-redu
ed sear
h tree that isCPr-
omplete w.r.t. S, we �rst have to de�ne how symmetries operateon
onstraints. In the following, we will assume that for every
onstraint
 and every s, there is a
onstraint
0 su
h that s�(k
k) = k
0k; wherewe de�ne s� on sets of CPr-solutions by s�(A) = fs(�) j � 2 Ag. Forevery
, there are usually more than one di�erent
onstraints
0 withs�(k
k) = k
0k. Hen
e, �x a fun
tion s
on on
onstraints su
h thats�(k
k) = ks
on(
)k:PROPOSITION 1. Let s
on be de�ned as before. Then s
on distributesover the Boolean operators, i.e. s�(k
^
0k) = ks
on(
)^s
on(
0)k, s�(k
_
0k) = ks
on(
) _ s
on(
0)k and s�(k:
k) = ks
on(:
)k.Hen
e, we identify s
on with its homomorphi
 extension to
onstraintsets and arbitrary formulae.DEFINITION 5 (S-ex
luding Sear
h Tree). Let S be a symmetry set.A sear
h tree for CPr is S-ex
luding if every binary node v has the formas given by Figure 1, andC lstore = P (Cstore ^
) ^ Crstore = P (Cstore ^ :
 ^Ev(:
));where Ev(:
) = ŝ2S s
on(Cp)! :s
on(
).Before we prove S-redu
edness and CPr-
ompleteness w.r.t. S ofS-ex
luding sear
h trees, we state a proposition to pre
ise the e�e
tof adding the impli
ations in de�nition 5 to Crstore. For
onvenien
e,we write Cvp , Cvn and Cvstore to a

ess Cp, Cn and Cstore in the label(Cp; Cn; Cstore) of v. For a binary node v, we refer to its left
hild as vland to its right
hild as vr.PROPOSITION 2. Let S be a symmetry set and t an S-ex
ludingsear
h tree. For every symmetry s 2 S and for every node v of t wehave Cvstore j= s
on(Cvp)! s
on(Cvn):For notational
onvenien
e, we introdu
e the notation Cpath(v) =Cvp ^ Cvn ^ CPr. A good intuition is to think of Cpath(v) des
ribing the
onstraint store of v in a simple not symmetry ex
luding sear
h tree.LEMMA 1. Let S be a symmetry set. Every S-ex
luding sear
h tree tfor CPr satis�es for every node v that kvk = kCpath(v)k � AvS ; whereAvS = fs(�) j s 2 S ^ 9v0 �t v : � 2 kCpath(v0)kg.

8 R. Ba
kofen and S. WillProof. We proof this by tree indu
tion. For the root this is valid, sin
eAvS = ; and kvk = kCPrk = kCpath(v)k. Assume that we have proventhe
laim for a binary node v as given by Figure 1.For the left
hild vl, the
laim follows immediately from the indu
-tion hypotheses, sin
e AvlS = AvS .For vr, we have to show kvrk = kCpath(vr)k �AvrS . Note that AvrS =fs(�) j s 2 S ^ 9v0 �t vr : (� 2 kCpath(v0)k)g subdivides into its twosubsets AvS and fs(�) j s 2 S^9v0(v0 6�t v^v0 �t vr^� 2 kCpath(v0)k)g.Further, note that Cpath(vr) is equivalent to Cpath(v) ^ :
.To show that kvrk � kCpath(v) ^ :
k � AvrS ; �x a symmetry s 2 S.We have to show for every v0 �t v that 8� 2 kCpath(v0)k : s(�) 62 kvrk:The �rst
ase is v0 �t v. Let � 2 kCpath(v0)k. Then s(�) 62 kvkby indu
tion hypotheses. Sin
e kvrk � kvk, this immediately impliess(�) 62 kvrk.The se
ond
ase is (v0 6�t v) and v0 �t vr, i.e. v0 is a subnode ofvl. Let � 2 kvlk and assume s(�) 2 kvrk. From � 2 kvlk we have� j= Cp ^
 and s(�) j= s
on(Cp ^
). That's a
ontradi
tion, be
ausefrom de�nition of S-ex
luding sear
h tree s(�) j= s
on(Cp)! :s
on(
),sin
e (s
on(Cp)! :s
on(
)) 2 Ev(:
).It remains to be shown that kvrk � kCpath(vr)k�AvrS Let � 62 kvrk.We have to show that � 62 kCpath(vr)k �AvrSWe have the following
ases:1. � 62 kCpath(vr)k. Then the
laim follows immediately.2. � 2 kCpath(vr)k and � 62 kvk. We have to show � 2 AvrS .Now � 2 kCpath(vr)k implies � 2 kCpath(v)k and hen
eforth � 2AvS � AvrS by indu
tion hypotheses.3. � 2 kCpath(vr)k and � 2 kvk. We will show that � 2 AvrS �AvS= fs(�) j s 2 S ^ 9v0 : (v0 �t vr ^ v0 6�t v ^ � 2 kCpath(v0)kg= fs(�) j s 2 S ^ � 2 kCpath(vl)kg (2)Sin
e � j= Cstore ^ :
, but � 6j= Crstore, there is at least one s 2 Swith � 6j= s
on(Cp)! :s
on(
) by the de�nition of an S-ex
luding tree.Fix one of these symmetries s. Then � j= s
on(Cp) ^ s
on(
). Sin
eCstore j= s
on(Cp)! s
on(Cn) by Proposition 2, we get� j= s
on(Cp) ^ s
on(
) ^ s
on(Cn):Hen
e, s�1(�), whi
h exists by de�nition of symmetry, satis�es s�1(�) j=Cpath(v)^
 (re
all that Cpath(v) = Cp^Cn). That is, s�1(�) 2 kCpath(vl)k:Hen
e, with � = s�1(�) we have a valuation su
h that � 2 kCpath(vl)kand � = s(�), whi
h shows that � is in the set de�ned by (2). �THEOREM 1. Let S be a symmetry set. Every S-ex
luding sear
h treet for CPr is S-redu
ed.

Ex
luding Symmetries in Constraint-Based Sear
h 9Proof. Fix a symmetry s 2 S, let v be a leaf of t with kvk = f�g. Wehave to show for every node v0 of t with v0 �t v that kv0k = f�0g !s(�0) 6= �: Assume v0 to be a node of t with v0 �t v and kv0k = f�0g ands(�0) = �. It follows � 2 fs(�) j s 2 S ^ 9v0 �t v : � 2 kCpath(v0)kg,and from this the
ontradi
tion � 62 kvk by Lemma 1. �By now, we understand that an S-ex
luding sear
h tree may ex
ludemore symmetries than a
tually de
lared by S dire
tly. Hen
e, we haveto investigate the
ompleteness property of S-ex
luding sear
h trees.THEOREM 2. Let S be a symmetry set. Every S-ex
luding sear
h treet for CPr is CPr-
omplete w.r.t. S 0, where S 0 is the
losure of S under
omposition and inversion.Proof. We have to show that t is CPr-
omplete w.r.t. to S 0, where S 0is the
losure under
omposition of S, i.e. for every � 2 kCPrk thereis a leaf v with kvk = f�g _ 9s 2 S 0 : kvk = fs(�)g. Hen
e �x an� 2 kCPrk. Then there exists a leaf v0 in t with � 2 kCpath(v0)k fromde�nition 5. There are two
ases:1.) � 2 kv0k. Then v0 itself is the node v sear
hed for.2.) � 62 kv0k. By Lemma 1 it follows � 2 Av0S ; i.e. there is a s1 2 S anda v00 �t v0 su
h that � = s1(�0), where �0 2 kCpath(v00)k: By indu
tion,we get a sequen
e of symmetries s1; : : : ; sn 2 S and a leaf v(n+1) of t,where � = s1 Æ � � � Æ sn(�(n)) and f�(n)g = kv(n+1)k. Then v(n+1) is thenode v sear
hed for sin
e S 0 is the
losure of S. �We will given an example for symmetry ex
luding sear
h trees in Se
-tion 5, where the symmetry group of permutation are ex
luded by thesubset of all transpositions (as indi
ated by the pre
eeding theorem).Now, we are able to give a more detailed
omparison to [8℄. TheSBDS-method therein is essentially our symmetry ex
lusion restri
tedto the
ase, where the sear
h tree bran
hes over
onstraints of the formx := t, where x is a variable and t is a ground term (think of it asa value). In this
ase, the
onstraint
olle
ted in Cp is of the formx1 := t1 ^ : : : ^ xn := tn, i.e. Cp is a partial assignment �.We motivate the restri
ted SBDS-method with an example. Let asymmetry S� be de�ned by a permutation � su
h that S�(x := t) isx := �(t). Now, let Cp be x1 := t1 ^ : : : ^xn := tn at some node v of thesear
h tree, whi
h bran
hes over x := t. Then, the
onstraint added byour method for ex
luding the symmetry S� is S�(x1 := t1 ^ : : : ^ xn :=tn) =) :S�(x := t), whi
h is by the de�nition of S� the same asx1 := �(t1) ^ : : : ^ xn := �(tn) =) x 6= �(t):Now, the ante
edent is nothing else than a test, whether S� leavesCp (i.e., the partial assignment at the node v) un
hanged. Thus, the

10 R. Ba
kofen and S. Willentailment
an be judged dire
tly at the right subnode of v. In gen-eral, the entailment
an not be de
ided immediately. However, therestri
ted SBDS-method essentially repla
es the entailment test by thetest, whether the symmetry leaves the assignment un
hanged. Onlythose symmetries are ex
luded, for that the test
an be de
ided imme-diately at the very node, where our method would introdu
e the
orre-sponding impli
ation. In our approa
h, the
orresponding impli
ationdelays this test to a later point, if it is not de
idable yet.3. Symmetry Ex
luding Sear
h AlgorithmsAlgorithms. We will dis
uss two algorithms implementing symmetry-ex
luding sear
h trees. A straightforward approa
h yields pro
edurenaive ses at the end of this paragraph, here
alled the naive algorithm.This algorithm works by keeping tra
k of Cp to add the impli
ationson the right bran
h to Cstore.However, the ante
edents of these impli
ations
an be
omputedduring the sear
h more eÆ
iently, sin
e the ante
edents of the impli-
ations added at a node are pre�xes of the ones added in its o�spring.More pre
isely, let v be a node, whi
h bran
hes over
. Let vl (resp. vr)denote its left (resp. right) daughter. Now, s
on(Cvlp) = s
on(Cvp ^
) =s
on(Cvp) ^ s
on(
): Further, s
on(Cvrp) equals s
on(Cvp). Therefore, theante
edents s
on(Cp)
an be
omputed in
rementally. For this aim wemaintain a family of Boolean variables �!Cp = (Cps)s2S that reify thetrueth values of s
on(Cp) for ea
h symmetry s 2 S. Employing thiste
hnique we get the improved algorithm ses. In ses, for the left bran
h,we add rei�ed
onstraints Cpls () Cps ^ s
on(
). The family �!Cpl ispassed to the left subtree. For the right bran
h, we insert only the nowmodi�ed impli
ations.pro
edure naive_ses(Cp; Cstore)if Cstore determines solution �then write �elsif ? 62 Cstore then
hoose a
onstraint
Clstore := Cstore ^
Clp := Cp ^
naive_ses(Clp; Clstore)Crstore := Cstore ^ :
^8s 2 S : s
on(Cp)! s
on(:
)naive_ses(Cp; Crstore)endif.
pro
edure ses(�!Cp;Cstore)if Cstore determines solution �then write �elsif ? 62 Cstore then
hoose a
onstraint
Clstore := Cstore ^
^8s 2 S : �!Cpls () �!Cps ^ s
on(
)ses(�!Cpl; Clstore)Crstore := Cstore ^ :
^8s 2 S : �!Cps ! s
on(:
)ses(�!Cp;Crstore)endif.

Ex
luding Symmetries in Constraint-Based Sear
h 11Analyti
al Run Time Comparison. We will
on
entrate on thequestion how many symmetri

onstraints are
omputed in the di�erentalgorithms for one sear
h. For the approximation of the speedup, wehave to employ some standard de�nitions for binary trees.We de�ne a (binary) tree t as a pre�x-
losed subset of f0; 1g�. Thedepth of a tree t is depth(t) = maxfjwj j w 2 tg: A node v of a tree t isa v 2 t. A leaf of a tree t is a v 2 t, su
h that v1 62 t ^ v0 62 t. The leftsubtree of a tree t is left(t) = 1�1t and the right subtree right(t) = 0�1t.The path length of a node v is jvj. We de�ne the left path length of anode v = a1 : : : ajvj as jvjl = jfi 2 f1; : : : ; jvjg j ai = 1gj = P1�i�jvj ai:The right path length of a node v is given by jvjr = jvj � jvjl: A tree t is
ompletely expanded i� there is a d, su
h that t = f0; 1g�d. We de�nea
ertain number of nodesnld(k) = jfv j v node of t = f0; 1g�d ^ jvjl = kgj:PROPOSITION 3. For a
ompletely expanded tree t, its left and rightsubtrees are
ompletely expanded. For a tree t and every node v 2 t, itis satis�ed jvjl � jvj and jvj � depth(t):LEMMA 2. Let k; d 2 N, k; d � 0. Then, nld(k) = (�d+1k+1� for k � d0 otherwise:Proof. Let t be the
ompletely expanded tree with depth d. Let afun
tion r : t! f0; 1gd+1 � f0d+1g be given by r : v 7! v10d�jvj:For every v 2 t, r(v) is an element of f0; 1gd+1 and
ontains exa
tlyjvjl + 1 ones. Sin
e r is bije
tive, the number of nodes v with jvjl = kis equal to the number of words r(v) of length d + 1
ontaining k + 1ones. There are �d+1k+1� su
h words. �In a sear
h tree t, we
all the
onstraints
 and :
 that are insertedat the bran
hes of a binary node basi

onstraints. We will need ameasure for the total time the algorithms spend on the
omputation ofsymmetri

onstraints. As this measure, we just
ount the number of
omputed symmetri
 basi

onstraints. This is reasonable, sin
e we mayassume for an approximation that the
omputation of ea
h symmetri
basi

onstraint takes equal time and further that the
omputation of a
omplex symmetri

onstraint s
on(
1 ^ � � � ^
n) is done via
omputingthe basi
 symmetri

onstraints s
on(
1); : : : ; s
on(
n).THEOREM 3. To produ
e a
ompletely expanded tree of depth d thenaive algorithm
omputes jSj �2d�1(d� 2) + 1� many symmetri
 basi

onstraints, while the improved algorithm
omputes jSj �2d � 1� su
h
onstraints.

12 R. Ba
kofen and S. WillProof. In a
ompletely expanded tree t of depth d, the naive algo-rithm
omputes for a node v with jvj < d exa
tly jvjl symmetri
 basi

onstraints for every symmetry s 2 S. For nodes v with path lengthjvj = d, it does not
ompute any symmetri

onstraint. Hen
e, weget our number for one symmetry by summing over all nodes, i.e. by
omputing Pv2f1;0g�d�1 jvjl: We simplify furtherd�1Xi=0 i�nld�1(i) =Pd�1i=0 i�� di+1� =Pdi=1(i�1)��di� =Pdi=1 i��di��Pdi=1 �di�=Pdi=0 i � �di��Pdi=0 �di�+ 1 = 12d � 2d � 2d + 1 = (d� 2) � 2d�1 + 1:In the same tree t, the improved algorithm
omputes for every node vwith j(jv) < d exa
tly one symmetri
 basi

onstraint for one symmetry,i.e. the total number of symmetri
 basi

onstraints is the number ofsu
h nodes v, i.e. 2d � 1.Both numbers of symmetri
 basi

onstraints are derived for onesymmetry, and thus have to be multiplied by jSj, �nally. �As a
orollary, simple
al
ulation shows the speedup by the im-proved algorithm in the
omputation of symmetri
 basi

onstraints,i.e. jSj(2d�1(d�2)+1)jSj(2d�1) � d�22 , to be linear.The se
ond most runtime-relevant fa
tor is the
he
k of the an-te
edents of the inserted impli
ations by the
onstraint solver. For thenaive algorithm, it is reasonable to assume that the solver
he
ks ea
hante
edent of the inserted impli
ations at ea
h node at least on
e. In
ontrast to this, the improved algorithm
he
ks ea
h bran
hing
on-straint of Cp on
e for ea
h node. Under this assumption, again thespeedup turns out to be linear in the depth of the tree.4. Geometri
 SymmetriesNow, we will give a
on
rete example for symmetries, namely geometrysymmetries. We will treat the spe
ial
ase where we have points in Zd,although our method is not restri
ted to this
ase. We will exemplifythe symmetry
onstru
tions in two dimensions, and give an examplefor the ex
lusion of additional symmetries as indi
ated by Theorem 2.De�nition of Geometri
 Symmetries. There are many problemswhere one en
odes the two-dimensional position of an obje
t i using�nite domain integer variables Xi; Yi. Examples are the N-queens andthe tiling problem. A more
omplex and realisti
 example (in threedimensions) is the latti
e protein stru
ture predi
tion problem [2℄.

Ex
luding Symmetries in Constraint-Based Sear
h 13The symmetries for Z2 have exa
tly the same stru
ture as for thegeneral
ase Zd. They are de�ned by aÆne mappings S : Zd ! Zdwith S(~x) = AS~x + ~vS that map Zd onto Zd. That is, the matrixAS is an orthogonal matrix with the property that the set of
olumnsf~v1; : : : ; ~vdg of AS equals f�~e j ~e is a unit-ve
tor of Zdg. For example,for Z2, the matrix � 0 �11 0 � denotes the rotation by 90Æ. For Z2, we have8 symmetries
onsisting of the identity, the 4 re
e
tions (at x- and y-axis, and the two diagonals) and the 3 rotations by 90Æ, 180Æ and 270Æ.For Z3, we have 48 symmetries in
luding the identity.Fixing the Symmetries. By now, the ve
tor ~vS is not yet �xed.There are two di�erent approa
hes for �xing the symmetry. We
onsiderZ2 as an example. The methods work for all other dimensions as well.The �rst
ase is that every possible solution lies within a �xedsquare (in the general
ase, within a hyper
ube).2 This is equivalentto the proposition that there are integers xmin; xmax; ymin; ymax su
hthat for all � 2 kCPrk we have minf�(Xi)g = xmin, maxf�(Xi)g =xmax, minf�(Yi)g = ymin, and maxf�(Yi)g = ymax. Thus, the mini-mal square around the position of all obje
ts is de�ned by the points(xmin; ymin) and (xmax; ymax) in every solution. We
all this the frameof the problem CPr. In the N-queens problem, this is just the board.Now, knowing the frame of a problem CPr, we
an �x the ve
tor ~vSfor all symmetries. Consider as an example a problem whose frame isde�ned by (0; 0) and (3; 2). Furthermore,
onsider the three symmetriesre
e
tion at the y-axis, rotation by 90Æ and rotation by 180Æ, whi
h wewill name S1, S2 and S3 in the following. The
orresponding mappingsare de�ned by Si(~x) = ASi(~x)+~vSi , where AS1 = ��1 00 1 �, AS2 = � 0 �11 0 �and AS3 = ��1 00 �1 �. The
orresponding mappings of the frame are
(−3,2) (3,2)

(−2,3) (3,2)

(−3,−2)

(3,2):A symmetry S is
ompatible with the above de�ned frame if theframe is mapped to itself, i.e. if f~v j (0; 0) � ~v � (3; 2)g = fS(~v) j(0; 0) � ~v � (3; 2)g. For a given matrix AS , there exists a ~vS su
hthat S(~x) = AS~x+~vS satis�es this
ondition if and only if AS satis�esAS(3; 2) = (�3;�2): For the matri
es AS1 , AS2 and AS3 , we get (�3; 2),(�2; 3) and (�3;�2), whi
h ex
ludes the symmetry
hara
terized byAS2 . We �nally get ~vS1 = (3; 0) and ~vS3 = (3; 2):2 The te
hnique
an be extended to the
ase that the hyper
ube is not �xed inadvan
e, but during sear
h.

14 R. Ba
kofen and S. WillThe se
ond
ase is that we know a point ~p = (px; py) whi
h shouldremain un
hanged under the symmetries. In that
ase, we know that thesymmetries are de�ned by Si(~x) = ASi(~x�~p)+~p = ASi(~x)�ASi(~p)+~p.Hen
e, ~vSi = ~p�ASi(~p).The remaining part is to de�ne symmetri

onstraints. We use aspe
i�
 example where we leave the point (5; 5) �x. Consider the twosymmetries re
e
tion at the y-axis and rotation by 90Æ. By what wehave said above, the
orresponding mappings areSRy(~x) = ��1 00 1 � ~x+ (100) and S90Æ(~x) = � 0 �11 0 � ~x+ (100)Now suppose that we have modeled points p1; : : : ; pn using variablesX1; : : : ;Xn and Y1; : : : ; Yn, and we want to de�ne SRy
on and S90Æ
on forthe
onstraints of the form Xi =
 (for other kind of
onstraints
,the de�nition S
on(
) is analogous). Now the symmetri

onstraintsSRy
on(Xi =
) (resp. S90Æ
on(Xi =
)) must express the
onstraint valid forSRy(�) (resp. S90Æ(�)) for every possible � with � j= Xi =
. Then,� j=Xi =
 � j=Xi =
, ~pi = (
; �(Yi)) , ~pi = (
; �(Yi)), SRy(~pi) = (10 �
; �(Yi)) , S90Æ(~pi) = (10 � �(Yi);
), SRy(�) j= Xi = 10�
 , S90Æ(�) j= Yi =
Sin
e Xi =
 does not restri
t the valuation of �(Yi), we know thatSRy
on(Xi =
) is Xi = 10 �
, and S90Æ
on(Xi =
) is Yi =
. Analogously,we get that SRy
on(Yi =
) is Yi =
, and that S90Æ
on(Yi =
) is Xi = 10�
.Note that SRy(
) has the same type as
 (i.e., both have the samevariable). This does not hold for
 and S90Æ(
).Results. We have applied the method to the latti
e protein stru
turepredi
tion [2℄, whi
h is a hard
ombinatorial problem. Table I shows thenumber of solutions, sear
h steps and runtimes for �nding all minimalenergy stru
tures for 4 sequen
es, both without and with symmetryex
lusion. We have added simple ex
lusion methods in both
ases,whi
h is the reason that we have only 16 (instead of 48) symmetries leftin sequen
es 1; 2 and 4. As one
an see from the table, we have a nearlylinear speedup in number of sear
h steps, and a
lose to linear speedupin runtime. In sequen
e 3, the simple ex
lusion does not apply, whi
hgives rise to 48 symmetries. Furthermore, the optimal
onformationsand the symmetri
 ones are very similar, whi
h implies that we haveless speedup (sin
e dete
ting the symmetri
 solution is harder).

Ex
luding Symmetries in Constraint-Based Sear
h 15Table I. Results for sear
hing all minimal energy stru
tures without and withsymmetry ex
lusion.len without sym. ex
l. with sym. ex
l. ratio#noex nnoex tnoex #ex nex tex #noex#ex nnoexnex tnoextex27 4,752 45,924 15 m 297 2,998 69 s 16 15.32 13.1727 408,864 2,465,728 6.2 h 25,554 155,693 26.3 m 16 15.84 14.1831 53,472 351,101 3.4 h 1,114 11,036 7.4 m 48 31.81 27.4336 56,448 732,952 3.7 h 3,528 55,086 19.9 m 16 13.31 11.245. Value Permutation symmetriesWe will
onsider the
lass of all problems that have permutations ofvalues as symmetries. An instan
e of this problem
lass is the graph
oloring problem.In the following, we
onsider �nite domain integer problems, wherethe variables have the domain D � N asso
iated. We denote withPerm(D) the set of all permutations of D, and with Trans(D) the setof all transpositions of D (i.e., those permutations, whi
h ex
hange justtwo elements of D). With SXPerm(D), we denote the set of all symmetriesthat permute the values of the variables in X .DEFINITION 6. Let X be the set of solution variables. The set of allvalue permutations of X is de�ned as the symmetry setSXPerm(D) = fS j 9� 2 Perm(D)8� : S(�)(X) = �(�(X))g:The subset of all transposition symmetries SXTrans(D) is de�ned analo-gously. For every symmetry S 2 SXPerm(D), we say that � is the under-lying permutation of S if S(�)(X) = �(�(X)).Now, we
onsider sear
h trees that bran
h over
onstraints of theforms X = k, X = Y or X 6= Y . These are the most often used
onstraints in the
ase of permutative symmetries. The interesting partis that if a sear
h tree bran
hes over those
onstraints, then everySXTrans(D)-ex
luding tree is even SXPerm(D)-redu
ed. Thus, we need toex
lude only the quadrati
ally many transpositions for ex
luding theexponentially many permutations in this
ase.THEOREM 4. Let CPr be a problem that has SXPerm(D) as a symmetrygroup. Let t be a SXTrans(D)-ex
luding sear
h tree su
h that for everybran
h v, the
onstraint
 is of the forms X = d, X = Y , or X 6= Ywith X;Y 2 X . Then, t is SXPerm(D)-redu
ed.

16 R. Ba
kofen and S. WillProof. It is suÆ
ient to show that for every bran
h v in t, we havefS(�) j S 2 SXPerm(D) ^ � 2 kvlkg \ kvrk = ;;where vl is the left node, and vr the right node of the bran
h v.Assume that there is a valuation � and a symmetry S 2 SXPerm(D)su
h that � 2 kCpath(vl)k and S(�) 2 kCpath(vr)k. Let �S be theunderlying permutation of the symmetry S. Let
 be the
onstraintintrodu
ed in the left node vl. Then � j=
 and S(�) j= :
.The �rst observation is that

annot be of the forms X = Y orX 6= Y . If
 were of the form X = Y , then �(X) = �(Y), and hen
ewe would have S(�)(X) = �S(�(X)) = �S(�(Y)) = S(�)(Y); whi
hwould be a
ontradi
tion to S(�) j= :
. Similarly, if
 were of the formX 6= Y , then �(X) 6= �(Y), and hen
e S(�)(X) = �S(�(X)) andS(�)(Y) = �S(�(Y)) must be di�erent sin
e �S is a bije
tion.So let
 be of the form X = d. Sin
e
 is X = d, � j=
 andS(�) j= :
, we know that �(X) = d 6= S(�)(X): By the de�nition ofthe sear
h tree t, we know that X 2 X . Hen
e, there is a transpositionsymmetry T 2 SXTrans(D) that ex
hanges �(X) = d and S(�)(X) = d0.We want to show that (T�1 Æ S)(�) = (T Æ S)(�) 2 kCpath(vl)k, whi
himplies that S(�) is ex
luded by Lemma 1.In the following, let �T be the underlying transposition of the sym-metry T . Note that �T (d) = d0, �T (d0) = d and for all d00 di�erentfrom d; d0, we have �T (d00) = d00. This implies (T Æ S)(�) j=
 sin
e
 � (X = d), S(�)(X) = d0 and �T (d0) = d. Furthermore, note that�S(d) = d0, but not ne
essarily �S(d0) = d. Sin
e �S is a bije
tion, weknow that �S(d0) 6= d0.For showing (T Æ S)(�) 2 kCpath(vl)k, it is suÆ
ient to prove that(T Æ S)(�) 2 kCpath(v)k as follows. If (T Æ S)(�) 2 kCpath(v)k, then weknow that (T Æ S)(�) 2 kCpath(vl)k [kCpath(vr)k sin
e kCpath(v)k isequal to kCpath(vl)k [kCpath(vr)k. Sin
e we bran
h over
 at node vand (T Æ S)(�) j=
 by our assumption, this implies immediately(T Æ S)(�) 2 kCpath(vl)k:For showing (T ÆS)(�) 2 kCpath(v)k, we
onsider the following
asesfor
0 2 Cpath(v):1.
0 is Y = Z. Sin
e S(�) j=
0, we get S(�)(Y) = S(�)(Z). Hen
e,�T (S(�)(Y)) = �T (S(�)(Z)), whi
h implies (T Æ S)(�)(Y) = (T ÆS)(�)(Z) and hen
e (T Æ S)(�) j= Y = Z.2.
0 is Y 6= Z. Sin
e S(�) j=
0, we get S(�(Y)) 6= S(�)(Z). Sin
e �Tis a bije
tion, we have for any values k0; k00 that �T (k0) = k = �T (k00)implies k0 = k00. Hen
e, S(�)(Y) 6= S(�)(Z) implies �T (S(�)(Y)) 6=�T (S(�)(Z)). Hen
e (T Æ S)(�) j= Y 6= Z.

Ex
luding Symmetries in Constraint-Based Sear
h 173.
0 is Y = k. Sin
e both � j=
0 and S(�) j=
0, we get �(Y) =k = �S(�(Y)) = �S(k) Hen
e �S(k) = k, whi
h implies that kmust be di�erent from d and d0. Hen
e, �T (k) = k, whi
h implies(T Æ S)(�) j= Y = k.In any
ase, we get (T Æ S)(�) j=
0 for all
0 2 Cpath(v). �Graph Coloring. As noted above the graph
oloring is an example fora problem with value permutations as symmetries. The graph
oloringproblem is as follows. Given a graph G = (V;E) and a set of
olors. Anadmissible
oloring
 of G, is a mapping of the verti
es V to the set of
olors, satisfying the
onstraint that for all (v1; v2) 2 E:
(v1) 6=
(v2).We sear
h for the minimal set of
olors, where we still
an �nd anadmissible
oloring.In this problem
olorings are
onsidered to be symmetri
, if they arejust permuted in
olors to ea
h other. We
ompare two implementationsof a solver for this problem. The �rst one is a naive implementation thatuses a simple �rst fail heuristi
. This implementation does not havesymmetry ex
lusion. The se
ond implementation with full ex
lusionof symmetries is just a simple extension of the �rst one, where weadded our symmetry ex
lusion me
hanism for transpositions (whi
h issuÆ
ient by Theorem 4). The results are given in Table II.Table II. Results for some randomly generated problem instan
esproblem size with sym. ex. without sym. ex. ratioverts edges
olors
loned time/s
loned time/s
loned time20 114 6 24 50 162 90 6.8 1.818 101 7 35 70 887 450 25.3 6.425 185 8 61 170 52,733 29,710 864.5 487.050 506 8 434 2,280 1,440,549 1,588,340 3,319.2 696.630 292 9 97 230 551,022 385,100 5,680.6 1674.335 339 9 168 370 3,428,853 2,569,200 20,409.8 6943.86. Con
lusion and Future WorkWe have introdu
ed the �rst method, namely symmetry ex
ludingsear
h, that
an ex
lude arbitrary symmetries in
onstraint-based sear
h.In
ontrast to many other methods that
an be found in the literature,the SES-method does not restri
t the sear
h strategy.SES is based on a de
larative des
ription of the symmetries in theform of symmetri

onstraints, whi
h usually
an be obtained easily.We have given
ompleteness and
orre
tness proofs as well as the proof,that the method ex
lude all
onsidered symmetries. In the
ase that

18 R. Ba
kofen and S. Willthe full symmetry group is too large, our method
an handle arbitrarysubsets of the full symmetry group. We have shown for the
ase of per-mutation symmetries that there it suÆ
es to ex
lude the (quadrati
allymany) transposition to ex
lude all (exponentially many) permutations.SES
an be implemented in any
onstraint-based sear
h ma
hinerythat handles impli
ations and allows to introdu
e additional, user-de�ned
onstraints during sear
h. This holds for the most modern
onstraint programming systems. Sin
e the method is very general,we plan to investigate in whi
h other logi
-based sear
h methods oursymmetry ex
lusion
an be used. Furthermore, we intend to investigatemore general
onditions under that the ex
lusion of only a subset ofthe symmetries ex
ludes the whole symmetry group (as in the
ase ofvalue permutations). Referen
es1. Aguirre, A. S. M.: 1993, `How to Use Symmetries in Boolean ConstraintSolving'. In: F. Benhamou and A. Colmerauer (eds.): Constraint Logi
Programming, Sele
ted Resear
h. The MIT Press, Chapt. 16, pp. 287{306.2. Ba
kofen, R.: 1998, `Constraint Te
hniques for Solving the Protein Stru
-ture Predi
tion Problem'. In: Pro
eedings of 4th International Conferen
e onPrin
iple and Pra
tive of Constraint Programming (CP'98).3. Benhamou, B.: 1994, `Study of symmetry in Constraint Satisfa
tion Problems'.In: A. Borning (ed.): Prin
iples and Pra
ti
e of Constraint Programming, Se
-ond International Workshop, PPCP'94,, Vol. 874 of Le
ture Notes in ComputerS
ien
e.4. Benhamou, B. and L. Sais: 1994, `Tra
tability through Symmetries in Propo-sitional Cal
ulus'. Journal of Automated Reasoning 12, 89{102.5. Crawford, J. M., M. Ginsberg, E. Luks, and A. Roy: 1996, `Symmetry BreakingPredi
ates for Sear
h Problems'. In: Pro
. of the 5th International Conferen
eon Prin
iples of Knowledge Representation and Reasoning (KR'96). pp. 149{159.6. de la Tour, T. B.: 1990, `Minimizing the Number of Clauses by Renaming'.In: M. E. Sti
kel (ed.): Pro
. of the 10th Int. Conf. on Automated Dedu
tion(CADE90). pp. 558{572.7. Freuder, E.: 1991, `Eliminating inter
hangeable values in
onstraint satisfa
tionproblems'. In: Pro
. of AAAI'91. pp. 227{233.8. Gent, I. and B. Smith: 2000, `Symmetry Breaking During Sear
h in ConstraintProgramming'. In: W. Horn (ed.): Pro
eedings of ECAI 2000. pp. 599{603.9. S
hulte, C., G. Smolka, and J. W�urtz: 1994, `En
apsulated Sear
h and Con-straint Programming in Oz'. In: A. Borning (ed.): Se
ond Workshop onPrin
iples and Pra
ti
e of Constraint Programming. Or
as Island, Washington,USA, pp. 134{150.10. Smolka, G.: 1995, `The Oz Programming Model'. In: J. van Leeuwen (ed.):Computer S
ien
e Today, Le
ture Notes in Computer S
ien
e, vol. 1000. Berlin:Springer-Verlag, pp. 324{343.

