
Exluding Symmetries in Constraint-Based SearhRolf Bakofen and Sebastian Will�(fbakofen,willsg�informatik.uni-muenhen.de)Institut f�ur Informatik, LMU M�unhenOettingenstra�e 67, D-80538 M�unhenAbstrat. We introdue a new method, alled symmetry exluding searh (SES),for exluding symmetries in onstraint based searh. To our knowledge, it is the �rstdelarative method that an be applied to arbitrary symmetries. The SES-methodis based on the notion of symmetri onstraints, whih are used in our modi�ationof a general onstraint based searh algorithm. The method does not inuene thesearh strategy. Furthermore, it an be used with either the full set of symmetries,or a subset of all symmetries.We proof orretness, ompleteness and symmetry exlusion properties of ourmethod. Then, we show how to apply the SES-method in the speial ase of ge-ometri symmetries (rotations and reetions) and permutation symmetries. Fur-thermore, we give results from pratial appliations.Keywords: Symmetry Exlusion, Geometri Symmetries, Permutation Symme-tries, Constraint-Based Searh, Symmetry Exluding Searh (SES)1. IntrodutionIn many searh problems, one is faed with the existene of symmetries.Symmetries give rise to many di�erent solutions found by the searhproedure, whih are all onsidered to be equivalent. Often, one isnot interested in also getting all these symmetri solutions to everyfound solution. Without exlusion of symmetries, whenever a solutionis found or proven to be inonsistent with the searh problem, thesearh algorithm still onsiders all symmetri solutions. In onsequene,those symmetries give rise to an (often exponential) ampli�ation of thesearh spae. Hene, symmetry exlusion promises to eÆiently prunethe searh tree.For example, onsider onstraint problems, where �nite domain vari-ables have a geometri interpretation suh as in the N-queens problemor the square-tiling problem (where a set of squares of given sizes must�t exatly into a �xed square). A more omplex, real-world problemis the lattie protein struture predition problem. In [2℄, it is shownhow to �nd solutions for this problem using onstraint programmingtehniques. In this ase, di�erent solutions are symmetri if they an begenerated using reetions or rotations. In other problems, symmetri� supported by the PhD programme GKLI of Deutshe Forshungsgemeinshaft. 2001 Kluwer Aademi Publishers. Printed in the Netherlands.



2 R. Bakofen and S. Willsolutions an be generated by performing permutations on variablevaluations (like in the map oloring (or graph oloring) problem).In the following, we onsider searh problems that stem from on-straint satisfation problems (CSP). A ommon approah is to trans-form (problem spei�ally) a CSP C1 into a CSP C2 that exludes atleast some of the symmetries of the original problem C1.Unfortunately, symmetry exlusion was often not straightforwardto implement. Even then, it had to be redesigned for every speialproblem or enumeration strategy. This led to an inexibility in theprogram struture one it was introdued. Thus, the widespread usageof symmetry exlusion was strongly hindered by its omplexity. Oftensymmetry exlusion was not done at all or only for a small set of sym-metries. In other ases, where symmetry exlusion was implemented itdistrated the programmers attention from more important tasks.In this paper, we present a new approah for symmetry exlusion,alled symmetry exluding searh (SES), whih works by modifying thesearh algorithm. The tehnique of modifying the searh algorithm toexlude symmetries was already used in the literature. In ontrast toprevious approahes, SES is (to our knowledge) the �rst delarativemethod that an be applied to arbitrary symmetries, whih an be de-�ned delaratively. Furthermore, it does not restrit the searh strategy(i.e., the symmetry exlusion an be done independently of the searhstrategy). This is important, sine in many onstraint problems majorpart of the knowledge of the problem is enoded in the searh strategy.We have implemented our method in the onurrent onstraint pro-gramming language Oz [10℄ using the programmable searh enginedesribed in [9℄. However, the method an be implemented in anysystem that handles impliation (via entailment) and allows to modifythe searh proedure suh that additional onstraints are added in onebranh of a branhing step.Related Work. Previous work on symmetry exlusion by modifyingthe searh algorithm handled only restrited forms of symmetries. In [7℄,the notion of interhangeable values is introdued. Two values a and bare interhangeable for a variable V i� for every solution that maps Vto a, the orresponding valuation that maps V to b is also a solution.The method in [3℄ handles only permutations of domain values inthe ase of binary onstraints (thus, e.g. the all-distint onstraint hasto be translated into binary inequalities, whih implies that eÆientpropagation methods for all-distint annot be applied). Furthermore,it works by introduing a symmetry exluding form of onstraint prop-agation, whih is a modi�ed form of domain propagation (thus, themethod annot make use of interval propagation).



Exluding Symmetries in Constraint-Based Searh 3[1℄ and [4℄ onsider only propositional alulus. The symmetriesthere are permutations of Boolean variables. These methods do notapply to general onstraint satisfation problems.The work presented in [8℄ is essentially an implementation and ap-pliation of our method to solve pratial problems. Their work isompared to the SES-method in greater detail in Setion 2.An example of a symmetry exlusion method that works by a (prob-lem independent) transformation of the onstraint satisfation problemis [5℄. They introdue symmetry breaking prediates, whih are trueonly for the smallest solution within an equivalene lass (where theordering is �xed in advane). Thus, if the searh strategy enumerates anon-minimal (aording to the pre-�xed ordering) solution �rst, then itwill be exluded by the symmetry breaking prediates. In onsequene,not every searh strategy remains possible given the pre-�xed ordering.In ontrast, there is no pre�xed ordering in whih symmetrial so-lutions will be exluded by our method. This implies that we respetuser-de�ned searh strategies as muh as possible.1Overview of the paper. The formal de�nition of symmetry ex-luding searh trees as wells as ompleteness and orretness proofsare presented in Setion 2. Additionally, we show that our methodguarantees to exlude all spei�ed symmetries. Setion 3 disusses anoptimized implementation of symmetry exluding searh. In Setion 4,we treat geometri symmetries and present the results of applying theproblem to a omplex problem. In Setion 5, we onsider symmetrieswhih are generated by permuting the values of the variables. For ex-ample, suh symmetries our in the graph oloring problem. We proof,that in this ase, it is suÆient to exlude the subset of transpositions inorder to exlude all permutations and present results for graph oloring.Introdutory Example. We start with a simple example to explainthe main onepts. Consider the N-queens problem, where we have anarray Q[0::N ℄, whose elements an take values from 0::N . Q[i℄ = jstates that there is a queen at position (i; j). Now onsider the symme-try orresponding to the reetion at the axis y = N2 , whih is parallelto the x-axis (in the sequel denoted by Rx). Clearly, for every solution ofthe N-queens, the Rx-symmetri version is also a solution of N-queensand thus should be exluded.To use our method, �rst we have to introdue symmetri versions ofthe onstraints whih are inserted by the searh proedure. One kindof onstraint is Q[i℄ = j. If we have any distribution of queens on1 Clearly, if the searh strategy depends on the onstraint store, then any methodof symmetry exlusion that prunes the searh tree must inuene the way solutionsare enountered (sine the onstraint store is hanged by the symmetry exlusion).



4 R. Bakofen and S. Willthe board satisfying Q[i℄ = j, then the Rx-symmetri distribution willsatisfy Q[i℄ = N � j. Hene, the onstraint Q[i℄ = N � j is the Rx-symmetri version of the onstraint Q[i℄ = j. Similarly, we get that theRx-symmetri onstraint of Q[i℄ � j is Q[i℄ � N � j. In the following,we write SRx() to denote the Rx-symmetri onstraint to .Our method works by inserting additional onstraints at the rightbranhes of the searh tree, whih exlude the symmetri solutions thatare enumerated in the right branh. Consider the following searh treefor the 11-queens problem, where we indiate the onstraints added bysymmetry exlusion via frames: ?Q[2℄ = 3Q[1℄ � 5 Q[1℄ > 5^ :Q[1℄ � 10� 5 � :SRx(Q[1℄ � 5)Q[2℄ 6= 3^ Q[1℄ � 10� 5 ! Q[2℄ 6= 10 � 3� �SRx(Q[1℄ � 5) :SRx(Q[2℄ = 3)This an be interpreted intuitively as follows. In the topmost branh,if we searh for a solution in the right branh satisfying Q[1℄ > 5, thenthe Rx-symmetri solution will satisfy Q[1℄ < 5. Hene, the symmet-ri solution was already enountered earlier in the left branh (underQ[1℄ � 5), whih is the reason that we an lose the topmost rightbranh. For the seond right branh labeled Q[2℄ 6= 3, we want again toexlude the Rx-symmetri solutions found in the right branh. Hene,we would like to add the onstraint :SRx(Q[2℄ = 3) to the right branh.But this would exlude too many solutions. The prerequisite of theRx-symmetri solution to be found in the right branh is that boththe solution and its Rx-symmetri version satis�es Q[1℄ � 5. Now theonly solutions that satisfying this onditions are solutions that satisfyQ[1℄ = 5. Hene, we an add :SRx(Q[2℄ = 3) under the onditionthat Q[1℄ = 5. But this is exatly the e�et that we ahieve by adding(Q[1℄ � 10 � 5) ! (Q[2℄ 6= 10 � 3) at the seond right branh (sinethe onstraint store ontains already Q[1℄ � 5).Preliminaries. We �x a �rst-order signature � inluding the equality:= and a set of variables V. Constraints are literals, and onstraintformulae are quanti�er-free formulae over �. We identify t := t0 witht0 := t. C denotes the set of all onstraints. A set of onstraints C � C isinterpreted as the onjuntion of the onstraints ontained in C, and wewill freely mix set notation and onjuntion. The set of free variablesof C is denoted by V(C).We �x a standard interpretationA with domain DA, whih desribesour onstraint theory. In the following, we assume a �xed onstraintset CPr desribing the problem to be solved. An assignment � in A



Exluding Symmetries in Constraint-Based Searh 5is a partial funtion � : V ! DA . We say that a (possibly partial)assignment � satis�es � (short � j= �) if there is a total assignment�0 � � with A; �0 j= �. We write � j=  if for every � we have � j=�!  . A onstraint set C (syntatially) determines a set of variablesX to an assignment � i� for all x 2 X exists a ground term t suh thatx := t 2 C and �(x) = tA.In many problems, one is interested only in a subset of all variables.DEFINITION 1 (Solution Variables). Let X � V be a set of variables.X is a solution variables set for C if for all ��dom(�) = X ^� j= C�) �9!�0 : � � �0^dom(�0) = V(C)^�0 j= C�;where 9!��(�) ('exists a unique � satisfying �(�)') is short for theexpression 9�(�(�) ^ 8�0 : �(�0) ) � = �0). For a solution variablesset X , we say that � is a X -solution for C if dom(�) = X and � j= C.With kCkX we denote the set of X -solutions of C.In the following, we �x X . Hene, we use the term 'solution' as shortfor 'X -solution for C', and we write kCk as short for kCkX .DEFINITION 2 (Symmetry). A symmetry s for CPr is a bijetivefuntion s : kCPrk ! kCPrk. A symmetry set S for CPr is a set ofsymmetries for CPr. A symmetry group S is a symmetry set for CPrwhih is a group.Note that for every symmetry s for CPr, also s�1 is a symmetry forCPr. We denote the identity funtion on kCPrk with idCPr (whih is asymmetry by de�nition). Clearly, the set of all symmetries for CPr is agroup. In many ases, we do not want to onsider all symmetries, sineeither there are too many of them, or some of them do not have anintuitive haraterization.2. Symmetry Exluding Searh TreesUsually, a searh tree in onstraint programming is a labeled tree,where the nodes are labeled with the onstraints in the onstraint store,and the edges are labeled by onstraints or negated onstraints. Nodesare labled by onstraint stores. The root node is labeled with P (CPr)(where P (�)) desribes the e�et of propagation). For a binary nodewith onstraint store Cstore that branhes over the onstraint , theleft (resp. right) subnode has the onstraint store P (Cstore ^ ) (resp.P (Cstore ^ :).



6 R. Bakofen and S. Will(Cp ^ ; Cn; Clstore) :(Cp; Cn; Cstore)(Cp; Cn ^ :; Crstore)Figure 1. General form of binary searh nodesWe need a more general form of searh trees, whih allow us toexlude some solutions (namely symmetrial ones). In addition, we needat a node v the positive and negative onstraints that have been usedalong the path from the root to v to generate the node v.DEFINITION 3 (Searh Tree). Let t be a �nite, binary, rooted andordered tree, whose edges are labeled by literals, and whose nodes arelabeled by triples of onstraint sets. The tree t is a searh tree for CPrif the following onditions are satis�ed:1. The root node has the label (;; ;; P (CPr)),2. every binary node has the form as given by Figure 1, where C lstore j=Cstore ^  and Crstore j= Cstore ^ :.Intuitively, the reason for distinguishing between positive and neg-ative onstraints is just that the negative onstraints Cn desribe thepreviously found solutions, i.e. 8v0 �t v8� 2 kCstore(v0)k : (� j= :Cn).Here, we denote with �t the partial ordering of nodes indued by t.Note that we do not fore C lstore (resp. Crstore) to be equivalent toCstore ^  (resp. Cstore ^ :). The reason is that we must add someadditional onstraints during searh for exluding symmetries. SineCstore desribes all onstraints valid at some node v, we set kvk =kCstorek for a node v in t with label (Cp; Cn; Cstore).DEFINITION 4 (Expanded, CPr-Complete and S-Redued Trees).The searh tree t is ompletely expanded if for every unary node v =(Cp; Cn; Cstore), either ? 2 Cstore, or kvk = f�g and Cstore syntatiallydetermines X to �. A searh tree t is CPr-omplete if for every � 2kCPrk there is a leaf v in t with f�g = kvk. Let S be a symmetry setfor CPr. A searh tree is CPr-omplete w.r.t. S if for every � 2 kCPrkthere is a leaf v suh thatkvk = f�g _ 9s 2 S : kvk = fs(�)g:A searh tree is S-redued if for every leaf v with kvk = f�g we have8s 2 S 8leafs v0 with v0 �t v : (kv0k = f�0g ) s(�0) 6= �): (1)



Exluding Symmetries in Constraint-Based Searh 7Note that whenever S is losed under inversion, (1) is equivalent to8 s 2 S 8 v0 6= v : kv0k = f�0g ) s(�0) 6= �:Before we an show how to produe an S-redued searh tree that isCPr-omplete w.r.t. S, we �rst have to de�ne how symmetries operateon onstraints. In the following, we will assume that for every onstraint and every s, there is a onstraint 0 suh that s�(kk) = k0k; wherewe de�ne s� on sets of CPr-solutions by s�(A) = fs(�) j � 2 Ag. Forevery , there are usually more than one di�erent onstraints 0 withs�(kk) = k0k. Hene, �x a funtion son on onstraints suh thats�(kk) = kson()k:PROPOSITION 1. Let son be de�ned as before. Then son distributesover the Boolean operators, i.e. s�(k^0k) = kson()^son(0)k, s�(k_0k) = kson() _ son(0)k and s�(k:k) = kson(:)k.Hene, we identify son with its homomorphi extension to onstraintsets and arbitrary formulae.DEFINITION 5 (S-exluding Searh Tree). Let S be a symmetry set.A searh tree for CPr is S-exluding if every binary node v has the formas given by Figure 1, andC lstore = P (Cstore ^ ) ^ Crstore = P (Cstore ^ : ^Ev(:));where Ev(:) = ŝ2S son(Cp)! :son().Before we prove S-reduedness and CPr-ompleteness w.r.t. S ofS-exluding searh trees, we state a proposition to preise the e�etof adding the impliations in de�nition 5 to Crstore. For onveniene,we write Cvp , Cvn and Cvstore to aess Cp, Cn and Cstore in the label(Cp; Cn; Cstore) of v. For a binary node v, we refer to its left hild as vland to its right hild as vr.PROPOSITION 2. Let S be a symmetry set and t an S-exludingsearh tree. For every symmetry s 2 S and for every node v of t wehave Cvstore j= son(Cvp)! son(Cvn):For notational onveniene, we introdue the notation Cpath(v) =Cvp ^ Cvn ^ CPr. A good intuition is to think of Cpath(v) desribing theonstraint store of v in a simple not symmetry exluding searh tree.LEMMA 1. Let S be a symmetry set. Every S-exluding searh tree tfor CPr satis�es for every node v that kvk = kCpath(v)k � AvS ; whereAvS = fs(�) j s 2 S ^ 9v0 �t v : � 2 kCpath(v0)kg.



8 R. Bakofen and S. WillProof. We proof this by tree indution. For the root this is valid, sineAvS = ; and kvk = kCPrk = kCpath(v)k. Assume that we have proventhe laim for a binary node v as given by Figure 1.For the left hild vl, the laim follows immediately from the indu-tion hypotheses, sine AvlS = AvS .For vr, we have to show kvrk = kCpath(vr)k �AvrS . Note that AvrS =fs(�) j s 2 S ^ 9v0 �t vr : (� 2 kCpath(v0)k)g subdivides into its twosubsets AvS and fs(�) j s 2 S^9v0(v0 6�t v^v0 �t vr^� 2 kCpath(v0)k)g.Further, note that Cpath(vr) is equivalent to Cpath(v) ^ :.To show that kvrk � kCpath(v) ^ :k � AvrS ; �x a symmetry s 2 S.We have to show for every v0 �t v that 8� 2 kCpath(v0)k : s(�) 62 kvrk:The �rst ase is v0 �t v. Let � 2 kCpath(v0)k. Then s(�) 62 kvkby indution hypotheses. Sine kvrk � kvk, this immediately impliess(�) 62 kvrk.The seond ase is (v0 6�t v) and v0 �t vr, i.e. v0 is a subnode ofvl. Let � 2 kvlk and assume s(�) 2 kvrk. From � 2 kvlk we have� j= Cp ^  and s(�) j= son(Cp ^ ). That's a ontradition, beausefrom de�nition of S-exluding searh tree s(�) j= son(Cp)! :son(),sine (son(Cp)! :son()) 2 Ev(:).It remains to be shown that kvrk � kCpath(vr)k�AvrS Let � 62 kvrk.We have to show that � 62 kCpath(vr)k �AvrSWe have the following ases:1. � 62 kCpath(vr)k. Then the laim follows immediately.2. � 2 kCpath(vr)k and � 62 kvk. We have to show � 2 AvrS .Now � 2 kCpath(vr)k implies � 2 kCpath(v)k and heneforth � 2AvS � AvrS by indution hypotheses.3. � 2 kCpath(vr)k and � 2 kvk. We will show that � 2 AvrS �AvS= fs(�) j s 2 S ^ 9v0 : (v0 �t vr ^ v0 6�t v ^ � 2 kCpath(v0)kg= fs(�) j s 2 S ^ � 2 kCpath(vl)kg (2)Sine � j= Cstore ^ :, but � 6j= Crstore, there is at least one s 2 Swith � 6j= son(Cp)! :son() by the de�nition of an S-exluding tree.Fix one of these symmetries s. Then � j= son(Cp) ^ son(). SineCstore j= son(Cp)! son(Cn) by Proposition 2, we get� j= son(Cp) ^ son() ^ son(Cn):Hene, s�1(�), whih exists by de�nition of symmetry, satis�es s�1(�) j=Cpath(v)^ (reall that Cpath(v) = Cp^Cn). That is, s�1(�) 2 kCpath(vl)k:Hene, with � = s�1(�) we have a valuation suh that � 2 kCpath(vl)kand � = s(�), whih shows that � is in the set de�ned by (2). �THEOREM 1. Let S be a symmetry set. Every S-exluding searh treet for CPr is S-redued.



Exluding Symmetries in Constraint-Based Searh 9Proof. Fix a symmetry s 2 S, let v be a leaf of t with kvk = f�g. Wehave to show for every node v0 of t with v0 �t v that kv0k = f�0g !s(�0) 6= �: Assume v0 to be a node of t with v0 �t v and kv0k = f�0g ands(�0) = �. It follows � 2 fs(�) j s 2 S ^ 9v0 �t v : � 2 kCpath(v0)kg,and from this the ontradition � 62 kvk by Lemma 1. �By now, we understand that an S-exluding searh tree may exludemore symmetries than atually delared by S diretly. Hene, we haveto investigate the ompleteness property of S-exluding searh trees.THEOREM 2. Let S be a symmetry set. Every S-exluding searh treet for CPr is CPr-omplete w.r.t. S 0, where S 0 is the losure of S underomposition and inversion.Proof. We have to show that t is CPr-omplete w.r.t. to S 0, where S 0is the losure under omposition of S, i.e. for every � 2 kCPrk thereis a leaf v with kvk = f�g _ 9s 2 S 0 : kvk = fs(�)g. Hene �x an� 2 kCPrk. Then there exists a leaf v0 in t with � 2 kCpath(v0)k fromde�nition 5. There are two ases:1.) � 2 kv0k. Then v0 itself is the node v searhed for.2.) � 62 kv0k. By Lemma 1 it follows � 2 Av0S ; i.e. there is a s1 2 S anda v00 �t v0 suh that � = s1(�0), where �0 2 kCpath(v00)k: By indution,we get a sequene of symmetries s1; : : : ; sn 2 S and a leaf v(n+1) of t,where � = s1 Æ � � � Æ sn(�(n)) and f�(n)g = kv(n+1)k. Then v(n+1) is thenode v searhed for sine S 0 is the losure of S. �We will given an example for symmetry exluding searh trees in Se-tion 5, where the symmetry group of permutation are exluded by thesubset of all transpositions (as indiated by the preeeding theorem).Now, we are able to give a more detailed omparison to [8℄. TheSBDS-method therein is essentially our symmetry exlusion restritedto the ase, where the searh tree branhes over onstraints of the formx := t, where x is a variable and t is a ground term (think of it asa value). In this ase, the onstraint olleted in Cp is of the formx1 := t1 ^ : : : ^ xn := tn, i.e. Cp is a partial assignment �.We motivate the restrited SBDS-method with an example. Let asymmetry S� be de�ned by a permutation � suh that S�(x := t) isx := �(t). Now, let Cp be x1 := t1 ^ : : : ^xn := tn at some node v of thesearh tree, whih branhes over x := t. Then, the onstraint added byour method for exluding the symmetry S� is S�(x1 := t1 ^ : : : ^ xn :=tn) =) :S�(x := t), whih is by the de�nition of S� the same asx1 := �(t1) ^ : : : ^ xn := �(tn) =) x 6= �(t):Now, the anteedent is nothing else than a test, whether S� leavesCp (i.e., the partial assignment at the node v) unhanged. Thus, the



10 R. Bakofen and S. Willentailment an be judged diretly at the right subnode of v. In gen-eral, the entailment an not be deided immediately. However, therestrited SBDS-method essentially replaes the entailment test by thetest, whether the symmetry leaves the assignment unhanged. Onlythose symmetries are exluded, for that the test an be deided imme-diately at the very node, where our method would introdue the orre-sponding impliation. In our approah, the orresponding impliationdelays this test to a later point, if it is not deidable yet.3. Symmetry Exluding Searh AlgorithmsAlgorithms. We will disuss two algorithms implementing symmetry-exluding searh trees. A straightforward approah yields proedurenaive ses at the end of this paragraph, here alled the naive algorithm.This algorithm works by keeping trak of Cp to add the impliationson the right branh to Cstore.However, the anteedents of these impliations an be omputedduring the searh more eÆiently, sine the anteedents of the impli-ations added at a node are pre�xes of the ones added in its o�spring.More preisely, let v be a node, whih branhes over . Let vl (resp. vr)denote its left (resp. right) daughter. Now, son(Cvlp ) = son(Cvp ^ ) =son(Cvp) ^ son(): Further, son(Cvrp ) equals son(Cvp). Therefore, theanteedents son(Cp) an be omputed inrementally. For this aim wemaintain a family of Boolean variables �!Cp = (Cps)s2S that reify thetrueth values of son(Cp) for eah symmetry s 2 S. Employing thistehnique we get the improved algorithm ses. In ses, for the left branh,we add rei�ed onstraints Cpls () Cps ^ son(). The family �!Cpl ispassed to the left subtree. For the right branh, we insert only the nowmodi�ed impliations.proedure naive_ses(Cp; Cstore)if Cstore determines solution �then write �elsif ? 62 Cstore thenhoose a onstraint Clstore := Cstore ^ Clp := Cp ^ naive_ses(Clp; Clstore)Crstore := Cstore ^ :^8s 2 S : son(Cp)! son(:)naive_ses(Cp; Crstore)endif.
proedure ses(�!Cp;Cstore)if Cstore determines solution �then write �elsif ? 62 Cstore thenhoose a onstraint Clstore := Cstore ^ ^8s 2 S : �!Cpls () �!Cps ^ son()ses(�!Cpl; Clstore)Crstore := Cstore ^ :^8s 2 S : �!Cps ! son(:)ses(�!Cp;Crstore)endif.



Exluding Symmetries in Constraint-Based Searh 11Analytial Run Time Comparison. We will onentrate on thequestion how many symmetri onstraints are omputed in the di�erentalgorithms for one searh. For the approximation of the speedup, wehave to employ some standard de�nitions for binary trees.We de�ne a (binary) tree t as a pre�x-losed subset of f0; 1g�. Thedepth of a tree t is depth(t) = maxfjwj j w 2 tg: A node v of a tree t isa v 2 t. A leaf of a tree t is a v 2 t, suh that v1 62 t ^ v0 62 t. The leftsubtree of a tree t is left(t) = 1�1t and the right subtree right(t) = 0�1t.The path length of a node v is jvj. We de�ne the left path length of anode v = a1 : : : ajvj as jvjl = jfi 2 f1; : : : ; jvjg j ai = 1gj = P1�i�jvj ai:The right path length of a node v is given by jvjr = jvj � jvjl: A tree t isompletely expanded i� there is a d, suh that t = f0; 1g�d. We de�nea ertain number of nodesnld(k) = jfv j v node of t = f0; 1g�d ^ jvjl = kgj:PROPOSITION 3. For a ompletely expanded tree t, its left and rightsubtrees are ompletely expanded. For a tree t and every node v 2 t, itis satis�ed jvjl � jvj and jvj � depth(t):LEMMA 2. Let k; d 2 N, k; d � 0. Then, nld(k) = (�d+1k+1� for k � d0 otherwise:Proof. Let t be the ompletely expanded tree with depth d. Let afuntion r : t! f0; 1gd+1 � f0d+1g be given by r : v 7! v10d�jvj:For every v 2 t, r(v) is an element of f0; 1gd+1 and ontains exatlyjvjl + 1 ones. Sine r is bijetive, the number of nodes v with jvjl = kis equal to the number of words r(v) of length d + 1 ontaining k + 1ones. There are �d+1k+1� suh words. �In a searh tree t, we all the onstraints  and : that are insertedat the branhes of a binary node basi onstraints. We will need ameasure for the total time the algorithms spend on the omputation ofsymmetri onstraints. As this measure, we just ount the number ofomputed symmetri basi onstraints. This is reasonable, sine we mayassume for an approximation that the omputation of eah symmetribasi onstraint takes equal time and further that the omputation of aomplex symmetri onstraint son(1 ^ � � � ^ n) is done via omputingthe basi symmetri onstraints son(1); : : : ; son(n).THEOREM 3. To produe a ompletely expanded tree of depth d thenaive algorithm omputes jSj �2d�1(d� 2) + 1� many symmetri basionstraints, while the improved algorithm omputes jSj �2d � 1� suhonstraints.



12 R. Bakofen and S. WillProof. In a ompletely expanded tree t of depth d, the naive algo-rithm omputes for a node v with jvj < d exatly jvjl symmetri basionstraints for every symmetry s 2 S. For nodes v with path lengthjvj = d, it does not ompute any symmetri onstraint. Hene, weget our number for one symmetry by summing over all nodes, i.e. byomputing Pv2f1;0g�d�1 jvjl: We simplify furtherd�1Xi=0 i�nld�1(i) =Pd�1i=0 i�� di+1� =Pdi=1(i�1)��di� =Pdi=1 i��di��Pdi=1 �di�=Pdi=0 i � �di��Pdi=0 �di�+ 1 = 12d � 2d � 2d + 1 = (d� 2) � 2d�1 + 1:In the same tree t, the improved algorithm omputes for every node vwith j(jv) < d exatly one symmetri basi onstraint for one symmetry,i.e. the total number of symmetri basi onstraints is the number ofsuh nodes v, i.e. 2d � 1.Both numbers of symmetri basi onstraints are derived for onesymmetry, and thus have to be multiplied by jSj, �nally. �As a orollary, simple alulation shows the speedup by the im-proved algorithm in the omputation of symmetri basi onstraints,i.e. jSj(2d�1(d�2)+1)jSj(2d�1) � d�22 , to be linear.The seond most runtime-relevant fator is the hek of the an-teedents of the inserted impliations by the onstraint solver. For thenaive algorithm, it is reasonable to assume that the solver heks eahanteedent of the inserted impliations at eah node at least one. Inontrast to this, the improved algorithm heks eah branhing on-straint of Cp one for eah node. Under this assumption, again thespeedup turns out to be linear in the depth of the tree.4. Geometri SymmetriesNow, we will give a onrete example for symmetries, namely geometrysymmetries. We will treat the speial ase where we have points in Zd,although our method is not restrited to this ase. We will exemplifythe symmetry onstrutions in two dimensions, and give an examplefor the exlusion of additional symmetries as indiated by Theorem 2.De�nition of Geometri Symmetries. There are many problemswhere one enodes the two-dimensional position of an objet i using�nite domain integer variables Xi; Yi. Examples are the N-queens andthe tiling problem. A more omplex and realisti example (in threedimensions) is the lattie protein struture predition problem [2℄.



Exluding Symmetries in Constraint-Based Searh 13The symmetries for Z2 have exatly the same struture as for thegeneral ase Zd. They are de�ned by aÆne mappings S : Zd ! Zdwith S(~x) = AS~x + ~vS that map Zd onto Zd. That is, the matrixAS is an orthogonal matrix with the property that the set of olumnsf~v1; : : : ; ~vdg of AS equals f�~e j ~e is a unit-vetor of Zdg. For example,for Z2, the matrix � 0 �11 0 � denotes the rotation by 90Æ. For Z2, we have8 symmetries onsisting of the identity, the 4 reetions (at x- and y-axis, and the two diagonals) and the 3 rotations by 90Æ, 180Æ and 270Æ.For Z3, we have 48 symmetries inluding the identity.Fixing the Symmetries. By now, the vetor ~vS is not yet �xed.There are two di�erent approahes for �xing the symmetry. We onsiderZ2 as an example. The methods work for all other dimensions as well.The �rst ase is that every possible solution lies within a �xedsquare (in the general ase, within a hyperube).2 This is equivalentto the proposition that there are integers xmin; xmax; ymin; ymax suhthat for all � 2 kCPrk we have minf�(Xi)g = xmin, maxf�(Xi)g =xmax, minf�(Yi)g = ymin, and maxf�(Yi)g = ymax. Thus, the mini-mal square around the position of all objets is de�ned by the points(xmin; ymin) and (xmax; ymax) in every solution. We all this the frameof the problem CPr. In the N-queens problem, this is just the board.Now, knowing the frame of a problem CPr, we an �x the vetor ~vSfor all symmetries. Consider as an example a problem whose frame isde�ned by (0; 0) and (3; 2). Furthermore, onsider the three symmetriesreetion at the y-axis, rotation by 90Æ and rotation by 180Æ, whih wewill name S1, S2 and S3 in the following. The orresponding mappingsare de�ned by Si(~x) = ASi(~x)+~vSi , where AS1 = ��1 00 1 �, AS2 = � 0 �11 0 �and AS3 = ��1 00 �1 �. The orresponding mappings of the frame are
(−3,2) (3,2)

(−2,3) (3,2)

(−3,−2)

(3,2):A symmetry S is ompatible with the above de�ned frame if theframe is mapped to itself, i.e. if f~v j (0; 0) � ~v � (3; 2)g = fS(~v) j(0; 0) � ~v � (3; 2)g. For a given matrix AS , there exists a ~vS suhthat S(~x) = AS~x+~vS satis�es this ondition if and only if AS satis�esAS(3; 2) = (�3;�2): For the matries AS1 , AS2 and AS3 , we get (�3; 2),(�2; 3) and (�3;�2), whih exludes the symmetry haraterized byAS2 . We �nally get ~vS1 = (3; 0) and ~vS3 = (3; 2):2 The tehnique an be extended to the ase that the hyperube is not �xed inadvane, but during searh.



14 R. Bakofen and S. WillThe seond ase is that we know a point ~p = (px; py) whih shouldremain unhanged under the symmetries. In that ase, we know that thesymmetries are de�ned by Si(~x) = ASi(~x�~p)+~p = ASi(~x)�ASi(~p)+~p.Hene, ~vSi = ~p�ASi(~p).The remaining part is to de�ne symmetri onstraints. We use aspei� example where we leave the point (5; 5) �x. Consider the twosymmetries reetion at the y-axis and rotation by 90Æ. By what wehave said above, the orresponding mappings areSRy(~x) = ��1 00 1 � ~x+ ( 100 ) and S90Æ(~x) = � 0 �11 0 � ~x+ ( 100 )Now suppose that we have modeled points p1; : : : ; pn using variablesX1; : : : ;Xn and Y1; : : : ; Yn, and we want to de�ne SRyon and S90Æon forthe onstraints of the form Xi =  (for other kind of onstraints ,the de�nition Son() is analogous). Now the symmetri onstraintsSRyon(Xi = ) (resp. S90Æon(Xi = )) must express the onstraint valid forSRy(�) (resp. S90Æ(�)) for every possible � with � j= Xi = . Then,� j=Xi =  � j=Xi = , ~pi = (; �(Yi)) , ~pi = (; �(Yi)), SRy(~pi) = (10 � ; �(Yi)) , S90Æ(~pi) = (10 � �(Yi); ), SRy(�) j= Xi = 10�  , S90Æ(�) j= Yi = Sine Xi =  does not restrit the valuation of �(Yi), we know thatSRyon(Xi = ) is Xi = 10 � , and S90Æon(Xi = ) is Yi = . Analogously,we get that SRyon(Yi = ) is Yi = , and that S90Æon(Yi = ) is Xi = 10�.Note that SRy() has the same type as  (i.e., both have the samevariable). This does not hold for  and S90Æ().Results. We have applied the method to the lattie protein struturepredition [2℄, whih is a hard ombinatorial problem. Table I shows thenumber of solutions, searh steps and runtimes for �nding all minimalenergy strutures for 4 sequenes, both without and with symmetryexlusion. We have added simple exlusion methods in both ases,whih is the reason that we have only 16 (instead of 48) symmetries leftin sequenes 1; 2 and 4. As one an see from the table, we have a nearlylinear speedup in number of searh steps, and a lose to linear speedupin runtime. In sequene 3, the simple exlusion does not apply, whihgives rise to 48 symmetries. Furthermore, the optimal onformationsand the symmetri ones are very similar, whih implies that we haveless speedup (sine deteting the symmetri solution is harder).



Exluding Symmetries in Constraint-Based Searh 15Table I. Results for searhing all minimal energy strutures without and withsymmetry exlusion.len without sym. exl. with sym. exl. ratio#noex nnoex tnoex #ex nex tex #noex#ex nnoexnex tnoextex27 4,752 45,924 15 m 297 2,998 69 s 16 15.32 13.1727 408,864 2,465,728 6.2 h 25,554 155,693 26.3 m 16 15.84 14.1831 53,472 351,101 3.4 h 1,114 11,036 7.4 m 48 31.81 27.4336 56,448 732,952 3.7 h 3,528 55,086 19.9 m 16 13.31 11.245. Value Permutation symmetriesWe will onsider the lass of all problems that have permutations ofvalues as symmetries. An instane of this problem lass is the grapholoring problem.In the following, we onsider �nite domain integer problems, wherethe variables have the domain D � N assoiated. We denote withPerm(D) the set of all permutations of D, and with Trans(D) the setof all transpositions of D (i.e., those permutations, whih exhange justtwo elements of D). With SXPerm(D), we denote the set of all symmetriesthat permute the values of the variables in X .DEFINITION 6. Let X be the set of solution variables. The set of allvalue permutations of X is de�ned as the symmetry setSXPerm(D) = fS j 9� 2 Perm(D)8� : S(�)(X) = �(�(X))g:The subset of all transposition symmetries SXTrans(D) is de�ned analo-gously. For every symmetry S 2 SXPerm(D), we say that � is the under-lying permutation of S if S(�)(X) = �(�(X)).Now, we onsider searh trees that branh over onstraints of theforms X = k, X = Y or X 6= Y . These are the most often usedonstraints in the ase of permutative symmetries. The interesting partis that if a searh tree branhes over those onstraints, then everySXTrans(D)-exluding tree is even SXPerm(D)-redued. Thus, we need toexlude only the quadratially many transpositions for exluding theexponentially many permutations in this ase.THEOREM 4. Let CPr be a problem that has SXPerm(D) as a symmetrygroup. Let t be a SXTrans(D)-exluding searh tree suh that for everybranh v, the onstraint  is of the forms X = d, X = Y , or X 6= Ywith X;Y 2 X . Then, t is SXPerm(D)-redued.



16 R. Bakofen and S. WillProof. It is suÆient to show that for every branh v in t, we havefS(�) j S 2 SXPerm(D) ^ � 2 kvlkg \ kvrk = ;;where vl is the left node, and vr the right node of the branh v.Assume that there is a valuation � and a symmetry S 2 SXPerm(D)suh that � 2 kCpath(vl)k and S(�) 2 kCpath(vr)k. Let �S be theunderlying permutation of the symmetry S. Let  be the onstraintintrodued in the left node vl. Then � j=  and S(�) j= :.The �rst observation is that  annot be of the forms X = Y orX 6= Y . If  were of the form X = Y , then �(X) = �(Y ), and henewe would have S(�)(X) = �S(�(X)) = �S(�(Y )) = S(�)(Y ); whihwould be a ontradition to S(�) j= :. Similarly, if  were of the formX 6= Y , then �(X) 6= �(Y ), and hene S(�)(X) = �S(�(X)) andS(�)(Y ) = �S(�(Y )) must be di�erent sine �S is a bijetion.So let  be of the form X = d. Sine  is X = d, � j=  andS(�) j= :, we know that �(X) = d 6= S(�)(X): By the de�nition ofthe searh tree t, we know that X 2 X . Hene, there is a transpositionsymmetry T 2 SXTrans(D) that exhanges �(X) = d and S(�)(X) = d0.We want to show that (T�1 Æ S)(�) = (T Æ S)(�) 2 kCpath(vl)k, whihimplies that S(�) is exluded by Lemma 1.In the following, let �T be the underlying transposition of the sym-metry T . Note that �T (d) = d0, �T (d0) = d and for all d00 di�erentfrom d; d0, we have �T (d00) = d00. This implies (T Æ S)(�) j=  sine � (X = d), S(�)(X) = d0 and �T (d0) = d. Furthermore, note that�S(d) = d0, but not neessarily �S(d0) = d. Sine �S is a bijetion, weknow that �S(d0) 6= d0.For showing (T Æ S)(�) 2 kCpath(vl)k, it is suÆient to prove that(T Æ S)(�) 2 kCpath(v)k as follows. If (T Æ S)(�) 2 kCpath(v)k, then weknow that (T Æ S)(�) 2 kCpath(vl)k [ kCpath(vr)k sine kCpath(v)k isequal to kCpath(vl)k [ kCpath(vr)k. Sine we branh over  at node vand (T Æ S)(�) j=  by our assumption, this implies immediately(T Æ S)(�) 2 kCpath(vl)k:For showing (T ÆS)(�) 2 kCpath(v)k, we onsider the following asesfor 0 2 Cpath(v):1. 0 is Y = Z. Sine S(�) j= 0, we get S(�)(Y ) = S(�)(Z). Hene,�T (S(�)(Y )) = �T (S(�)(Z)), whih implies (T Æ S)(�)(Y ) = (T ÆS)(�)(Z) and hene (T Æ S)(�) j= Y = Z.2. 0 is Y 6= Z. Sine S(�) j= 0, we get S(�(Y )) 6= S(�)(Z). Sine �Tis a bijetion, we have for any values k0; k00 that �T (k0) = k = �T (k00)implies k0 = k00. Hene, S(�)(Y ) 6= S(�)(Z) implies �T (S(�)(Y )) 6=�T (S(�)(Z)). Hene (T Æ S)(�) j= Y 6= Z.



Exluding Symmetries in Constraint-Based Searh 173. 0 is Y = k. Sine both � j= 0 and S(�) j= 0, we get �(Y ) =k = �S(�(Y )) = �S(k) Hene �S(k) = k, whih implies that kmust be di�erent from d and d0. Hene, �T (k) = k, whih implies(T Æ S)(�) j= Y = k.In any ase, we get (T Æ S)(�) j= 0 for all 0 2 Cpath(v). �Graph Coloring. As noted above the graph oloring is an example fora problem with value permutations as symmetries. The graph oloringproblem is as follows. Given a graph G = (V;E) and a set of olors. Anadmissible oloring  of G, is a mapping of the verties V to the set ofolors, satisfying the onstraint that for all (v1; v2) 2 E: (v1) 6= (v2).We searh for the minimal set of olors, where we still an �nd anadmissible oloring.In this problem olorings are onsidered to be symmetri, if they arejust permuted in olors to eah other. We ompare two implementationsof a solver for this problem. The �rst one is a naive implementation thatuses a simple �rst fail heuristi. This implementation does not havesymmetry exlusion. The seond implementation with full exlusionof symmetries is just a simple extension of the �rst one, where weadded our symmetry exlusion mehanism for transpositions (whih issuÆient by Theorem 4). The results are given in Table II.Table II. Results for some randomly generated problem instanesproblem size with sym. ex. without sym. ex. ratioverts edges olors loned time/s loned time/s loned time20 114 6 24 50 162 90 6.8 1.818 101 7 35 70 887 450 25.3 6.425 185 8 61 170 52,733 29,710 864.5 487.050 506 8 434 2,280 1,440,549 1,588,340 3,319.2 696.630 292 9 97 230 551,022 385,100 5,680.6 1674.335 339 9 168 370 3,428,853 2,569,200 20,409.8 6943.86. Conlusion and Future WorkWe have introdued the �rst method, namely symmetry exludingsearh, that an exlude arbitrary symmetries in onstraint-based searh.In ontrast to many other methods that an be found in the literature,the SES-method does not restrit the searh strategy.SES is based on a delarative desription of the symmetries in theform of symmetri onstraints, whih usually an be obtained easily.We have given ompleteness and orretness proofs as well as the proof,that the method exlude all onsidered symmetries. In the ase that
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