Excluding Symmetries in Constraint-Based Search

Rolf Backofen and Sebastian Will*

({backofen,wills}@informatik.uni-muenchen.de)
Institut fir Informatik, LMU Muinchen
Oettingenstrafie 67, D-80538 Miinchen

Abstract. We introduce a new method, called symmetry ezcluding search (SES),
for excluding symmetries in constraint based search. To our knowledge, it is the first
declarative method that can be applied to arbitrary symmetries. The SES-method
is based on the notion of symmetric constraints, which are used in our modification
of a general constraint based search algorithm. The method does not influence the
search strategy. Furthermore, it can be used with either the full set of symmetries,
or a subset of all symmetries.

We proof correctness, completeness and symmetry exclusion properties of our
method. Then, we show how to apply the SES-method in the special case of ge-
ometric symmetries (rotations and reflections) and permutation symmetries. Fur-
thermore, we give results from practical applications.

Keywords: Symmetry Exclusion, Geometric Symmetries, Permutation Symme-
tries, Constraint-Based Search, Symmetry Excluding Search (SES)

1. Introduction

In many search problems, one is faced with the existence of symmetries.
Symmetries give rise to many different solutions found by the search
procedure, which are all considered to be equivalent. Often, one is
not interested in also getting all these symmetric solutions to every
found solution. Without exclusion of symmetries, whenever a solution
is found or proven to be inconsistent with the search problem, the
search algorithm still considers all symmetric solutions. In consequence,
those symmetries give rise to an (often exponential) amplification of the
search space. Hence, symmetry exclusion promises to efficiently prune
the search tree.

For example, consider constraint problems, where finite domain vari-
ables have a geometric interpretation such as in the N-queens problem
or the square-tiling problem (where a set of squares of given sizes must
fit exactly into a fixed square). A more complex, real-world problem
is the lattice protein structure prediction problem. In [2], it is shown
how to find solutions for this problem using constraint programming
techniques. In this case, different solutions are symmetric if they can be
generated using reflections or rotations. In other problems, symmetric

* supported by the PhD programme GKLI of Deutsche Forschungsgemeinschaft.

i“ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

2 R. Backofen and S. Will

solutions can be generated by performing permutations on variable
valuations (like in the map coloring (or graph coloring) problem).

In the following, we consider search problems that stem from con-
straint satisfaction problems (CSP). A common approach is to trans-
form (problem specifically) a CSP C into a CSP Cj that excludes at
least some of the symmetries of the original problem Cf.

Unfortunately, symmetry exclusion was often not straightforward
to implement. Even then, it had to be redesigned for every special
problem or enumeration strategy. This led to an inflexibility in the
program structure once it was introduced. Thus, the widespread usage
of symmetry exclusion was strongly hindered by its complexity. Often
symmetry exclusion was not done at all or only for a small set of sym-
metries. In other cases, where symmetry exclusion was implemented it
distracted the programmers attention from more important tasks.

In this paper, we present a new approach for symmetry exclusion,
called symmetry excluding search (SES), which works by modifying the
search algorithm. The technique of modifying the search algorithm to
exclude symmetries was already used in the literature. In contrast to
previous approaches, SES is (to our knowledge) the first declarative
method that can be applied to arbitrary symmetries, which can be de-
fined declaratively. Furthermore, it does not restrict the search strategy
(i.e., the symmetry exclusion can be done independently of the search
strategy). This is important, since in many constraint problems major
part of the knowledge of the problem is encoded in the search strategy.

We have implemented our method in the concurrent constraint pro-
gramming language Oz [10] using the programmable search engine
described in [9]. However, the method can be implemented in any
system that handles implication (via entailment) and allows to modify
the search procedure such that additional constraints are added in one
branch of a branching step.

Related Work. Previous work on symmetry exclusion by modifying
the search algorithm handled only restricted forms of symmetries. In [7],
the notion of interchangeable values is introduced. Two values a and b
are interchangeable for a variable V' iff for every solution that maps V'
to a, the corresponding valuation that maps V to b is also a solution.

The method in [3] handles only permutations of domain values in
the case of binary constraints (thus, e.g. the all-distinct constraint has
to be translated into binary inequalities, which implies that efficient
propagation methods for all-distinct cannot be applied). Furthermore,
it works by introducing a symmetry excluding form of constraint prop-
agation, which is a modified form of domain propagation (thus, the
method cannot make use of interval propagation).

Excluding Symmetries in Constraint-Based Search 3

[1] and [4] consider only propositional calculus. The symmetries
there are permutations of Boolean variables. These methods do not
apply to general constraint satisfaction problems.

The work presented in [8] is essentially an implementation and ap-
plication of our method to solve practical problems. Their work is
compared to the SES-method in greater detail in Section 2.

An example of a symmetry exclusion method that works by a (prob-
lem independent) transformation of the constraint satisfaction problem
is [5]. They introduce symmetry breaking predicates, which are true
only for the smallest solution within an equivalence class (where the
ordering is fixed in advance). Thus, if the search strategy enumerates a
non-minimal (according to the pre-fixed ordering) solution first, then it
will be excluded by the symmetry breaking predicates. In consequence,
not every search strategy remains possible given the pre-fixed ordering.

In contrast, there is no prefixed ordering in which symmetrical so-
lutions will be excluded by our method. This implies that we respect
user-defined search strategies as much as possible.!

Overview of the paper. The formal definition of symmetry ex-
cluding search trees as wells as completeness and correctness proofs
are presented in Section 2. Additionally, we show that our method
guarantees to exclude all specified symmetries. Section 3 discusses an
optimized implementation of symmetry excluding search. In Section 4,
we treat geometric symmetries and present the results of applying the
problem to a complex problem. In Section 5, we consider symmetries
which are generated by permuting the values of the variables. For ex-
ample, such symmetries occur in the graph coloring problem. We proof,
that in this case, it is sufficient to exclude the subset of transpositions in
order to exclude all permutations and present results for graph coloring.

Introductory Example. We start with a simple example to explain
the main concepts. Consider the N-queens problem, where we have an
array Q[0..N], whose elements can take values from 0..N. Q[i] = j
states that there is a queen at position (7,). Now consider the symme-
try corresponding to the reflection at the axis y = %, which is parallel
to the z-axis (in the sequel denoted by Rx). Clearly, for every solution of
the N-queens, the Rz-symmetric version is also a solution of N-queens
and thus should be excluded.

To use our method, first we have to introduce symmetric versions of
the constraints which are inserted by the search procedure. One kind
of constraint is Q[i] = j. If we have any distribution of queens on

! Clearly, if the search strategy depends on the constraint store, then any method
of symmetry exclusion that prunes the search tree must influence the way solutions
are encountered (since the constraint store is changed by the symmetry exclusion).

4 R. Backofen and S. Will

the board satisfying Q[i] = 7, then the Rz-symmetric distribution will
satisfy Q[i] = N — j. Hence, the constraint Q[i] = N — j is the Rz-
symmetric version of the constraint Q[i] = j. Similarly, we get that the
Rz-symmetric constraint of Q[i] < j is Q[i] > N — j. In the following,
we write ST%(c) to denote the Rz-symmetric constraint to c.

Our method works by inserting additional constraints at the right
branches of the search tree, which exclude the symmetric solutions that
are enumerated in the right branch. Consider the following search tree
for the 11-queens problem, where we indicate the constraints added by
symmetry exclusion via frames:

QNI<Ls Q1] >5
[l =~sman<n

Q2] =3 Q2] #3 1
AQ[I>10-5 — Q[2]#10—3]

SErQI <5) —SR(Q[2] =3)

This can be interpreted intuitively as follows. In the topmost branch,
if we search for a solution in the right branch satisfying Q[1] > 5, then
the Rz-symmetric solution will satisfy Q[1] < 5. Hence, the symmet-
ric solution was already encountered earlier in the left branch (under
Q[1] < 5), which is the reason that we can close the topmost right
branch. For the second right branch labeled Q[2] # 3, we want again to
exclude the Rz-symmetric solutions found in the right branch. Hence,
we would like to add the constraint ~.S%*(Q[2] = 3) to the right branch.
But this would exclude too many solutions. The prerequisite of the
Rz-symmetric solution to be found in the right branch is that both
the solution and its Rz-symmetric version satisfies Q[1] < 5. Now the
only solutions that satisfying this conditions are solutions that satisfy
Q[1] = 5. Hence, we can add ~S®*(Q[2] = 3) under the condition
that Q[1] = 5. But this is exactly the effect that we achieve by adding
(Q[1] > 10 — 5) — (Q[2] # 10 — 3) at the second right branch (since
the constraint store contains already Q[1] < 5).

Preliminaries. We fix a first-order signature ¥ including the equality
= and a set of variables V. Constraints are literals, and constraint
formulae are quantifier-free formulae over ¥. We identify ¢ = ¢’ with
t' = t. C denotes the set of all constraints. A set of constraints C C C is
interpreted as the conjunction of the constraints contained in C, and we
will freely mix set notation and conjunction. The set of free variables
of C is denoted by V(C).

We fix a standard interpretation A with domain D, which describes
our constraint theory. In the following, we assume a fixed constraint
set Cp, describing the problem to be solved. An assignment o in A

Excluding Symmetries in Constraint-Based Search)

is a partial function o : V — D4 . We say that a (possibly partial)
assignment « satisfies ¢ (short o = ¢) if there is a total assignment
o 2 a with A,/ = ¢. We write ¢ | 1 if for every @ we have o =
¢ — 1. A constraint set C' (syntactically) determines a set of variables
X to an assignment « iff for all x € X exists a ground term ¢ such that
z=teC and a(z) = t4.

In many problems, one is interested only in a subset of all variables.

DEFINITION 1 (Solution Variables). Let X CV be a set of variables.
X is a solution variables set for C' if for all a

(dom(a) =XAa C) = (El!o/ ca C o/ Adom(a) = V(O)Ad = C),

where ap(a) (‘exists a unique « satisfying ¢(a)’) is short for the
expression Ja(p(a) AVa' : p(a') = a = o). For a solution variables
set X, we say that o is a X-solution for C' if dom(a) = X and o = C.
With ||C||* we denote the set of X-solutions of C.

In the following, we fix X'. Hence, we use the term ’solution’ as short
for ’X-solution for C’, and we write ||C/|| as short for |C/|*.

DEFINITION 2 (Symmetry). A symmetry s for Cp; is a bijective
function s : ||Cp|| = ||Cpr||. A symmetry set S for Cp; is a set of
symmetries for Cpy. A symmetry group S is a symmetry set for Cpy
which is a group.

Note that for every symmetry s for Cp,, also s~' is a symmetry for
Cpr. We denote the identity function on ||Cp,|| with idc,,, (which is a
symmetry by definition). Clearly, the set of all symmetries for Cp; is a
group. In many cases, we do not want to consider all symmetries, since
either there are too many of them, or some of them do not have an
intuitive characterization.

2. Symmetry Excluding Search Trees

Usually, a search tree in constraint programming is a labeled tree,
where the nodes are labeled with the constraints in the constraint store,
and the edges are labeled by constraints or negated constraints. Nodes
are labled by constraint stores. The root node is labeled with P(Cp;)
(where P(-)) describes the effect of propagation). For a binary node
with constraint store Cgore that branches over the constraint ¢, the
left (resp. right) subnode has the constraint store P(Csiore A ¢) (resp.
P(Cstore A _‘C)-

6 R. Backofen and S. Will

(Cp, Cn 5 Cstore)

C e

(CP A, Cn, Cétore) (Cpa Crn A ¢, C;tore)

Figure 1. General form of binary search nodes

We need a more general form of search trees, which allow us to
exclude some solutions (namely symmetrical ones). In addition, we need
at a node v the positive and negative constraints that have been used
along the path from the root to v to generate the node v.

DEFINITION 3 (Search Tree). Let t be a finite, binary, rooted and
ordered tree, whose edges are labeled by literals, and whose nodes are
labeled by triples of constraint sets. The tree t is a search tree for Cp,
if the following conditions are satisfied:

1. The root node has the label (0,0, P(Cp;)),

2. every binary node has the form as given by Figure 1, where Csltore =
Cstore A ¢ and Cl oo = Cstore A T

Intuitively, the reason for distinguishing between positive and neg-
ative constraints is just that the negative constraints C), describe the
previously found solutions, i.e. Vo' <; vV € ||Cspore (V') || & (a0 E —=Ch).
Here, we denote with <; the partial ordering of nodes induced by %.

Note that we do not force Cl . (resp. Cl..) to be equivalent to
Cstore N ¢ (resp. Cytore A —¢). The reason is that we must add some
additional constraints during search for excluding symmetries. Since
Cstore describes all constraints valid at some node v, we set [|v| =
|| Cstore|| for a node v in ¢ with label (Cp, Ch, Cstore)-

DEFINITION 4 (Expanded, Cp,-Complete and S-Reduced Trees).
The search tree t is completely expanded if for every unary node v =
(Cp, Ch, Cstore), €ither L € Cyiore, or ||v|| = {a} and Cyore syntactically
determines X to a. A search tree t is Cpy-complete if for every a €
||Cpr|| there is a leaf v in t with {a} = ||v||. Let S be a symmetry set
for Cpy. A search tree is Cpr-complete w.r.t. S if for every a € ||Cpy||
there is a leaf v such that

ol ={a} v Fs €S :|[o] ={s(a)}.
A search tree is S-reduced if for every leaf v with ||v|| = {a} we have

Vs € S Vieafs v' with v' <, v : (||V'|| = {a'} = s(d/) #a). (1)

Excluding Symmetries in Constraint-Based Search 7

Note that whenever S is closed under inversion, (1) is equivalent to
VseS8S Vo' #uv: ||V ={d} = s(d) # a.

Before we can show how to produce an S-reduced search tree that is
Cpr-complete w.r.t. S, we first have to define how symmetries operate
on constraints. In the following, we will assume that for every constraint
¢ and every s, there is a constraint ¢’ such that s*(||c||) = |||, where
we define s* on sets of Cpy-solutions by s*(A) = {s(«) | « € A}. For
every ¢, there are usually more than one different constraints ¢’ with
s*(Jlell) = ||¢'|]- Hence, fix a function sco, on constraints such that

s (llell) = llscon(e) -

PROPOSITION 1. Let scon be defined as before. Then Scon distributes
over the Boolean operators, i.e. s*(|[cAc||) = [|Scon (€) AScon (€)]], s*(]|cV

) = lIscon(€) V scon ()| and s*(||=cll) = llscon(—c)l-

Hence, we identify scon with its homomorphic extension to constraint
sets and arbitrary formulae.

DEFINITION 5 (S-excluding Search Tree). Let S be a symmetry set.
A search tree for Cpy is S-excluding if every binary node v has the form
as given by Figure 1, and

Cétore = P(Cstore NC) A srtore = P(Cgstore N ¢ A E¥(—c)),

where EY(—c) = /\ Scon(Cp) = 7Scon(€)-
sES

Before we prove S-reducedness and Cp.-completeness w.r.t. S of
S-excluding search trees, we state a proposition to precise the effect
of adding the implications in definition 5 to Cf... For convenience,
we write Cg, CY and C%, .. to access Cp, O and Cgiore in the label
(Cp, Cn, Cstore) of v. For a binary node v, we refer to its left child as v;

and to its right child as v,.

PROPOSITION 2. Let § be a symmetry set and t an S-excluding
search tree. For every symmetry s € S and for every node v of t we
have Cgore F Scon(Cp) — Scon (CY)-

For notational convenience, we introduce the notation Cpgu(v) =
Cy A Cp A Cpr. A good intuition is to think of Cpayp(v) describing the
constraint store of v in a simple not symmetry excluding search tree.

LEMMA 1. Let S be a symmetry set. Every S-excluding search tree t
for Cp, satisfies for every node v that ||v|| = [|Cpawn(v)|| — A%, where
t={s(a) | s€e SAT <4 v:a€||Cpun(v)|}

8 R. Backofen and S. Will

Proof. We proof this by tree induction. For the root this is valid, since
% =0 and ||v]| = ||Cp;|| = ||Cpasn(v)]|. Assume that we have proven
the claim for a binary node v as given by Figure 1.

For the left child v;, the claim follows immediately from the induc-
tion hypotheses, since AY = A%.

For v,, we have to show ||v.|| = ||Cpam (v,)|| — AG . Note that AY =
{s(a) | s € SAT <4 vy : (a0 € [|Cpan(v')|])} subdivides into its two
subsets A% and {s(a) | s € SATV' (V' 4 vAVY < vp A € ||Cparn (V)]]) }-
Further, note that Cpep(vy) is equivalent to Cpeun(v) A —c.

To show that ||v,|| C [|Cpan(v) A e — AZ, fix a symmetry s € S.
We have to show for every o' <; v that Vo € ||Cpamn (V)| = s(c) & [Jvr |-

The first case is v/ <; v. Let @ € ||Cpaun(v')]]. Then s(a) & |||
by induction hypotheses. Since ||v,.|| C ||v||, this immediately implies
s(a) & [lvp].

The second case is (v' #4; v) and v' <; v, i.e. v' is a subnode of
v;. Let @ € ||y]| and assume s(a) € |[|vy]|. From « € ||vi|| we have
a = Cp Acand s(a) = scon(Cp A). That’s a contradiction, because
from definition of S-excluding search tree s(a) = Scon(Cp) — —Scon(€),
since (Scon(Cp) = —Scon(€)) € EY(—c).

It remains to be shown that ||v,|| 2 ||Cpan (vr)]| — AL Let o & [Jvy||.
We have to show that o & ||Cpasmn (vr)|| — AL
We have the following cases:

L. a & ||Cpatn(vr)]|- Then the claim follows immediately.
2. a € ||Cpaen(vy)|| and o & ||v||. We have to show o € Ag.

Now a € ||Cpan(vr)|| implies « € ||Cpasn(v)]| and henceforth o €
A% C AY by induction hypotheses.

3. a € ||Cpaen(vy)|| and « € ||v||. We will show that o« € Ay — A%

= {s(B) [s € SAT : (v e vy AV AL v AB € [|Cpan(v')]}

= {s(B) | s € SAB € [|Cparn (1) I} (2)
Since « = Csiore A ¢, but a [~ Cl, ., there is at least one s € S
with a & scon(Cp) — Scon(c) by the definition of an S-excluding tree.

Fix one of these symmetries s. Then a = s¢on(Cp) A Scon(c). Since
Cstore = Scon (Cp) = Scon(Chn) by Proposition 2, we get

a = Scon(Cp) A Scon(€) A Scon(Ch)-

Hence, s~! (), which exists by definition of symmetry, satisfies s~ (o) =
Cpatn (v)Ac (recall that Cpayp (v) = CoACy). That is, s7 () € ||Cparn (v1) |-
Hence, with 8 = s™'(«) we have a valuation such that 3 € ||Cpan (v1)||
and a = s(f3), which shows that « is in the set defined by (2). O

THEOREM 1. Let S be a symmetry set. Fvery S-excluding search tree
t for Cpy is S-reduced.

Excluding Symmetries in Constraint-Based Search 9

Proof. Fix a symmetry s € S, let v be a leaf of ¢ with ||v]| = {a}. We
have to show for every node v’ of ¢ with v" <; v that ||v'|| = {a/} —
s(a’) # a. Assume v’ to be a node of ¢ with v’ <; v and ||v'[| = {¢/} and
s(a') = a. Tt follows o € {s(a) | s € SAW <4 v: € [|Cparn(v')||}
and from this the contradiction « ¢ ||v]| by Lemma 1. O
By now, we understand that an S-excluding search tree may exclude
more symmetries than actually declared by S directly. Hence, we have
to investigate the completeness property of S-excluding search trees.

THEOREM 2. Let S be a symmetry set. Fvery S-excluding search tree
t for Cpy is Cpy-complete w.r.t. S', where S’ is the closure of S under
composition and inversion.

Proof. We have to show that ¢ is Cp,-complete w.r.t. to S’, where &’
is the closure under composition of S, i.e. for every a € ||Cp;|| there
is a leaf v with |[v]| = {a} V s € &' : |jv|| = {s(a)}. Hence fix an
« € [|Cp;||. Then there exists a leaf v’ in ¢ with o € ||Cpgep(v")|| from
definition 5. There are two cases:

1.) a € ||¢'||. Then o' itself is the node v searched for.

2.) a & ||v'|. By Lemma 1 it follows oo € A%, i.e. there is a s, € S and
a v <; v’ such that o = s;(a), where o/ € ||Cpa, (v")||. By induction,

we get a sequence of symmetries si,...,s, € S and a leaf v(® 1) of ¢,
where o = 51 0--- 0 s, (™) and {a™} = ||o(+D||. Then v is the
node v searched for since S’ is the closure of S. Il

We will given an example for symmetry excluding search trees in Sec-
tion 5, where the symmetry group of permutation are excluded by the
subset of all transpositions (as indicated by the preceeding theorem).

Now, we are able to give a more detailed comparison to [8]. The
SBDS-method therein is essentially our symmetry exclusion restricted
to the case, where the search tree branches over constraints of the form
x = t, where z is a variable and t is a ground term (think of it as
a value). In this case, the constraint collected in C}, is of the form
z1 =t A ... Nxy = tp, ie. () is a partial assignment .

We motivate the restricted SBDS-method with an example. Let a
symmetry S, be defined by a permutation o such that S,(z = t) is
z = o(t). Now, let Cy, be 1 =t; A ... Az, =1, at some node v of the
search tree, which branches over z = ¢. Then, the constraint added by
our method for excluding the symmetry S, is Sy(z1 =t A ... Az =
tn) = —S,(x =1t), which is by the definition of S, the same as

1 =0(t)N ... Ny =0(tn) = x # o(t).

Now, the antecedent is nothing else than a test, whether S, leaves
Cp (i.e., the partial assignment at the node v) unchanged. Thus, the

10 R. Backofen and S. Will

entailment can be judged directly at the right subnode of v. In gen-
eral, the entailment can not be decided immediately. However, the
restricted SBDS-method essentially replaces the entailment test by the
test, whether the symmetry leaves the assignment unchanged. Only
those symmetries are excluded, for that the test can be decided imme-
diately at the very node, where our method would introduce the corre-
sponding implication. In our approach, the corresponding implication
delays this test to a later point, if it is not decidable yet.

3. Symmetry Excluding Search Algorithms

Algorithms. We will discuss two algorithms implementing symmetry-
excluding search trees. A straightforward approach yields procedure
naive_ses at the end of this paragraph, here called the naive algorithm.
This algorithm works by keeping track of C}, to add the implications
on the right branch to Cgtore-

However, the antecedents of these implications can be computed
during the search more efficiently, since the antecedents of the impli-
cations added at a node are prefixes of the ones added in its offspring.
More precisely, let v be a node, which branches over c. Let v' (resp. v")

denote its left (resp. right) daughter. Now, scon(Cgl) = Scon(Cp A) =
Scon(CIg) A Scon(c). Further, scon(CgT) equals SCOH(CS). Therefore, the

antecedents scon(Cp) can be computed incrementally. For this aim we
maintain a family of Boolean variables C—‘Z) = (Cps)ses that reify the
trueth values of s¢on(Cp) for each symmetry s € S. Employing this
technique we get the improved algorithm ses. In ses, for the left branch,
we add reified constraints Cp, <= Cp, A scon(c). The family C—'[;l is
passed to the left subtree. For the right branch, we insert only the now
modified implications.

procedure naive_ses(C}, Csiore) procedure ses(az,cﬂom)
if Csiore determines solution « if Cstore determines solution «
then write « then write «
elsif | ¢ Csiore then elsif 1| ¢ Cstore then
choose a constraint c choose a constraint ¢
Cétore = Cstore Ac Cétore = Cstore ANc
CIl) =CpAc AVs € S : @é = C—'p?s A Scon(C)
narive_ses (Crl), Cliore) ses (C—'I;l, Cliore)
store +— CStOre A e Csrtore = Cstore A —c

AVs €S : Scon(cp) — Scon (_|C)
naive_ses (Cp, Cgiore)
endif.

s
AVs € S : Cps — Scon(_‘c)
= r
SeS(Cpa store)
endif.

Excluding Symmetries in Constraint-Based Search 11

Analytical Run Time Comparison. We will concentrate on the
question how many symmetric constraints are computed in the different
algorithms for one search. For the approximation of the speedup, we
have to employ some standard definitions for binary trees.

We define a (binary) tree t as a prefix-closed subset of {0, 1}*. The
depth of a tree t is depth(t) = maz{|w| | w € t}. A node v of a tree t is
av €t Aleaf of a tree t is a v € t, such that vl € ¢t Av0 & t. The left
subtree of a tree t is left(t) = 17 't and the right subtree right(t) = 0~ '¢.
The path length of a node v is |v|. We define the left path length of a
node v =ai...ap as v = [{i € {1,...,|v[} | a; = 1} = 31 cicpy| ai-
The right path length of a node v is given by |v|, = |v| — |v];. A tree t is
completely expanded iff there is a d, such that ¢t = {0, 1}5’1. We define
a certain number of nodes

nh(k) = [{v | v node of t = {0, 1}5¢ A Ju|; = k}|.

PROPOSITION 3. For a completely expanded tree t, its left and right
subtrees are completely expanded. For a tree t and every node v € t, il
is satisfied |v|; < |v| and |v] < depth(t).
ar k<d
LEMMA 2. Let k,d €N, k,d > 0. Then, n,(k) = (eyr) for =
0 otherwise.
Proof. Let t be the completely expanded tree with depth d. Let a
function 7 : ¢ — {0, 1}4t1 — {041} be given by r: v — 0104 "I,
For every v € t, r(v) is an element of {0, 1}%+! and contains exactly

|v|; + 1 ones. Since r is bijective, the number of nodes v with |v|; = &
is equal to the number of words r(v) of length d 4+ 1 containing k + 1
ones. There are (iﬁ) such words. O

In a search tree ¢, we call the constraints ¢ and —c¢ that are inserted
at the branches of a binary node basic constraints. We will need a
measure for the total time the algorithms spend on the computation of
symmetric constraints. As this measure, we just count the number of
computed symmetric basic constraints. This is reasonable, since we may
assume for an approximation that the computation of each symmetric
basic constraint takes equal time and further that the computation of a
complex symmetric constraint scon(c1 A -+ A¢y,) is done via computing
the basic symmetric constraints scon(c1), - - -, Scon(Cn)-

THEOREM 3. To produce a completely expanded tree of depth d the
naive algorithm computes |S| (Qd_l(d —-2)+ 1) many symmetric basic

constraints, while the improved algorithm computes |S] (2d — 1) such
constraints.

12 R. Backofen and S. Will

Proof. In a completely expanded tree ¢ of depth d, the naive algo-
rithm computes for a node v with |v| < d exactly |v|; symmetric basic
constraints for every symmetry s € S. For nodes v with path length
|v| = d, it does not compute any symmetric constraint. Hence, we
get our number for one symmetry by summing over all nodes, i.e. by
computing 3, c ¢y gy<a—1 [v];. We simplify further

d—1
Z i'”ii—l(i) = Zg:_ol Z(zil) = Zgﬂ(i—l)'(?) = Zgﬂ i-(?)—ZL (?)
=0

=i (D=0l (D +1=1d-20— 90 41 = (d—2) 201 1.

In the same tree t, the improved algorithm computes for every node v
with |(Jv) < d exactly one symmetric basic constraint for one symmetry,
i.e. the total number of symmetric basic constraints is the number of
such nodes v, i.e. 27 — 1.

Both numbers of symmetric basic constraints are derived for one
symmetry, and thus have to be multiplied by |S|, finally. O

As a corollary, simple calculation shows the speedup by the im-
proved algorithm in the computation of symmetric basic constraints,
W@% R~ %, to be linear.
The second most runtime-relevant factor is the check of the an-
tecedents of the inserted implications by the constraint solver. For the
naive algorithm, it is reasonable to assume that the solver checks each
antecedent of the inserted implications at each node at least once. In
contrast to this, the improved algorithm checks each branching con-
straint of C}, once for each node. Under this assumption, again the
speedup turns out to be linear in the depth of the tree.

i.e.

4. Geometric Symmetries

Now, we will give a concrete example for symmetries, namely geometry
symmetries. We will treat the special case where we have points in Z¢,
although our method is not restricted to this case. We will exemplify
the symmetry constructions in two dimensions, and give an example
for the exclusion of additional symmetries as indicated by Theorem 2.

Definition of Geometric Symmetries. There are many problems
where one encodes the two-dimensional position of an object 4 using
finite domain integer variables X;,Y;. Examples are the N-queens and
the tiling problem. A more complex and realistic example (in three
dimensions) is the lattice protein structure prediction problem [2].

Excluding Symmetries in Constraint-Based Search 13

The symmetries for Z? have exactly the same structure as for the
general case Z% They are defined by affine mappings S : Z¢ — Z¢
with S(#) = Agi + ¥'s that map Z? onto Z? That is, the matrix
Ag is an orthogonal matrix with the property that the set of columns
{#,...,T;} of Ag equals {£¢ | € is a unit-vector of Z¢}. For example,
for 72, the matrix (¥ ;') denotes the rotation by 90°. For Z?, we have
8 symmetries consisting of the identity, the 4 reflections (at z- and y-
axis, and the two diagonals) and the 3 rotations by 90°, 180° and 270°.
For Z3, we have 48 symmetries including the identity.

Fixing the Symmetries. By now, the vector #s is not yet fixed.
There are two different approaches for fixing the symmetry. We consider
72 as an example. The methods work for all other dimensions as well.
The first case is that every possible solution lies within a fixed
square (in the general case, within a hypercube).? This is equivalent
to the proposition that there are integers Tmin, Tmaz, Ymin,s Ymaz Such
that for all € ||Cp;|| we have min{a(X;)} = Zmin, max{a(X;)} =
ZTmaz, Min{a(Y;)} = ymin, and max{a(Y;)} = Ymas. Thus, the mini-
mal square around the position of all objects is defined by the points
(Tmins Ymin) a0d (Tmaz, Ymaz) 0 every solution. We call this the frame
of the problem Cp,. In the N-queens problem, this is just the board.
Now, knowing the frame of a problem Cp,, we can fix the vector vg
for all symmetries. Consider as an example a problem whose frame is
defined by (0,0) and (3, 2). Furthermore, consider the three symmetries
reflection at the y-axis, rotation by 90° and rotation by 180°, which we
will name S, S5 and S3 in the following. The corresponding mappings
are defined by S;(Z) = Ag, (%) +Us,, where Ag, = ('), Ag, = (9 3)

and Ag, = (_01 91) The corresponding mappings of the frame are

32) (23

(_3’_2)1;::/,’:'3

A symmetry S is compatible with the above defined frame if the
frame is mapped to itself, i.e. if {# | (0,0) < o < (3,2)} = {S(?V) |
(0,0) < @ < (3,2)}. For a given matrix Ag, there exists a ¥s such
that S(¥) = AgZ + ¥s satisfies this condition if and only if Ag satisfies
As(3,2) = (£3,£2). For the matrices Ag,, Ag, and Ag,, we get (—3,2),
(—2,3) and (—3,—2), which excludes the symmetry characterized by
Ag,. We finally get ¥s, = (3,0) and 9s, = (3,2).

2 The technique can be extended to the case that the hypercube is not fixed in
advance, but during search.

14 R. Backofen and S. Will

The second case is that we know a point p = (p,,p,) which should
remain unchanged under the symmetries. In that case, we know that the
symmetries are defined by S;(Z) = Ag,(Z—p)+p = Ag, (T) — Ag, (p) + .
Hence, og, = p'— Ag; (P).

The remaining part is to define symmetric constraints. We use a
specific example where we leave the point (5,5) fix. Consider the two
symmetries reflection at the y-axis and rotation by 90°. By what we
have said above, the corresponding mappings are

SW@E) = (PN E+ () and SY@) = ()) F+ ()

Now suppose that we have modeled points py, ..., p, using variables
Xi,..., X, and Y3,...,Y,, and we want to define S&Y and S%° for

the constraints of the form X; = ¢ (for other kind of constraints c,
the definition Sy, (c) is analogous). Now the symmetric constraints
SRY (X; = ¢) (resp. S20°(X; = ¢)) must express the constraint valid for

SR () (resp. $9°° () for every possible a with o = X; = c. Then,

aEX;=c aEX;=c
& pi = (¢, a(Y)) & pi = (¢, a(Y))
& SM(pi) = (10 — ¢, a(Y;)) & 5% (pi) = (10 — a(Yi),)
o SWa) EX; =10 ¢ & 8% Y =c

Since X; = ¢ does not restrict the valuation of a(Y;), we know that
SRy (X; = ¢) is X; = 10 — ¢, and S (X; = ¢) is Y; = c. Analogously,

we get that SEY (YV; = ¢) is Y; = ¢, and that S90° (V; = ¢) is X; = 10—c.

Note that S®Y(c) has the same type as c (i.e., both have the same
variable). This does not hold for ¢ and S (c).

Results. We have applied the method to the lattice protein structure
prediction [2], which is a hard combinatorial problem. Table I shows the
number of solutions, search steps and runtimes for finding all minimal
energy structures for 4 sequences, both without and with symmetry
exclusion. We have added simple exclusion methods in both cases,
which is the reason that we have only 16 (instead of 48) symmetries left
in sequences 1,2 and 4. As one can see from the table, we have a nearly
linear speedup in number of search steps, and a close to linear speedup
in runtime. In sequence 3, the simple exclusion does not apply, which
gives rise to 48 symmetries. Furthermore, the optimal conformations
and the symmetric ones are very similar, which implies that we have
less speedup (since detecting the symmetric solution is harder).

Excluding Symmetries in Constraint-Based Search 15

Table I. Results for searching all minimal energy structures without and with
symmetry exclusion.

len without sym. excl. with sym. excl. ratio
¢
‘ H#noex Nnoex Tnoex Hex Nex tex Howe Do et
#ea Nea e

27 | 4,752 45924 15m| 297 2998 69s| 16 15.32 13.17
27 408,864 2,465,728 6.2 h| 25,554 155,603 26.3m| 16 15.84 14.18
31 | 53,472 351,101 3.4h| 1,114 11,036 7.4m| 48 31.81 27.43
36 | 56,448 732,952 3.7h| 3,528 55,086 19.9m| 16 13.31 11.24

5. Value Permutation symmetries

We will consider the class of all problems that have permutations of
values as symmetries. An instance of this problem class is the graph
coloring problem.

In the following, we consider finite domain integer problems, where
the variables have the domain D C N associated. We denote with
Perm(D) the set of all permutations of D, and with Trans(D) the set
of all transpositions of D (i.e., those permutations, which exchange just
two elements of D). With Sﬁ,‘;rm(py> We denote the set of all symmetries
that permute the values of the variables in X.

DEFINITION 6. Let X be the set of solution variables. The set of all
value permutations of X is defined as the symmelry set

Sfirm(D) ={S| Ir € Perm(D)Va : S(a)(X) = 7(a(X))}.

The subset of all transposition symmetries S%;ans(D) s defined analo-

gously. For every symmetry S € S}irm(D), we say that m is the under-

lying permutation of S if S(a)(X) = m(a(X)).

Now, we consider search trees that branch over constraints of the
forms X = k, X =Y or X # Y. These are the most often used
constraints in the case of permutative symmetries. The interesting part
is that if a search tree branches over those constraints, then every
S%rans(D)—excluding tree is even Slg‘grm(D)—reduced. Thus, we need to
exclude only the quadratically many transpositions for excluding the
exponentially many permutations in this case.

THEOREM 4. Let Cp; be a problem that has Sﬁ,‘;rm(D) as a symmetry

group. Let t be a SﬁanS(D)—ea:cluding search tree such that for every
branch v, the constraint c is of the forms X =d, X =Y, or X 2Y
with X,Y € X. Then, t is SX (D)—reduced.

Perm

16 R. Backofen and S. Will

Proof. It is sufficient to show that for every branch v in ¢, we have
{S() | 5 € Sperm(py A € llnll} N[lor |l = 0,

where v; is the left node, and v, the right node of the branch v.

Assume that there is a valuation « and a symmetry S € S}irm(D)
such that o € [|Cpan(v1)|| and S(a) € ||Cpasn(vy)||- Let g be the
underlying permutation of the symmetry S. Let ¢ be the constraint
introduced in the left node v;. Then « |= ¢ and S(«) = —e.

The first observation is that ¢ cannot be of the forms X =Y or
X # Y. If ¢ were of the form X =Y, then a(X) = «(Y), and hence
we would have S(a)(X) = nmg(a(X)) = mg(a(Y)) = S(a)(Y), which
would be a contradiction to S(«) = —e¢. Similarly, if ¢ were of the form
X # Y, then a(X) # «(Y), and hence S(a)(X) = mg(a(X)) and
S(a)(Y) = mg(a(Y)) must be different since 7g is a bijection.

So let ¢ be of the form X = d. Since ¢ is X = d, o |= ¢ and
S(a) = —¢, we know that a(X) = d # S(a)(X). By the definition of
the search tree ¢, we know that X € X. Hence, there is a transposition
symmetry T € S%‘;ans(D) that exchanges «(X) = d and S(a)(X) = d'.
We want to show that (77! o S)(a) = (T o S)(a) € ||Cpasn(v1)]|, which
implies that S(«) is excluded by Lemma 1.

In the following, let 77 be the underlying transposition of the sym-
metry T. Note that np(d) = d', ©r(d’) = d and for all d” different
from d,d', we have 7p(d") = d”. This implies (T o S)(a) [¢ since
¢ = (X =d), S(a)(X) = d and mp(d’) = d. Furthermore, note that
ms(d) = d', but not necessarily 7g(d') = d. Since mg is a bijection, we
know that mg(d') # d'.

For showing (T o S)(c) € ||Cpasn(v1)||, it is sufficient to prove that
(T o S)(a) € ||Cparn(v)] as follows. If (T'0 S)(c) € [|Cparn(v)||, then we
know that (T 0 9)(@) € |Cparn(u1)| U [Cpatn (o) since [[Couan (o) | is
equal to ||Cpan(v1)|| U ||Cparn (vr)]]. Since we branch over ¢ at node v
and (T o S)(a) = ¢ by our assumption, this implies immediately

(T'0 5)(@) € [[Cparn(vi)l]-

For showing (T'0 S)(a) € ||Cpatn(v)]|, we consider the following cases
for ¢ € Cpaun(v):

1. s Y = Z. Since S(a) | ¢, we get S(a)(Y) = S(«)(Z). Hence,
mr(S(a)(Y)) = mr(S(a)(Z)), which implies (T o S)(a)(Y) = (T o
S)(«)(Z) and hence (T'o S)(a) FY = Z.

2. isY # Z. Since S(a) = ¢, we get S(a(Y)) # S(a)(Z). Since mp
is a bijection, we have for any values k', k" that =p (k') = k = np (k")
implies £’ = k”. Hence, S(a)(Y) # S(«)(Z) implies 77 (S(a)(Y)) #
mr(S(a)(Z)). Hence (T'o S)(a) Y # Z.

Excluding Symmetries in Constraint-Based Search 17

3. 18 Y = k. Since both o = ¢ and S(a) | ¢, we get a(Y) =
k = mg(a(Y)) = mg(k) Hence mg(k) = k, which implies that k
must be different from d and d'. Hence, (k) = k, which implies
(ToS)(a) EY =k.

In any case, we get (T o S)(c) = ¢ for all ¢ € Cpgp(v). O

Graph Coloring. Asnoted above the graph coloring is an example for
a problem with value permutations as symmetries. The graph coloring
problem is as follows. Given a graph G = (V, E) and a set of colors. An
admissible coloring ¢ of G, is a mapping of the vertices V' to the set of
colors, satisfying the constraint that for all (vy,v9) € E: ¢(v1) # c(v2).
We search for the minimal set of colors, where we still can find an
admissible coloring.

In this problem colorings are considered to be symmetric, if they are
just permuted in colors to each other. We compare two implementations
of a solver for this problem. The first one is a naive implementation that
uses a simple first fail heuristic. This implementation does not have
symmetry exclusion. The second implementation with full exclusion
of symmetries is just a simple extension of the first one, where we
added our symmetry exclusion mechanism for transpositions (which is
sufficient by Theorem 4). The results are given in Table II.

Table II. Results for some randomly generated problem instances

problem size with sym. ex. without sym. ex. ratio
verts edges colors | cloned time/s | cloned time/s | cloned time
20 114 6 24 50 162 90 6.8 1.8
18 101 7 35 70 887 450 25.3 6.4
25 185 8 61 170 52,733 29,710 864.5 487.0
50 506 8 434 2,280 | 1,440,549 1,588,340 3,319.2 696.6
30 292 9 97 230 551,022 385,100 5,680.6 1674.3
35 339 9 168 370 3,428,853 2,569,200 20,409.8 6943.8

6. Conclusion and Future Work

We have introduced the first method, namely symmetry excluding
search, that can exclude arbitrary symmetries in constraint-based search.
In contrast to many other methods that can be found in the literature,
the SES-method does not restrict the search strategy.

SES is based on a declarative description of the symmetries in the
form of symmetric constraints, which usually can be obtained easily.
We have given completeness and correctness proofs as well as the proof,
that the method exclude all considered symmetries. In the case that

18 R. Backofen and S. Will

the full symmetry group is too large, our method can handle arbitrary
subsets of the full symmetry group. We have shown for the case of per-
mutation symmetries that there it suffices to exclude the (quadratically
many) transposition to exclude all (exponentially many) permutations.

SES can be implemented in any constraint-based search machinery
that handles implications and allows to introduce additional, user-
defined constraints during search. This holds for the most modern
constraint programming systems. Since the method is very general,
we plan to investigate in which other logic-based search methods our
symmetry exclusion can be used. Furthermore, we intend to investigate
more general conditions under that the exclusion of only a subset of
the symmetries excludes the whole symmetry group (as in the case of
value permutations).

References

1. Aguirre, A. S. M.: 1993, ‘How to Use Symmetries in Boolean Constraint
Solving’. In: F. Benhamou and A. Colmerauer (eds.): Constraint Logic
Programming, Selected Research. The MIT Press, Chapt. 16, pp. 287-306.

2. Backofen, R.: 1998, ‘Constraint Techniques for Solving the Protein Struc-
ture Prediction Problem’. In: Proceedings of 4" International Conference on
Principle and Practive of Constraint Programming (CP’98).

3. Benhamou, B.: 1994, ‘Study of symmetry in Constraint Satisfaction Problems’.
In: A. Borning (ed.): Principles and Practice of Constraint Programming, Sec-
ond International Workshop, PPCP’94,, Vol. 874 of Lecture Notes in Computer
Science.

4. Benhamou, B. and L. Sais: 1994, ‘Tractability through Symmetries in Propo-
sitional Calculus’. Journal of Automated Reasoning 12, 89-102.

5. Crawford, J. M., M. Ginsberg, E. Luks, and A. Roy: 1996, ‘Symmetry Breaking
Predicates for Search Problems’. In: Proc. of the 5* International Conference
on Principles of Knowledge Representation and Reasoning (KR’96). pp. 149—
159.

6. de la Tour, T. B.: 1990, ‘Minimizing the Number of Clauses by Renaming’.
In: M. E. Stickel (ed.): Proc. of the 10" Int. Conf. on Automated Deduction
(CADE90). pp. 558-572.

7. Freuder, E.: 1991, ‘Eliminating interchangeable values in constraint satisfaction
problems’. In: Proc. of AAAI’91. pp. 227-233.

8. Gent, I. and B. Smith: 2000, ‘Symmetry Breaking During Search in Constraint
Programming’. In: W. Horn (ed.): Proceedings of ECAI 2000. pp. 599-603.

9. Schulte, C.,; G. Smolka, and J. Wiirtz: 1994, ‘Encapsulated Search and Con-
straint Programming in Oz’. In: A. Borning (ed.): Second Workshop on
Principles and Practice of Constraint Programming. Orcas Island, Washington,
USA, pp. 134-150.

10. Smolka, G.: 1995, ‘The Oz Programming Model’. In: J. van Leeuwen (ed.):
Computer Science Today, Lecture Notes in Computer Science, vol. 1000. Berlin:
Springer-Verlag, pp. 324-343.

