
Optimally Compat Finite Sphere Pakings |Hydrophobi Cores in the FCCRolf Bakofen and Sebastian Will?Institut f�ur Informatik, LMU M�unhenOettingenstra�e 67, D-80538 M�unhenfbakofen,willsg�informatik.uni-muenhen.deAbstrat. Lattie protein models are used for hierarhial approahesto protein struture predition, as well as for investigating priniples ofprotein folding. The problem is that there is so far no known lattie thatan model real protein onformations with good quality, and for whihthere is an eÆient method to prove whether a onformation found bysome heuristi algorithm is optimal. We present suh a method for theFCC-HP-Model [3℄. For the FCC-HP-Model, we need to �nd onforma-tions with a maximally ompat hydrophobi ore. Our method allows usto enumerate maximally ompat hydrophobi ores for suÆiently greatnumber of hydrophobi amino-aids. We have used our method to provethe optimality of heuristially predited strutures for HP-sequenes inthe FCC-HP-model.1 IntrodutionThe protein struture predition is one of the most important unsolved prob-lems of omputational biology. It an be spei�ed as follows: Given a proteinby its sequene of amino aids, what is its native struture? NP-ompleteness ofthe problem has been proven for many di�erent models (inluding lattie ando�-lattie models) [8, 9℄. These results strongly suggest that the protein foldingproblem is NP-hard in general. Therefore, it is unlikely that a general, eÆientalgorithm for solving this problem an be given. Atually, the situation is evenworse, sine the general priniples why natural proteins fold into a native stru-ture are unknown. This is umbersome sine rational design is ommonly viewedto be of paramount importane e.g. for drug design, where one faes the diÆultyto design proteins that have a unique and stable native struture.To takle struture predition and related problems simpli�ed models havebeen introdued. They are used in hierarhial approahes for protein folding(e.g., [21℄, see also the meeting review of CASP3 [15℄, where some groups haveused lattie models). Furthermore, they have beame a major tool for investi-gating general properties of protein folding.Most important are the so-alled lattie models. The simpli�ations om-monly used in this lass of models are: 1) monomers (or residues) are represented? Supported by the PhD programme \Graduiertenkolleg Logik in der Informatik"(GKLI) of the \Deutshe Forshungsgemeinshaft" (DFG).



using a uni�ed size 2) bond length is uni�ed 3) the positions of the monomersare restrited to lattie positions and 4) a simpli�ed energy funtion.In the literature, many di�erent lattie models (i.e., latties and energy fun-tions) have been used. Examples of how suh models an be used for predit-ing the native struture or for investigating priniples of protein folding weregiven [20, 1, 11, 19, 12, 2, 17, 21℄. Of ourse, the question arises whih lattie andenergy funtions has to be preferred. There are two (somewhat oniting) as-pets that have to be evaluated when hoosing a model: 1) the auray of thelattie in approximating real protein onformations, and the ability of the energyfuntion to disriminate native from non-native onformations, and 2) the avail-ability and quality of searh algorithm for �nding minimal (or nearly minimal)energy onformations.While the �rst aspet is well-investigated in the literature (e.g., [18, 10℄), theseond aspet is underrepresented. By and large, there are mainly two di�erentheuristi searh approahes used in the literature: 1) Ad ho restrition of thesearh spae to ompat or quasi-ompat onformations (a good example is[20℄, where the searh spae is restrited to onformations forming an n�n�n-ube). The main drawbak here is that the restrition to ompat onformationis not biologially motivated for a omplete amino aid sequene (as done inthese approahes), but only for the hydrophobi amino aids. In onsequene,the restrition either has to be relaxed and then leads to an ineÆient algo-rithm or is hosen to strong and thus may exlude optimal onformations. 2.)Stohasti sampling like Monte Carlo methods with simulated annealing, genetialgorithms et. Here, the degree of optimality for the best onformations and thequality of the sampling annot be determined by state of the art methods.1On the other hand, there are only three exat algorithms known [23, 4, 6℄whih are able to enumerate minimal (or nearly minimal) energy onformations,all for the ubi lattie. However, the ability of this lattie to approximate realprotein onformations is poor. For example, [3℄ pointed out espeially the parityproblem in the ubi lattie. This drawbak of the ubi lattie is that every twomonomers with hain positions of the same parity annot form a ontat.In this paper, we follow the proposal by [3℄ to use a lattie model with asimple energy funtion, namely the HP (hydrophobi-polar) model, but on abetter suited lattie (namely the fae-entered ubi). There are two reasons forthis approah:1) The FCC an model real protein onformations with good quality (see [18℄,where it was shown that FCC an model protein onformations with oordinateroot mean square deviation below 2 �A)2) The HP-model models the important aspet of hydrophobiity. Essentially itis a polymer hain representation (on a lattie) with one stabilizing interationeah time two hydrophobi residues have unit distane. This enfores ompati-�ation while polar residues and solvent is not expliitly regarded. It follows the1 Despite there are mathematial treatments of Monte Carlo methods with simulatedannealing, the partition funtion of the ensemble (whih is needed for a preisestatement) is in general unknown.



assumption that the hydrophobi e�et determines the overall on�guration ofa protein (for a de�nition of the HP-model, see [16, 10℄).One a searh algorithm for minimal energy onformations is establishedfor this FCC-HP-model, one an employ it as a �lter step in an hierarhialapproah. This way, one an improve the energy funtion to ahieve better bio-logial relevane and go on to resemble amino aid positions more aurately.Contribution of the paper In this paper, we present the �rst algorithm for enu-merating maximal ompat hydrophobi ores in the fae-entered ubi lattie.For a given onformation of the FCC-HP-model, the hydrophobi ore is the setof all positions oupied by hydrophobi (H) monomers. A hydrophobi ore ismaximally ompat if the number of ontats between neighbored positions ismaximized. Thus, a onformation whih has a maximally ompat hydrophobiore has minimal energy in the HP-model.There are mainly two appliations of the algorithm for �nding hydrophobiores. The �rst is that it provides a method to hek minimality of onformationsfound by an heuristi algorithm. We have used an heuristi algorithm desribedearlier [7℄. For the �rst time, we were able to �nd minimal energy onformations(and to prove their optimality) for HP-sequenes in the FCC-HP-model. So far,the only known results for the FCC-HP-models were approximation results withan guaranteed ratio of 60% ([3℄, [13℄ provides a general approximation shemefor HP-models on arbitrary latties; [14℄ gives an approximation sheme for theHP-model on the ubi lattie).The seond appliation is that the hydrophobi ores are a promising inter-mediate step for an algorithm to enumerate all minimal energy onformations.This tehnique has already been used suessfully in [23℄.2 PreliminariesFor a vetor p, we denote with px (resp. py or pz) its x-oordinate (resp. y-or z-oordinate). We use a transformed representation of the FCC-lattie (fora detailed desription, see [5℄. We de�ne the FCC-isomorphi lattie D03 to bethe lattie that onsists of the following sets of points: D03 = f� xyz � j � xyz � 2Z3 and x eveng ℄ f� xy+0:5z+0:5� j � xyz � 2 Z3 and x oddg: The �rst set onsist of thepoints in even x-layers, the seond of the points in odd x-layers. The set ND03 ofminimal vetors onneting neighbors inD03 is given byND03 = n� 0�10 � ;� 00�1�o℄n� �1�0:5�0:5�o : The vetors in the seond set are the vetors onneting neighbors intwo suessive x-layers. Two points p and p0 in D03 are neighbors if p�p0 2 ND03 .A oloring is a funtion f : D03 ! f0; 1g, where f�1(1) 6= ;. We will identifya oloring f with the set of all points olored by f , i.e. fp j f(p) = 1g: Hene, forolorings f1; f2 we will use standard set notation for size jf1j, union f1 [ f2, dis-joint union f1℄f2, and intersetion f1\f2. Given a oloring f , we de�ne the num-ber of ontats of f by on(f) := 12 ��f(p;p0) j f(p) ^ f(p0) ^ (p� p0) 2 ND03g��.



A oloring f is alled a oloring of the plane x =  if f(x; y; z) = 1 implies x = .We say that f is a plane oloring if there is a  suh that f is a oloring ofplane x = . We de�ne Surfpl(f) to be the surfae of f in the plane x = , i.e.Surfpl(f) = jf(p;p0) j (p� p0) 2 ND03 ^ f(p)^ :f(p0)^ p0x = g: With minx(f)we denote the integer minfpx j p 2 fg: maxx(f), miny(f), maxy(f), minz(f)and maxz(f) are de�ned analogously.3 Desription of the MethodOur aim is to determine maximally ompat hydrophobi ores. A hydrophobiore is just a oloring f . A maximally ompat hydrophobi ore for n pointsis a oloring f of n points that maximizes on(f). Without loss of generality,we an assume that minx(f) = 1. Let k = maxx(f). Then, we partition f intoplane olorings f1; : : : ; fk of the layers x = 1; : : : ; x = k. For searhing a maximaloloring f , we do a branh-and-bound searh on k and f1 : : : fk.Of ourse, the problem is to give good bounds that allow us to ut o� manyk and f1 : : : fk that will not maximize on(f1 ℄ : : : ℄ fk). For this purpose, wedistinguish between ontats in a single layer (= on(fi) for 1 � i � k), andinterlayer ontats ICfi+1fi for 1 � i < k between two suessive layers (i.e., pairs(p;p0) suh that p and p0 are neighbors, p 2 fi and p0 2 fi+1). We then give twodi�erent bounds on the layer and interlayer ontats, provided some parametersrestriting the fi's.For every plane oloring fi, these parameters are the size ni of fi, the num-ber ai of rows that ontain a point of fi, and the number bi of olumns thatontain a point of fi. Given these parameters, it is known [23℄ that the layerontats of fi are given by 2ni � ai � bi. In this paper, we present for any setof parameters ni; ai; bi and ni+1 an upper bound on the number of interlayerontats Bni+1ni;ai;bi � max� ICfi+1fi fi satis�es ni; ai; biand jfi+1j = ni+1. �So far, the only related bound was given in our own work [5℄. Althoughthere a bound Bni+1ni;ai;bi was given, this bound does not hold for arbitrary sets ofparameters ni; ai; bi and ni+1. Instead, the bound is valid for suÆiently �lledplane olorings (alled normal), whih was suÆient for the purpose of [5℄.The bound Bni+1ni;ai;bi is used in searhing for a maximally ompat ore forn H-monomers as follows. Instead of diretly enumerating k and all possibleolorings f1 ℄ : : : ℄ fk, we searh through all possible sequenes of parame-ters ((n1; a1; b1) : : : (nk; ak; bk)) with the property that n =Pi ni. By using theBni+1ni;ai;bi , only a few layer sequenes have to be onsidered further. For theseoptimal layer sequenes, we then searh for all admissible olorings f1 ℄ : : :℄ fk.For alulating the bound Bni+1ni;ai;bi , we need to introdue additional param-eters, namely the number of non-overlapping and unonneted rows in layerx = i. These additional parameters allow us to determine the maximal numberof interlayer ontats between layer x = i and x = i + 1. Further note thatonly few ombinations of (ni; ai; bi) and these additional parameters are admis-



sible. Thus, for every (ni; ai; bi), we searh through all admissible numbers ofnon-overlapping rows in layer x = i to determine Bni+1ni;ai;bi .In Setion 4, we de�ne the parameters of a plane oloring and determinewhih ombinations of parameters are admissible. In Setion 5, the number ofinterlayer ontats is given provided the parameters and the number of pointswith three interlayer ontats, alled 3-points, is �xed. In the following setion,we determine the number of 3-points that maximizes the interlayer ontats.4 Properties of Overlapping and Non-overlappingColoringsLet f be a oloring of plane x = . A horizontal aveat in f is a k-tuple ofpoints (p1; : : : ;pk) suh that 81 � j < k : ((pj+1 � pj)y = 1), fp1;pkg 2 fand 81 < j < k : pj 62 f . A vertial aveat in f is de�ned analogously satisfying81 � j < k : ((pj+1 � pj)z = 1) instead. We say that f ontains a aveat if thereis at least one horizontal or vertial aveat in f . f is alled aveat-free if it doesnot ontain a aveat. We will handle only aveat-free olorings. The methodsan be extended to treat aveats as well, but we suppress them for simpliity.We now introdue the parameters of a plane oloring f that will allows us todetermine layer and to bound interlayer ontats. The �rst set of parameters arethe rows and olumns oupied by f . For an arbitrary plane oloring f of x = de�ne oz(f; z) := 9y : f(; y; z) and oy(f; y) := 9z : f(; y; z): Furthermore,we de�ne oylines(f) := ���y oy(f; y)	�� and ozlines(f) := ��� z oz(f; z)	�� :For notational onveniene de�ne olines(f) := (oylines(f); ozlines(f)). For a ol-oring f , we all rows z, where oz(f; z) holds, and olumns y, where oy(f; y),oupied, and unoupied otherwise.For a plane oloring f , we de�ne the layer ontats LCf to be on(f). Wede�ne LCn;a;b := max�LCf f is a oloring of plane x = ^f has lines (a; b) ^ jf j = n � :Proposition 1. For every aveat-free oloring f with olines(f) = (a; b), we getLCn;a;b = 2n� 12Surfpl(f) and Surfpl(f) = 2(a+ b):Proof (sketh). Eah of the n points olored by f has 4 neighbors, whih areeither oupied by another point, or by a surfae point. Hene, 4n = 2LCn;a;b+Surfpl(f). For the seond laim, note that by de�nition, every oupied row andolumn must generate 2 surfae ontats, and, by aveat-free, there an be nomore than 2.The seond set of parameters are the number of unonneted and non-overlapping rows. Let f be a oloring of plane x = . We de�ne a row z tobe non-overlapping in f if z is oupied, there is an oupied row z0 > z, andthere is no y suh that f(; y; z) ^ f(; y; z + 1). A row z is alled unonnetedif it is non-overlapping and not 9y; y0 : f(; y; z) ^ f(; y0; z + 1) ^ jy � y0j � 1.



a) Distance 1 b) Distance > 1

Fig. 1. a) Non-overlapping vs. b) unonnetedThe number of non-overlapping rows is denoted by #non-overlaps(f) and thenumber of unonneted rows by #non-onnets(f).To illustrate the terms, Figure 1a) shows a oloring with #non-overlaps(f) =1 and #non-onnets(f) = 0, whereas the oloring in Figure 1b) satis�es that#non-overlaps(f) = 1 and #non-onnets(f) = 1.We will all a oloring f with #non-overlaps(f) = 0 overlapping (otherwisenon-overlapping). A oloring with #non-onnets(f) = 0 is alled onneted(otherwise unonneted).In the rest of this setion, we give preise bounds on the number of ol-ored points, given the parameters of the plane oloring. We will �rst statesome properties of olorings with respet to olines(f), #non-overlaps(f) and#non-onnets(f).Proposition 2. For every aveat-free oloring f, we have jf j � max(olines(f)):Sine by de�nition the maximal oupied row z an not be non-overlappingwe immediately get that #non-overlaps(f) is less than oylines(f). The nextlemma states in addition that #non-overlaps(f) is less than ozlines(f). Intu-itively, this is a onsequene of the (non-trivial) fat that every non-overlappingrow produes exatly one non-overlapping olumn.Lemma 1. For a aveat-free oloring f , we get#non-overlaps(f) < min(olines(f)):A aveat-free oloring an be split at non-overlapping rows into sub-oloringswith the nie property that the parameters of the oloring an be alulatedfrom the sub-olorings in a simple way. This fat will be employed for indutivearguments. Given a plane oloring f and a row minz(f) � zs < maxz(f), wede�ne f�zs = f(; y; z) 2 f j z�zsg for � 2 f�; >g. Note that the restritionon zs is required, sine splitting at row zs = maxz(f) would produe an emptysub-oloring f>zs . Further note that this restrition is trivially satis�ed by anynon-overlapping row.Lemma 2 (Split). Let f be a aveat-free oloring of the plane x =  with#non-overlaps(f) � 1, and let zs be a non-overlapping row. Then,1. f = f�zs ℄ f>zs and the sub-olorings f�zs and f>zs are aveat-free2. olines(f) = (oylines(f�zs) + oylines(f>zs); ozlines(f�zs) + ozlines(f>zs))3. #non-overlaps(f) = #non-overlaps(f�zs) + #non-overlaps(f>zs) + 1.
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Fig. 2. Coloring with maximal number of elements.There is a dependeny of the admissible numbers #non-overlaps(f) and thenumber of elements in a oloring f , given the number of oupied lines iny and z diretion. Think of (a; b) (resp. mno) as representing olines(f) (resp.#non-overlaps(f)). We de�ne nmax(a; b;mno) := mno+(a �mno)(b �mno) andnmin(a; b;mno) := a+ b�1�mno. The idea of the de�nition of nmax(a; b;mno) isthat the number of elements is maximized if we have one big overlapping regionand waste as little spae as possible for the non-overlapping region. Hene, inthis maximal oloring, all of the non-overlapping rows ontain exatly one point.Suh a oloring is shown in Figure 2.Lemma 3. All aveat-free olorings f satisfy jf j � nmax(a; b;mno); where mno=#non-overlaps(f) and (a; b) = olines(f).Lemma 4. For all aveat-free olorings f holds nmin(a; b;mno) � jf j; where(a; b) = olines(f) and mno = #non-overlaps(f).Proof (sketh). For the ase mno = 0, a oloring f of plane x =  with minimalnumber of points and olines(f) = (a; b) is given by the oloring that has b points(; 1; 1) : : : (; 1; b) in the olumn y = 1 , and a points (; 1; b) : : : (; a; b) in therow z = b. Clearly, f has a+ b� 1 points sine (; 1; b) is in the �rst olumn andlast row. For mno > 0, the laim follows by indution using the split lemma 2,Claim 3.For onveniene, we de�ne the following bounds on the number of non-overlapping rows:nomin(n; a; b) := minfmno j 0 � mno � min(a; b)� 1 ^ n � nmin(a; b;mno)gnomax(n; a; b) := maxfmno j 0 � mno � min(a; b)� 1 ^ n � nmax(a; b;mno)gProposition 3. For any aveat-free oloring f with olines(f) = (a; b) and jf j =n holds nomin(n; a; b) � #non-overlaps(f) � nomax(n; a; b):5 Number of i-points for aveat-free oloringsIn the next two setions, we will provide a bound on interlayer ontats. For thispurpose, we alulate for a oloring f of plane  the numbers of points having



4,3,2, and 1 ontats to f (in the following alled i-points). Theorem 1 will statethat we an ahieve the maximal number of interlayer ontats between x = and x =  + 1 if we �ll the 4-points �rst, then (if points are left) the 3-pointsand so on. Before, we need some de�nitions and auxiliary lemmata.In the following, let f be a plane oloring of plane x =  and f 0 a planeoloring of plane x = 0, where  6= 0. We de�ne the number of interlayer ontatsof f and f 0 by ICf 0f = on(f ℄ f 0)�LCf �LCf 0 . We de�ne ontatsmax(f; n) asmaxn ICf 0f f 0 is a plane oloring of x = + 1 with jf 0j = no :A point p is alled a 4-point for f if p is in plane x = +1 or x = �1 and phas 4 neighbors p1; : : : ;p4 2 f . Analogously, we de�ne 3-points, 2-points and 1-points. Furthermore, we de�ne #4�1(f) = jfp j p 4-point for f in x = � 1gj:Analogously, we de�ne #4+1(f) and #i�1(f) for i = 1; 2; 3. We will show thatthe number of i-points for every i 2 f1; 2; 3; 4g depend only on the number ofnon-overlaps, the number of non-onnets, and the number of x-steps. An x-stepfor a plane oloring f is a triple (p1;p2;p3) suh that f(p1) = 0, f(p2) = 1 =f(p3), p1 � p2 = �� 010� and p1 � p3 = �� 001� : With xsteps(f) we denote thenumber of x-steps of f . Now we an de�ne the number of i-points, dependingon n = jf j, s = Surfpl(f), mx = xsteps(f), mno = #non-overlaps(f) and mn =#non-onnets(f):#4�n;smno;mn;mx� = n� 12s+ 1 +mno#2�n;smno;mn;mx� = s� 4� 2#3�n;smno;mn;mx�� 3mno�mn#3�n;smno;mn;mx� = mx � 2(mno�mn)#1�n;smno;mn;mx� = #3�n;smno;mn;mx�+ 2mno+2mn+4For preparation, we state two lemmas that investigate how to alulate thei-points of f from the two sub-olorings generated by splitting f at a non-overlapping or unonneted row.Lemma 5 (Split 3-Points). Let f be a aveat-free oloring of plane x = with #non-overlaps(f) � 1, and let zs be a non-overlapping row. Then, #3(f) =#3(f�zs) + #3(f>zs).Proof (sketh). We an show that neither f�zs , nor f>zs , nor f has a 3-pointthat lies between rows zs and zs + 1. This implies that every 3-point for f iseither below zs and is therefore also a 3-point for f�zs , or above zs + 1 and istherefore also a 3-point for f>zs .Lemma 6 (Split at minimal unonneted row). Let f be a aveat-freeoloring of plane x =  with #non-onnets(f) � 1, and let zs be the mini-mal unonneted row. Then, #non-onnets(f�zs) = 0; #non-onnets(f>zs) =



#non-onnets(f)� 1 andxsteps(f�zs) + xsteps(f>zs) = xsteps(f); (1)8i 2 f1; 2; 3; 4g : #i(f�zs) + #i(f>zs) = #i(f): (2)Proof (sketh). The �rst two laims are trivial. For laims (1) and (2), one showsthat if zs is unonneted, the y-distane between points in f�zs and f>zs is alwaysgreater than 1. This implies that the sets of i-points and x-steps of f�zs andf>zs are disjoint.Lemma 7. Let f be a aveat-free oloring. Then8i 2 f1; 2; 3; 4g : #i(f) = #i�jf j;Surfpl(f)#non-overlaps(f);#non-onnets(f);xsteps(f)�:Proof (sketh). The ase #non-onnets(f) = 0 is equivalent to the formulaalready proven in [5℄. For the ase #non-onnets(f) = mn > 0, we do indutionon mn. The laim for #4(f), #3(f) and #1(f) follow from the Split-Lemmata2, 5 and 6 by simple alulation (reall that by de�nition, every unonnetedline is also non-overlapping). For #2(f), the laim follows by simple alulationfrom the equation 4#4(f) + 3#3(f) + 2#2(f) + 1#1(f) = 4jf j. This equationholds sine the sum of all interlayer ontats between f and the next plane is4jf j.6 Maximal number of 3-points.Due to the last lemma, if we onsider olorings with given n; a; b;mno; and mn,then mx does not a�et the number of 4-points, but inreases the number of3-points and 1-points, while dereasing the number of 2-points. The inrease of3- and 1-points is 1 per x-step, the derease of 2-points is 2 per 3-point. Thispattern grants that we maximize the possible number of interlayer ontats toa seond plane with a given number of elements, if we maximize the number of3-points in the �rst plane. For this purpose, we �rst show that we need not todistinguish between unonneted and non-overlapping rows for the number of 3-points. The reason is that number of 3-points does not hange if one transformsa non-overlapping row into into a unonneted row. Consider as an example thetwo olorings
x−step 1

x−step 2
f: f’: :Then both f and f 0 have one 3-point (indiated in grey). By transforming thenon-overlapping row in f into a unonneted row, f 0 looses two x-steps. Thus,the e�ets of inreasing #non-onnets(�) by 1 are diminished by dereasingxsteps(�) by 2.



Note that suh a bound for the interlayer ontats using a bound for 3-pointsthat does not distinguish between non-overlapping and unonneted rows slightlyoverestimates, sine we assume the best ase for the number of 2- and 1-points(note that in ontrast to the number of 3-points, the number of 2- and 1-pointsdepend on the exat number of unonneted rows).We start with the extension of the bound for
fex:Fig. 3. Detailled Frame

3-points, as given in [5℄ in the ase of \suÆiently�lled" and overlapping olorings, to arbitrary over-lapping olorings. We need to reall some de�ni-tions from [5℄. For an overlapping oloring f witholines(f) = (a; b), a and b are the side lengths of theminimal retangle around the points in f (alledframe(f) in the following). The detailed frame of aoloring f is the tuple (a; b; ilb; ilu; irb; iru), where(a; b) is the frame of f and ilb is the number of di-agonals that an be drawn from the left-bottom orner. ilu; irb; iru are de�nedanalogously. For a oloring f with detailed frame (a; b; ilb; ilu; irb; iru), we alli = (ilb; ilu; irb; iru) the indent vetor of f . As shown in [5℄, the indent vetorgives a preise bound on the #3(f), sine in this ase, xsteps(f) = #3(f) andxsteps(f) = ilb + ilu + irb + iru � diagav(f). Here, diagav(f) ounts the num-ber of diagonal aveats, whih are de�ned analogous to vertial and horizontalaveats. For example, onsider the plane oloring fex as given in Figure 6. Thenthe detailed frame of fex is (6; 9; 3; 2; 1; 2). The number of 3-points (indiated by�) for fex is 8 = 3 + 2 + 1 + 2, sine fex does not ontain diagonal aveats.In the overlapping ase, we searh for a given number of points n and a frame(a; b) the maximal number of x-steps. For this purpose, we de�ne for some indentvetor i = (i1; i2; i3; i4), vol(a; b; i) := ab �P1�j�4 ij (ij+1)2 . vol(a; b; i) is themaximal number of points that an be olored by any f that has indent vetori and frame (a; b). i = (i1; i2; i3; i4) is alled maximal for (a; b) i� P1�j�4 ij =2(min(a; b) � 1). For example, if b � a, then the indent vetor i is maximalfor (a; b) if every oloring with frame (a; b) and indent vetor i has exatly oneolored point in the �rst and last olumn.vol(a; b; i) an now be used to alulate the maximal number of x-steps thatan be ahieved given n olored points and frame (a; b). The maximal num-ber of x-steps is ahieved if we make the indents as uniform as possible. Forthis purpose, de�ne edge(n; a; b) = maxfk 2 N j vol(a; b; (k; k; k; k))g. k =edge(n; a; b) de�nes the maximal possible uniform indent. Then r = ext(n; a; b) =bab�4 k(k+1)2 �nk+1  de�nes the number of times r we an extend the uniform indentby 1. n is alled normal for (a; b) if either 4k+ r < 2(a� 1), or 4k+ r = 2(a� 1)and ab� 4k(k+1)2 � r(k + 1) = n.Now there are two upper bounds that an be given for the number of x-steps,given n olored points and frame (a; b). The �rst is given by the indent vetor.The seond by the fat, that in aveat-free and overlapping olorings, there maybe at most between every two suessive lines 2 x-steps, whih gives at most



2min(a; b)� 1. Thus, the bound given in [5℄ is as follows:xstepsbnd(n; a; b) = min(4 edge(n; a; b) + ext(n; a; b); 2(min(a; b)� 1)):We improve the bound in the ase of quadrati frames (a; a) and n is not normalfor (a; a). Here, we show that we have an upper bound of 2a�3 instead of 2a�2if there is no maximal indent i with n = vol(a; a; i). We show in this ase, thatthere must be a diagonal aveat.Lemma 8. For every overlapping aveat-free oloring f we get#3(f) � #3bound(jf j; a; b);where (a; b) = frame(f) and#3bound(n; a; b) := 8>>>>>><>>>>>>:xstepsbnd(n; a; b) n is normal for frame (a; b)2min(a; b)� 2 else if a 6= b2a� 2 else if 9i : i are maximal indentsfor (a; a) ^ n = vol(a; a; i)2a� 3 otherwiseFor the general ase of possibly non-overlapping olorings, Lemmata 3, 4,and 1 imply that any oloring f with olines(f) = (a; b) and #non-overlaps(f) =mno satis�es valid(n; a; b;mno) := �mno < min(a; b) ^ nmin(a; b;mno) � n �nmax(a; b;mno)�. Hene, we de�ne #3bound(n; a; b;mno) to be �1 in the asethat valid(n; a; b;mno) does not hold. Otherwise, we de�ne #3bound(n; a; b;mno)by #3bound(n; a; b) if mno = 0 andmax8<: #3bound(n0; a0; b0; 0)+#3bound(n� n0; a� a0;b� b0;mno�1) 1 � n0 � n� 1;1 � a0 � a� 1;1 � b0 � b� 1; 9=; ;otherwise.Lemma 9. For every aveat-free oloring f , holds #3(f) � #3bound(n; a; b;mno);where n = jf j; (a; b) = olines(f); and mno = #non-overlaps(f).Proof (sketh). The ase mno = 0 is treated in Lemma 8. For n; a; b and mno > 0with valid(n; a; b;mno), we an split a oloring f at the minimal non-overlappingline zs and into f�zs and f>zs and get #3(f) = #3(f�zs) + #3(f>zs) byLemma 5. Considering all possible rows for splitting will give the seond ase of#3bound(n; a; b;mno).The bound on the number of 3-points an now be used to derive a bound onthe number of interlayer ontats for arbitrary olorings. Summarizing, we getthe following bound:BNMICn2n1;a1;b1(mno1) := 4min(n2;#4) + 3min(#3;max(n2 �#4); 0)+ 2min(#2;max(n2 �#4�#3; 0)) + min(#1;max(n2 �#4�#3�#2; 0))where #4 = n� a1 � b1 + 1 +mno1 #3 = #3bound(n1; a1; b1;mno1)#2 = 2(a1 + b1)� 4� 2#3� 3mno1 #1 = #3 + 2mno1+4.



Theorem 1. Let f1 and f2 be oloring of planes x =  and x =  + 1, respe-tively. Let n1 = jf1j,olines(f1) = (a1; b1), jf2j = n2 and olines(f2) = (a2; b2).Then ICf2f1 � min(BNMICn2n1;a1;b1 ;BNMICn1n2;a2;b2):7 Construting the Compat CoresWe will now show how to ompute the optimally ompat ores for a givennumber of elements, thereby employing the given bound on interlayer ontats,for a branh-and-bound approah. Due to spae restritions, we have to omitmany details of the approah.W.l.o.g, let a oloring f be deomposed into plane olorings f1 ℄ � � � ℄ fk.A dynami programming algorithm allows one to eÆiently ompute boundsBMC(n; n1; a1; b1) suh that for every oloring f = f1 ℄ � � � ℄ fk, it holds thatBMC(n; n1; a1; b1) � on(f); where jf j = n, jf1j = n1, and olines(f1) = (a1; b1).From this algorithm we get immediately a maximal number of ontats in anyoloring with n elements. Further, let a layer sequene be a sequene of triples(ni; ai; bi). A oloring f is alled s-ompatible, if every plane restrition fi of fis ompatible to si = (ni; ai; bi), i.e. jfij = ni and olines(fi) = (ai; bi).By traebak from the above dynami programming algorithm one eÆientlyobtains the set of all layer sequenes s, where there may exist (by our bound) ans-ompatible oloring f with b ontats. That is, we de�ne this set of sequenesby S(n; b) := � s layer sequene bound for s greater or equal b	 :To �nd optimally ompat olorings it remains to searh by onstraint basedsearh through the olorings of andidate layer sequenes.Now, we assume that the sets S(n; b) are already preomputed by the dy-nami programming algorithm. To �nd one optimally ompat oloring with nelements do the following. Let bn be the ontats bound for olorings with nelements. For asending i � 0, iteratively searh for a oloring f with bn� i on-tats in all layer sequenes s 2 S(n; bn� i). Clearly, the �rst oloring fb found bythis proedure has maximal ontats. To �nd all olorings with a given numberk of ontats (e.g. all best olorings) we perform an analogous searh in all layersequenes s 2 S(n; b).8 ResultsWe have omputed all sets of layer sequenes S(n; b) for n � 100 in about 10days on a standard PC. For a given layer sequene one optimally ompat oreis usually found within a few seonds by our onstraint based searh program.Some results are shown in Table 1.We present some of the optimal ores for n = 60 and n = 100 elements inFigures 4 and 5. The ores are shown as plane sequene representation. Thisrepresentation shows a oloring by the sequene of its oupied x-layers in thelattie D03. For eah x-layer x = x0 the lower left orner of the grid has oordi-nates (x0; 0; 0). The grid-lines have distane 1. The ore points in eah x-layer are



Table 1. Searh for one optimally ompat ore with n elements, given a layer sequene.We give the number of ontats, as well as nodes and time of the onstraint searh.n # ontats # searh-nodes time in s23 76 15 0.160 243 150 0.789 382 255 2.1100 436 82 1.2shown as �lled irles. There is a noteworthy di�erene between layers x = x0,where x0 is even and those where it is odd. In the latter ones the points havenon-integer y and z oordinates.Further, we folded some proteins of the FCC-HP-model using a program from[7℄ to their now proven optimum. The results are shown in Table 2.Referenes1. V. I. Abkevih, A. M. Gutin, and E. I. Shakhnovih. Impat of loal and non-loal interations on thermodynamis and kinetis of protein folding. Journal ofMoleular Biology, 252:460{471, 1995.2. V.I. Abkevih, A.M. Gutin, and E.I. Shakhnovih. Computer simulations of prebi-oti evolution. In Russ B. Altman, A. Keith Dunker, Lawrene Hunter, and Teri E.Klein, editors, PSB'97, pages 27{38, 1997.3. Riha Agarwala, Sera�m Batzoglou, Vlado Danik, Sott E. Deatur, MartinFarah, Sridhar Hannenhalli, S. Muthukrishnan, and Steven Skiena. Loal rulesfor protein folding on a triangular lattie and generalized hydrophobiity in theHP-model. Journal of Computational Biology, 4(2):275{296, 1997.4. Rolf Bakofen. The protein struture predition problem: A onstraint optimisationapproah using a new lower bound. J. Constraints, 2000. aepted for publiation,speial issue on 'Constraints in Bioinformatis/Bioomputing'.5. Rolf Bakofen. An upper bound for number of ontats in the HP-model on thefae-entered-ubi lattie (FCC). In Ra�aele Gianarlo and David Sanko�, ed-itors, Pro. of the 11th Annual Symposium on Combinatorial Pattern MathingTable 2. Sequenes L1-L5 (taken from [22℄) with absolute walks of optimal onforma-tions in FCC-HP-model. The steps of the walk are given by points of the ompass. The+ and � indies indiate an additional 45Æ walk out of the plane.L1 HPPPPHHHHPPHPHPHHHPHPPHHPPH :N�e EN+wS+e SN�w S+wS�wS�wS+e N�e N�wN+e S�e N+e S+wESN�w SWN+e N+wS+e EN�wL2 HPPPHHHHPHPHHPPPHPHHPHPPPHP :S�e S�wNS+wN+wN�e N�wNS+e N+e SWN+e N�wN�w SS+wS�e S�e WS+e S+wN+e ENN+eL3 HPHHPPHHPPHHHHPPPHPPPHHHPPH :S+wEEN�e N�w S+wNEN+wWS�wS+e WS+wS+e EN�e S+e N�e NS�wN+wWWS+e S�eL4 HHPHHPHHPHHHHHHPPHHHHHPPHHHHHHH :S+e N+wN�e N�wN�wEEN�e SSS+wS+wN�wN�e N�e NS+wS+wS+e NS+e N+e N�w S�e S�e WS+e S+wS�e N�eL5 PHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHP :S+e S�wS+wESN�wES�e EN+wN�e WN+wN�wES+e N�e S+e S+wENWN+e WS�wN+wS+e S�wS+e EN�w SS�wNS+w



x=1 x=6x=5x=4x=3x=2

x=1 x=6x=5x=4x=3x=2Fig. 4. Plane sequene representation of two optimally ompat oloring with n = 60elements.
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x=3 x=6x=1 x=5x=4x=2 x=7

x=3 x=6 x=8x=1 x=5x=4x=2 x=7Fig. 5. Plane sequene representations of three optimally ompat oloring with n =100 elements.
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