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t. Latti
e protein models are used for hierar
hi
al approa
hesto protein stru
ture predi
tion, as well as for investigating prin
iples ofprotein folding. The problem is that there is so far no known latti
e that
an model real protein 
onformations with good quality, and for whi
hthere is an eÆ
ient method to prove whether a 
onformation found bysome heuristi
 algorithm is optimal. We present su
h a method for theFCC-HP-Model [3℄. For the FCC-HP-Model, we need to �nd 
onforma-tions with a maximally 
ompa
t hydrophobi
 
ore. Our method allows usto enumerate maximally 
ompa
t hydrophobi
 
ores for suÆ
iently greatnumber of hydrophobi
 amino-a
ids. We have used our method to provethe optimality of heuristi
ally predi
ted stru
tures for HP-sequen
es inthe FCC-HP-model.1 Introdu
tionThe protein stru
ture predi
tion is one of the most important unsolved prob-lems of 
omputational biology. It 
an be spe
i�ed as follows: Given a proteinby its sequen
e of amino a
ids, what is its native stru
ture? NP-
ompleteness ofthe problem has been proven for many di�erent models (in
luding latti
e ando�-latti
e models) [8, 9℄. These results strongly suggest that the protein foldingproblem is NP-hard in general. Therefore, it is unlikely that a general, eÆ
ientalgorithm for solving this problem 
an be given. A
tually, the situation is evenworse, sin
e the general prin
iples why natural proteins fold into a native stru
-ture are unknown. This is 
umbersome sin
e rational design is 
ommonly viewedto be of paramount importan
e e.g. for drug design, where one fa
es the diÆ
ultyto design proteins that have a unique and stable native stru
ture.To ta
kle stru
ture predi
tion and related problems simpli�ed models havebeen introdu
ed. They are used in hierar
hi
al approa
hes for protein folding(e.g., [21℄, see also the meeting review of CASP3 [15℄, where some groups haveused latti
e models). Furthermore, they have be
ame a major tool for investi-gating general properties of protein folding.Most important are the so-
alled latti
e models. The simpli�
ations 
om-monly used in this 
lass of models are: 1) monomers (or residues) are represented? Supported by the PhD programme \Graduiertenkolleg Logik in der Informatik"(GKLI) of the \Deuts
he Fors
hungsgemeins
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using a uni�ed size 2) bond length is uni�ed 3) the positions of the monomersare restri
ted to latti
e positions and 4) a simpli�ed energy fun
tion.In the literature, many di�erent latti
e models (i.e., latti
es and energy fun
-tions) have been used. Examples of how su
h models 
an be used for predi
t-ing the native stru
ture or for investigating prin
iples of protein folding weregiven [20, 1, 11, 19, 12, 2, 17, 21℄. Of 
ourse, the question arises whi
h latti
e andenergy fun
tions has to be preferred. There are two (somewhat 
on
i
ting) as-pe
ts that have to be evaluated when 
hoosing a model: 1) the a

ura
y of thelatti
e in approximating real protein 
onformations, and the ability of the energyfun
tion to dis
riminate native from non-native 
onformations, and 2) the avail-ability and quality of sear
h algorithm for �nding minimal (or nearly minimal)energy 
onformations.While the �rst aspe
t is well-investigated in the literature (e.g., [18, 10℄), these
ond aspe
t is underrepresented. By and large, there are mainly two di�erentheuristi
 sear
h approa
hes used in the literature: 1) Ad ho
 restri
tion of thesear
h spa
e to 
ompa
t or quasi-
ompa
t 
onformations (a good example is[20℄, where the sear
h spa
e is restri
ted to 
onformations forming an n�n�n-
ube). The main drawba
k here is that the restri
tion to 
ompa
t 
onformationis not biologi
ally motivated for a 
omplete amino a
id sequen
e (as done inthese approa
hes), but only for the hydrophobi
 amino a
ids. In 
onsequen
e,the restri
tion either has to be relaxed and then leads to an ineÆ
ient algo-rithm or is 
hosen to strong and thus may ex
lude optimal 
onformations. 2.)Sto
hasti
 sampling like Monte Carlo methods with simulated annealing, geneti
algorithms et
. Here, the degree of optimality for the best 
onformations and thequality of the sampling 
annot be determined by state of the art methods.1On the other hand, there are only three exa
t algorithms known [23, 4, 6℄whi
h are able to enumerate minimal (or nearly minimal) energy 
onformations,all for the 
ubi
 latti
e. However, the ability of this latti
e to approximate realprotein 
onformations is poor. For example, [3℄ pointed out espe
ially the parityproblem in the 
ubi
 latti
e. This drawba
k of the 
ubi
 latti
e is that every twomonomers with 
hain positions of the same parity 
annot form a 
onta
t.In this paper, we follow the proposal by [3℄ to use a latti
e model with asimple energy fun
tion, namely the HP (hydrophobi
-polar) model, but on abetter suited latti
e (namely the fa
e-
entered 
ubi
). There are two reasons forthis approa
h:1) The FCC 
an model real protein 
onformations with good quality (see [18℄,where it was shown that FCC 
an model protein 
onformations with 
oordinateroot mean square deviation below 2 �A)2) The HP-model models the important aspe
t of hydrophobi
ity. Essentially itis a polymer 
hain representation (on a latti
e) with one stabilizing intera
tionea
h time two hydrophobi
 residues have unit distan
e. This enfor
es 
ompa
ti-�
ation while polar residues and solvent is not expli
itly regarded. It follows the1 Despite there are mathemati
al treatments of Monte Carlo methods with simulatedannealing, the partition fun
tion of the ensemble (whi
h is needed for a pre
isestatement) is in general unknown.



assumption that the hydrophobi
 e�e
t determines the overall 
on�guration ofa protein (for a de�nition of the HP-model, see [16, 10℄).On
e a sear
h algorithm for minimal energy 
onformations is establishedfor this FCC-HP-model, one 
an employ it as a �lter step in an hierar
hi
alapproa
h. This way, one 
an improve the energy fun
tion to a
hieve better bio-logi
al relevan
e and go on to resemble amino a
id positions more a

urately.Contribution of the paper In this paper, we present the �rst algorithm for enu-merating maximal 
ompa
t hydrophobi
 
ores in the fa
e-
entered 
ubi
 latti
e.For a given 
onformation of the FCC-HP-model, the hydrophobi
 
ore is the setof all positions o

upied by hydrophobi
 (H) monomers. A hydrophobi
 
ore ismaximally 
ompa
t if the number of 
onta
ts between neighbored positions ismaximized. Thus, a 
onformation whi
h has a maximally 
ompa
t hydrophobi

ore has minimal energy in the HP-model.There are mainly two appli
ations of the algorithm for �nding hydrophobi

ores. The �rst is that it provides a method to 
he
k minimality of 
onformationsfound by an heuristi
 algorithm. We have used an heuristi
 algorithm des
ribedearlier [7℄. For the �rst time, we were able to �nd minimal energy 
onformations(and to prove their optimality) for HP-sequen
es in the FCC-HP-model. So far,the only known results for the FCC-HP-models were approximation results withan guaranteed ratio of 60% ([3℄, [13℄ provides a general approximation s
hemefor HP-models on arbitrary latti
es; [14℄ gives an approximation s
heme for theHP-model on the 
ubi
 latti
e).The se
ond appli
ation is that the hydrophobi
 
ores are a promising inter-mediate step for an algorithm to enumerate all minimal energy 
onformations.This te
hnique has already been used su

essfully in [23℄.2 PreliminariesFor a ve
tor p, we denote with px (resp. py or pz) its x-
oordinate (resp. y-or z-
oordinate). We use a transformed representation of the FCC-latti
e (fora detailed des
ription, see [5℄. We de�ne the FCC-isomorphi
 latti
e D03 to bethe latti
e that 
onsists of the following sets of points: D03 = f� xyz � j � xyz � 2Z3 and x eveng ℄ f� xy+0:5z+0:5� j � xyz � 2 Z3 and x oddg: The �rst set 
onsist of thepoints in even x-layers, the se
ond of the points in odd x-layers. The set ND03 ofminimal ve
tors 
onne
ting neighbors inD03 is given byND03 = n� 0�10 � ;� 00�1�o℄n� �1�0:5�0:5�o : The ve
tors in the se
ond set are the ve
tors 
onne
ting neighbors intwo su

essive x-layers. Two points p and p0 in D03 are neighbors if p�p0 2 ND03 .A 
oloring is a fun
tion f : D03 ! f0; 1g, where f�1(1) 6= ;. We will identifya 
oloring f with the set of all points 
olored by f , i.e. fp j f(p) = 1g: Hen
e, for
olorings f1; f2 we will use standard set notation for size jf1j, union f1 [ f2, dis-joint union f1℄f2, and interse
tion f1\f2. Given a 
oloring f , we de�ne the num-ber of 
onta
ts of f by 
on(f) := 12 ��f(p;p0) j f(p) ^ f(p0) ^ (p� p0) 2 ND03g��.



A 
oloring f is 
alled a 
oloring of the plane x = 
 if f(x; y; z) = 1 implies x = 
.We say that f is a plane 
oloring if there is a 
 su
h that f is a 
oloring ofplane x = 
. We de�ne Surfpl(f) to be the surfa
e of f in the plane x = 
, i.e.Surfpl(f) = jf(p;p0) j (p� p0) 2 ND03 ^ f(p)^ :f(p0)^ p0x = 
g: With minx(f)we denote the integer minfpx j p 2 fg: maxx(f), miny(f), maxy(f), minz(f)and maxz(f) are de�ned analogously.3 Des
ription of the MethodOur aim is to determine maximally 
ompa
t hydrophobi
 
ores. A hydrophobi

ore is just a 
oloring f . A maximally 
ompa
t hydrophobi
 
ore for n pointsis a 
oloring f of n points that maximizes 
on(f). Without loss of generality,we 
an assume that minx(f) = 1. Let k = maxx(f). Then, we partition f intoplane 
olorings f1; : : : ; fk of the layers x = 1; : : : ; x = k. For sear
hing a maximal
oloring f , we do a bran
h-and-bound sear
h on k and f1 : : : fk.Of 
ourse, the problem is to give good bounds that allow us to 
ut o� manyk and f1 : : : fk that will not maximize 
on(f1 ℄ : : : ℄ fk). For this purpose, wedistinguish between 
onta
ts in a single layer (= 
on(fi) for 1 � i � k), andinterlayer 
onta
ts ICfi+1fi for 1 � i < k between two su

essive layers (i.e., pairs(p;p0) su
h that p and p0 are neighbors, p 2 fi and p0 2 fi+1). We then give twodi�erent bounds on the layer and interlayer 
onta
ts, provided some parametersrestri
ting the fi's.For every plane 
oloring fi, these parameters are the size ni of fi, the num-ber ai of rows that 
ontain a point of fi, and the number bi of 
olumns that
ontain a point of fi. Given these parameters, it is known [23℄ that the layer
onta
ts of fi are given by 2ni � ai � bi. In this paper, we present for any setof parameters ni; ai; bi and ni+1 an upper bound on the number of interlayer
onta
ts Bni+1ni;ai;bi � max� ICfi+1fi fi satis�es ni; ai; biand jfi+1j = ni+1. �So far, the only related bound was given in our own work [5℄. Althoughthere a bound Bni+1ni;ai;bi was given, this bound does not hold for arbitrary sets ofparameters ni; ai; bi and ni+1. Instead, the bound is valid for suÆ
iently �lledplane 
olorings (
alled normal), whi
h was suÆ
ient for the purpose of [5℄.The bound Bni+1ni;ai;bi is used in sear
hing for a maximally 
ompa
t 
ore forn H-monomers as follows. Instead of dire
tly enumerating k and all possible
olorings f1 ℄ : : : ℄ fk, we sear
h through all possible sequen
es of parame-ters ((n1; a1; b1) : : : (nk; ak; bk)) with the property that n =Pi ni. By using theBni+1ni;ai;bi , only a few layer sequen
es have to be 
onsidered further. For theseoptimal layer sequen
es, we then sear
h for all admissible 
olorings f1 ℄ : : :℄ fk.For 
al
ulating the bound Bni+1ni;ai;bi , we need to introdu
e additional param-eters, namely the number of non-overlapping and un
onne
ted rows in layerx = i. These additional parameters allow us to determine the maximal numberof interlayer 
onta
ts between layer x = i and x = i + 1. Further note thatonly few 
ombinations of (ni; ai; bi) and these additional parameters are admis-



sible. Thus, for every (ni; ai; bi), we sear
h through all admissible numbers ofnon-overlapping rows in layer x = i to determine Bni+1ni;ai;bi .In Se
tion 4, we de�ne the parameters of a plane 
oloring and determinewhi
h 
ombinations of parameters are admissible. In Se
tion 5, the number ofinterlayer 
onta
ts is given provided the parameters and the number of pointswith three interlayer 
onta
ts, 
alled 3-points, is �xed. In the following se
tion,we determine the number of 3-points that maximizes the interlayer 
onta
ts.4 Properties of Overlapping and Non-overlappingColoringsLet f be a 
oloring of plane x = 
. A horizontal 
aveat in f is a k-tuple ofpoints (p1; : : : ;pk) su
h that 81 � j < k : ((pj+1 � pj)y = 1), fp1;pkg 2 fand 81 < j < k : pj 62 f . A verti
al 
aveat in f is de�ned analogously satisfying81 � j < k : ((pj+1 � pj)z = 1) instead. We say that f 
ontains a 
aveat if thereis at least one horizontal or verti
al 
aveat in f . f is 
alled 
aveat-free if it doesnot 
ontain a 
aveat. We will handle only 
aveat-free 
olorings. The methods
an be extended to treat 
aveats as well, but we suppress them for simpli
ity.We now introdu
e the parameters of a plane 
oloring f that will allows us todetermine layer and to bound interlayer 
onta
ts. The �rst set of parameters arethe rows and 
olumns o

upied by f . For an arbitrary plane 
oloring f of x = 
de�ne o

z(f; z) := 9y : f(
; y; z) and o

y(f; y) := 9z : f(
; y; z): Furthermore,we de�ne oylines(f) := ���y o

y(f; y)	�� and ozlines(f) := ��� z o

z(f; z)	�� :For notational 
onvenien
e de�ne olines(f) := (oylines(f); ozlines(f)). For a 
ol-oring f , we 
all rows z, where o

z(f; z) holds, and 
olumns y, where o

y(f; y),o

upied, and uno

upied otherwise.For a plane 
oloring f , we de�ne the layer 
onta
ts LCf to be 
on(f). Wede�ne LCn;a;b := max�LCf f is a 
oloring of plane x = 
^f has lines (a; b) ^ jf j = n � :Proposition 1. For every 
aveat-free 
oloring f with olines(f) = (a; b), we getLCn;a;b = 2n� 12Surfpl(f) and Surfpl(f) = 2(a+ b):Proof (sket
h). Ea
h of the n points 
olored by f has 4 neighbors, whi
h areeither o

upied by another point, or by a surfa
e point. Hen
e, 4n = 2LCn;a;b+Surfpl(f). For the se
ond 
laim, note that by de�nition, every o

upied row and
olumn must generate 2 surfa
e 
onta
ts, and, by 
aveat-free, there 
an be nomore than 2.The se
ond set of parameters are the number of un
onne
ted and non-overlapping rows. Let f be a 
oloring of plane x = 
. We de�ne a row z tobe non-overlapping in f if z is o

upied, there is an o

upied row z0 > z, andthere is no y su
h that f(
; y; z) ^ f(
; y; z + 1). A row z is 
alled un
onne
tedif it is non-overlapping and not 9y; y0 : f(
; y; z) ^ f(
; y0; z + 1) ^ jy � y0j � 1.



a) Distance 1 b) Distance > 1

Fig. 1. a) Non-overlapping vs. b) un
onne
tedThe number of non-overlapping rows is denoted by #non-overlaps(f) and thenumber of un
onne
ted rows by #non-
onne
ts(f).To illustrate the terms, Figure 1a) shows a 
oloring with #non-overlaps(f) =1 and #non-
onne
ts(f) = 0, whereas the 
oloring in Figure 1b) satis�es that#non-overlaps(f) = 1 and #non-
onne
ts(f) = 1.We will 
all a 
oloring f with #non-overlaps(f) = 0 overlapping (otherwisenon-overlapping). A 
oloring with #non-
onne
ts(f) = 0 is 
alled 
onne
ted(otherwise un
onne
ted).In the rest of this se
tion, we give pre
ise bounds on the number of 
ol-ored points, given the parameters of the plane 
oloring. We will �rst statesome properties of 
olorings with respe
t to olines(f), #non-overlaps(f) and#non-
onne
ts(f).Proposition 2. For every 
aveat-free 
oloring f, we have jf j � max(olines(f)):Sin
e by de�nition the maximal o

upied row z 
an not be non-overlappingwe immediately get that #non-overlaps(f) is less than oylines(f). The nextlemma states in addition that #non-overlaps(f) is less than ozlines(f). Intu-itively, this is a 
onsequen
e of the (non-trivial) fa
t that every non-overlappingrow produ
es exa
tly one non-overlapping 
olumn.Lemma 1. For a 
aveat-free 
oloring f , we get#non-overlaps(f) < min(olines(f)):A 
aveat-free 
oloring 
an be split at non-overlapping rows into sub-
oloringswith the ni
e property that the parameters of the 
oloring 
an be 
al
ulatedfrom the sub-
olorings in a simple way. This fa
t will be employed for indu
tivearguments. Given a plane 
oloring f and a row minz(f) � zs < maxz(f), wede�ne f�zs = f(
; y; z) 2 f j z�zsg for � 2 f�; >g. Note that the restri
tionon zs is required, sin
e splitting at row zs = maxz(f) would produ
e an emptysub-
oloring f>zs . Further note that this restri
tion is trivially satis�ed by anynon-overlapping row.Lemma 2 (Split). Let f be a 
aveat-free 
oloring of the plane x = 
 with#non-overlaps(f) � 1, and let zs be a non-overlapping row. Then,1. f = f�zs ℄ f>zs and the sub-
olorings f�zs and f>zs are 
aveat-free2. olines(f) = (oylines(f�zs) + oylines(f>zs); ozlines(f�zs) + ozlines(f>zs))3. #non-overlaps(f) = #non-overlaps(f�zs) + #non-overlaps(f>zs) + 1.
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Fig. 2. Coloring with maximal number of elements.There is a dependen
y of the admissible numbers #non-overlaps(f) and thenumber of elements in a 
oloring f , given the number of o

upied lines iny and z dire
tion. Think of (a; b) (resp. mno) as representing olines(f) (resp.#non-overlaps(f)). We de�ne nmax(a; b;mno) := mno+(a �mno)(b �mno) andnmin(a; b;mno) := a+ b�1�mno. The idea of the de�nition of nmax(a; b;mno) isthat the number of elements is maximized if we have one big overlapping regionand waste as little spa
e as possible for the non-overlapping region. Hen
e, inthis maximal 
oloring, all of the non-overlapping rows 
ontain exa
tly one point.Su
h a 
oloring is shown in Figure 2.Lemma 3. All 
aveat-free 
olorings f satisfy jf j � nmax(a; b;mno); where mno=#non-overlaps(f) and (a; b) = olines(f).Lemma 4. For all 
aveat-free 
olorings f holds nmin(a; b;mno) � jf j; where(a; b) = olines(f) and mno = #non-overlaps(f).Proof (sket
h). For the 
ase mno = 0, a 
oloring f of plane x = 
 with minimalnumber of points and olines(f) = (a; b) is given by the 
oloring that has b points(
; 1; 1) : : : (
; 1; b) in the 
olumn y = 1 , and a points (
; 1; b) : : : (
; a; b) in therow z = b. Clearly, f has a+ b� 1 points sin
e (
; 1; b) is in the �rst 
olumn andlast row. For mno > 0, the 
laim follows by indu
tion using the split lemma 2,Claim 3.For 
onvenien
e, we de�ne the following bounds on the number of non-overlapping rows:nomin(n; a; b) := minfmno j 0 � mno � min(a; b)� 1 ^ n � nmin(a; b;mno)gnomax(n; a; b) := maxfmno j 0 � mno � min(a; b)� 1 ^ n � nmax(a; b;mno)gProposition 3. For any 
aveat-free 
oloring f with olines(f) = (a; b) and jf j =n holds nomin(n; a; b) � #non-overlaps(f) � nomax(n; a; b):5 Number of i-points for 
aveat-free 
oloringsIn the next two se
tions, we will provide a bound on interlayer 
onta
ts. For thispurpose, we 
al
ulate for a 
oloring f of plane 
 the numbers of points having



4,3,2, and 1 
onta
ts to f (in the following 
alled i-points). Theorem 1 will statethat we 
an a
hieve the maximal number of interlayer 
onta
ts between x = 
and x = 
 + 1 if we �ll the 4-points �rst, then (if points are left) the 3-pointsand so on. Before, we need some de�nitions and auxiliary lemmata.In the following, let f be a plane 
oloring of plane x = 
 and f 0 a plane
oloring of plane x = 
0, where 
 6= 
0. We de�ne the number of interlayer 
onta
tsof f and f 0 by ICf 0f = 
on(f ℄ f 0)�LCf �LCf 0 . We de�ne 
onta
tsmax(f; n) asmaxn ICf 0f f 0 is a plane 
oloring of x = 
+ 1 with jf 0j = no :A point p is 
alled a 4-point for f if p is in plane x = 
+1 or x = 
�1 and phas 4 neighbors p1; : : : ;p4 2 f . Analogously, we de�ne 3-points, 2-points and 1-points. Furthermore, we de�ne #4
�1(f) = jfp j p 4-point for f in x = 
� 1gj:Analogously, we de�ne #4
+1(f) and #i
�1(f) for i = 1; 2; 3. We will show thatthe number of i-points for every i 2 f1; 2; 3; 4g depend only on the number ofnon-overlaps, the number of non-
onne
ts, and the number of x-steps. An x-stepfor a plane 
oloring f is a triple (p1;p2;p3) su
h that f(p1) = 0, f(p2) = 1 =f(p3), p1 � p2 = �� 010� and p1 � p3 = �� 001� : With xsteps(f) we denote thenumber of x-steps of f . Now we 
an de�ne the number of i-points, dependingon n = jf j, s = Surfpl(f), mx = xsteps(f), mno = #non-overlaps(f) and mn
 =#non-
onne
ts(f):#4�n;smno;mn
;mx� = n� 12s+ 1 +mno#2�n;smno;mn
;mx� = s� 4� 2#3�n;smno;mn
;mx�� 3mno�mn
#3�n;smno;mn
;mx� = mx � 2(mno�mn
)#1�n;smno;mn
;mx� = #3�n;smno;mn
;mx�+ 2mno+2mn
+4For preparation, we state two lemmas that investigate how to 
al
ulate thei-points of f from the two sub-
olorings generated by splitting f at a non-overlapping or un
onne
ted row.Lemma 5 (Split 3-Points). Let f be a 
aveat-free 
oloring of plane x = 
with #non-overlaps(f) � 1, and let zs be a non-overlapping row. Then, #3(f) =#3(f�zs) + #3(f>zs).Proof (sket
h). We 
an show that neither f�zs , nor f>zs , nor f has a 3-pointthat lies between rows zs and zs + 1. This implies that every 3-point for f iseither below zs and is therefore also a 3-point for f�zs , or above zs + 1 and istherefore also a 3-point for f>zs .Lemma 6 (Split at minimal un
onne
ted row). Let f be a 
aveat-free
oloring of plane x = 
 with #non-
onne
ts(f) � 1, and let zs be the mini-mal un
onne
ted row. Then, #non-
onne
ts(f�zs) = 0; #non-
onne
ts(f>zs) =



#non-
onne
ts(f)� 1 andxsteps(f�zs) + xsteps(f>zs) = xsteps(f); (1)8i 2 f1; 2; 3; 4g : #i(f�zs) + #i(f>zs) = #i(f): (2)Proof (sket
h). The �rst two 
laims are trivial. For 
laims (1) and (2), one showsthat if zs is un
onne
ted, the y-distan
e between points in f�zs and f>zs is alwaysgreater than 1. This implies that the sets of i-points and x-steps of f�zs andf>zs are disjoint.Lemma 7. Let f be a 
aveat-free 
oloring. Then8i 2 f1; 2; 3; 4g : #i(f) = #i�jf j;Surfpl(f)#non-overlaps(f);#non-
onne
ts(f);xsteps(f)�:Proof (sket
h). The 
ase #non-
onne
ts(f) = 0 is equivalent to the formulaalready proven in [5℄. For the 
ase #non-
onne
ts(f) = mn
 > 0, we do indu
tionon mn
. The 
laim for #4(f), #3(f) and #1(f) follow from the Split-Lemmata2, 5 and 6 by simple 
al
ulation (re
all that by de�nition, every un
onne
tedline is also non-overlapping). For #2(f), the 
laim follows by simple 
al
ulationfrom the equation 4#4(f) + 3#3(f) + 2#2(f) + 1#1(f) = 4jf j. This equationholds sin
e the sum of all interlayer 
onta
ts between f and the next plane is4jf j.6 Maximal number of 3-points.Due to the last lemma, if we 
onsider 
olorings with given n; a; b;mno; and mn
,then mx does not a�e
t the number of 4-points, but in
reases the number of3-points and 1-points, while de
reasing the number of 2-points. The in
rease of3- and 1-points is 1 per x-step, the de
rease of 2-points is 2 per 3-point. Thispattern grants that we maximize the possible number of interlayer 
onta
ts toa se
ond plane with a given number of elements, if we maximize the number of3-points in the �rst plane. For this purpose, we �rst show that we need not todistinguish between un
onne
ted and non-overlapping rows for the number of 3-points. The reason is that number of 3-points does not 
hange if one transformsa non-overlapping row into into a un
onne
ted row. Consider as an example thetwo 
olorings
x−step 1

x−step 2
f: f’: :Then both f and f 0 have one 3-point (indi
ated in grey). By transforming thenon-overlapping row in f into a un
onne
ted row, f 0 looses two x-steps. Thus,the e�e
ts of in
reasing #non-
onne
ts(�) by 1 are diminished by de
reasingxsteps(�) by 2.



Note that su
h a bound for the interlayer 
onta
ts using a bound for 3-pointsthat does not distinguish between non-overlapping and un
onne
ted rows slightlyoverestimates, sin
e we assume the best 
ase for the number of 2- and 1-points(note that in 
ontrast to the number of 3-points, the number of 2- and 1-pointsdepend on the exa
t number of un
onne
ted rows).We start with the extension of the bound for
fex:Fig. 3. Detailled Frame

3-points, as given in [5℄ in the 
ase of \suÆ
iently�lled" and overlapping 
olorings, to arbitrary over-lapping 
olorings. We need to re
all some de�ni-tions from [5℄. For an overlapping 
oloring f witholines(f) = (a; b), a and b are the side lengths of theminimal re
tangle around the points in f (
alledframe(f) in the following). The detailed frame of a
oloring f is the tuple (a; b; ilb; ilu; irb; iru), where(a; b) is the frame of f and ilb is the number of di-agonals that 
an be drawn from the left-bottom 
orner. ilu; irb; iru are de�nedanalogously. For a 
oloring f with detailed frame (a; b; ilb; ilu; irb; iru), we 
alli = (ilb; ilu; irb; iru) the indent ve
tor of f . As shown in [5℄, the indent ve
torgives a pre
ise bound on the #3(f), sin
e in this 
ase, xsteps(f) = #3(f) andxsteps(f) = ilb + ilu + irb + iru � diag
av(f). Here, diag
av(f) 
ounts the num-ber of diagonal 
aveats, whi
h are de�ned analogous to verti
al and horizontal
aveats. For example, 
onsider the plane 
oloring fex as given in Figure 6. Thenthe detailed frame of fex is (6; 9; 3; 2; 1; 2). The number of 3-points (indi
ated by�) for fex is 8 = 3 + 2 + 1 + 2, sin
e fex does not 
ontain diagonal 
aveats.In the overlapping 
ase, we sear
h for a given number of points n and a frame(a; b) the maximal number of x-steps. For this purpose, we de�ne for some indentve
tor i = (i1; i2; i3; i4), vol(a; b; i) := ab �P1�j�4 ij (ij+1)2 . vol(a; b; i) is themaximal number of points that 
an be 
olored by any f that has indent ve
tori and frame (a; b). i = (i1; i2; i3; i4) is 
alled maximal for (a; b) i� P1�j�4 ij =2(min(a; b) � 1). For example, if b � a, then the indent ve
tor i is maximalfor (a; b) if every 
oloring with frame (a; b) and indent ve
tor i has exa
tly one
olored point in the �rst and last 
olumn.vol(a; b; i) 
an now be used to 
al
ulate the maximal number of x-steps that
an be a
hieved given n 
olored points and frame (a; b). The maximal num-ber of x-steps is a
hieved if we make the indents as uniform as possible. Forthis purpose, de�ne edge(n; a; b) = maxfk 2 N j vol(a; b; (k; k; k; k))g. k =edge(n; a; b) de�nes the maximal possible uniform indent. Then r = ext(n; a; b) =bab�4 k(k+1)2 �nk+1 
 de�nes the number of times r we 
an extend the uniform indentby 1. n is 
alled normal for (a; b) if either 4k+ r < 2(a� 1), or 4k+ r = 2(a� 1)and ab� 4k(k+1)2 � r(k + 1) = n.Now there are two upper bounds that 
an be given for the number of x-steps,given n 
olored points and frame (a; b). The �rst is given by the indent ve
tor.The se
ond by the fa
t, that in 
aveat-free and overlapping 
olorings, there maybe at most between every two su

essive lines 2 x-steps, whi
h gives at most



2min(a; b)� 1. Thus, the bound given in [5℄ is as follows:xstepsbnd(n; a; b) = min(4 edge(n; a; b) + ext(n; a; b); 2(min(a; b)� 1)):We improve the bound in the 
ase of quadrati
 frames (a; a) and n is not normalfor (a; a). Here, we show that we have an upper bound of 2a�3 instead of 2a�2if there is no maximal indent i with n = vol(a; a; i). We show in this 
ase, thatthere must be a diagonal 
aveat.Lemma 8. For every overlapping 
aveat-free 
oloring f we get#3(f) � #3bound(jf j; a; b);where (a; b) = frame(f) and#3bound(n; a; b) := 8>>>>>><>>>>>>:xstepsbnd(n; a; b) n is normal for frame (a; b)2min(a; b)� 2 else if a 6= b2a� 2 else if 9i : i are maximal indentsfor (a; a) ^ n = vol(a; a; i)2a� 3 otherwiseFor the general 
ase of possibly non-overlapping 
olorings, Lemmata 3, 4,and 1 imply that any 
oloring f with olines(f) = (a; b) and #non-overlaps(f) =mno satis�es valid(n; a; b;mno) := �mno < min(a; b) ^ nmin(a; b;mno) � n �nmax(a; b;mno)�. Hen
e, we de�ne #3bound(n; a; b;mno) to be �1 in the 
asethat valid(n; a; b;mno) does not hold. Otherwise, we de�ne #3bound(n; a; b;mno)by #3bound(n; a; b) if mno = 0 andmax8<: #3bound(n0; a0; b0; 0)+#3bound(n� n0; a� a0;b� b0;mno�1) 1 � n0 � n� 1;1 � a0 � a� 1;1 � b0 � b� 1; 9=; ;otherwise.Lemma 9. For every 
aveat-free 
oloring f , holds #3(f) � #3bound(n; a; b;mno);where n = jf j; (a; b) = olines(f); and mno = #non-overlaps(f).Proof (sket
h). The 
ase mno = 0 is treated in Lemma 8. For n; a; b and mno > 0with valid(n; a; b;mno), we 
an split a 
oloring f at the minimal non-overlappingline zs and into f�zs and f>zs and get #3(f) = #3(f�zs) + #3(f>zs) byLemma 5. Considering all possible rows for splitting will give the se
ond 
ase of#3bound(n; a; b;mno).The bound on the number of 3-points 
an now be used to derive a bound onthe number of interlayer 
onta
ts for arbitrary 
olorings. Summarizing, we getthe following bound:BNMICn2n1;a1;b1(mno1) := 4min(n2;#4) + 3min(#3;max(n2 �#4); 0)+ 2min(#2;max(n2 �#4�#3; 0)) + min(#1;max(n2 �#4�#3�#2; 0))where #4 = n� a1 � b1 + 1 +mno1 #3 = #3bound(n1; a1; b1;mno1)#2 = 2(a1 + b1)� 4� 2#3� 3mno1 #1 = #3 + 2mno1+4.



Theorem 1. Let f1 and f2 be 
oloring of planes x = 
 and x = 
 + 1, respe
-tively. Let n1 = jf1j,olines(f1) = (a1; b1), jf2j = n2 and olines(f2) = (a2; b2).Then ICf2f1 � min(BNMICn2n1;a1;b1 ;BNMICn1n2;a2;b2):7 Constru
ting the Compa
t CoresWe will now show how to 
ompute the optimally 
ompa
t 
ores for a givennumber of elements, thereby employing the given bound on interlayer 
onta
ts,for a bran
h-and-bound approa
h. Due to spa
e restri
tions, we have to omitmany details of the approa
h.W.l.o.g, let a 
oloring f be de
omposed into plane 
olorings f1 ℄ � � � ℄ fk.A dynami
 programming algorithm allows one to eÆ
iently 
ompute boundsBMC(n; n1; a1; b1) su
h that for every 
oloring f = f1 ℄ � � � ℄ fk, it holds thatBMC(n; n1; a1; b1) � 
on(f); where jf j = n, jf1j = n1, and olines(f1) = (a1; b1).From this algorithm we get immediately a maximal number of 
onta
ts in any
oloring with n elements. Further, let a layer sequen
e be a sequen
e of triples(ni; ai; bi). A 
oloring f is 
alled s-
ompatible, if every plane restri
tion fi of fis 
ompatible to si = (ni; ai; bi), i.e. jfij = ni and olines(fi) = (ai; bi).By tra
eba
k from the above dynami
 programming algorithm one eÆ
ientlyobtains the set of all layer sequen
es s, where there may exist (by our bound) ans-
ompatible 
oloring f with b 
onta
ts. That is, we de�ne this set of sequen
esby S(n; b) := � s layer sequen
e bound for s greater or equal b	 :To �nd optimally 
ompa
t 
olorings it remains to sear
h by 
onstraint basedsear
h through the 
olorings of 
andidate layer sequen
es.Now, we assume that the sets S(n; b) are already pre
omputed by the dy-nami
 programming algorithm. To �nd one optimally 
ompa
t 
oloring with nelements do the following. Let bn be the 
onta
ts bound for 
olorings with nelements. For as
ending i � 0, iteratively sear
h for a 
oloring f with bn� i 
on-ta
ts in all layer sequen
es s 2 S(n; bn� i). Clearly, the �rst 
oloring fb found bythis pro
edure has maximal 
onta
ts. To �nd all 
olorings with a given numberk of 
onta
ts (e.g. all best 
olorings) we perform an analogous sear
h in all layersequen
es s 2 S(n; b).8 ResultsWe have 
omputed all sets of layer sequen
es S(n; b) for n � 100 in about 10days on a standard PC. For a given layer sequen
e one optimally 
ompa
t 
oreis usually found within a few se
onds by our 
onstraint based sear
h program.Some results are shown in Table 1.We present some of the optimal 
ores for n = 60 and n = 100 elements inFigures 4 and 5. The 
ores are shown as plane sequen
e representation. Thisrepresentation shows a 
oloring by the sequen
e of its o

upied x-layers in thelatti
e D03. For ea
h x-layer x = x0 the lower left 
orner of the grid has 
oordi-nates (x0; 0; 0). The grid-lines have distan
e 1. The 
ore points in ea
h x-layer are



Table 1. Sear
h for one optimally 
ompa
t 
ore with n elements, given a layer sequen
e.We give the number of 
onta
ts, as well as nodes and time of the 
onstraint sear
h.n # 
onta
ts # sear
h-nodes time in s23 76 15 0.160 243 150 0.789 382 255 2.1100 436 82 1.2shown as �lled 
ir
les. There is a noteworthy di�eren
e between layers x = x0,where x0 is even and those where it is odd. In the latter ones the points havenon-integer y and z 
oordinates.Further, we folded some proteins of the FCC-HP-model using a program from[7℄ to their now proven optimum. The results are shown in Table 2.Referen
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x=1 x=6x=5x=4x=3x=2

x=1 x=6x=5x=4x=3x=2Fig. 4. Plane sequen
e representation of two optimally 
ompa
t 
oloring with n = 60elements.
x=3 x=6 x=8x=1 x=5x=4x=2 x=7

x=3 x=6x=1 x=5x=4x=2 x=7

x=3 x=6 x=8x=1 x=5x=4x=2 x=7Fig. 5. Plane sequen
e representations of three optimally 
ompa
t 
oloring with n =100 elements.
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