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Abstract. Lattice protein models are used for hierarchical approaches
to protein structure prediction, as well as for investigating principles of
protein folding. The problem is that there is so far no known lattice that
can model real protein conformations with good quality, and for which
there is an efficient method to prove whether a conformation found by
some heuristic algorithm is optimal. We present such a method for the
FCC-HP-Model [3]. For the FCC-HP-Model, we need to find conforma-
tions with a maximally compact hydrophobic core. Our method allows us
to enumerate maximally compact hydrophobic cores for sufficiently great
number of hydrophobic amino-acids. We have used our method to prove
the optimality of heuristically predicted structures for HP-sequences in
the FCC-HP-model.

1 Introduction

The protein structure prediction is one of the most important unsolved prob-
lems of computational biology. It can be specified as follows: Given a protein
by its sequence of amino acids, what is its native structure? NP-completeness of
the problem has been proven for many different models (including lattice and
off-lattice models) [8,9]. These results strongly suggest that the protein folding
problem is NP-hard in general. Therefore, it is unlikely that a general, efficient
algorithm for solving this problem can be given. Actually, the situation is even
worse, since the general principles why natural proteins fold into a native struc-
ture are unknown. This is cumbersome since rational design is commonly viewed
to be of paramount importance e.g. for drug design, where one faces the difficulty
to design proteins that have a unique and stable native structure.

To tackle structure prediction and related problems simplified models have
been introduced. They are used in hierarchical approaches for protein folding
(e.g., [21], see also the meeting review of CASP3 [15], where some groups have
used lattice models). Furthermore, they have became a major tool for investi-
gating general properties of protein folding.

Most important are the so-called lattice models. The simplifications com-
monly used in this class of models are: 1) monomers (or residues) are represented
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using a unified size 2) bond length is unified 3) the positions of the monomers
are restricted to lattice positions and 4) a simplified energy function.

In the literature, many different lattice models (i.e., lattices and energy func-

tions) have been used. Examples of how such models can be used for predict-
ing the native structure or for investigating principles of protein folding were
given [20,1,11,19,12,2,17,21]. Of course, the question arises which lattice and
energy functions has to be preferred. There are two (somewhat conflicting) as-
pects that have to be evaluated when choosing a model: 1) the accuracy of the
lattice in approximating real protein conformations, and the ability of the energy
function to discriminate native from non-native conformations, and 2) the avail-
ability and quality of search algorithm for finding minimal (or nearly minimal)
energy conformations.
While the first aspect is well-investigated in the literature (e.g., [18,10]), the
second aspect is underrepresented. By and large, there are mainly two different
heuristic search approaches used in the literature: 1) Ad hoc restriction of the
search space to compact or quasi-compact conformations (a good example is
[20], where the search space is restricted to conformations forming an n x n x n-
cube). The main drawback here is that the restriction to compact conformation
is not biologically motivated for a complete amino acid sequence (as done in
these approaches), but only for the hydrophobic amino acids. In consequence,
the restriction either has to be relaxed and then leads to an inefficient algo-
rithm or is chosen to strong and thus may exclude optimal conformations. 2.)
Stochastic sampling like Monte Carlo methods with simulated annealing, genetic
algorithms etc. Here, the degree of optimality for the best conformations and the
quality of the sampling cannot be determined by state of the art methods.!

On the other hand, there are only three exact algorithms known [23,4, 6]
which are able to enumerate minimal (or nearly minimal) energy conformations,
all for the cubic lattice. However, the ability of this lattice to approximate real
protein conformations is poor. For example, [3] pointed out especially the parity
problem in the cubic lattice. This drawback of the cubic lattice is that every two
monomers with chain positions of the same parity cannot form a contact.

In this paper, we follow the proposal by [3] to use a lattice model with a
simple energy function, namely the HP (hydrophobic-polar) model, but on a
better suited lattice (namely the face-centered cubic). There are two reasons for
this approach:

1) The FCC can model real protein conformations with good quality (see [18],
where it was shown that FCC can model protein conformations with coordinate
root mean square deviation below 2 A)

2) The HP-model models the important aspect of hydrophobicity. Essentially it
is a polymer chain representation (on a lattice) with one stabilizing interaction
each time two hydrophobic residues have unit distance. This enforces compacti-
fication while polar residues and solvent is not explicitly regarded. It follows the

! Despite there are mathematical treatments of Monte Carlo methods with simulated
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assumption that the hydrophobic effect determines the overall configuration of
a protein (for a definition of the HP-model, see [16,10]).

Once a search algorithm for minimal energy conformations is established
for this FCC-HP-model, one can employ it as a filter step in an hierarchical
approach. This way, one can improve the energy function to achieve better bio-
logical relevance and go on to resemble amino acid positions more accurately.

Contribution of the paper In this paper, we present the first algorithm for enu-
merating maximal compact hydrophobic cores in the face-centered cubic lattice.
For a given conformation of the FCC-HP-model, the hydrophobic core is the set
of all positions occupied by hydrophobic (H) monomers. A hydrophobic core is
maximally compact if the number of contacts between neighbored positions is
maximized. Thus, a conformation which has a maximally compact hydrophobic
core has minimal energy in the HP-model.

There are mainly two applications of the algorithm for finding hydrophobic
cores. The first is that it provides a method to check minimality of conformations
found by an heuristic algorithm. We have used an heuristic algorithm described
earlier [7]. For the first time, we were able to find minimal energy conformations
(and to prove their optimality) for HP-sequences in the FCC-HP-model. So far,
the only known results for the FCC-HP-models were approximation results with
an guaranteed ratio of 60% ([3], [13] provides a general approximation scheme
for HP-models on arbitrary lattices; [14] gives an approximation scheme for the
HP-model on the cubic lattice).

The second application is that the hydrophobic cores are a promising inter-
mediate step for an algorithm to enumerate all minimal energy conformations.
This technique has already been used successfully in [23].

2 Preliminaries

For a vector p, we denote with p, (resp. p, or p.) its z-coordinate (resp. y-
or z-coordinate). We use a transformed representation of the FCC-lattice (for
a detailed description, see [5]. We define the FCC-isomorphic lattice D} to be

the lattice that consists of the following sets of points: D} = {(zl) | (g’) €

x
7 and x even} W {(gigg) | (z/) € 73 and z odd}. The first set consist of the
points in even x-layers, the second of the points in odd x-layers. The set Np; of

0 0
minimal vectors connecting neighbors in D} is given by Np, = { ( iol ) , (:I(:)l ) }LtJ

+1
{ ( igg) } . The vectors in the second set are the vectors connecting neighbors in

two successive x-layers. Two points p and p’ in D} are neighbors if p—p’ € Npy.

A coloring is a function f : D} — {0,1}, where f=1(1) # (. We will identify
a coloring f with the set of all points colored by f,i.e. {p| f(p) = 1}. Hence, for
colorings f1, fo we will use standard set notation for size | f1|, union f; U fo, dis-
joint union f1 W fy, and intersection f;Nfs. Given a coloring f, we define the num-

ber of contacts of f by con(f) := % |{(p7pl) | fe) AN f(P')AN(p—D') € NDg}|'



A coloring f is called a coloring of the plane x = cif f(x,y,z) = 1 implies z = c.
We say that f is a plane coloring if there is a ¢ such that f is a coloring of
plane z = c¢. We define Surf,;(f) to be the surface of f in the plane z = ¢, i.e.
Surfy(f) = [{(p,9') | (p— 1) € Npy A f(B) A~f(p') A’ = c}. With min, (7)
we denote the integer min{p, | p € f}. max,(f), min,(f), max,(f), min.(f)
and max,(f) are defined analogously.

3 Description of the Method

Our aim is to determine maximally compact hydrophobic cores. A hydrophobic
core is just a coloring f. A mazimally compact hydrophobic core for n points
is a coloring f of n points that maximizes con(f). Without loss of generality,
we can assume that min,(f) = 1. Let k = max,(f). Then, we partition f into
plane colorings fi, ..., fr of the layers z = 1,...,z = k. For searching a maximal
coloring f, we do a branch-and-bound search on k and f; ... fi.

Of course, the problem is to give good bounds that allow us to cut off many
k and fi ... fi that will not maximize con(f; W...W f). For this purpose, we
distinguish between contacts in a single layer (= con(f;) for 1 < ¢ < k), and

interlayer contacts ¢’ ::“ for 1 < i < k between two successive layers (i.e., pairs
(p, p’) such that p and p’ are neighbors, p € f; and p’ € f;11). We then give two
different bounds on the layer and interlayer contacts, provided some parameters
restricting the f;’s.

For every plane coloring f;, these parameters are the size n; of f;, the num-
ber a; of rows that contain a point of f;, and the number b; of columns that
contain a point of f;. Given these parameters, it is known [23] that the layer
contacts of f; are given by 2n; — a; — b;. In this paper, we present for any set
of parameters n;,a;,b; and n;;1 an upper bound on the number of interlayer

fi satisfies n;, a;, b; }
and |fi+1| = Nj41-

So far, the only related bound was given in our own work [5]. Although
there a bound B,'*! | was given, this bound does not hold for arbitrary sets of
parameters n;, a;, b; and n;y1. Instead, the bound is valid for sufficiently filled
plane colorings (called normal), which was sufficient for the purpose of [5].

The bound Bzzlb is used in searching for a maximally compact core for
n H-monomers as follows. Instead of directly enumerating k£ and all possible
colorings f1 W ... W f, we search through all possible sequences of parame-
ters ((n1,a1,b1)...(nk,ar, b)) with the property that n = 3. n;. By using the
BZ*alb, only a few layer sequences have to be considered further. For these
optimal layer sequences, we then search for all admissible colorings fi &... & fy.

For calculating the bound Bgfﬁlli’bi, we need to introduce additional param-
eters, namely the number of non-overlapping and unconnected rows in layer
x = i. These additional parameters allow us to determine the maximal number
of interlayer contacts between layer + = i and © = 7 + 1. Further note that
only few combinations of (n;,a;,b;) and these additional parameters are admis-

contacts BZJralb > max { IC;::J@




sible. Thus, for every (n;,a;, b;), we search through all admissible numbers of
non-overlapping rows in layer z =i to determine B)"™*' .

In Section 4, we define the parameters of a plane coloring and determine
which combinations of parameters are admissible. In Section 5, the number of
interlayer contacts is given provided the parameters and the number of points
with three interlayer contacts, called 3-points, is fixed. In the following section,

we determine the number of 3-points that maximizes the interlayer contacts.

4 Properties of Overlapping and Non-overlapping
Colorings

Let f be a coloring of plane z = ¢. A horizontal caveat in f is a k-tuple of
points (p1,...,pk) such that V1 < j < k : ((pj+1 —Pj)y =1), {p1,pr} € f
and V1 < j < k:p; € f. A vertical caveat in f is defined analogously satisfying
V1<j<k:((pj+1 —Pj): = 1) instead. We say that f contains a caveat if there
is at least one horizontal or vertical caveat in f. f is called caveat-free if it does
not contain a caveat. We will handle only caveat-free colorings. The methods
can be extended to treat caveats as well, but we suppress them for simplicity.
We now introduce the parameters of a plane coloring f that will allows us to
determine layer and to bound interlayer contacts. The first set of parameters are
the rows and columns occupied by f. For an arbitrary plane coloring f of z = ¢
define occz(f, z) := Jy : f(e,y,2) and occy(f,y) := 3z : f(c,y, z). Furthermore,
we define oylines(f) := |{y|0ccy(f, y) }| and ozlines(f) := |{ z|ocez(f, z) }| .
For notational convenience define olines(f) := (oylines(f), ozlines(f)). For a col-
oring f, we call rows z, where occz(f, z) holds, and columns y, where occy(f,y),
occupied, and unoccupied otherwise.
For a plane coloring f, we define the layer contacts LCy to be con(f). We
define
LC — max 4 LC f is a coloring of plane z = ¢
m,a:b - F|'Af has lines (a,b) A|f] =n

Proposition 1. For every caveat-free coloring f with olines(f) = (a,b), we get
LChpas = 2n — $Surfy(f) and Surfy(f) = 2(a + b).

Proof (sketch). Each of the n points colored by f has 4 neighbors, which are
either occupied by another point, or by a surface point. Hence, 4n = 2LC,, 4 +
Surfy; (f). For the second claim, note that by definition, every occupied row and
column must generate 2 surface contacts, and, by caveat-free, there can be no
more than 2.

The second set of parameters are the number of unconnected and non-
overlapping rows. Let f be a coloring of plane z = ¢. We define a row z to
be non-overlapping in f if z is occupied, there is an occupied row z' > z, and
there is no y such that f(e,y,2) A f(e,y,z+ 1). A row z is called unconnected
if it is non-overlapping and not Jy,y’' : f(c,y,2) A fle, v,z + 1) Ay —9'| < 1.
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Fig. 1. a) Non-overlapping vs. b) unconnected

The number of non-overlapping rows is denoted by #non-overlaps(f) and the
number of unconnected rows by #non-connects(f).

To illustrate the terms, Figure 1a) shows a coloring with #non-overlaps(f) =
1 and #non-connects(f) = 0, whereas the coloring in Figure 1b) satisfies that
#non-overlaps(f) = 1 and #non-connects(f) = 1.

We will call a coloring f with #non-overlaps(f) = 0 overlapping (otherwise
non-overlapping). A coloring with #non-connects(f) = 0 is called connected
(otherwise unconnected).

In the rest of this section, we give precise bounds on the number of col-
ored points, given the parameters of the plane coloring. We will first state
some properties of colorings with respect to olines(f), #non-overlaps(f) and
#non-connects(f).

Proposition 2. For every caveat-free coloring f, we have |f| > max(olines(f)).

Since by definition the maximal occupied row z can not be non-overlapping
we immediately get that #non-overlaps(f) is less than oylines(f). The next
lemma states in addition that #non-overlaps(f) is less than ozlines(f). Intu-
itively, this is a consequence of the (non-trivial) fact that every non-overlapping
row produces exactly one non-overlapping column.

Lemma 1. For a caveat-free coloring f, we get
#non-overlaps(f) < min(olines(f)).

A caveat-free coloring can be split at non-overlapping rows into sub-colorings
with the nice property that the parameters of the coloring can be calculated
from the sub-colorings in a simple way. This fact will be employed for inductive
arguments. Given a plane coloring f and a row min,(f) < z; < max,(f), we
define fo.., = {(c,y,2) € f | 20z} for 8 € {<,>}. Note that the restriction
on z, is required, since splitting at row z; = max.(f) would produce an empty
sub-coloring fs.,. Further note that this restriction is trivially satisfied by any
non-overlapping row.

Lemma 2 (Split). Let f be a caveat-free coloring of the plane © = c¢ with
#non-overlaps(f) > 1, and let zs be a non-overlapping row. Then,

1. f = f<:, W fs., and the sub-colorings f<. and f~. are caveat-free

2. olines(f) = (oylines(f<.,) + oylines(fs.,), ozlines(f<. ) + ozlines(f-,))
3. #non-overlaps(f) = #non-overlaps(f<.,) + #non-overlaps(fs.,) + 1.
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Fig. 2. Coloring with maximal number of elements.

There is a dependency of the admissible numbers #non-overlaps(f) and the
number of elements in a coloring f, given the number of occupied lines in
y and z direction. Think of (a,b) (resp. m,,) as representing olines(f) (resp.
#non-overlaps(f)). We define nyax(a, b, my,) := my, +(a — mye)(b — my,) and
Nomin (@, b, My ) := a+b—1—my,. The idea of the definition of nyax(a, b, mye) is
that the number of elements is maximized if we have one big overlapping region
and waste as little space as possible for the non-overlapping region. Hence, in
this maximal coloring, all of the non-overlapping rows contain exactly one point.
Such a coloring is shown in Figure 2.

Lemma 3. All caveat-free colorings f satisfy |f| < nmax(a, b, my,), where my, =
#non-overlaps(f) and (a,b) = olines(f).

Lemma 4. For all caveat-free colorings f holds nmin(a,b,my,) < |f|, where
(a,b) = olines(f) and my, = #non-overlaps(f).

Proof (sketch). For the case my, = 0, a coloring f of plane x = ¢ with minimal
number of points and olines(f) = (a, ) is given by the coloring that has b points
(¢,1,1)...(e,1,b) in the column y = 1 , and a points (¢, 1,b)...(c,a,b) in the
row z = b. Clearly, f has a+b— 1 points since (¢, 1, b) is in the first column and
last row. For my, > 0, the claim follows by induction using the split lemma 2,
Claim 3.

For convenience, we define the following bounds on the number of non-
overlapping rows:

NOmin (N, a,b) := min{my, | 0 < my,, < min(a,b) — 1 An > npin(a,b,mpy,)}

NOmax(N,a,b) := max{m,, | 0 < mpy, < min(a,b) — 1 An < nyax(a, b, my,)}
Proposition 3. For any caveat-free coloring f with olines(f) = (a,b) and |f| =
n holds n10omin(n, a,b) < #non-overlaps(f) < nomax(n, a,b).

5 Number of i-points for caveat-free colorings

In the next two sections, we will provide a bound on interlayer contacts. For this
purpose, we calculate for a coloring f of plane ¢ the numbers of points having



4.3,2, and 1 contacts to f (in the following called i-points). Theorem 1 will state
that we can achieve the maximal number of interlayer contacts between = = ¢
and z = ¢ + 1 if we fill the 4-points first, then (if points are left) the 3-points
and so on. Before, we need some definitions and auxiliary lemmata.

In the following, let f be a plane coloring of plane 2 = ¢ and f’ a plane
coloring of plane x = ¢, where ¢ # ¢’. We define the number of interlayer contacts

of f and f" by IC? =con(fW f') —LCy —LCy. We define contactsmax(f,n) as
max { IC;I ‘f’ is a plane coloring of z = ¢+ 1 with |f'| = n} )

A point p is called a 4-point for f if pisin planex =c+lorz=c—1and p
has 4 neighbors p1,...,p4 € f. Analogously, we define 3-points, 2-points and 1-
points. Furthermore, we define #4._1(f) = |{p | p 4-point for f in z = c— 1}|.
Analogously, we define #4.41(f) and #i.+1(f) for i = 1,2,3. We will show that
the number of i-points for every i € {1,2,3,4} depend only on the number of
non-overlaps, the number of non-connects, and the number of x-steps. An z-step
for a plane coloring f is a triple (p1,p2,ps) such that f(p1) =0, f(p2) =1=
f(p3), p1 —p2 ==+ (g) and p1 —p3 = =+ (@) . With xsteps(f) we denote the

number of x-steps of f. Now we can define the number of i-points, depending
on n = |f|, s = Surfy(f), my = xsteps(f), mpo = #non-overlaps(f) and mp. =
#non-connects(f):

——.9+1-|-mnO
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For preparation, we state two lemmas that investigate how to calculate the
i-points of f from the two sub-colorings generated by splitting f at a non-
overlapping or unconnected row.

Lemma 5 (Split 3-Points). Let f be a caveat-free coloring of plane © = ¢
with #non-overlaps(f) > 1, and let z5 be a non-overlapping row. Then, #3(f) =

#3(f§zs) + #3(f>zs)'

Proof (sketch). We can show that neither f<. , nor fs. , nor f has a 3-point
that lies between rows z; and zs + 1. This implies that every 3-point for f is
either below z; and is therefore also a 3-point for f<. , or above z; + 1 and is
therefore also a 3-point for fs ...

s

Lemma 6 (Split at minimal unconnected row). Let f be a caveat-free
coloring of plane x = ¢ with #non-connects(f) > 1, and let z5 be the mini-
mal unconnected row. Then, #non-connects(f<., ) = 0, #non-connects(fs.,) =



#non-connects(f) — 1 and

xsteps(fe=,) + xsteps(fo-z,) = xsteps(f), 1)
Vi e {152’354}: #i(f§25)+#i(f>25) :#Z(.f) (2)

Proof (sketch). The first two claims are trivial. For claims (1) and (2), one shows
that if z, is unconnected, the y-distance between pointsin f<., and fs., is always
greater than 1. This implies that the sets of i-points and z-steps of f<., and
f>z. are disjoint.

Lemma 7. Let f be a caveat-free coloring. Then

. Y _ . fIr,Surfy (f
Vi e {]" 27 3’ 4} . #Z(f) - #Z (‘#rlloriov:eglzzps(f),#non—connects(f),xsteps(f)) :

Proof (sketch). The case #non-connects(f) = 0 is equivalent to the formula
already proven in [5]. For the case #non-connects(f) = mye > 0, we do induction
on mye. The claim for #4(f), #3(f) and #1(f) follow from the Split-Lemmata
2, 5 and 6 by simple calculation (recall that by definition, every unconnected
line is also non-overlapping). For #2(f), the claim follows by simple calculation
from the equation 4#4(f) + 3#3(f) + 2#2(f) + 1#1(f) = 4| f|. This equation
holds since the sum of all interlayer contacts between f and the next plane is

4l f1-

6 Maximal number of 3-points.

Due to the last lemma, if we consider colorings with given n,a, b, m,,, and my,
then m, does not affect the number of 4-points, but increases the number of
3-points and 1-points, while decreasing the number of 2-points. The increase of
3- and 1-points is 1 per x-step, the decrease of 2-points is 2 per 3-point. This
pattern grants that we maximize the possible number of interlayer contacts to
a second plane with a given number of elements, if we maximize the number of
3-points in the first plane. For this purpose, we first show that we need not to
distinguish between unconnected and non-overlapping rows for the number of 3-
points. The reason is that number of 3-points does not change if one transforms
a non-overlapping row into into a unconnected row. Consider as an example the
two colorings

x—steplN
O'®e e e XX
Ooooo f: Oooo
[ 2 BN BN ] x—step 2 o000

Then both f and f’ have one 3-point (indicated in grey). By transforming the
non-overlapping row in f into a unconnected row, f’ looses two x-steps. Thus,
the effects of increasing #non-connects(-) by 1 are diminished by decreasing
xsteps(+) by 2.



Note that such a bound for the interlayer contacts using a bound for 3-points
that does not distinguish between non-overlapping and unconnected rows slightly
overestimates, since we assume the best case for the number of 2- and 1-points
(note that in contrast to the number of 3-points, the number of 2- and 1-points
depend on the exact number of unconnected rows).

We start with the extension of the bound for
3-points, as given in [5] in the case of “sufficiently
filled” and overlapping colorings, to arbitrary over-
lapping colorings. We need to recall some defini-
tions from [5]. For an overlapping coloring f with
olines(f) = (a,b), a and b are the side lengths of the
minimal rectangle around the points in f (called
frame(f) in the following). The detailed frame of a
colorir‘lg f is the tuple (a,bj iu{, Ty brby Tru)s wher.e Fig. 3. Detailled Frame
(a,b) is the frame of f and i, is the number of di-
agonals that can be drawn from the left-bottom corner. iy, iyp, i, are defined
analogously. For a coloring f with detailed frame (a,b,ip, i, irp, iry), We call
@ = (U1by 91w, trb, iry) the indent vector of f. As shown in [5], the indent vector
gives a precise bound on the #3(f), since in this case, xsteps(f) = #3(f) and
xsteps(f) = i + 1o + irp + i — diageav(f). Here, diagcav(f) counts the num-
ber of diagonal caveats, which are defined analogous to vertical and horizontal
caveats. For example, consider the plane coloring f., as given in Figure 6. Then
the detailed frame of f., is (6,9, 3,2,1,2). The number of 3-points (indicated by
x) for fer is 8 =342+ 1+ 2, since f.; does not contain diagonal caveats.

ex:

In the overlapping case, we search for a given number of points n and a frame
(a,b) the maximal number of z-steps. For this purpose, we define for some indent
vector § = (i1, in, i3, 1), vol(a,b,4) = ab— Y, ;o, 2 vol(a,b,4) is the
maximal number of points that can be colored by any f that has indent vector
i and frame (a,b). © = (i1, i2,i3,14) is called mazimal for (a,b) iff 32, ;<4 i; =
2(min(a,b) — 1). For example, if b < @, then the indent vector i is maximal
for (a,b) if every coloring with frame (a,b) and indent vector ¢ has exactly one
colored point in the first and last column.

vol(a, b, %) can now be used to calculate the maximal number of x-steps that
can be achieved given n colored points and frame (a,b). The maximal num-
ber of x-steps is achieved if we make the indents as uniform as possible. For
this purpose, define edge(n,a,b) = max{k € N | vol(a,b, (k, k,k,k))}. k =

edge(n, a, b) defines the maximal possible uniform indent. Then r = ext(n,a,b) =
gkt
ab-1 = " | defines the number of times  we can extend the uniform indent

by 1. n is called normal for (a,b) if either 4k +r < 2(a—1), or dk+r =2(a—1)
and ab—4% —r(k+1)=n.

Now there are two upper bounds that can be given for the number of x-steps,
given n colored points and frame (a,b). The first is given by the indent vector.
The second by the fact, that in caveat-free and overlapping colorings, there may
be at most between every two successive lines 2 x-steps, which gives at most



2min(a, b) — 1. Thus, the bound given in [5] is as follows:
xstepsynq (1, a,b) = min(4 edge(n, a, b) + ext(n, a, b), 2(min(a, b) — 1)).

We improve the bound in the case of quadratic frames (a, a) and n is not normal
for (a,a). Here, we show that we have an upper bound of 2a — 3 instead of 2a — 2
if there is no maximal indent ¢ with n = vol(a, a,?). We show in this case, that
there must be a diagonal caveat.

Lemma 8. For every overlapping caveat-free coloring f we get

#3(.f) S #3b0und(|f|7aa b)7
where (a,b) = frame(f) and

xstepsynq(n, a,b) n is normal for frame (a,b)
2min(a,b) — 2 else if a # b
#3bound(n,a,b) :== < 2a — 2 else if 31 : 1 are maximal indents
for (a,a) An =vol(a,a,i)
2a —3 otherwise

For the general case of possibly non-overlapping colorings, Lemmata 3, 4,
and 1 imply that any coloring f with olines(f) = (a,b) and #non-overlaps(f) =
m,, satisfies valid(n,a,b,my,) = (mnO < min(a,b) A nmin(a,b,mpy,) < n <
Nmax (@, b, mno)). Hence, we define #3pound(n,a, b, my,) to be —oco in the case
that valid(n, a, b, m,,) does not hold. Otherwise, we define #3pound(n, a, b, my,)
by #3bound(n, a,b) if my, =0 and

#3b0und(nlaala blao) 1 S nl S n— ]-7
max < + #3pouna(n —n'ya—dad' |1 <a <a-1, 3,
b—b',mpy, —1) 1< <b-1,
otherwise.

Lemma 9. For every caveat-free coloring f, holds #3(f) < #3bouna(n, a, b, my,),
where n = |f], (a,b) = olines(f), and my, = #non-overlaps(f).

Proof (sketch). The case my, = 0 is treated in Lemma 8. For n,a,b and my, > 0
with valid(n, a, b, my,), we can split a coloring f at the minimal non-overlapping
line z; and into fgzs and f>zs and get #3(f) = #3(f§zs) + #3(f>zs) by
Lemma 5. Considering all possible rows for splitting will give the second case of
#Sbound(na a,b, mno)-

The bound on the number of 3-points can now be used to derive a bound on
the number of interlayer contacts for arbitrary colorings. Summarizing, we get
the following bound:

BNMIC”? (Mpot) := 4min(ng, #4) + 3 min(#3, max(ns — #4),0)

ni,a1,b1

+ 2min(#2, max(ns — #4 — #3,0)) + min(#1, max(n, — #4 — #3 — #2,0))

where #4 =n —a; — by + 1 +mype, #3 = #3bound(n1,a1,b1,Mnoq )
#2 =2(a; +b1) —4— 2#3 — 3mpg;  F#1 = #3 4+ 2mpe; +4.



Theorem 1. Let fi and fa be coloring of planes x = ¢ and x = ¢ + 1, respec-
tively. Let ny = |fi],0lines(f1) = (a1,b1), |f2| = n2 and olines(f>) = (a2, b2).
Then IC% < min(BNMIC"? BNMIC™!

ni,a1,b1? nz,az,ba)'

7 Constructing the Compact Cores

We will now show how to compute the optimally compact cores for a given
number of elements, thereby employing the given bound on interlayer contacts,
for a branch-and-bound approach. Due to space restrictions, we have to omit
many details of the approach.

W.lo.g, let a coloring f be decomposed into plane colorings f; W --- W fj.
A dynamic programming algorithm allows one to efficiently compute bounds
BMC(n,n1,a1,by) such that for every coloring f = fi &+ - W f, it holds that
BMC(n,ny,a1,b1) > con(f), where |f| = n, |f1] = ny, and olines(f1) = (a1, b1).
From this algorithm we get immediately a maximal number of contacts in any
coloring with n elements. Further, let a layer sequence be a sequence of triples
(ni,a;,b;). A coloring f is called s-compatible, if every plane restriction f; of f
is compatible to s; = (n;,a;, b;), i.e. | fi| = n; and olines(f;) = (a;, b;).

By traceback from the above dynamic programming algorithm one efficiently
obtains the set of all layer sequences s, where there may exist (by our bound) an
s-compatible coloring f with b contacts. That is, we define this set of sequences
by S(n,b) := {s layer sequence|bound for s greater or equal b} .

To find optimally compact colorings it remains to search by constraint based
search through the colorings of candidate layer sequences.

Now, we assume that the sets S(n,b) are already precomputed by the dy-
namic programming algorithm. To find one optimally compact coloring with n
elements do the following. Let b, be the contacts bound for colorings with n
elements. For ascending ¢ > 0, iteratively search for a coloring f with b, —i con-
tacts in all layer sequences s € S(n, b, —). Clearly, the first coloring f; found by
this procedure has maximal contacts. To find all colorings with a given number
k of contacts (e.g. all best colorings) we perform an analogous search in all layer
sequences s € S(n,b).

8 Results

We have computed all sets of layer sequences S(n,b) for n < 100 in about 10
days on a standard PC. For a given layer sequence one optimally compact core
is usually found within a few seconds by our constraint based search program.
Some results are shown in Table 1.

We present some of the optimal cores for n = 60 and n = 100 elements in
Figures 4 and 5. The cores are shown as plane sequence representation. This
representation shows a coloring by the sequence of its occupied z-layers in the
lattice Df. For each z-layer = x, the lower left corner of the grid has coordi-
nates (o, 0, 0). The grid-lines have distance 1. The core points in each z-layer are



Table 1. Search for one optimally compact core with n elements, given a layer sequence.
We give the number of contacts, as well as nodes and time of the constraint search.

n  # contacts # search-nodes time in s

23 76 15 0.1
60 243 150 0.7
89 382 255 2.1
100 436 82 1.2

shown as filled circles. There is a noteworthy difference between layers z = xg,
where xg is even and those where it is odd. In the latter ones the points have
non-integer y and z coordinates.

Further, we folded some proteins of the FCC-HP-model using a program from
[7] to their now proven optimum. The results are shown in Table 2
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