
Fast, Constraint-based Threading ofHP-Sequenes to Hydrophobi CoresRolf Bakofen and Sebastian Will?Institut f�ur Informatik, LMU M�unhenOettingenstra�e 67, D-80538 M�unhenfbakofen,willsg�informatik.uni-muenhen.deAbstrat. Lattie protein models are used for hierarhial approahesto protein struture predition, as well as for investigating priniples ofprotein folding. So far, one has the problem that there exists no lattiethat an model real protein onformations with good quality and forwhih an eÆient method to �nd native onformations is known.We present the �rst method for the FCC-HP-Model [3℄ that is apableof �nding native onformations for real-sized HP-sequenes. It has beenshown [23℄ that the FCC lattie an model real protein onformationswith oordinate root mean square deviation below 2 �A.Our method uses a onstraint-based approah. It works by �rst alu-lating maximally ompat sets of points (hydrophobi ores), and thenthreading the given HP-sequene to the hydrophobi ores suh that theore is oupied by H-monomers.1 IntrodutionThe protein struture predition is one of the most important unsolved problemsof omputational biology. It an be spei�ed as follows: Given a protein by itssequene of amino aids (more generally monomers), what is its native struture?NP-ompleteness of the problem has been proven for many di�erent models(inluding lattie and o�-lattie models) [10, 12℄. These results strongly suggestthat the protein folding problem is NP-hard in general. Therefore, it is unlikelythat a general, eÆient algorithm for solving this problem an be given. Atually,the situation is even worse, sine the general priniples how natural proteins foldinto a native struture are unknown. This is umbersome sine rational designis ommonly viewed to be of paramount importane e.g. for drug design, whereone faes the diÆulty to design proteins that have a unique and stable nativestruture.To takle struture predition and related problems, simpli�ed models havebeen introdued. They are used in hierarhial approahes for protein folding(e.g., [29℄, see also the meeting review of CASP3 [18℄, where several groups havesuessfully used lattie models). Furthermore, they have beame a major toolfor investigating general properties of protein folding.? Supported by the PhD programme \Graduiertenkolleg Logik in der Informatik"(GKLI) of the \Deutshe Forshungsgemeinshaft" (DFG).



Most important are the so-alled lattie models. The simpli�ations om-monly used in this lass of models are: 1) monomers (or residues) are representedusing a uni�ed size 2) bond length is uni�ed 3) the positions of the monomersare restrited to lattie positions and 4) a simpli�ed energy funtion. Nativeonformations are those having minimal energy.In the literature, many di�erent lattie models (i.e., latties and energy fun-tions) have been used. Examples of how suh models an be used for preditingthe native struture or for investigating priniples of protein folding are givenin [28, 1, 15, 27, 17, 2, 20, 29℄. Of ourse, the question arises whih lattie and en-ergy funtion have to be preferred. There are two (somewhat oniting) aspetsthat have to be evaluated when hoosing a model: 1) the auray of the lat-tie in approximating real protein onformations and the ability of the energyfuntion to disriminate native from non-native onformations, and 2) the avail-ability and quality of searh algorithm for �nding minimal (or nearly minimal)energy onformations.While the �rst aspet is well-investigated in the literature (e.g., [23, 13℄), theseond aspet is underrepresented. By and large, there are mainly two di�erentheuristi searh approahes used in the literature: 1) Ad ho restrition of thesearh spae to ompat or quasi-ompat onformations (a good example is[28℄, where the searh spae is restrited to onformations forming an n�n�n-ube). The main drawbak here is that the restrition to ompat onformationis not motivated biologially for a omplete amino aid sequene (as done inthese approahes), but only for the hydrophobi amino aids. In onsequene,the restrition either has to be relaxed and then leads to an ineÆient algo-rithm or is hosen too strong and thus may exlude optimal onformations. 2)Stohasti sampling like Monte Carlo methods with simulated annealing, genetialgorithms et. Here, the degree of (sub)optimality for the best onformationsand the quality of the sampling annot be determined by state of the art meth-ods.1In this paper, we follow the proposal by [3℄ to use a lattie model witha simple energy funtion, namely the HP (hydrophobi-polar) model (whihhas been introdued in [19℄ using ubi lattie), but on a better suited lattie,namely the fae-entered ubi lattie (FCC ). In the FCC, every point has 12neighbors (instead of 6 as in the ubi lattie). The resulting model is alledthe FCC-HP-model. In the HP-model, the 20 letter alphabet of amino aids isredued to a two letter alphabet, namely H and P. H represents hydrophobiamino aids, whereas P represent polar or hydrophili amino aids. The energyfuntion for the HP-model is given by the matrix as shown in Figure 1(a). Itsimply states that the energy ontribution of a ontat between two monomers is�1 if both are H-monomers, and 0 otherwise. Two monomers form a ontat insome spei� onformation if they are not onneted via a bond, and oupiedpositions are nearest neighbors. A onformation with minimal energy (alled1 Despite that there are mathematial treatments of Monte Carlo methods with simu-lated annealing, the partition funtion of the ensemble (whih is needed for a preisestatement) is in general unknown.
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����Fig. 1. Energy matrix and sample onformation for the HP-modelnative onformation) is just a onformation with the maximal number of ontatsbetween H-monomers. Just reently, the struture predition problem has beenshown to be NP-omplete even for the HP-model [10, 12℄.A sample onformation for the sequene PHPPHHPH in the two-dimensionalubi lattie with energy �2 is shown in Figure 1(b). The white beads representP, the blak ones H monomers. The two ontats are indiated via dashed lines.There are two reasons for using the FCC-HP-Model:1) The FCC an model real protein onformations with good quality (see [23℄,where it was shown that FCC an model protein onformations with oordinateroot mean square deviation below 2 �A)2) The HP-model models the important aspet of hydrophobiity. Essentially, itis a polymer hain representation (on a lattie) with one stabilizing interationeah time two hydrophobi residues have unit distane. This enfores ompat-i�ation while polar residues and solvent is not expliitly regarded. The idea ofthe model is the assumption that the hydrophobi e�et determines the overallon�guration of a protein (for a de�nition of the HP-model, see [19, 13℄).One a searh algorithm for minimal energy onformations is established forthis FCC-HP-model, one an employ it as a �lter step in a hierarhial approah.This way, one an improve the energy funtion to ahieve better biologial rele-vane and go on to resemble amino aid positions more aurately.Related Work and Contribution In this paper, we desribe a suessful appli-ation of onstraint-programming for �nding native onformations in the FCC-HP-model. In this respet, the situation as given in the literature was not verypromising. Although the FCC-HP-model is known to be an important lattiemodel, no exat algorithm was known for �nding native onformations in anymodel di�erent from the ubi lattie. Even for the ubi lattie, there are onlythree exat algorithms known [30, 4, 7℄, whih are able to enumerate minimal(or nearly minimal) energy onformations, all for the ubi lattie. However,the ability of this lattie to approximate real protein onformations is poor. Forexample, [3℄ pointed out espeially the parity problem in the ubi lattie. Thisdrawbak of the ubi lattie is that every two monomers with hain positionsof the same parity annot form a ontat.So far, beside heuristi approahes (e.g., the hydrophobi zipper [14℄, thegeneti algorithm by Unger and Moult [26℄, the hain growth algorithm byBornberg-Bauer [11℄, or [8℄, whih is a method appliable for any regular lattie),there is only one approximation algorithm [3℄ for the FCC. It �nds onformationswhose number of ontats is guaranteed to be 60% of the number of ontats ofthe native onformation (whih is far from being useful, sine, even if the algo-rithm yields far better results, the information on the quality of the outome is



still too fuzzy). The situation was even worse, sine the main ingredient neededfor an exat method, namely bounds on the number of HH-ontats given somepartial information about the onformation, was missing. This hanged with [5,6℄, where suh a bound is introdued and applied to the problem of �nding max-imally ompat hydrophobi ores. Given a onformation of an HP-sequene,the hydrophobi ore of this sequene is the set of all points oupied by H-monomers. A hydrophobi ore of n-points is maximally ompat if there is nopaking of n-points in the FCC whih has more ontats. In this paper, we showhow we an eÆiently thread a given HP-sequene to a maximally ompat hy-drophobi ore2. We have implemented our method in the onstraint languageOz [25℄ with extensions in C++.2 PreliminariesGiven vetors v1; : : : ;vn, the lattie generated by v1; : : : ;vn is the minimal setof points L suh that 8u;v 2 L, both u+v 2 L and u�v 2 L. The fae-enteredubi lattie (FCC) is de�ned as the lattieD3 = f� xyz � j � xyz � 2 Z3and x+ y + z is eveng:We use ℄ to denote disjoint union. The set ND3 of minimal vetors onnetingso-alled neighbors in D3 is given byND3 = n� 0�1�1�o ℄ n��10�1�o ℄ n��1�10 �o :Thus, every point in the FCC has 12 neighbors. A hydrophobi ore is is afuntion f : D3 ! f0; 1g, where f�1(1) 6= ;. The purpose of a hydrophobiore is to haraterize the set of positions oupied by H-monomers. We willidentify a hydrophobi ore f with the set of all points oupied by f , i.e. fp jf(p) = 1g: Hene, for hydrophobi ores f1; f2 we will use standard set notationfor size jf1j, union f1 [ f2, disjoint union f1 ℄ f2, and intersetion f1 \ f2.Given a hydrophobi ore f , we de�ne the number of ontats of f by on(f) :=12 jf(p;p0) j f(p) ^ f(p0) ^ (p� p0) 2 ND3gj. A hydrophobi ore f is maximallyompat if on(f) = max fon(f 0) j jf j = jf 0jg :An HP-sequene is an element in fH;Pg�. With si we denote the ith elementof a sequene s. A onformation  of a sequene s is a funtion  : f1; : : : ; jsjg !D3 suh that 1) 81 � i < jsj : (i)� (i+ 1) 2 ND3 , and 2) 8i 6= j : (i) 6= (j).The hydrophobi ore assoiated with a onformation  is de�ned as the setof positions oupied by an H-monomer in . The number of ontats on()of a onformation  is de�ned to be on(f), where f is the hydrophobi oreassoiated with . A onformation  is alled native for s if it has maximalnumber of ontats.A �nite CSP (onstraint satisfation problem) P = (X ;D; C) is de�ned by2 Of ourse, the methods desribed in this paper an also be applied to hydrophobiores that are not maximally ompat.



{ a set of variables X ,{ a set of �nite domains D, where the domain of x 2 X is dom(x) 2 D.{ a set of onstraints C between the variables.A onstraint C on the tuple X(C) = (x1; : : : ; xn) of variables is interpretedas a subset T(C) of the Cartesian produt dom(x1) � � � � � dom(xn) whihspei�es allowed ombinations of values for the variables. A onstraint C, whereX(C) = (x1; : : : ; xn), is alled n-ary.a 2 dom(x) is onsistent with a onstraint C, if either x 62 X(C) or x isthe i � th variable of C and 9� 2 T(C) : a = �i. A onstraint C is (hyper-)aronsistent i� for all xi 2 X(C), dom(xi) 6= ; and for all a 2 dom(xi) holds a isonsistent with C.2.1 Enumerating Hydrophobi CoresWe are interested in maximally ompat hydrophobi ores, sine a onforma-tion with a maximally ompat hydrophobi ore is already native.3 We reallthe main priniples for alulating maximally ompat hydrophobi ores as de-sribed in [5, 6℄.To determine maximally ompat hydrophobi ores, we partition a hy-drophobi ore f into ores f1; : : : ; fk of the layers x = 1; : : : ; x = k. For searh-ing a maximal hydrophobi ore f , we do a branh-and-bound searh on k andf1 : : : fk. Of ourse, the problem is to give good bounds that allow us to ut o�many k and f1 : : : fk that will not maximize on(f1 ℄ : : :℄ fk). For this purpose,we distinguish between ontats in a single layer (= on(fi) for 1 � i � k), andinterlayer ontats ICfi+1fi for 1 � i < k between two suessive layers. Interlayerontats are pairs (p;p0) suh that p and p0 are neighbors, p 2 fi and p0 2 fi+1.The hard part is to bound the number of ontats between two suessive layers,sine a simple but tight bound for the number of (intra)layer ontats an betaken from the literature [30℄.For de�ning the bound on the number of ontats between two suessivelayers, we introdue the notion of an i-point, where i = 1; 2; 3; 4. Any point inx = +1 an have at most 4 neighbors in the plane x = . Let f be a hydrophobiore of the plane x = . Call a point p in plane x =  + 1 an i-point for f if ithas i neighbors in plane x =  that are ontained in f (where i � 4). Of ourse,if one oupies an i-point in plane x = +1, then this point generates i ontatsbetween layer x =  and x =  + 1. In the following, we will restrit ourself tothe ase where  = 1 for simpliity. Of ourse, the alulation is independent ofthe hoie of .Consider as an example the two hydrophobi ores f1 of plane x = 1 and f2of plane x = 2 as shown in Figure ??. f1 ontains 5 points, and f2 ontains 3points. Sine f2 ontains one 4-point, one 3-point and one 2-point of f1, thereare 9 ontats between these two layers. It is easy to see that we generate themost ontats between layers x = 1 and x = 2 by �rst oupying the 4-points,3 Of ourse, there an be the rare ase that there is a native onformation whosehydrophobi ore is not maximally ompat.



then the 3 points and so on until we reah the number of points to be oupiedin layer x = 2.4For this reason, we are interested in alulating the maximal number of i-points (for i = 1; 2; 3; 4), given only the number of olored points n in layerx = 1. But this would overestimate the number of possible ontats, sine wewould maximize the number of 4-, 3-, 2- and 1- points independently from eahother. We have found a dependeny between these numbers, whih requires to�x the side length (a; b) of the minimal retangle around all olored points inlayer x = 1 (alled the frame). In our example, the frame is (3; 2).Denote with maxi(n; a; b) the maximal number of i-points in layer x = 2 forany hydrophobi ore of layer x = 1 with n points and frame (a; b). Then wehave found thatmax4(n; a; b) = n+ 1� a� b max2(n; a; b) = 2a+ 2b� 2`� 4max3(n; a; b) = ` max1(n; a; b) = `+ 4:The remaining part is to �nd ` = max3(n; a; b), whih is desribed in detailin [5, 6℄. This alulation involves several speial ases to treat layers that arenot suÆiently �lled with H-monomers. Using these maxi(n; a; b), we an de�nea bound Bni+1ni;ai;bi � max� ICfi+1fi #fi = ni; fi has frame (ai; bi);and #fi+1 = ni+1, �where 1 � i � k� 1 and #X denotes the ardinality of a set X . This bound anbe alulated in polynomial time using dynami programming [5, 6℄.This bound is used in searhing for a maximally ompat ore for n H-monomers as follows. Instead of diretly enumerating k and all possible oresf1℄ : : :℄fk, we searh through all possible sequenes ((n1; a1; b1) : : : (nk; ak; bk))of parameters with the property that n =Pi ni. By using the Bni+1ni;ai;bi , only a fewlayer sequenes have to be onsidered further. For these optimal layer sequenes,we searh for all admissible ores f1 ℄ : : : ℄ fk using again a onstraint-basedapproah. Our implementation is able to �nd maximally hydrophobi ores forn upto 100 within seonds.3 Threading an HP-sequene to a Hydrophobi Core3.1 Problem Desription and ModelingSine we are able to determine maximally hydrophobi ores, it remains tothread an HP-sequene to suh an optimal ore in order to get HP-optimallyfolded strutures for the sequene. We takle the problem by a onstraint basedapproah.For this reason, let a hydrophobi ore be given as a set of lattie points C.The sequene is given as a word s in fH;Pg�. For orret input, the size of Cequals the number of H's ourrenes in the sequene.4 Note that this strategy might not result neessarily in the oloring with the maximalnumber of ontats, sine we might loose ontats within the layer x = 2.



The protein struture is modeled by a set of variables x1; : : : ; xjsj, whose�nite domains are sets of lattie points, resp. more generally nodes of a graph,where a graph G is a tuple (V;E) of the �nite set of nodes V and the set ofedges E � V � V . The problem is now to �nd a solution, i.e. an assignment ofthe monomers to nodes, satisfying the following onstraints1. the nodes xi, where si = H and 1 � i � jsj, are elements of C.2. all the xi, where 1 � i � jsj, are di�erent3. the nodes x1; : : : ; xjsj form a pathNote that for orret input, the �rst onstraint implies that P monomers arenot in the ore. However, due to the �nite hain length we an determine �nitedomains for the P -representing variables. The seond onstraint tells that aprotein struture has to be self avoiding. Finally, the last onstraint tells thathain bonds between monomers are to be preserved in a protein struture, suhthat the monomer positions form a path through the lattie.Some attention has to be paid to the fat that many onstraint systems doonly support integer �nite domain variables, whereas in our formulation domainsare lattie nodes. Sine depending on the input only a �nite set of nodes an beassigned in solutions, we straightforwardly solve this by assigning unique integersto these nodes.3.2 Path ConstraintsThe treatment of the �rst onstraint of the preeeding setion involves the om-putation of domains and the assignment of domains to the variables. Both of theremaining onstraints an be handled globally. The global treatment of the soalled all-di�erent onstraint is well desribed in [24℄. Thus, we will fous on thetreatment of the path onstraint. We will further disuss how one gets furtherpropagation by ombining the two onstraints.For generality, we disuss the onstraints on arbitrary �nite graphs. Clearly,we an use the results for the FCC lattie afterwards. There, the set of graphnodes is a subset of the lattie nodes and the edges are all pairs of graph nodesin minimal lattie distane.In the following, we �x a graph G = (V;E). A path of length n is a wordp = p1 : : : pn of length n of alphabet V , suh that81 � i � n� 1 : (pi; pi+1) 2 E:Denote the set of paths of length n by paths(n). Note that intentionally pathsare allowed to ontain yles due to the de�nition.We de�ne a path onstraint to state that the nodes assigned to the argumentvariables form a path.De�nition 1 (Path Constraint). Let x1; : : : ; xn be variables. We all a pathp 2 paths(n) onsistent for x1; : : : ; xn, i� 81 � i � n : pi 2 dom(xi) holds.The path onstraint C = Path(x1; : : : ; xn) is de�ned by the tuplesT(C) = fp 2 paths(n)jp is onsistent for x1; : : : ; xng:



Hyper-ar onsisteny of this path onstraint is a loal property in the fol-lowing sense. By a general result of Freuder [16℄, ar onsisteny amounts toglobal onsisteny in a tree-strutured network of binary onstraints. The nextlemma is an instane of this result.Lemma 1. Let x1; : : : ; xn be variables. Path(x1; : : : ; xn) is hyper-ar onsistent,i� for 1 � i � n� 1 all onstraints Path(xi; xi+1) are ar onsistent.Due to this lemma, the hyper-ar onsisteny of the n-ary path onstraint isredued to the ar onsisteny of the set of all 2-ary path onstraints.3.3 Combining path and all-di�erent onstraintThe ombination of the path onstraint with the all-di�erent onstraint yieldsa new onstraint whih allows only self avoiding paths. Formally, let x1; : : : ; xnbe variables, de�ne the all-di�erent onstraint C = AllDi�(x1; : : : ; xn) byT(C) = � (�1; : : : ; �n) 2 dom(x1)� � � � � dom(xn) 81 � i < j � n : �i 6= �j 	 :We de�ne the self avoiding path onstraint SAPath(x1; : : : ; xn) byT(SAPath(x1; : : : ; xn)) = T(AllDi�(x1; : : : ; xn)) \ T(Path(x1; : : : ; xn)):Unfortunately, we are not aware of any eÆient ar onsisteny algorithm forthis ombined onstraint in the literature. Furthermore, it is unlikely that thereexists one. It is well known that many problems involving self-avoiding walks(we use the term path here), espeially ounting of suh walks, are intrinsiallyhard and there are no eÆient algorithms to solve them [21℄.On the other hand, the treatment of self avoiding paths promises muh bet-ter propagation in pratie. Therefore, we propose a relaxation of the intratableself-avoiding path ar onsisteny in the following. An eÆiently tratable re-laxation one may think of �rst, is to onstrain the paths to be non-reversing.Non-reversing paths are paths whih do not turn bak immediately, hene theirlass lies between general paths and self-avoiding paths. Here, we hoose a moregeneral approah and de�ne the following sets of paths.De�nition 2. Let 1 � k � n. A k-avoiding path p = p1 : : : pn of length n isa path p 2 paths(n), where for all 1 � i � n � k + 1, the pi : : : pi+k�1 areall di�erent. We de�ne that for k > n, k-avoiding is equivalent to n-avoiding.Denote the set of k-avoiding paths of length n by paths[k℄(n).Note that obviously, general paths (resp. self-avoiding paths) of length n are spe-ial ases of k-avoiding paths namely 1-avoiding paths (resp. n-avoiding paths)of length n. For graphs with symmetri and non-reexive edges, the propertynon-reversing is equivalent to 3-avoiding. Obviously by de�nition, paths[k0℄(n) �paths[k℄(n) holds for all 1 � k � k0 � n.Let x1; : : : ; xn be variables. De�ne the set of k-avoiding paths onsistent withx1; : : : ; xn as paths[k℄(x1; : : : ; xn). We de�ne orresponding onstraints, whih



onstrain their variables to form k-avoiding paths. De�ne the k-avoiding pathonstraint Path[k℄(x1; : : : ; xn) byT(Path[k℄(x1; : : : ; xn)) = paths[k℄(x1; : : : ; xn):Analogously to the general path onstraint the k-avoiding path onstraintspossess loality, i.e. we get ar onsisteny of an n-ary k-avoiding path onstraintby the ar onsisteny of the k-ary k-avoiding path onstraints on every lengthk subsequenes of variables.Sine the k-ary onstraints have to be omputed independently by searhingfor self-avoiding paths, the redution to loal ar onsisteny leads to unneessaryineÆieny. To avoid this, we propose a global algorithm in the following. Thiswill be rewarded by even stronger propagation possibilities.The key to our algorithm is the ounting of paths. For ar onsisteny, weneed to know, whenever there is no path left, where a i-th monomer is positionedon a node v. It is a good starting point to ount the number of all (onsistent)k-avoiding paths.Denote the ardinality of a set X by #X . For omputing the number of paths# paths[k℄(x1; : : : ; xn), we will �rst de�ne the set of k-avoiding paths onsistentwith x = x1; : : : ; xn with suÆx (path) q = q1 : : : qm for n � m asspaths[k℄(x)[q℄ = �p 2 paths[k℄(x) 81 � i � m : pn�m+i = qi 	To resemble an eÆient implementation more losely, we de�ne sp[k + 1℄(x)[q℄analogous to spaths[k℄(x)[q℄ with the only di�erene that sp[k + 1℄(x)[q℄ is onlyde�ned when q is onsistent with xn�k+1; : : : ; xn. Note that for all pratialpurposes, we will onsider only spaths[k℄(x)[q℄ where jqj = k � 1. The idea isthat one has to remember a suÆx (or later a pre�x) of length k � 1 in order tohek k-avoiding.Lemma 2. Let x = x1; : : : ; xn be variables, 0 < k � n.The number of paths #paths[k + 1℄(x) is equal to the sumXq2paths(k)#spaths[k + 1℄(x)[q℄:For q = q1 : : : qk 2 paths(k), the following number of paths an be omputedreursively.#spaths[k + 1℄(x)[q℄ = (#sp[k + 1℄(x)[q℄ q 2 paths[k℄(xn�k+1; : : : ; xn)0 otherwise,where for q 2 paths[k℄(xn�k+1; : : : ; xn),#sp[k + 1℄(x)[q℄ =8>>>>><>>>>>: 1 n = kX(q0;q1)2E;q0 62fq1;:::;qkg;q02dom(xn�k)#sp[k + 1℄(x1; : : : ; xn�1)[q0 : : : qk�1℄ n > k:



Clearly, the numbers of paths with suÆxes an be omputed eÆiently by adynami programming algorithm furnished by the reursive de�nition.This algorithm to ompute the numbers of k-avoiding paths of maximallength n, where 2 � k � n, has a polynomial omplexity in n and the num-ber of nodes jV j.Note that the lemma handles only the ase of k-avoiding paths, where k � 2.The reason is that for the path property itself we have to remember a history ofminimal length 1. Hene, the number of 1-avoiding paths an not be omputedmore eÆiently than the number of 2-avoiding paths. Obviously the lemma ouldbe slightly modi�ed (by dropping the ondition q0 62 fq1; : : : ; qkg in the sum ofthe reursion step) to ompute the number of 1-avoiding, i.e. general paths.Analogously to paths with suÆxes, we an treat paths with pre�xes. Hene,de�ne the set of k-avoiding paths onsistent with x = x1; : : : ; xn with pre�xq = q1 : : : qm asppaths[k℄[q℄(x) = �p 2 paths[k℄(x) 81 � i � min(m;n) : pi = qi 	 :It is easy to see (by symmetry), that the paths with pre�xes an be treatedanalogously to paths with suÆxes.We an now express the number of k-avoiding paths onsistent with x =x1; : : : ; xn, where the i-th monomer oupies the position v, in terms of suÆxand pre�x path numbers.For preparation, de�ne the set of these paths as paths[k℄(xji 7! v). In thease of usual paths, the number of walks that map xi to position v is the numberof pre�xes of length i that end in v times the number of suÆxes of length n� istarting in v. For k-avoiding paths, this does not suÆe, sine the ompositionof a k-avoiding pre�x and suÆx will not generate a k-avoiding path in general.To guarantee this, the pre�x and suÆx has to overlap at least by k�1 positions.Note that the i an be loated arbitrarily in this overlapping region. Theseonsiderations are summarized by the next lemma.Lemma 3. Let x = x1; : : : ; xn be variables, 1 � i � n, and v 2 V . Let j be suhthat 1 � k + 1 � n, 1 � j � i � j + k � 1 � n.#paths[k + 1℄(xji 7! v) =Xq2paths[k℄(k)qi�j+1=v �#spaths[k + 1℄(x1; : : : ; xj+k�1)[q℄�#ppaths[k + 1℄[q℄(xj ; : : : ; xn) � :Based on the omputation of these numbers we develop an ar onsistenyalgorithm for the k-avoiding path onstraints.Theorem 1. Let x = x1; : : : ; xn be variables with non-empty domains. Theonstraint C = Path[k℄(x) is ar onsistent, i� for every 1 � i � n and v 2 V ,where #paths[k℄(xji 7! v) = 0, it holds that v 62 dom(xi):Proof. Let x and C be de�ned as in the theorem.



First, let C be ar onsistent. Let 1 � i � n and v 2 V , suh that theset paths[k℄(xji 7! v) is empty. Then, there is no path p 2 paths(k)x, wherepi = v. Hene there is no suh path in T(C). We get v 62 dom(xi), due to thear onsisteny of C.Seond, let C be not ar onsistent. We show that there is a 1 � i � nand v 2 V , suh that v 2 dom(xi) and #paths[k℄(xji 7! v) = 0. The aronsisteny of C has to be violated by at least one pair 1 � i � n and v 2 V ,where v 2 dom(xi). Choose suh i and v. Sine onsequently there is no pathin T(C), where pi = k, there is no suh path in paths[k℄(x). This impliespaths[k℄(xji 7! v) = ;.Assume that the variables in a set X are onstrained as all di�erent. If wean derive, that in every solution one of the variables in Y � X is assigned to anode v, we may introdue the basi onstraints v 62 dom(x) for all x 2 X � Y .The following theorem tells how to derive this.Theorem 2. Let x = x1; : : : ; xn be variables, 1 � k � n, and � 2 T(Path[k℄(x)).Further, S � f1; : : : ; ng, suh that maxS �minS � k, and v 2 V .Then, Pj2S #paths[k℄(xjj 7! v) = #paths[k℄(x) implies that �j = v forexatly one j 2 S.Proof. Let n, x, k, � , S, and v be de�ned as in the theorem.Let j 2 S and p 2 paths[k℄(yjj 7! v). Sine maxS�minS � k, we know thatpj0 = v if and only if j = j0 for all j0 2 S. Hene, the sets paths[k℄(yjj 7! v) aredisjoint for j 2 S. Thus, Pj2S #paths[k℄(yjj 7! v) = #paths[k℄(y) impliesUj2S paths[k℄(yjj 7! v) = paths[k℄(y), i.e., for every path p 2 paths[k℄(y),pj = v for exatly one j 2 S.Finally, sine �r : : : �r+m�1 2 paths[k℄(y), we get �j = v for exatly onej 2 S.In the following, we disuss in more detail how to avoid unneessary largevalues for k, sine the onsisteny and propagation algorithms are due to ourreursion equations still exponential in k.For s; t 2 V , de�ne a path from s to t as a path p = p1 : : : pn, where p1 = sand pn = t. Further, de�ne a distane on nodes bydist(s; t) = min�n > 0 p 2 paths(n); s = p1; pn = t	 :Sine V is �nite, the de�ned distane an be omputed by Dijkstra's shortestpath algorithm. Note that dist(s; t) is neither a metri nor total.Depending on the distane of �rst and last nodes of a path, k-avoidingnessmight be already guaranteed by k0-avoidingness for k0 < k. This is stated by thenext theorem.Theorem 3. Let s; t 2 V , suh that d = dist(s; t) is de�ned. Let n > 0, 1 �k0; k � n, suh that d+ k0 � n = n � k. For every path p 2 paths[k0℄(n) from sto t, it holds p 2 paths[k℄(n).



Proof. Fix s; t 2 V , suh that d = dist(s; t) is de�ned. Let 1 � k0 � k � n,where d + k0 � n = n � k. Let p 2 paths[k0℄(n) be a path from s to t. Assumep 62 paths[k℄(n). Then exists 1 � i � j � n, where j � i > k and pi = pj . Then,p1 : : : pipj + 1 : : : pn is a path of length n � (j � i) from s to t. Now, by theminimality of d, n � (j � i) � d holds. This implies n � k > d. By assumptionk = 2n�d�k0. Hene, n� (2n�d�k0) > d and thus k0�n > 0 in ontraditionto k0 � n.In a onstraint searh, the theorem allows to replae k-avoiding path on-straints by more eÆiently omputed, but semantially equivalent k0-avoidingpath onstraints, whenever the onditions of the theorem are derived. Inversely,if we derive that k0-avoiding paths are in fat k-avoiding this allows strongerpropagation due to theorem 2.3.4 A Propagator for the Path ConstraintBased on the onsiderations of the previous subsetions we sketh an implemen-tation of the k-avoiding path onstraint propagator.Let x = x1; : : : ; xn be �nite domain variables. The general strategy of thepropagator for Path[k℄(x) is as follows1. For all q 2 paths[k℄(k) and k � i � n, ompute # spaths[k℄(x1; : : : ; xi)[q℄and #ppaths[k℄[q℄(xn�i+1; : : : ; xn).2. Compute from this the numbers # paths[k℄(xji 7! v) for all 1 � i � n andv 2 V . Whenever suh a value is 0, remove v from the domain of xi.3. If at least one domain of the x1; : : : ; xn hanges repeat from step 1.Even sine we have presented eÆient algorithms to ompute the above num-bers and thus get ar onsisteny of the path onstraint, there are some remain-ing problems. Most demanding are inremental omputation and the saving ofopying time.At the �rst invoation, the omputation of the path numbers an be doneby dynami programming algorithms. If domains are narrowed, the previouslyomputed path numbers an be updated. For this aim, there exists an eÆientupdate algorithm, whih works destrutively on the data strutures. However,the inremental omputation omes at the prie of opying the data strutures,whenever the tree branhes.Sine for our purpose, the k-avoiding path propagator always works in pres-ene of an all-di�erent onstraints, the k-avoiding path propagator should beable to handle further propagation due to the ombination with this onstraint.The justi�ation to do this is given by Theorem 2. We use that for the ar on-sisteny of a k-avoiding path onstraint, the numbers # paths[k0℄(xji 7! v) arealready omputed for all k0 � k. For tratability one has to restrit the subsetsS, e.g. to all subsets of suessive numbers up to size k.Finally, one an simplify a k-avoiding path propagator by a more eÆient k0-avoiding one, in situation desribed by Theorem 3, while preserving semantialequivalene.



3.5 ResultsExat struture predition in the HP-model on the ubi lattie was previouslypossible up to hain lengths of 88 [30℄. Yue and Dill report to �nd a nativeonformation for those hains in times ranging from minutes to hours. Our ownalgorithm for exat struture predition on the ubi lattie regularly folds pro-teins with a length of 30 � 40 monomers [4, 7℄. Note that struture preditionin the ubi lattie is not neessarily easier for inexat, heuristi methods. Forexample, in [9℄ a heuristi stohasti approah is reported to fail on all but oneof the investigated 48-mers.We implemented two threading algorithms. For the �rst algorithm, we imple-mented a propagator to handle general paths by redution to binary path on-straint propagators. For the seond algorithm, an experimental, non-optimizedversion of a propagator for 3-avoiding pathes is implemented. The propagatorsare implemented as extension to Mozart (Oz 3) [25℄. Mozart provides a onve-nient interfae for extension by C++-onstraint-propagators [22℄.For benhmarking of the two threading algorithms, the following experimentwas performed. Random HP-sequenes were threaded to ores of sizes n =25, 50,and 75. Therefore, for eah ore 50 sequenes were randomly generated with n H-monomers and 0:8�n P-monomers, whih is a rather high ratio of P-monomers toH-monomers and is hosen to hallenge the algorithm. Additionally, we threaded50 random sequenes of length 160 to a ore of size 100. We also managed tothread some random sequenes of length 180 to this ore. For eah sequene, thethreading is performed by both algorithms.Both algorithms thread the very majority of the test sequenes suessfully.The results show that the ombination of the path onstraint with the all-di�erent onstraint yields signi�antly better propagation even for the strongrelaxation of only 3-avoiding paths. Both algorithms suessfully threaded allof the 50 sequenes to the ore of size 25 (whih means a sequene length of45). For longer sequenes, the seond algorithm sueeds for signi�antly moresequenes than the �rst one. Furthermore, it often �nds a solution in less searhnodes (up to a fator of 303). The results are summarized in Table 1.ore size seq. length fails alg. 1 fails alg. 2 avg. nodes alg. 1 avg. nodes alg. 225 45 0% 0% 36 3650 90 12% 2% 970 10375 135 20% 8% 586 513100 160 60% 50% 1468 598Table 1. Threading of random sequenes to ores of four di�erent sizes. The tableshows size of the ore, the length of the sequenes, the perentage of sequenes whihould not be threaded suessfully within the given time limit by the two algorithms,and the average number of nodes in suessfull runs by both algorithms. We hoose atime limit of 5 minutes for the �rst algorithm. The seond algorithm is given a longertime limit of 15 minutes, sine the path propagator is experimental and non-optimized.
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