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t. Latti
e protein models are used for hierar
hi
al approa
hesto protein stru
ture predi
tion, as well as for investigating prin
iples ofprotein folding. So far, one has the problem that there exists no latti
ethat 
an model real protein 
onformations with good quality and forwhi
h an eÆ
ient method to �nd native 
onformations is known.We present the �rst method for the FCC-HP-Model [3℄ that is 
apableof �nding native 
onformations for real-sized HP-sequen
es. It has beenshown [23℄ that the FCC latti
e 
an model real protein 
onformationswith 
oordinate root mean square deviation below 2 �A.Our method uses a 
onstraint-based approa
h. It works by �rst 
al
u-lating maximally 
ompa
t sets of points (hydrophobi
 
ores), and thenthreading the given HP-sequen
e to the hydrophobi
 
ores su
h that the
ore is o

upied by H-monomers.1 Introdu
tionThe protein stru
ture predi
tion is one of the most important unsolved problemsof 
omputational biology. It 
an be spe
i�ed as follows: Given a protein by itssequen
e of amino a
ids (more generally monomers), what is its native stru
ture?NP-
ompleteness of the problem has been proven for many di�erent models(in
luding latti
e and o�-latti
e models) [10, 12℄. These results strongly suggestthat the protein folding problem is NP-hard in general. Therefore, it is unlikelythat a general, eÆ
ient algorithm for solving this problem 
an be given. A
tually,the situation is even worse, sin
e the general prin
iples how natural proteins foldinto a native stru
ture are unknown. This is 
umbersome sin
e rational designis 
ommonly viewed to be of paramount importan
e e.g. for drug design, whereone fa
es the diÆ
ulty to design proteins that have a unique and stable nativestru
ture.To ta
kle stru
ture predi
tion and related problems, simpli�ed models havebeen introdu
ed. They are used in hierar
hi
al approa
hes for protein folding(e.g., [29℄, see also the meeting review of CASP3 [18℄, where several groups havesu

essfully used latti
e models). Furthermore, they have be
ame a major toolfor investigating general properties of protein folding.? Supported by the PhD programme \Graduiertenkolleg Logik in der Informatik"(GKLI) of the \Deuts
he Fors
hungsgemeins
haft" (DFG).



Most important are the so-
alled latti
e models. The simpli�
ations 
om-monly used in this 
lass of models are: 1) monomers (or residues) are representedusing a uni�ed size 2) bond length is uni�ed 3) the positions of the monomersare restri
ted to latti
e positions and 4) a simpli�ed energy fun
tion. Native
onformations are those having minimal energy.In the literature, many di�erent latti
e models (i.e., latti
es and energy fun
-tions) have been used. Examples of how su
h models 
an be used for predi
tingthe native stru
ture or for investigating prin
iples of protein folding are givenin [28, 1, 15, 27, 17, 2, 20, 29℄. Of 
ourse, the question arises whi
h latti
e and en-ergy fun
tion have to be preferred. There are two (somewhat 
on
i
ting) aspe
tsthat have to be evaluated when 
hoosing a model: 1) the a

ura
y of the lat-ti
e in approximating real protein 
onformations and the ability of the energyfun
tion to dis
riminate native from non-native 
onformations, and 2) the avail-ability and quality of sear
h algorithm for �nding minimal (or nearly minimal)energy 
onformations.While the �rst aspe
t is well-investigated in the literature (e.g., [23, 13℄), these
ond aspe
t is underrepresented. By and large, there are mainly two di�erentheuristi
 sear
h approa
hes used in the literature: 1) Ad ho
 restri
tion of thesear
h spa
e to 
ompa
t or quasi-
ompa
t 
onformations (a good example is[28℄, where the sear
h spa
e is restri
ted to 
onformations forming an n�n�n-
ube). The main drawba
k here is that the restri
tion to 
ompa
t 
onformationis not motivated biologi
ally for a 
omplete amino a
id sequen
e (as done inthese approa
hes), but only for the hydrophobi
 amino a
ids. In 
onsequen
e,the restri
tion either has to be relaxed and then leads to an ineÆ
ient algo-rithm or is 
hosen too strong and thus may ex
lude optimal 
onformations. 2)Sto
hasti
 sampling like Monte Carlo methods with simulated annealing, geneti
algorithms et
. Here, the degree of (sub)optimality for the best 
onformationsand the quality of the sampling 
annot be determined by state of the art meth-ods.1In this paper, we follow the proposal by [3℄ to use a latti
e model witha simple energy fun
tion, namely the HP (hydrophobi
-polar) model (whi
hhas been introdu
ed in [19℄ using 
ubi
 latti
e), but on a better suited latti
e,namely the fa
e-
entered 
ubi
 latti
e (FCC ). In the FCC, every point has 12neighbors (instead of 6 as in the 
ubi
 latti
e). The resulting model is 
alledthe FCC-HP-model. In the HP-model, the 20 letter alphabet of amino a
ids isredu
ed to a two letter alphabet, namely H and P. H represents hydrophobi
amino a
ids, whereas P represent polar or hydrophili
 amino a
ids. The energyfun
tion for the HP-model is given by the matrix as shown in Figure 1(a). Itsimply states that the energy 
ontribution of a 
onta
t between two monomers is�1 if both are H-monomers, and 0 otherwise. Two monomers form a 
onta
t insome spe
i�
 
onformation if they are not 
onne
ted via a bond, and o

upiedpositions are nearest neighbors. A 
onformation with minimal energy (
alled1 Despite that there are mathemati
al treatments of Monte Carlo methods with simu-lated annealing, the partition fun
tion of the ensemble (whi
h is needed for a pre
isestatement) is in general unknown.
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����Fig. 1. Energy matrix and sample 
onformation for the HP-modelnative 
onformation) is just a 
onformation with the maximal number of 
onta
tsbetween H-monomers. Just re
ently, the stru
ture predi
tion problem has beenshown to be NP-
omplete even for the HP-model [10, 12℄.A sample 
onformation for the sequen
e PHPPHHPH in the two-dimensional
ubi
 latti
e with energy �2 is shown in Figure 1(b). The white beads representP, the bla
k ones H monomers. The two 
onta
ts are indi
ated via dashed lines.There are two reasons for using the FCC-HP-Model:1) The FCC 
an model real protein 
onformations with good quality (see [23℄,where it was shown that FCC 
an model protein 
onformations with 
oordinateroot mean square deviation below 2 �A)2) The HP-model models the important aspe
t of hydrophobi
ity. Essentially, itis a polymer 
hain representation (on a latti
e) with one stabilizing intera
tionea
h time two hydrophobi
 residues have unit distan
e. This enfor
es 
ompa
t-i�
ation while polar residues and solvent is not expli
itly regarded. The idea ofthe model is the assumption that the hydrophobi
 e�e
t determines the overall
on�guration of a protein (for a de�nition of the HP-model, see [19, 13℄).On
e a sear
h algorithm for minimal energy 
onformations is established forthis FCC-HP-model, one 
an employ it as a �lter step in a hierar
hi
al approa
h.This way, one 
an improve the energy fun
tion to a
hieve better biologi
al rele-van
e and go on to resemble amino a
id positions more a

urately.Related Work and Contribution In this paper, we des
ribe a su

essful appli-
ation of 
onstraint-programming for �nding native 
onformations in the FCC-HP-model. In this respe
t, the situation as given in the literature was not verypromising. Although the FCC-HP-model is known to be an important latti
emodel, no exa
t algorithm was known for �nding native 
onformations in anymodel di�erent from the 
ubi
 latti
e. Even for the 
ubi
 latti
e, there are onlythree exa
t algorithms known [30, 4, 7℄, whi
h are able to enumerate minimal(or nearly minimal) energy 
onformations, all for the 
ubi
 latti
e. However,the ability of this latti
e to approximate real protein 
onformations is poor. Forexample, [3℄ pointed out espe
ially the parity problem in the 
ubi
 latti
e. Thisdrawba
k of the 
ubi
 latti
e is that every two monomers with 
hain positionsof the same parity 
annot form a 
onta
t.So far, beside heuristi
 approa
hes (e.g., the hydrophobi
 zipper [14℄, thegeneti
 algorithm by Unger and Moult [26℄, the 
hain growth algorithm byBornberg-Bauer [11℄, or [8℄, whi
h is a method appli
able for any regular latti
e),there is only one approximation algorithm [3℄ for the FCC. It �nds 
onformationswhose number of 
onta
ts is guaranteed to be 60% of the number of 
onta
ts ofthe native 
onformation (whi
h is far from being useful, sin
e, even if the algo-rithm yields far better results, the information on the quality of the out
ome is



still too fuzzy). The situation was even worse, sin
e the main ingredient neededfor an exa
t method, namely bounds on the number of HH-
onta
ts given somepartial information about the 
onformation, was missing. This 
hanged with [5,6℄, where su
h a bound is introdu
ed and applied to the problem of �nding max-imally 
ompa
t hydrophobi
 
ores. Given a 
onformation of an HP-sequen
e,the hydrophobi
 
ore of this sequen
e is the set of all points o

upied by H-monomers. A hydrophobi
 
ore of n-points is maximally 
ompa
t if there is nopa
king of n-points in the FCC whi
h has more 
onta
ts. In this paper, we showhow we 
an eÆ
iently thread a given HP-sequen
e to a maximally 
ompa
t hy-drophobi
 
ore2. We have implemented our method in the 
onstraint languageOz [25℄ with extensions in C++.2 PreliminariesGiven ve
tors v1; : : : ;vn, the latti
e generated by v1; : : : ;vn is the minimal setof points L su
h that 8u;v 2 L, both u+v 2 L and u�v 2 L. The fa
e-
entered
ubi
 latti
e (FCC) is de�ned as the latti
eD3 = f� xyz � j � xyz � 2 Z3and x+ y + z is eveng:We use ℄ to denote disjoint union. The set ND3 of minimal ve
tors 
onne
tingso-
alled neighbors in D3 is given byND3 = n� 0�1�1�o ℄ n��10�1�o ℄ n��1�10 �o :Thus, every point in the FCC has 12 neighbors. A hydrophobi
 
ore is is afun
tion f : D3 ! f0; 1g, where f�1(1) 6= ;. The purpose of a hydrophobi

ore is to 
hara
terize the set of positions o

upied by H-monomers. We willidentify a hydrophobi
 
ore f with the set of all points o

upied by f , i.e. fp jf(p) = 1g: Hen
e, for hydrophobi
 
ores f1; f2 we will use standard set notationfor size jf1j, union f1 [ f2, disjoint union f1 ℄ f2, and interse
tion f1 \ f2.Given a hydrophobi
 
ore f , we de�ne the number of 
onta
ts of f by 
on(f) :=12 jf(p;p0) j f(p) ^ f(p0) ^ (p� p0) 2 ND3gj. A hydrophobi
 
ore f is maximally
ompa
t if 
on(f) = max f
on(f 0) j jf j = jf 0jg :An HP-sequen
e is an element in fH;Pg�. With si we denote the ith elementof a sequen
e s. A 
onformation 
 of a sequen
e s is a fun
tion 
 : f1; : : : ; jsjg !D3 su
h that 1) 81 � i < jsj : 
(i)� 
(i+ 1) 2 ND3 , and 2) 8i 6= j : 
(i) 6= 
(j).The hydrophobi
 
ore asso
iated with a 
onformation 
 is de�ned as the setof positions o

upied by an H-monomer in 
. The number of 
onta
ts 
on(
)of a 
onformation 
 is de�ned to be 
on(f), where f is the hydrophobi
 
oreasso
iated with 
. A 
onformation 
 is 
alled native for s if it has maximalnumber of 
onta
ts.A �nite CSP (
onstraint satisfa
tion problem) P = (X ;D; C) is de�ned by2 Of 
ourse, the methods des
ribed in this paper 
an also be applied to hydrophobi

ores that are not maximally 
ompa
t.



{ a set of variables X ,{ a set of �nite domains D, where the domain of x 2 X is dom(x) 2 D.{ a set of 
onstraints C between the variables.A 
onstraint C on the tuple X(C) = (x1; : : : ; xn) of variables is interpretedas a subset T(C) of the Cartesian produ
t dom(x1) � � � � � dom(xn) whi
hspe
i�es allowed 
ombinations of values for the variables. A 
onstraint C, whereX(C) = (x1; : : : ; xn), is 
alled n-ary.a 2 dom(x) is 
onsistent with a 
onstraint C, if either x 62 X(C) or x isthe i � th variable of C and 9� 2 T(C) : a = �i. A 
onstraint C is (hyper-)ar

onsistent i� for all xi 2 X(C), dom(xi) 6= ; and for all a 2 dom(xi) holds a is
onsistent with C.2.1 Enumerating Hydrophobi
 CoresWe are interested in maximally 
ompa
t hydrophobi
 
ores, sin
e a 
onforma-tion with a maximally 
ompa
t hydrophobi
 
ore is already native.3 We re
allthe main prin
iples for 
al
ulating maximally 
ompa
t hydrophobi
 
ores as de-s
ribed in [5, 6℄.To determine maximally 
ompa
t hydrophobi
 
ores, we partition a hy-drophobi
 
ore f into 
ores f1; : : : ; fk of the layers x = 1; : : : ; x = k. For sear
h-ing a maximal hydrophobi
 
ore f , we do a bran
h-and-bound sear
h on k andf1 : : : fk. Of 
ourse, the problem is to give good bounds that allow us to 
ut o�many k and f1 : : : fk that will not maximize 
on(f1 ℄ : : :℄ fk). For this purpose,we distinguish between 
onta
ts in a single layer (= 
on(fi) for 1 � i � k), andinterlayer 
onta
ts ICfi+1fi for 1 � i < k between two su

essive layers. Interlayer
onta
ts are pairs (p;p0) su
h that p and p0 are neighbors, p 2 fi and p0 2 fi+1.The hard part is to bound the number of 
onta
ts between two su

essive layers,sin
e a simple but tight bound for the number of (intra)layer 
onta
ts 
an betaken from the literature [30℄.For de�ning the bound on the number of 
onta
ts between two su

essivelayers, we introdu
e the notion of an i-point, where i = 1; 2; 3; 4. Any point inx = 
+1 
an have at most 4 neighbors in the plane x = 
. Let f be a hydrophobi

ore of the plane x = 
. Call a point p in plane x = 
 + 1 an i-point for f if ithas i neighbors in plane x = 
 that are 
ontained in f (where i � 4). Of 
ourse,if one o

upies an i-point in plane x = 
+1, then this point generates i 
onta
tsbetween layer x = 
 and x = 
 + 1. In the following, we will restri
t ourself tothe 
ase where 
 = 1 for simpli
ity. Of 
ourse, the 
al
ulation is independent ofthe 
hoi
e of 
.Consider as an example the two hydrophobi
 
ores f1 of plane x = 1 and f2of plane x = 2 as shown in Figure ??. f1 
ontains 5 points, and f2 
ontains 3points. Sin
e f2 
ontains one 4-point, one 3-point and one 2-point of f1, thereare 9 
onta
ts between these two layers. It is easy to see that we generate themost 
onta
ts between layers x = 1 and x = 2 by �rst o

upying the 4-points,3 Of 
ourse, there 
an be the rare 
ase that there is a native 
onformation whosehydrophobi
 
ore is not maximally 
ompa
t.



then the 3 points and so on until we rea
h the number of points to be o

upiedin layer x = 2.4For this reason, we are interested in 
al
ulating the maximal number of i-points (for i = 1; 2; 3; 4), given only the number of 
olored points n in layerx = 1. But this would overestimate the number of possible 
onta
ts, sin
e wewould maximize the number of 4-, 3-, 2- and 1- points independently from ea
hother. We have found a dependen
y between these numbers, whi
h requires to�x the side length (a; b) of the minimal re
tangle around all 
olored points inlayer x = 1 (
alled the frame). In our example, the frame is (3; 2).Denote with maxi(n; a; b) the maximal number of i-points in layer x = 2 forany hydrophobi
 
ore of layer x = 1 with n points and frame (a; b). Then wehave found thatmax4(n; a; b) = n+ 1� a� b max2(n; a; b) = 2a+ 2b� 2`� 4max3(n; a; b) = ` max1(n; a; b) = `+ 4:The remaining part is to �nd ` = max3(n; a; b), whi
h is des
ribed in detailin [5, 6℄. This 
al
ulation involves several spe
ial 
ases to treat layers that arenot suÆ
iently �lled with H-monomers. Using these maxi(n; a; b), we 
an de�nea bound Bni+1ni;ai;bi � max� ICfi+1fi #fi = ni; fi has frame (ai; bi);and #fi+1 = ni+1, �where 1 � i � k� 1 and #X denotes the 
ardinality of a set X . This bound 
anbe 
al
ulated in polynomial time using dynami
 programming [5, 6℄.This bound is used in sear
hing for a maximally 
ompa
t 
ore for n H-monomers as follows. Instead of dire
tly enumerating k and all possible 
oresf1℄ : : :℄fk, we sear
h through all possible sequen
es ((n1; a1; b1) : : : (nk; ak; bk))of parameters with the property that n =Pi ni. By using the Bni+1ni;ai;bi , only a fewlayer sequen
es have to be 
onsidered further. For these optimal layer sequen
es,we sear
h for all admissible 
ores f1 ℄ : : : ℄ fk using again a 
onstraint-basedapproa
h. Our implementation is able to �nd maximally hydrophobi
 
ores forn upto 100 within se
onds.3 Threading an HP-sequen
e to a Hydrophobi
 Core3.1 Problem Des
ription and ModelingSin
e we are able to determine maximally hydrophobi
 
ores, it remains tothread an HP-sequen
e to su
h an optimal 
ore in order to get HP-optimallyfolded stru
tures for the sequen
e. We ta
kle the problem by a 
onstraint basedapproa
h.For this reason, let a hydrophobi
 
ore be given as a set of latti
e points C.The sequen
e is given as a word s in fH;Pg�. For 
orre
t input, the size of Cequals the number of H's o

urren
es in the sequen
e.4 Note that this strategy might not result ne
essarily in the 
oloring with the maximalnumber of 
onta
ts, sin
e we might loose 
onta
ts within the layer x = 2.



The protein stru
ture is modeled by a set of variables x1; : : : ; xjsj, whose�nite domains are sets of latti
e points, resp. more generally nodes of a graph,where a graph G is a tuple (V;E) of the �nite set of nodes V and the set ofedges E � V � V . The problem is now to �nd a solution, i.e. an assignment ofthe monomers to nodes, satisfying the following 
onstraints1. the nodes xi, where si = H and 1 � i � jsj, are elements of C.2. all the xi, where 1 � i � jsj, are di�erent3. the nodes x1; : : : ; xjsj form a pathNote that for 
orre
t input, the �rst 
onstraint implies that P monomers arenot in the 
ore. However, due to the �nite 
hain length we 
an determine �nitedomains for the P -representing variables. The se
ond 
onstraint tells that aprotein stru
ture has to be self avoiding. Finally, the last 
onstraint tells that
hain bonds between monomers are to be preserved in a protein stru
ture, su
hthat the monomer positions form a path through the latti
e.Some attention has to be paid to the fa
t that many 
onstraint systems doonly support integer �nite domain variables, whereas in our formulation domainsare latti
e nodes. Sin
e depending on the input only a �nite set of nodes 
an beassigned in solutions, we straightforwardly solve this by assigning unique integersto these nodes.3.2 Path ConstraintsThe treatment of the �rst 
onstraint of the pre
eeding se
tion involves the 
om-putation of domains and the assignment of domains to the variables. Both of theremaining 
onstraints 
an be handled globally. The global treatment of the so
alled all-di�erent 
onstraint is well des
ribed in [24℄. Thus, we will fo
us on thetreatment of the path 
onstraint. We will further dis
uss how one gets furtherpropagation by 
ombining the two 
onstraints.For generality, we dis
uss the 
onstraints on arbitrary �nite graphs. Clearly,we 
an use the results for the FCC latti
e afterwards. There, the set of graphnodes is a subset of the latti
e nodes and the edges are all pairs of graph nodesin minimal latti
e distan
e.In the following, we �x a graph G = (V;E). A path of length n is a wordp = p1 : : : pn of length n of alphabet V , su
h that81 � i � n� 1 : (pi; pi+1) 2 E:Denote the set of paths of length n by paths(n). Note that intentionally pathsare allowed to 
ontain 
y
les due to the de�nition.We de�ne a path 
onstraint to state that the nodes assigned to the argumentvariables form a path.De�nition 1 (Path Constraint). Let x1; : : : ; xn be variables. We 
all a pathp 2 paths(n) 
onsistent for x1; : : : ; xn, i� 81 � i � n : pi 2 dom(xi) holds.The path 
onstraint C = Path(x1; : : : ; xn) is de�ned by the tuplesT(C) = fp 2 paths(n)jp is 
onsistent for x1; : : : ; xng:



Hyper-ar
 
onsisten
y of this path 
onstraint is a lo
al property in the fol-lowing sense. By a general result of Freuder [16℄, ar
 
onsisten
y amounts toglobal 
onsisten
y in a tree-stru
tured network of binary 
onstraints. The nextlemma is an instan
e of this result.Lemma 1. Let x1; : : : ; xn be variables. Path(x1; : : : ; xn) is hyper-ar
 
onsistent,i� for 1 � i � n� 1 all 
onstraints Path(xi; xi+1) are ar
 
onsistent.Due to this lemma, the hyper-ar
 
onsisten
y of the n-ary path 
onstraint isredu
ed to the ar
 
onsisten
y of the set of all 2-ary path 
onstraints.3.3 Combining path and all-di�erent 
onstraintThe 
ombination of the path 
onstraint with the all-di�erent 
onstraint yieldsa new 
onstraint whi
h allows only self avoiding paths. Formally, let x1; : : : ; xnbe variables, de�ne the all-di�erent 
onstraint C = AllDi�(x1; : : : ; xn) byT(C) = � (�1; : : : ; �n) 2 dom(x1)� � � � � dom(xn) 81 � i < j � n : �i 6= �j 	 :We de�ne the self avoiding path 
onstraint SAPath(x1; : : : ; xn) byT(SAPath(x1; : : : ; xn)) = T(AllDi�(x1; : : : ; xn)) \ T(Path(x1; : : : ; xn)):Unfortunately, we are not aware of any eÆ
ient ar
 
onsisten
y algorithm forthis 
ombined 
onstraint in the literature. Furthermore, it is unlikely that thereexists one. It is well known that many problems involving self-avoiding walks(we use the term path here), espe
ially 
ounting of su
h walks, are intrinsi
allyhard and there are no eÆ
ient algorithms to solve them [21℄.On the other hand, the treatment of self avoiding paths promises mu
h bet-ter propagation in pra
ti
e. Therefore, we propose a relaxation of the intra
tableself-avoiding path ar
 
onsisten
y in the following. An eÆ
iently tra
table re-laxation one may think of �rst, is to 
onstrain the paths to be non-reversing.Non-reversing paths are paths whi
h do not turn ba
k immediately, hen
e their
lass lies between general paths and self-avoiding paths. Here, we 
hoose a moregeneral approa
h and de�ne the following sets of paths.De�nition 2. Let 1 � k � n. A k-avoiding path p = p1 : : : pn of length n isa path p 2 paths(n), where for all 1 � i � n � k + 1, the pi : : : pi+k�1 areall di�erent. We de�ne that for k > n, k-avoiding is equivalent to n-avoiding.Denote the set of k-avoiding paths of length n by paths[k℄(n).Note that obviously, general paths (resp. self-avoiding paths) of length n are spe-
ial 
ases of k-avoiding paths namely 1-avoiding paths (resp. n-avoiding paths)of length n. For graphs with symmetri
 and non-re
exive edges, the propertynon-reversing is equivalent to 3-avoiding. Obviously by de�nition, paths[k0℄(n) �paths[k℄(n) holds for all 1 � k � k0 � n.Let x1; : : : ; xn be variables. De�ne the set of k-avoiding paths 
onsistent withx1; : : : ; xn as 
paths[k℄(x1; : : : ; xn). We de�ne 
orresponding 
onstraints, whi
h




onstrain their variables to form k-avoiding paths. De�ne the k-avoiding path
onstraint Path[k℄(x1; : : : ; xn) byT(Path[k℄(x1; : : : ; xn)) = 
paths[k℄(x1; : : : ; xn):Analogously to the general path 
onstraint the k-avoiding path 
onstraintspossess lo
ality, i.e. we get ar
 
onsisten
y of an n-ary k-avoiding path 
onstraintby the ar
 
onsisten
y of the k-ary k-avoiding path 
onstraints on every lengthk subsequen
es of variables.Sin
e the k-ary 
onstraints have to be 
omputed independently by sear
hingfor self-avoiding paths, the redu
tion to lo
al ar
 
onsisten
y leads to unne
essaryineÆ
ien
y. To avoid this, we propose a global algorithm in the following. Thiswill be rewarded by even stronger propagation possibilities.The key to our algorithm is the 
ounting of paths. For ar
 
onsisten
y, weneed to know, whenever there is no path left, where a i-th monomer is positionedon a node v. It is a good starting point to 
ount the number of all (
onsistent)k-avoiding paths.Denote the 
ardinality of a set X by #X . For 
omputing the number of paths# 
paths[k℄(x1; : : : ; xn), we will �rst de�ne the set of k-avoiding paths 
onsistentwith x = x1; : : : ; xn with suÆx (path) q = q1 : : : qm for n � m ass
paths[k℄(x)[q℄ = �p 2 
paths[k℄(x) 81 � i � m : pn�m+i = qi 	To resemble an eÆ
ient implementation more 
losely, we de�ne sp[k + 1℄(x)[q℄analogous to s
paths[k℄(x)[q℄ with the only di�eren
e that sp[k + 1℄(x)[q℄ is onlyde�ned when q is 
onsistent with xn�k+1; : : : ; xn. Note that for all pra
ti
alpurposes, we will 
onsider only s
paths[k℄(x)[q℄ where jqj = k � 1. The idea isthat one has to remember a suÆx (or later a pre�x) of length k � 1 in order to
he
k k-avoiding.Lemma 2. Let x = x1; : : : ; xn be variables, 0 < k � n.The number of paths #
paths[k + 1℄(x) is equal to the sumXq2paths(k)#s
paths[k + 1℄(x)[q℄:For q = q1 : : : qk 2 paths(k), the following number of paths 
an be 
omputedre
ursively.#s
paths[k + 1℄(x)[q℄ = (#sp[k + 1℄(x)[q℄ q 2 
paths[k℄(xn�k+1; : : : ; xn)0 otherwise,where for q 2 
paths[k℄(xn�k+1; : : : ; xn),#sp[k + 1℄(x)[q℄ =8>>>>><>>>>>: 1 n = kX(q0;q1)2E;q0 62fq1;:::;qkg;q02dom(xn�k)#sp[k + 1℄(x1; : : : ; xn�1)[q0 : : : qk�1℄ n > k:



Clearly, the numbers of paths with suÆxes 
an be 
omputed eÆ
iently by adynami
 programming algorithm furnished by the re
ursive de�nition.This algorithm to 
ompute the numbers of k-avoiding paths of maximallength n, where 2 � k � n, has a polynomial 
omplexity in n and the num-ber of nodes jV j.Note that the lemma handles only the 
ase of k-avoiding paths, where k � 2.The reason is that for the path property itself we have to remember a history ofminimal length 1. Hen
e, the number of 1-avoiding paths 
an not be 
omputedmore eÆ
iently than the number of 2-avoiding paths. Obviously the lemma 
ouldbe slightly modi�ed (by dropping the 
ondition q0 62 fq1; : : : ; qkg in the sum ofthe re
ursion step) to 
ompute the number of 1-avoiding, i.e. general paths.Analogously to paths with suÆxes, we 
an treat paths with pre�xes. Hen
e,de�ne the set of k-avoiding paths 
onsistent with x = x1; : : : ; xn with pre�xq = q1 : : : qm asp
paths[k℄[q℄(x) = �p 2 
paths[k℄(x) 81 � i � min(m;n) : pi = qi 	 :It is easy to see (by symmetry), that the paths with pre�xes 
an be treatedanalogously to paths with suÆxes.We 
an now express the number of k-avoiding paths 
onsistent with x =x1; : : : ; xn, where the i-th monomer o

upies the position v, in terms of suÆxand pre�x path numbers.For preparation, de�ne the set of these paths as 
paths[k℄(xji 7! v). In the
ase of usual paths, the number of walks that map xi to position v is the numberof pre�xes of length i that end in v times the number of suÆxes of length n� istarting in v. For k-avoiding paths, this does not suÆ
e, sin
e the 
ompositionof a k-avoiding pre�x and suÆx will not generate a k-avoiding path in general.To guarantee this, the pre�x and suÆx has to overlap at least by k�1 positions.Note that the i 
an be lo
ated arbitrarily in this overlapping region. These
onsiderations are summarized by the next lemma.Lemma 3. Let x = x1; : : : ; xn be variables, 1 � i � n, and v 2 V . Let j be su
hthat 1 � k + 1 � n, 1 � j � i � j + k � 1 � n.#
paths[k + 1℄(xji 7! v) =Xq2paths[k℄(k)qi�j+1=v �#s
paths[k + 1℄(x1; : : : ; xj+k�1)[q℄�#p
paths[k + 1℄[q℄(xj ; : : : ; xn) � :Based on the 
omputation of these numbers we develop an ar
 
onsisten
yalgorithm for the k-avoiding path 
onstraints.Theorem 1. Let x = x1; : : : ; xn be variables with non-empty domains. The
onstraint C = Path[k℄(x) is ar
 
onsistent, i� for every 1 � i � n and v 2 V ,where #
paths[k℄(xji 7! v) = 0, it holds that v 62 dom(xi):Proof. Let x and C be de�ned as in the theorem.



First, let C be ar
 
onsistent. Let 1 � i � n and v 2 V , su
h that theset 
paths[k℄(xji 7! v) is empty. Then, there is no path p 2 paths(k)x, wherepi = v. Hen
e there is no su
h path in T(C). We get v 62 dom(xi), due to thear
 
onsisten
y of C.Se
ond, let C be not ar
 
onsistent. We show that there is a 1 � i � nand v 2 V , su
h that v 2 dom(xi) and #
paths[k℄(xji 7! v) = 0. The ar

onsisten
y of C has to be violated by at least one pair 1 � i � n and v 2 V ,where v 2 dom(xi). Choose su
h i and v. Sin
e 
onsequently there is no pathin T(C), where pi = k, there is no su
h path in 
paths[k℄(x). This implies
paths[k℄(xji 7! v) = ;.Assume that the variables in a set X are 
onstrained as all di�erent. If we
an derive, that in every solution one of the variables in Y � X is assigned to anode v, we may introdu
e the basi
 
onstraints v 62 dom(x) for all x 2 X � Y .The following theorem tells how to derive this.Theorem 2. Let x = x1; : : : ; xn be variables, 1 � k � n, and � 2 T(Path[k℄(x)).Further, S � f1; : : : ; ng, su
h that maxS �minS � k, and v 2 V .Then, Pj2S #
paths[k℄(xjj 7! v) = #
paths[k℄(x) implies that �j = v forexa
tly one j 2 S.Proof. Let n, x, k, � , S, and v be de�ned as in the theorem.Let j 2 S and p 2 
paths[k℄(yjj 7! v). Sin
e maxS�minS � k, we know thatpj0 = v if and only if j = j0 for all j0 2 S. Hen
e, the sets 
paths[k℄(yjj 7! v) aredisjoint for j 2 S. Thus, Pj2S #
paths[k℄(yjj 7! v) = #
paths[k℄(y) impliesUj2S 
paths[k℄(yjj 7! v) = 
paths[k℄(y), i.e., for every path p 2 
paths[k℄(y),pj = v for exa
tly one j 2 S.Finally, sin
e �r : : : �r+m�1 2 
paths[k℄(y), we get �j = v for exa
tly onej 2 S.In the following, we dis
uss in more detail how to avoid unne
essary largevalues for k, sin
e the 
onsisten
y and propagation algorithms are due to ourre
ursion equations still exponential in k.For s; t 2 V , de�ne a path from s to t as a path p = p1 : : : pn, where p1 = sand pn = t. Further, de�ne a distan
e on nodes bydist(s; t) = min�n > 0 p 2 paths(n); s = p1; pn = t	 :Sin
e V is �nite, the de�ned distan
e 
an be 
omputed by Dijkstra's shortestpath algorithm. Note that dist(s; t) is neither a metri
 nor total.Depending on the distan
e of �rst and last nodes of a path, k-avoidingnessmight be already guaranteed by k0-avoidingness for k0 < k. This is stated by thenext theorem.Theorem 3. Let s; t 2 V , su
h that d = dist(s; t) is de�ned. Let n > 0, 1 �k0; k � n, su
h that d+ k0 � n = n � k. For every path p 2 paths[k0℄(n) from sto t, it holds p 2 paths[k℄(n).



Proof. Fix s; t 2 V , su
h that d = dist(s; t) is de�ned. Let 1 � k0 � k � n,where d + k0 � n = n � k. Let p 2 paths[k0℄(n) be a path from s to t. Assumep 62 paths[k℄(n). Then exists 1 � i � j � n, where j � i > k and pi = pj . Then,p1 : : : pipj + 1 : : : pn is a path of length n � (j � i) from s to t. Now, by theminimality of d, n � (j � i) � d holds. This implies n � k > d. By assumptionk = 2n�d�k0. Hen
e, n� (2n�d�k0) > d and thus k0�n > 0 in 
ontradi
tionto k0 � n.In a 
onstraint sear
h, the theorem allows to repla
e k-avoiding path 
on-straints by more eÆ
iently 
omputed, but semanti
ally equivalent k0-avoidingpath 
onstraints, whenever the 
onditions of the theorem are derived. Inversely,if we derive that k0-avoiding paths are in fa
t k-avoiding this allows strongerpropagation due to theorem 2.3.4 A Propagator for the Path ConstraintBased on the 
onsiderations of the previous subse
tions we sket
h an implemen-tation of the k-avoiding path 
onstraint propagator.Let x = x1; : : : ; xn be �nite domain variables. The general strategy of thepropagator for Path[k℄(x) is as follows1. For all q 2 paths[k℄(k) and k � i � n, 
ompute # s
paths[k℄(x1; : : : ; xi)[q℄and #p
paths[k℄[q℄(xn�i+1; : : : ; xn).2. Compute from this the numbers # 
paths[k℄(xji 7! v) for all 1 � i � n andv 2 V . Whenever su
h a value is 0, remove v from the domain of xi.3. If at least one domain of the x1; : : : ; xn 
hanges repeat from step 1.Even sin
e we have presented eÆ
ient algorithms to 
ompute the above num-bers and thus get ar
 
onsisten
y of the path 
onstraint, there are some remain-ing problems. Most demanding are in
remental 
omputation and the saving of
opying time.At the �rst invo
ation, the 
omputation of the path numbers 
an be doneby dynami
 programming algorithms. If domains are narrowed, the previously
omputed path numbers 
an be updated. For this aim, there exists an eÆ
ientupdate algorithm, whi
h works destru
tively on the data stru
tures. However,the in
remental 
omputation 
omes at the pri
e of 
opying the data stru
tures,whenever the tree bran
hes.Sin
e for our purpose, the k-avoiding path propagator always works in pres-en
e of an all-di�erent 
onstraints, the k-avoiding path propagator should beable to handle further propagation due to the 
ombination with this 
onstraint.The justi�
ation to do this is given by Theorem 2. We use that for the ar
 
on-sisten
y of a k-avoiding path 
onstraint, the numbers # 
paths[k0℄(xji 7! v) arealready 
omputed for all k0 � k. For tra
tability one has to restri
t the subsetsS, e.g. to all subsets of su

essive numbers up to size k.Finally, one 
an simplify a k-avoiding path propagator by a more eÆ
ient k0-avoiding one, in situation des
ribed by Theorem 3, while preserving semanti
alequivalen
e.



3.5 ResultsExa
t stru
ture predi
tion in the HP-model on the 
ubi
 latti
e was previouslypossible up to 
hain lengths of 88 [30℄. Yue and Dill report to �nd a native
onformation for those 
hains in times ranging from minutes to hours. Our ownalgorithm for exa
t stru
ture predi
tion on the 
ubi
 latti
e regularly folds pro-teins with a length of 30 � 40 monomers [4, 7℄. Note that stru
ture predi
tionin the 
ubi
 latti
e is not ne
essarily easier for inexa
t, heuristi
 methods. Forexample, in [9℄ a heuristi
 sto
hasti
 approa
h is reported to fail on all but oneof the investigated 48-mers.We implemented two threading algorithms. For the �rst algorithm, we imple-mented a propagator to handle general paths by redu
tion to binary path 
on-straint propagators. For the se
ond algorithm, an experimental, non-optimizedversion of a propagator for 3-avoiding pathes is implemented. The propagatorsare implemented as extension to Mozart (Oz 3) [25℄. Mozart provides a 
onve-nient interfa
e for extension by C++-
onstraint-propagators [22℄.For ben
hmarking of the two threading algorithms, the following experimentwas performed. Random HP-sequen
es were threaded to 
ores of sizes n =25, 50,and 75. Therefore, for ea
h 
ore 50 sequen
es were randomly generated with n H-monomers and 0:8�n P-monomers, whi
h is a rather high ratio of P-monomers toH-monomers and is 
hosen to 
hallenge the algorithm. Additionally, we threaded50 random sequen
es of length 160 to a 
ore of size 100. We also managed tothread some random sequen
es of length 180 to this 
ore. For ea
h sequen
e, thethreading is performed by both algorithms.Both algorithms thread the very majority of the test sequen
es su

essfully.The results show that the 
ombination of the path 
onstraint with the all-di�erent 
onstraint yields signi�
antly better propagation even for the strongrelaxation of only 3-avoiding paths. Both algorithms su

essfully threaded allof the 50 sequen
es to the 
ore of size 25 (whi
h means a sequen
e length of45). For longer sequen
es, the se
ond algorithm su

eeds for signi�
antly moresequen
es than the �rst one. Furthermore, it often �nds a solution in less sear
hnodes (up to a fa
tor of 303). The results are summarized in Table 1.
ore size seq. length fails alg. 1 fails alg. 2 avg. nodes alg. 1 avg. nodes alg. 225 45 0% 0% 36 3650 90 12% 2% 970 10375 135 20% 8% 586 513100 160 60% 50% 1468 598Table 1. Threading of random sequen
es to 
ores of four di�erent sizes. The tableshows size of the 
ore, the length of the sequen
es, the per
entage of sequen
es whi
h
ould not be threaded su

essfully within the given time limit by the two algorithms,and the average number of nodes in su

essfull runs by both algorithms. We 
hoose atime limit of 5 minutes for the �rst algorithm. The se
ond algorithm is given a longertime limit of 15 minutes, sin
e the path propagator is experimental and non-optimized.
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