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Abstract. Lattice protein models are used for hierarchical approaches
to protein structure prediction, as well as for investigating principles of
protein folding. So far, one has the problem that there exists no lattice
that can model real protein conformations with good quality and for
which an efficient method to find native conformations is known.

We present the first method for the FCC-HP-Model [3] that is capable
of finding native conformations for real-sized HP-sequences. It has been
shown [23] that the FCC lattice can model real protein conformations
with coordinate root mean square deviation below 2 A.

Our method uses a constraint-based approach. It works by first calcu-
lating maximally compact sets of points (hydrophobic cores), and then
threading the given HP-sequence to the hydrophobic cores such that the
core is occupied by H-monomers.

1 Introduction

The protein structure prediction is one of the most important unsolved problems
of computational biology. It can be specified as follows: Given a protein by its
sequence of amino acids (more generally monomers), what is its native structure?
NP-completeness of the problem has been proven for many different models
(including lattice and off-lattice models) [10,12]. These results strongly suggest
that the protein folding problem is NP-hard in general. Therefore, it is unlikely
that a general, efficient algorithm for solving this problem can be given. Actually,
the situation is even worse, since the general principles how natural proteins fold
into a native structure are unknown. This is cumbersome since rational design
is commonly viewed to be of paramount importance e.g. for drug design, where
one faces the difficulty to design proteins that have a unique and stable native
structure.

To tackle structure prediction and related problems, simplified models have
been introduced. They are used in hierarchical approaches for protein folding
(e.g., [29], see also the meeting review of CASP3 [18], where several groups have
successfully used lattice models). Furthermore, they have became a major tool
for investigating general properties of protein folding.
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Most important are the so-called lattice models. The simplifications com-
monly used in this class of models are: 1) monomers (or residues) are represented
using a unified size 2) bond length is unified 3) the positions of the monomers
are restricted to lattice positions and 4) a simplified energy function. Native
conformations are those having minimal energy.

In the literature, many different lattice models (i.e., lattices and energy func-

tions) have been used. Examples of how such models can be used for predicting
the native structure or for investigating principles of protein folding are given
in [28,1,15,27,17,2,20,29]. Of course, the question arises which lattice and en-
ergy function have to be preferred. There are two (somewhat conflicting) aspects
that have to be evaluated when choosing a model: 1) the accuracy of the lat-
tice in approximating real protein conformations and the ability of the energy
function to discriminate native from non-native conformations, and 2) the avail-
ability and quality of search algorithm for finding minimal (or nearly minimal)
energy conformations.
While the first aspect is well-investigated in the literature (e.g., [23,13]), the
second aspect is underrepresented. By and large, there are mainly two different
heuristic search approaches used in the literature: 1) Ad hoc restriction of the
search space to compact or quasi-compact conformations (a good example is
[28], where the search space is restricted to conformations forming an n x n x n-
cube). The main drawback here is that the restriction to compact conformation
is not motivated biologically for a complete amino acid sequence (as done in
these approaches), but only for the hydrophobic amino acids. In consequence,
the restriction either has to be relaxed and then leads to an inefficient algo-
rithm or is chosen too strong and thus may exclude optimal conformations. 2)
Stochastic sampling like Monte Carlo methods with simulated annealing, genetic
algorithms etc. Here, the degree of (sub)optimality for the best conformations
and the quality of the sampling cannot be determined by state of the art meth-
ods.!

In this paper, we follow the proposal by [3] to use a lattice model with
a simple energy function, namely the HP (hydrophobic-polar) model (which
has been introduced in [19] using cubic lattice), but on a better suited lattice,
namely the face-centered cubic lattice (FCC). In the FCC, every point has 12
neighbors (instead of 6 as in the cubic lattice). The resulting model is called
the FCC-HP-model. In the HP-model, the 20 letter alphabet of amino acids is
reduced to a two letter alphabet, namely H and P. H represents hydrophobic
amino acids, whereas P represent polar or hydrophilic amino acids. The energy
function for the HP-model is given by the matrix as shown in Figure 1(a). It
simply states that the energy contribution of a contact between two monomers is
—1 if both are H-monomers, and 0 otherwise. Two monomers form a contact in
some specific conformation if they are not connected via a bond, and occupied
positions are nearest neighbors. A conformation with minimal energy (called

! Despite that there are mathematical treatments of Monte Carlo methods with simu-
lated annealing, the partition function of the ensemble (which is needed for a precise
statement) is in general unknown.
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Fig. 1. Energy matrix and sample conformation for the HP-model

native conformation) is just a conformation with the maximal number of contacts
between H-monomers. Just recently, the structure prediction problem has been
shown to be NP-complete even for the HP-model [10,12].

A sample conformation for the sequence PHPPHHPH in the two-dimensional
cubic lattice with energy —2 is shown in Figure 1(b). The white beads represent
P, the black ones H monomers. The two contacts are indicated via dashed lines.

There are two reasons for using the FCC-HP-Model:

1) The FCC can model real protein conformations with good quality (see [23],
where it was shown that FCC can model protein conformations with coordinate
root mean square deviation below 2 A)

2) The HP-model models the important aspect of hydrophobicity. Essentially, it
is a polymer chain representation (on a lattice) with one stabilizing interaction
each time two hydrophobic residues have unit distance. This enforces compact-
ification while polar residues and solvent is not explicitly regarded. The idea of
the model is the assumption that the hydrophobic effect determines the overall
configuration of a protein (for a definition of the HP-model, see [19,13]).

Once a search algorithm for minimal energy conformations is established for
this FCC-HP-model, one can employ it as a filter step in a hierarchical approach.
This way, one can improve the energy function to achieve better biological rele-
vance and go on to resemble amino acid positions more accurately.

Related Work and Contribution In this paper, we describe a successful appli-
cation of constraint-programming for finding native conformations in the FCC-
HP-model. In this respect, the situation as given in the literature was not very
promising. Although the FCC-HP-model is known to be an important lattice
model, no exact algorithm was known for finding native conformations in any
model different from the cubic lattice. Even for the cubic lattice, there are only
three exact algorithms known [30,4,7], which are able to enumerate minimal
(or nearly minimal) energy conformations, all for the cubic lattice. However,
the ability of this lattice to approximate real protein conformations is poor. For
example, [3] pointed out especially the parity problem in the cubic lattice. This
drawback of the cubic lattice is that every two monomers with chain positions
of the same parity cannot form a contact.

So far, beside heuristic approaches (e.g., the hydrophobic zipper [14], the
genetic algorithm by Unger and Moult [26], the chain growth algorithm by
Bornberg-Bauer [11], or [8], which is a method applicable for any regular lattice),
there is only one approximation algorithm [3] for the FCC. It finds conformations
whose number of contacts is guaranteed to be 60% of the number of contacts of
the native conformation (which is far from being useful, since, even if the algo-
rithm yields far better results, the information on the quality of the outcome is



still too fuzzy). The situation was even worse, since the main ingredient needed
for an exact method, namely bounds on the number of HH-contacts given some
partial information about the conformation, was missing. This changed with [5,
6], where such a bound is introduced and applied to the problem of finding max-
imally compact hydrophobic cores. Given a conformation of an HP-sequence,
the hydrophobic core of this sequence is the set of all points occupied by H-
monomers. A hydrophobic core of n-points is mazimally compact if there is no
packing of n-points in the FCC which has more contacts. In this paper, we show
how we can efficiently thread a given HP-sequence to a maximally compact hy-
drophobic core?. We have implemented our method in the constraint language
Oz [25] with extensions in C++.

2 Preliminaries

Given vectors v, ..., vy, the lattice generated by vq, ..., v, is the minimal set
of points L such that Yu,v € L, both u+v € L and u—wv € L. The face-centered
cubic lattice (FCC) is defined as the lattice

D3 = {(g) | (g) € Z%and x 4+ y + z is even}.

We use W to denote disjoint union. The set Np, of minimal vectors connecting
so-called neighbors in D3 is given by

o, ={(£)} e {(E)} e {(5)}-
+1 +1 0

Thus, every point in the FCC has 12 neighbors. A hydrophobic core is is a
function f : D3 — {0,1}, where f=!(1) # (. The purpose of a hydrophobic
core is to characterize the set of positions occupied by H-monomers. We will
identify a hydrophobic core f with the set of all points occupied by f, i.e. {p |
f(p) = 1}. Hence, for hydrophobic cores fi, fo we will use standard set notation
for size |fi|, union f; U fo, disjoint union f; W fo, and intersection fi; N fo.
Given a hydrophobic core f, we define the number of contacts of f by con(f) :=
1 {0 | f(P) A f(P') A (P—D') € Np,}|. A hydrophobic core f is mazimally
compact if con(f) = max {con(f") | |f| = |/']}.

An HP-sequence is an element in {H, P}*. With s; we denote the ith element
of a sequence s. A conformation c of a sequence s is a function ¢ : {1,...,|s|} —
D3 such that 1) V1 <i < |s|: ¢(i) —e(i + 1) € Np,, and 2) Vi # j : c(i) # c(j).
The hydrophobic core associated with a conformation ¢ is defined as the set
of positions occupied by an H-monomer in ¢. The number of contacts con(c)
of a conformation ¢ is defined to be con(f), where f is the hydrophobic core
associated with c¢. A conformation c is called native for s if it has maximal
number of contacts.

A finite CSP (constraint satisfaction problem) P = (X, D,C) is defined by

2 Of course, the methods described in this paper can also be applied to hydrophobic
cores that are not maximally compact.



— a set of variables X,
— a set of finite domains D, where the domain of € X is dom(z) € D.
— a set of constraints C between the variables.

A constraint C' on the tuple X (C) = (z1,...,2,) of variables is interpreted
as a subset T(C) of the Cartesian product dom(z;) x --- x dom(z,) which
specifies allowed combinations of values for the variables. A constraint C', where
X(C) = (z1,...,2,), is called n-ary.

a € dom(z) is consistent with a constraint C, if either z ¢ X(C) or z is
the ¢ — th variable of C' and 37 € T(C) : a = ;. A constraint C is (hyper-)arc
consistent iff for all z; € X(C), dom(z;) # 0 and for all a € dom(z;) holds a is
consistent with C.

2.1 Enumerating Hydrophobic Cores

We are interested in maximally compact hydrophobic cores, since a conforma-
tion with a maximally compact hydrophobic core is already native.? We recall
the main principles for calculating maximally compact hydrophobic cores as de-
scribed in [5, 6].

To determine maximally compact hydrophobic cores, we partition a hy-
drophobic core f into cores fi,..., f; of the layers x = 1,...,x = k. For search-
ing a maximal hydrophobic core f, we do a branch-and-bound search on k and
f1--. fr- Of course, the problem is to give good bounds that allow us to cut off
many k and fi ... f that will not maximize con(f; W...W fi). For this purpose,
we distinguish between contacts in a single layer (= con(f;) for 1 <7 < k), and
interlayer contacts ¢/ j“ for 1 <i < k between two successive layers. Interlayer
contacts are pairs (p, p’) such that p and p’ are neighbors, p € f; and p’ € fi;1.
The hard part is to bound the number of contacts between two successive layers,
since a simple but tight bound for the number of (intra)layer contacts can be
taken from the literature [30].

For defining the bound on the number of contacts between two successive
layers, we introduce the notion of an i-point, where i = 1,2,3,4. Any point in
x = c+1 can have at most 4 neighbors in the plane = ¢. Let f be a hydrophobic
core of the plane x = ¢. Call a point p in plane z = ¢+ 1 an i-point for f if it
has ¢ neighbors in plane 2 = ¢ that are contained in f (where i < 4). Of course,
if one occupies an i-point in plane z = ¢+ 1, then this point generates i contacts
between layer z = ¢ and z = ¢ + 1. In the following, we will restrict ourself to
the case where ¢ = 1 for simplicity. Of course, the calculation is independent of
the choice of c.

Consider as an example the two hydrophobic cores f; of plane z = 1 and f>
of plane z = 2 as shown in Figure ??. f; contains 5 points, and f> contains 3
points. Since f» contains one 4-point, one 3-point and one 2-point of fi, there
are 9 contacts between these two layers. It is easy to see that we generate the
most contacts between layers x = 1 and z = 2 by first occupying the 4-points,

% Of course, there can be the rare case that there is a native conformation whose
hydrophobic core is not maximally compact.



then the 3 points and so on until we reach the number of points to be occupied
in layer z = 2.4

For this reason, we are interested in calculating the maximal number of i-
points (for i = 1,2,3,4), given only the number of colored points n in layer
z = 1. But this would overestimate the number of possible contacts, since we
would maximize the number of 4-, 3-, 2- and 1- points independently from each
other. We have found a dependency between these numbers, which requires to
fix the side length (a,b) of the minimal rectangle around all colored points in
layer # = 1 (called the frame). In our example, the frame is (3, 2).

Denote with mazx;(n,a,b) the maximal number of i-points in layer z = 2 for
any hydrophobic core of layer = 1 with n points and frame (a,b). Then we
have found that

mazs(n,a,b) =n+1—a—-1> maxa(n,a,b) = 2a + 2b— 20 — 4
mazs(n,a,b) =/ mazy (n,a,b) =+ 4.
The remaining part is to find ¢ = mazs(n,a,b), which is described in detail
in [5,6]. This calculation involves several special cases to treat layers that are

not sufficiently filled with H-monomers. Using these max;(n,a,b), we can define
a bound

B+ > max { IC;’:“

ni,a;i,b;

#fi =n;, fi has frame (a;, bi)a}

and #fip1 = nig1,

where 1 <14 < k—1 and #X denotes the cardinality of a set X. This bound can
be calculated in polynomial time using dynamic programming [5, 6].

This bound is used in searching for a maximally compact core for n H-
monomers as follows. Instead of directly enumerating k& and all possible cores
fi¥... W fi, we search through all possible sequences ((n1,a1,b1) ... (ng, ak, b))
of parameters with the property that n = ), n;. By using the Bzzlb ,only a few
layer sequences have to be considered further. For these optimal layer sequences,
we search for all admissible cores f; W ... W fi using again a constraint-based
approach. Our implementation is able to find maximally hydrophobic cores for
n upto 100 within seconds.

3 Threading an HP-sequence to a Hydrophobic Core

3.1 Problem Description and Modeling

Since we are able to determine maximally hydrophobic cores, it remains to
thread an HP-sequence to such an optimal core in order to get HP-optimally
folded structures for the sequence. We tackle the problem by a constraint based
approach.

For this reason, let a hydrophobic core be given as a set of lattice points C.
The sequence is given as a word s in {H,P}*. For correct input, the size of C
equals the number of H’s occurrences in the sequence.

* Note that this strategy might not result necessarily in the coloring with the maximal
number of contacts, since we might loose contacts within the layer z = 2.



The protein structure is modeled by a set of variables w1,..., 7, whose
finite domains are sets of lattice points, resp. more generally nodes of a graph,
where a graph G is a tuple (V, E) of the finite set of nodes V' and the set of
edges E C V x V. The problem is now to find a solution, i.e. an assignment of
the monomers to nodes, satisfying the following constraints

1. the nodes z;, where s; = H and 1 < i < |s|, are elements of C.
2. all the z;, where 1 < i < |s|, are different
3. the nodes z1,..., 7, form a path

Note that for correct input, the first constraint implies that P monomers are
not in the core. However, due to the finite chain length we can determine finite
domains for the P-representing variables. The second constraint tells that a
protein structure has to be self avoiding. Finally, the last constraint tells that
chain bonds between monomers are to be preserved in a protein structure, such
that the monomer positions form a path through the lattice.

Some attention has to be paid to the fact that many constraint systems do
only support integer finite domain variables, whereas in our formulation domains
are lattice nodes. Since depending on the input only a finite set of nodes can be
assigned in solutions, we straightforwardly solve this by assigning unique integers
to these nodes.

3.2 Path Constraints

The treatment of the first constraint of the preceeding section involves the com-
putation of domains and the assignment of domains to the variables. Both of the
remaining constraints can be handled globally. The global treatment of the so
called all-different constraint is well described in [24]. Thus, we will focus on the
treatment of the path constraint. We will further discuss how one gets further
propagation by combining the two constraints.

For generality, we discuss the constraints on arbitrary finite graphs. Clearly,
we can use the results for the FCC lattice afterwards. There, the set of graph
nodes is a subset of the lattice nodes and the edges are all pairs of graph nodes
in minimal lattice distance.

In the following, we fix a graph G = (V, E). A path of length n is a word
P =p1...pn of length n of alphabet V', such that

Vi<i<n-—1:(pipit1) € E.

Denote the set of paths of length n by paths(n). Note that intentionally paths
are allowed to contain cycles due to the definition.

We define a path constraint to state that the nodes assigned to the argument
variables form a path.

Definition 1 (Path Constraint). Let z1,...,x, be variables. We call a path
p € paths(n) consistent for xy,...,x,, iff V1 <i < n:p; € dom(x;) holds.
The path constraint C' = Path(z1,...,z,) is defined by the tuples

T(C) = {p € paths(n)|p is consistent for z1,...,z,}.



Hyper-arc consistency of this path constraint is a local property in the fol-
lowing sense. By a general result of Freuder [16], arc consistency amounts to
global consistency in a tree-structured network of binary constraints. The next
lemma is an instance of this result.

Lemma 1. Letzy,...,z, be variables. Path(xy,...,x,) is hyper-arc consistent,
iff for 1 <i <n —1 all constraints Path(x;, x;11) are arc consistent.

Due to this lemma, the hyper-arc consistency of the n-ary path constraint is
reduced to the arc consistency of the set of all 2-ary path constraints.

3.3 Combining path and all-different constraint

The combination of the path constraint with the all-different constraint yields
a new constraint which allows only self avoiding paths. Formally, let z1, ..., x,
be variables, define the all-different constraint C = AIDiff (x4, ..., x,) by

T(C) ={(r,..., ™) €dom(zy) x --- X dom(z,)|VI<i<j<m:7 #7;}.
We define the self avoiding path constraint SAPath(xy, ..., z,) by
T(SAPath(z,...,2,)) = T(AUDiff (x4, ...,2z,)) N T(Path(xy, ..., z,)).

Unfortunately, we are not aware of any efficient arc consistency algorithm for
this combined constraint in the literature. Furthermore, it is unlikely that there
exists one. It is well known that many problems involving self-avoiding walks
(we use the term path here), especially counting of such walks, are intrinsically
hard and there are no efficient algorithms to solve them [21].

On the other hand, the treatment of self avoiding paths promises much bet-
ter propagation in practice. Therefore, we propose a relaxation of the intractable
self-avoiding path arc consistency in the following. An efficiently tractable re-
laxation one may think of first, is to constrain the paths to be non-reversing.
Non-reversing paths are paths which do not turn back immediately, hence their
class lies between general paths and self-avoiding paths. Here, we choose a more
general approach and define the following sets of paths.

Definition 2. Let 1 < k < n. A k-avoiding path p = py...p, of length n is
a path p € paths(n), where for all 1 < i < n—k+ 1, the p;...pirr—1 are
all different. We define that for k > n, k-avoiding is equivalent to n-avoiding.
Denote the set of k-avoiding paths of length n by paths[k](n).

Note that obviously, general paths (resp. self-avoiding paths) of length n are spe-
cial cases of k-avoiding paths namely 1-avoiding paths (resp. n-avoiding paths)
of length n. For graphs with symmetric and non-reflexive edges, the property
non-reversing is equivalent to 3-avoiding. Obviously by definition, paths[k'](n) C
paths[k](n) holds for all 1 < k < k' < n.

Let x1,...,x, be variables. Define the set of k-avoiding paths consistent with
Z1,..., %, as cpaths[k](z1,...,z,). We define corresponding constraints, which



constrain their variables to form k-avoiding paths. Define the k-avoiding path
constraint Path[k](z1,...,z,) by

T(Path[k](z1,...,x,)) = cpaths[k](z1, ..., zp).

Analogously to the general path constraint the k-avoiding path constraints
possess locality, i.e. we get arc consistency of an n-ary k-avoiding path constraint
by the arc consistency of the k-ary k-avoiding path constraints on every length
k subsequences of variables.

Since the k-ary constraints have to be computed independently by searching
for self-avoiding paths, the reduction to local arc consistency leads to unnecessary
inefficiency. To avoid this, we propose a global algorithm in the following. This
will be rewarded by even stronger propagation possibilities.

The key to our algorithm is the counting of paths. For arc consistency, we
need to know, whenever there is no path left, where a i-th monomer is positioned
on a node v. It is a good starting point to count the number of all (consistent)
k-avoiding paths.

Denote the cardinality of a set X by #X. For computing the number of paths
# cpaths[k](z1, ..., x,), we will first define the set of k-avoiding paths consistent
with © = x1, ..., 2, with suffiz (path) ¢ = q1 ...qm for n > m as

scpaths[k](z)[q] = { p € cpaths[k](z)|V1 <i <m : pp_mii = ¢ }

To resemble an efficient implementation more closely, we define sp[k + 1](z)[q]
analogous to scpaths[k](z)[¢] with the only difference that sp[k + 1](z)[q] is only
defined when ¢ is consistent with z,_41,...,2,. Note that for all practical
purposes, we will consider only scpaths[k](x)[g] where |¢| = k — 1. The idea is
that one has to remember a suffix (or later a prefix) of length k — 1 in order to
check k-avoiding.

Lemma 2. Let x = x1,...,x, be variables, 0 < k < n.
The number of paths # cpaths[k + 1](z) is equal to the sum

Z # scpaths[k + 1](x)[q].
g€Epaths(k)

For q = qi ...qx € paths(k), the following number of paths can be computed
recursively.

4 sepathsl + 1](@)[g] = {#sp[k +1)(2)[a] g € cpaths[k](Tp_pr1,- .-, 2n)

0 otherwise,
where for q € cpaths[k](zn—k+1,...,%n),
1 n==k
#splk + 1)(x)[q] = Z #splk+1(z1,...,Zn—1)[q0 .- - qe—1] n>k.
(90,01)EE,
G0 Z{a1,--sqr }»

go€dom(z, —p)



Clearly, the numbers of paths with suffixes can be computed efficiently by a
dynamic programming algorithm furnished by the recursive definition.

This algorithm to compute the numbers of k-avoiding paths of maximal
length n, where 2 < k < n, has a polynomial complexity in n and the num-
ber of nodes |V].

Note that the lemma handles only the case of k-avoiding paths, where k > 2.
The reason is that for the path property itself we have to remember a history of
minimal length 1. Hence, the number of 1-avoiding paths can not be computed
more efficiently than the number of 2-avoiding paths. Obviously the lemma could
be slightly modified (by dropping the condition qo & {q1,...,q:} in the sum of
the recursion step) to compute the number of 1-avoiding, i.e. general paths.

Analogously to paths with suffixes, we can treat paths with prefixes. Hence,
define the set of k-avoiding paths consistent with x = x1,...,x, with prefix

G=aq ... qnm as
pepaths(k][g)(z) = { p € cpaths[k](z)|V1 < i < min(m,n) :p; =¢; } .

It is easy to see (by symmetry), that the paths with prefixes can be treated
analogously to paths with suffixes.

We can now express the number of k-avoiding paths consistent with z =
Z1,...,Tn, where the i-th monomer occupies the position v, in terms of suffix
and prefix path numbers.

For preparation, define the set of these paths as cpaths[k](z|i — v). In the
case of usual paths, the number of walks that map z; to position v is the number
of prefixes of length i that end in v times the number of suffixes of length n — i
starting in v. For k-avoiding paths, this does not suffice, since the composition
of a k-avoiding prefix and suffix will not generate a k-avoiding path in general.
To guarantee this, the prefix and suffix has to overlap at least by k — 1 positions.
Note that the i can be located arbitrarily in this overlapping region. These
considerations are summarized by the next lemma.

Lemma 3. Let x = x1,...,T, be variables, 1 <i<n, andv € V. Let j be such
that 1 <k+1<n,1<j<i<j+k—-1<n.

# cpaths[k + 1](z|i — v) =Z (

gepaths[k](k)
qi—j4+1=0

# scpaths[k + 1](z1, ... ,xj+k1)[q]->
# pepaths(k + 1[g] (25, ..., 20) )

Based on the computation of these numbers we develop an arc consistency
algorithm for the k-avoiding path constraints.

Theorem 1. Let © = x1,...,x, be variables with non-empty domains. The
constraint C = Path[k](z) is arc consistent, iff for every 1 <i <mn andv € V,
where # cpaths[k](z|i — v) = 0, it holds that v ¢ dom(z;).

Proof. Let x and C be defined as in the theorem.



First, let C be arc consistent. Let 1 < i < n and v € V, such that the
set cpaths[k](z|i — v) is empty. Then, there is no path p € paths(k)z, where
p; = v. Hence there is no such path in T(C). We get v ¢ dom(z;), due to the
arc consistency of C'.

Second, let C' be not arc consistent. We show that there is a 1 < i < n
and v € V, such that v € dom(z;) and # cpaths[k](z|i — v) = 0. The arc
consistency of C' has to be violated by at least one pair 1 <i <n and v € V,
where v € dom(z;). Choose such i and v. Since consequently there is no path
in T(C), where p; = k, there is no such path in cpaths[k](z). This implies
cpaths[k](z]i — v) = 0.

Assume that the variables in a set X are constrained as all different. If we
can derive, that in every solution one of the variables in Y C X is assigned to a
node v, we may introduce the basic constraints v ¢ dom(z) for all z € X — Y.
The following theorem tells how to derive this.

Theorem 2. Letx = xy,...,x, be variables, 1 <k < n, and T € T(Path[k](z)).
Further, S C {1,...,n}, such that maxS —min S < k, andv € V.

Then, ;e s # cpaths[k](z|j — v) = # cpaths[k](z) implies that 7; = v for
exactly one j € S.

Proof. Let n, xz, k, 7, S, and v be defined as in the theorem.

Let j € S and p € cpaths[k](y|j — v). Since max S—min S < k, we know that
pj = v if and only if j = j' for all j € S. Hence, the sets cpaths[k](y|j + v) are
disjoint for j € S. Thus, ), ¢ # cpaths[k](y|j — v) = # cpaths[k](y) implies
|t);c5 cpaths[k](y[j — v) = cpaths[k](y), i.e., for every path p € cpaths[k](y),
p; = v for exactly one j € S.

Finally, since 7, ...7Tp4m—1 € cpaths[k](y), we get 7; = v for exactly one
JES.

In the following, we discuss in more detail how to avoid unnecessary large
values for k, since the consistency and propagation algorithms are due to our
recursion equations still exponential in k.

For s,t € V, define a path from s to t as a path p = p; ...p,, where p; = s
and p, = t. Further, define a distance on nodes by

dist(s,t) = min{n > 0|p € paths(n),s = p1,pn = t} .

Since V is finite, the defined distance can be computed by Dijkstra’s shortest
path algorithm. Note that dist(s,t) is neither a metric nor total.

Depending on the distance of first and last nodes of a path, k-avoidingness
might be already guaranteed by k'-avoidingness for k' < k. This is stated by the
next theorem.

Theorem 3. Let s,t € V', such that d = dist(s,t) is defined. Let n > 0, 1 <
k' k < n, such that d+ k' —n =n — k. For every path p € paths[k'](n) from s
to t, it holds p € paths[k](n).



Proof. Fix s,t € V, such that d = dist(s,t) is defined. Let 1 < k' < k < n,
where d + k' —n =n — k. Let p € paths[k'](n) be a path from s to ¢. Assume
p & paths[k](n). Then exists 1 <i < j <n, where j —i >k and p; = p;. Then,
p1...pipj +1...p, is a path of length n — (j — i) from s to ¢t. Now, by the
minimality of d, n — (j — i) > d holds. This implies n — k > d. By assumption
k=2n—d—Fk'. Hence,n—(2n—d—k'") > d and thus k' —n > 0 in contradiction
to k' < n.

In a constraint search, the theorem allows to replace k-avoiding path con-
straints by more efficiently computed, but semantically equivalent k'-avoiding
path constraints, whenever the conditions of the theorem are derived. Inversely,
if we derive that k’-avoiding paths are in fact k-avoiding this allows stronger
propagation due to theorem 2.

3.4 A Propagator for the Path Constraint

Based on the considerations of the previous subsections we sketch an implemen-
tation of the k-avoiding path constraint propagator.

Let x = x1,...,x, be finite domain variables. The general strategy of the
propagator for Path[k](z) is as follows

1. For all ¢ € paths[k](k) and k& < i < n, compute # scpaths[k](zy,...,x;)[q]
and # pepaths(k][g](zn—it1,. .., Tn).

2. Compute from this the numbers # cpaths[k](z|i — v) for all 1 <i <n and
v € V. Whenever such a value is 0, remove v from the domain of z;.

3. If at least one domain of the zy,...,z, changes repeat from step 1.

Even since we have presented efficient, algorithms to compute the above num-
bers and thus get arc consistency of the path constraint, there are some remain-
ing problems. Most demanding are incremental computation and the saving of
copying time.

At the first invocation, the computation of the path numbers can be done
by dynamic programming algorithms. If domains are narrowed, the previously
computed path numbers can be updated. For this aim, there exists an efficient
update algorithm, which works destructively on the data structures. However,
the incremental computation comes at the price of copying the data structures,
whenever the tree branches.

Since for our purpose, the k-avoiding path propagator always works in pres-
ence of an all-different constraints, the k-avoiding path propagator should be
able to handle further propagation due to the combination with this constraint.
The justification to do this is given by Theorem 2. We use that for the arc con-
sistency of a k-avoiding path constraint, the numbers # cpaths[k'](z|i — v) are
already computed for all k' < k. For tractability one has to restrict the subsets
S, e.g. to all subsets of successive numbers up to size k.

Finally, one can simplify a k-avoiding path propagator by a more efficient &'-
avoiding one, in situation described by Theorem 3, while preserving semantical
equivalence.



3.5 Results

Exact structure prediction in the HP-model on the cubic lattice was previously
possible up to chain lengths of 88 [30]. Yue and Dill report to find a native
conformation for those chains in times ranging from minutes to hours. Our own
algorithm for exact structure prediction on the cubic lattice regularly folds pro-
teins with a length of 30 — 40 monomers [4,7]. Note that structure prediction
in the cubic lattice is not necessarily easier for inexact, heuristic methods. For
example, in [9] a heuristic stochastic approach is reported to fail on all but one
of the investigated 48-mers.

We implemented two threading algorithms. For the first algorithm, we imple-
mented a propagator to handle general paths by reduction to binary path con-
straint propagators. For the second algorithm, an experimental, non-optimized
version of a propagator for 3-avoiding pathes is implemented. The propagators
are implemented as extension to Mozart (Oz 3) [25]. Mozart provides a conve-
nient interface for extension by C-+-+-constraint-propagators [22].

For benchmarking of the two threading algorithms, the following experiment
was performed. Random HP-sequences were threaded to cores of sizes n =25, 50,
and 75. Therefore, for each core 50 sequences were randomly generated with n H-
monomers and 0.8-n P-monomers, which is a rather high ratio of P-monomers to
H-monomers and is chosen to challenge the algorithm. Additionally, we threaded
50 random sequences of length 160 to a core of size 100. We also managed to
thread some random sequences of length 180 to this core. For each sequence, the
threading is performed by both algorithms.

Both algorithms thread the very majority of the test sequences successfully.
The results show that the combination of the path constraint with the all-
different constraint yields significantly better propagation even for the strong
relaxation of only 3-avoiding paths. Both algorithms successfully threaded all
of the 50 sequences to the core of size 25 (which means a sequence length of
45). For longer sequences, the second algorithm succeeds for significantly more
sequences than the first one. Furthermore, it often finds a solution in less search
nodes (up to a factor of 303). The results are summarized in Table 1.

core size|seq. length|fails alg. 1|fails alg. 2|avg. nodes alg. 1|avg. nodes alg. 2

25 45 0% 0% 36 36
50 90 12% 2% 970 103
75 135 20% 8% 586 513
100 160 60% 50% 1468 598

Table 1. Threading of random sequences to cores of four different sizes. The table
shows size of the core, the length of the sequences, the percentage of sequences which
could not be threaded successfully within the given time limit by the two algorithms,
and the average number of nodes in successfull runs by both algorithms. We choose a
time limit of 5 minutes for the first algorithm. The second algorithm is given a longer
time limit of 15 minutes, since the path propagator is experimental and non-optimized.
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