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Abstract

Predicting the ground state of biopolymers is a notoriously hard problem

in biocomputing. Model systems, such as lattice proteins are simple tools and
valuable to test and improve new methods. Best known are HP-type models
with sequences composed from a binary (hydrophobic and polar) alphabet.
Major drawback is the degeneracy, i.e. the number of different ground state
conformations.
Here we show how recently developed constraint programming techniques can
be used to solve the structure prediction problem efficiently for a higher order
alphabet. To our knowledge it is the first report of an exact and computa-
tionally feasible solution to model proteins of length up to 36 and without
resorting to maximally compact states. We further show that degeneracy is
reduced by more than one order of magnitude and that ground state con-
formations are not necessarily compact. Therefore, more realistic protein
simulations become feasible with our model.

Abbreviations: HP - hydrophobic, polar; CP - Constraint-Programming,
HPNX - hydrophobic, positive, negative, neutral; MCS - maximum compact
state



1 Introduction

The protein structure prediction is one of the most important unsolved problems
of computational biology. It can be specified as follows: Given a protein by its
sequence of amino acids, what is its native structure? NP-hardness has been proved
for many different models (including lattice and off-lattice models). These results
strongly suggest that the protein folding problem is NP-hard in general. Therefore,
it is unlikely that a general, efficient algorithm for solving this problem can be
given. Actually, the situation is even worse, since the general principles why natural
proteins fold into a native structure are unknown. This is cumbersome since rational
design is commonly viewed to be of paramount importance e.g for drug design. One
problem is that artificially designed proteins usually don’t have a unique and stable
native structure.

To tackle this problem simplified models have been introduced. They have be-
came a major tool for investigating general properties of protein folding. Most
important are the so-called lattice models. The simplifications commonly used in
this class of models are: 1) monomers (or residues) are represented using a unified
size 2) bond length is unified 3) the positions of the monomers are restricted to
lattice positions and 4) a simplified energy function.

In principle, one can approximate real proteins arbitrarily close using sufficiently
complex lattice models. While highly connected lattices were used primarily for sim-
ulating folding of real-sized proteins [25, 21], square and cubic lattices were preferred
to study basic principles. The HP (hydrophobic-polar) model [18, 12] is definitely
the model of utmost simplicity since it models exclude volume, hydrophobicity and
conformational flexibility while all other protein-like properties are ignored. Essen-
tially it is a polymer chain representation on a lattice with exactly one stabilizing
interaction when two hydrophobic residues are neighbors on the lattice but not along
the chain. This enforces compactification while polar residues and solvent is not ex-
plicitly regarded. It follows the assumption that the hydrophobic effect determines
the overall configuration of a protein. Its major drawback is certainly the crude
energy potential which results in a very rugged energy landscape and, especially in
3-dimensional models, a considerable amount of degeneracy [30]. This means that
the lowest energy state is not a single structure but has many different conforma-
tions.

Other models use energy parameters derived form the random energy model or
experimentally determined potentials such as the Miyazawa-Jernigan contact po-
tential. These models certainly have the appeal that results are energetically com-
parable to real proteins and a more realistic folding behavior. However, to enable
tractability, computations must be restricted to maximum compact shapes and very
small fractions of sequence space (i.e. unique sequences). Examples of how such
models can be used for predicting the native structure or for investigating princi-
ples of protein folding were given [28, 1, 13, 27, 15, 2, 20] Mostly very attractive



potentials (with a shifted mean) are used and all possible MCS (maximum compact
states) configurations (ca. 10° on a 3 x 3 x 3 cube), are exhaustively tested for each
sequence. Folding experiments are in general performed using Monte Carlo tech-
niques. Typically one finds the native conformation within 50 000 000 Monte Carlo
steps. In performing such experiments, it is clear that the quality of the predicted
principle depends on several parameters. The first is the quality of the used lattice
and energy function. The second, and even more crucial point, is the ability for
finding the native structure. For the energy function used by [28], there is no ezact
algorithm for finding the minimal structure. To be computationally feasible, the
search for the native structure was restricted to a 3 x 3 x 3-cube. But this approach
has some drawbacks, some of them were previously pointed out in [8]: 1) The energy
function had to be biased to a mean hydrophobicity in order to get proteins whose
native structure is on the 3 x 3 x 3-cube with high probability (see [28]); 2) even
then, it is not guaranteed that the minimal conformation is on this cube. Examples
for the HP-model have been shown in [30]; 3.) the length of the proteins cannot be
arbitrarily chosen. Since there is an algorithm for finding the native structure on the
HP-model, one could think of redoing the experiment within the HP-model. But
the HP-model has the problem that its degeneracy (i.e., the number of structures
of a sequence that have minimal energy) is large [12, 30]. Hence, there is no dedi-
cated native structure. For this reason, extended models such as the HPNX-model
(HPNX=hydrophobic, positive, negative, neutral) [6] have been introduced.

Other groups have studied the principles of the sequence space to shape space map-
ping in an evolutionary context and the influence of mutations on possible fitness
values associated to these structures [14, 15, 7]. A detailed discussion of lattice
proteins in general can be found in [12].

Recent progress in CP (constraint programming) [26] has made it possible to apply
straightforward techniques to predict the global minimum of proteins [4]

The main point of this paper is to demonstrate the applicability of CP to more
complex, realistic problems. While formal details of the specific algorithm must be
omitted because of space constraints and are described in another paper [4] the goal
of this contribution is twofold: firstly, we demonstrate that it is possible to convey
a solvable model for lattice proteins which is neither restricted to MCS nor small
alphabets. Secondly, we demonstrate the advantages of using such an alphabet since
degeneracies are drastically reduced. Finally, we explicitly show and discuss some
examples for these achievements in lattice protein folding.



2 Constraint Programming for higher Alphabets

2.1 Lattice proteins

Our studies are based on the HP-model, which has been introduced by [18, 19]. In
this model, the 20 letter alphabet of amino acids (and the corresponding manifold-
ness of forces between them) is reduced to a two letter alphabet, namely H and P. H
represents hydrophobic amino acids, whereas P represent polar or hydrophilic amino
acids. The energy function for the HP-model is given by the matrix as shown in
Figure 1(a). It simply states that the energy contribution of a contact between two
monomers is —1 if both are H-monomers, and 0 otherwise. Two monomers form
a contact in some specific conformation if they are not connected via a bond, but
occupy neighboring positions in the conformation (i.e., the euclidian distance of the
positions is 1). A conformation with minimal energy (in the following called optimal
conformation) is just a conformation with the maximal number of contacts between
H-monomers. Just recently, the structure prediction problem has been shown to be
NP-complete even for the HP-model [5, 10].

H|P
(a) H|-1]0 (b) N
Pl0 [0 !

Figure 1: Energy matrix and sample conformation for the HP-model

A sample conformation for the sequence PHPPHHPH in the two-dimensional
lattice with energy —2 is shown in Figure 1(b). The white beads represent P, the
black ones H monomers. The two contacts are indicated via dashed lines. It can
be seen that the very first residue has alternative positions without changing the
energy, i.e. the ground state is “degenerate”.

In the following we will describe how the principles of constraint programming
can be applied to higher order alphabets. In principle, specific rules must be applied
for every alphabet. Ideally one would use experimentally derived potentials, such
as Crippen’s 4-letter alphabet [11] which was, however, derived for a square lattice.
Because of the before mentioned problems with larger alphabets with potentials
derived from real proteins we use the ad-hoc HPNX potential from [6]. It can be
seen as an intuitive extension of the HP potential. It is our goal to show that CP
is well able to cope with different strengths of interaction and repulsions as well
(repulsions were repeatedly argued to be of great importance for a unique solution
to the structure prediction problem [9, 24]). The HPNX-model is an extension of the
HP-model where the polar monomers are split into positively charged (P), negatively
charged (N) and neutral (X) monomers. The energy function of the HPNX-model



is given by the matrix

H|P|N|X
H[—=4[0]0]0
PO 1][=1]0 (1)
N[O |[—-1]1]0
X[0[0[0]0

2.2 Basic Constraints and Search Algorithm

We start with the basic constraint formulation that underlies our search algorithm.
This formulization is straightforward, but we have added to show how the problem
can be defined in Constraint-Programming. Clearly, this basic formulation is not
sufficient to yield an efficient search algorithm. But it shows how the constraint-
based search can be used predicting a minimal energy structure of an HP (resp.
HPNX) sequence. We then indicate which constraints have to be added and how to
modify the search strategy in order to yield an efficient algorithm.

Our algorithm is based on constraint optimization, which is the combination of
two principles, namely generate-and-constraint with branch-and-bound. For using
constraint optimization, we have to transform the structure prediction problem into
a constraint problem. A constraint problem consists of a set of variables together
with some constraints (relations) on these variables.

For specifying the basic constraint problem, we need some definitions. We will
describe the constraint formulation for the HP-model. Since the basic constraint
formulation is the same for the HP- and the HPNX-model, we will talk of po-
lar monomers meaning P-monomers in the HP-model and PNX-monomers in the
HPNX-model.

Let s = s1...5, be an HP- (or HPNX)-sequence of length n. A conformation ¢
for this sequence is nothing else but a function ¢ : [1..n] — Z3 assigning vectors to
monomers such that

1. for all 1 < i < n we have ||c(i) —c(i + 1)|| = 1 (i.e., every two successive
monomers ¢ and 7 + 1 have distance 1)

2. and for all i # j we have ¢(i) # ¢(j) (the conformation c¢ is self-avoiding).

Now we can encode the space of all possible conformations for a given sequence
as a constraint problem as follows. We introduce for every monomer ¢ new variables
X;, Y; and Z;, which denote the x-, y-, and z-coordinate of ¢(i). Since we are using
a cubic lattice, we know that this coordinates are all integers. But we can even
restrict the possible values of these variables to the finite domain [0..2n].! This is

'We even could have used [1..n]. But the domain [0..2n] is more flexible since we can assign
an arbitrary monomer the vector (n,n,n), and still have the possibility to represent all possible
conformations.



expressed by introducing the constraints
X; € [1..(2 - length(s))] A Y; € [1..(2 - length(s))] A Z; € [1..(2 - length(s))]

for every 1 < i < n. The self-avoidingness is just (X;,Y;,Z;) # (X;,Y;,2;) for i # j.2
Next we want to express that the distance between two successive monomers is 1,
ie.

(X, Yi,Zi) — (Kigr, Yigr, Zia) || = 1

Although this is some sort of constraint on the monomer position variables X;, Y;, Z;
and X;y1,Y;11,Z;11, this cannot be expressed directly in most constraint program-
ming languages. Hence, we must introduce for every monomer ¢ with 1 < i <
length(s) three variables Xdiff;, Ydiff; and Zdiff;. These variables have values 0
or 1. Then we can express the unit-vector distance constraint by

Xdiff; = |X;—Xiyq|  ZAiff; = |Z; — Ziy|
Ydiff, = |V;—Yiy| 1 = Xdiff; + Ydiff; + Zdiff;.

The constraints described above span the space of all possible conformations. I.e.,
every valuation of X;,Y;, Z; satisfying the constraints introduced above is an admis-
stble conformation for the sequence s, i.e. a self-avoiding walk of s. Given partial
information about X;,Y;, Z; (expressed by additional constraints as introduced by
the search algorithm) we call a conformation ¢ compatible with these constraints on
X;,Y;,Z; if ¢ is admissible and ¢ satisfies the additional constraints.

But in order to use constraint optimization, we have to encode the energy func-
tion. For HP-type models, the energy function can be calculated if we know for
every pair of monomers (i, j) whether ¢ and j form a contact. i and j form a contact
in a conformation ¢, if j & {i — 1,4,i + 1} and

lle(@) = c()I] = 1.

For this purpose we introduce for every pair (i, j) of monomers with i +1 < j a
variable Contact; ;. Contact;; is 1 if 2 and j have a contact in every conformation
which is compatible with the valuations of X;,Y;, Z;, and 0 otherwise. Then we can
express this property in constraint programming as follows:

Ydiffiyj = |Yi — Yj| Contactiyj € {0, 1}
(Contact;; = 1) & (Xdiff; 4+ Ydiff; + Zdiff;, =1) (2)

where Xdiff;;...Zdiff,; are new variables. The constraint (2) is called a reified
constraint, and can be directly encode in Oz [26].

2This cannot be directly encoded in Oz [26], but we reduce these constraints to difference
constraints on integers.



Using the variables Contact; j, we can now easily encode the energy function for
HP-type models. This means that we can now define a variable Energy which is
subject to constraint optimization. For the HP-model, we get the constraint

Energy = Z —Contact; j.
i+1<jAs(i)=HAs(j)=H

For the HPNX-model, the corresponding constraint can be generated analogously
using the energy matrix given in (1).

Thus, we have encoded self-avoiding walks together with a variable Energy.
Now we can describe the search procedure, which is a combination of generate-and-
constraint and branch-and-bound. In a generate step, a undetermined variable var
out of the set of variables {X;,Y;,Z; | 1 < i < n} is selected (according to some
strategy). A variable is determined if its associated domain consists of only one
value, and undetermined otherwise. Then, a value val out of the associated domain
is selected and the variable is set to this value in the first branch (i.e., the constraint
var = val is inserted), and the search algorithm is called recursively. In the second
branch, which is visited after the first branch is completed, the constraint var # val
is added.

Each insertion of a constraint leads through constraint propagation to narrow-
ing of some (or many) domains of variables or even to failure, which both prune
the search tree by removing inconsistent alternatives. Thus the search is done by
alternating constraint propagation and branching with constraint insertion. The
generate-and-constraint steps are iterated until all variables are determined (which
implies, that a valid conformation is found). If we have found a valid conforma-
tion ¢, then the constraints will guarantee that Energy is determined. Let E. be
associated value of Energy. Then the additional constraint

Energy < FE. (3)

is added, and the search is continued in order to find the next best conformation,
which must have a smaller energy than the previous ones due to the constraint (3).
This implies that the algorithm finally finds a conformation with minimal energy.

At every node n of the search tree, we call the set of constraints introduced by
the search algorithm so far the configuration at node n. Every conformation that is
found below node n in the search tree must be compatible with the configuration
at n, and vice versa. A bounding function for Energy is a function that takes a
configuration of some node n, and yields some value E, where every conformation
compatible with the configuration of n has an energy greater than FE.

2.3 Redundant Constraints

Clearly, the above described constraint problem generated from a sequence s is not
sufficient to yield an efficient implementation. For efficiency, one needs 1.) effective
bounding functions; 2.) the ability for implementing a search strategy that tends to
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enumerate low energy conformations first. This will be achieved by using redundant
variables and constraints (i.e., constraints, which can be removed without losing
correctness, but allow the above described pruning). The extension needed for
the HPNX-model will be described informally in the next section. A more formal
presentation of the redundant constraints for for the HP-model are given in [3], and
for the HPNX-model in [4]. We will now describe how constraint programming can
be used for adding redundant constraints easily.

When searching for a solution, it is a good search strategy not to fix monomer
positions monomer per monomer, but to determine only the value of the x-coordinate
of the monomers first. This is the same as determining distribution of monomers
to layers (i.e., to planes orthogonal to the x-axis). Now given such a distribution of
monomers to layers, then we can apply a bounding function on the Surface of the
H-core given the number of even and odd monomers in every layer. This can be
achieved by adding two simple constraints. For every layer defined by the equation
x = c¢ and every monomer 7, we introduce a Boolean variables Elem!~“, which is
defined by the so-called reified constraint

Elem=¢ & (X; =¢)

Now we can count the number E,_..seh (resp. E,_..soh of even (resp. odd) H-
monomers in layer x = ¢ simply be the constraint

E,_..seh = > Elem’=*

ieven and s; = H

(resp. Eg—c.80h = Y/ 14 ana s, — i ELem; ©). The constraint machinery will guaran-
tee that E,_..seh will have proper bounds at every search step. Since all constraints
work in two directions, we can apply the bounding function to the values of the set
of variables {E,_..seh} and {E,_..soh}, thus restricting the possible values of the
set of variables {X;}.

We will give another example for an redundant constraint in the HPNX-model.
As we will describe in the next section, it is important to calculated during the search
which types of monomers can be placed on a specific position p’'= (ps, py, p.). This
is captured by introducing for every position p’variables Htype;, Ptypey, Ntypey and
Xtypey, stating whether the p'is occupied by an H-,P-,N- or X-monomer®. These
variables can be defined easily by reified constraints. Thus, Ptypey is defined by

Ptypeﬁ e [(Xz = p:v) A (Yi = py) A (Zi - pz)]a

which can be stated directly this way in constraint programming. Now given the
variables Ptype; and Ntype, then one can apply a bounding function on the energy
contribution of the P- and N-monomers as described in the next section. Since the
constraints work in both direction, adding the constraint Ptype; will immediately
exclude all non P-monomers from this position. Thus, we are free in the search

%in the case of Xtypey, we additionally subsume the case that ' is not occupied at all
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strategy whether we will enumerate the monomer positions directly, or whether it
is better to enumerate monomer types before. The first strategy is better if there
are many P and N-monomers, the second is better if there are not too much such
monomers, and we have already found conformations with many PN-contacts.

To summarize, constraint programming gives us the freedom to introduce easily
redundant constraints. Furthermore, it allows to optimize the search strategy since
all constraints work in both directions.

2.4 HPNX Extensions

As a benefit of our constraint programming approach it is possible to extend the
HP algorithm to find the native structure of HPNX proteins.

Since one can see the HP model as embedded into HPNX, resp. HPNX as an
extension to HP, a first naive approach to do such an extension is as follows. First,
search all HP-optimal conformations of an HPNX sequence, i.e. the conformations
that have maximal H-H-contacts. Then, second, find in the set of the HP-optimal
conformations the ones with optimal HPNX-energy. This approach is certainly
inefficient, since one has a lot of search steps because of the high degeneracy of the
HP-model. But further it yields only those native HPNX-conformations that are
also optimal in HP, but this is not necessarily true (although this didn’t occur in
our test set).

Our approach starts by updating the energy constraint. Now we get

Energy = —4-HH Contacts — PN_Contacts + PP_Contacts + NN _Contacts,

where HH_Contacts, PP_Contacts resp. NN_Contacts is the number of contacts
between H, P resp. N monomers and PN_Contacts the number of contacts between
P and N monomers.

To get an efficient implementation, we additionally need a good lower bound on
the PN-energy, i.e., —PN_Contacts + PP_Contacts + NN _Contacts. The details
of this lower bound are described in [4]. Basically, we need to calculate during the
search for every position which types of monomers can be placed at this positions
(which is called the type of the position). If the position types are fixed, then one
can read off the PN-energy from the distribution of the positions types. One has
just to count the number of contacts between the corresponding position types,
and to subtract the number of bonds of the corresponding types. If only partial
information is given about the position types, then one can get bounds form this
partial information.

Another concept that is used for efficiency is the concept of an compartment. Fix
an H-frame f. We define a compartment C with H-frame distance d as a maximal,
connected set of points, where all points have the same H-frame distance d. Note,
that according to our definition there is a single compartment with H-frame distance
0, which is just the H-frame. Higher order compartments are placed around the H-
frame as planes, lines and points. The compartments with H-frame distance 0 and



1 are as follows:

H-frame
(distance 0)

-~ 1 H-frame distance 1

H-frame distance 1 R S -

Now this concept helps us pruning the search tree in two ways. First, not every polar
monomer ¢ can be member of any compartment C. Instead, there is a restriction
which depends on the H-frame distance of C' and the position of 7 in the sequence.
Second, the compartments restrict the possible assignment of types to positions.
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3 Results

‘ Sequences and Sample Conformations

Slhp HPPPPHHHHPPHPHPHHHPHPPHHPPH

S1 HXXNNHHHHXPHXHXHHHNHPPHHXPH
RDLLUBRUULDLFFRBRFDDLULDBU

S2hp HPPPHHHHPHPHHPPPHPHHPHPPPHP

S2 HXNNHHHHXHXHHNXNHXHHNHPPXHP
RBULDLFLUBRFULFDDRRULURBDR

S3hp HPHHPPHHPPHHHHPPPHPPPHHHPPH

S3 HPHHNXHHPNHHHHXXXHXPXHHHPXH
LFRURDDDBULFLBBURUFRDBDDLU

S4hp HHPHHPHHPHHHHHHPPHHHHHPPHHHHHHH

S4 HHXHHPHHXHHHHHHPNHHHHHPNHHHHHHH
LLFDBRDLFRRBUFRULFDDLFUBBUFLDD

Sbhp PHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHP

S5 XHXNHXXHNPHXXHPXHXXHXNHPXHNXHPXHXPHX
LFUBUBDBLFUFDFDBDLUFUBUBDBDFDRUBRFR

Table 1: Test sequences. We have listed the test sequences S1-S4, together with the
corresponding HP-sequence and an optimal conformation (using absolute moves,
where L means ’left’, U means 'up’, 'F’ means 'forward’ and so on).

We investigate a set of test sequences as shown in Table 1. Here, we have
grouped the sequences, such that for every group i there is a HP-sequence Sihp,
from which the other sequences are generated by replacing P monomers by P, N
and X monomers. The splitting was done at random (where P-monomers are split
into P-,N- and X-monomers with probabilities 0.25, 0.25 and 0.50). We will call the
Sihp the generating HP-sequence of the HPNX-sequences in 7.

Search Steps Search Steps HPNX HP
Sequence || Best HPNX All HP Degeneracy Degeneracy
S1 14402 167662 61 37244
S2 733 2998 4 297
S3 411 155693 195 25554
S4 46 11036 1023 1114
S5 1629 55086 16 3528

Table 2: Results. We have compared the number of search steps for finding the
optimal HPNX-sequence with the number of search steps to find all HP-optimal
sequences. Furthermore, we have compared the degeneracy in the HPNX- and HP-
model for some sample sequences as found by our algorithm.
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The algorithm finds the native structure of all sequences listed in Table 1. For
the HP-sequences, results from Yue and Dill [29] have been shown to be repro-
ducible with our implementation in an earlier paper [3]. For the HPNX-model, to
our knowledge, there is no other algorithm that allows to find provably optimal
conformations.

Note that there is a difference between finding the native structure, and proving
that the best found structure is really the optimal one (which requires that the
complete search space has been investigated). Hence, we display in Table 2 the
search steps needed to find the native conformation (# steps find), and the number
of steps needed to show that the best found conformation is really optimal (# steps
prove).

This proves that, the implementation of the algorithm improved the procedure
by more than one order of magnitude.

Furthermore, we have compared the degeneracy of the HPNX-sequences with
the corresponding HP-sequences in Table 2. One can find that the degeneracy is
strongly reduced in the HPNX-model.

From theoretical considerations it is to be expected that larger alphabets imply
smaller degeneracies since the space of pre-images for the sequence space to shape
space map is larger. This has also been conjectured from the random energy model
[16] and from landscape computations with a heuristic approximation algorithm for
lattice models [23].

Here we explicitly show such a case for a set of particular HPNX sequences that
were derived from their HP sequences where the H were left at their place and the
P-residues randomly substituted by either P, N, or X.

In Fig. 2, we show some selected examples of S2. All four ground state config-
urations of the HPNX sequence are given. It can be seen that they have a very
similar shape, pairwisely differing only by two moves or the combination of both
moves. The four randomly selected examples (out of 297 possible ones) of degener-
ate ground state structures from the corresponding HP sequence (see Fig. 3) show
a much higher structural variation with no obvious overlap.

12



Figure 2: The 4 optimal conformations for sequence S2. Big beads are H-monomers,
middle-sized ones are P or Ns, and small ones are X.

Figure 3: 4 HP-optimal conformations for S2hp (out of 297)
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4 Discussion

Here we reported on the application of a new technique that is valuable to test
theories and hypothesis about the effect of using CP for the structure prediction of
lattice proteins when using extended alphabets.

1. First of all we have explicitly shown that CP is a most powerful technique to
cope with optimization problems of considerable size and complexity. There-
fore, the pruning is definitely possible for higher dimensional lattices as well
as long a regular lattice can be entirely represented by integers. We expect

further improvements by new development of the platform and the language
Oz.

2. We have shown that higher order alphabets can be handled and reduce the de-
generacy of solution structures. This was not achieved at the price of confined
solution space. To show the correspondence to HP sequences we used a very
similar and simple potential. It is clear that many of the benefits arise from
modeling the energy constraints as an ad-hoc assumption with a strong over-
representation of the HH values. In fact, any alphabet, even more realistic
ones as presented in [6], and larger one can be used. However, several exam-
ples from literature have shown that reduced alphabets can in many ways be
sufficient to find a good solution or at least to narrow down a search to a small
number of potential solutions in problems such as structure representation and
sequence alignment. This complies with the fact that a relatively small num-
ber of residues with a characteristic polar non-polar pattern is sufficient to
construct a real protein [22, 17].

3. Because all solution structures were non-MCS our results reconfirm (for ear-
lier results from the HP model see also [30, 7]) that confining search space to
a restricted shape space is a simplification which is not always justified even
though the average attraction force in the potential is very high. Furthermore,
it is intuitively clear that using MCS alone will reduce the shape space drasti-
cally by many orders of magnitude. As a result, since sequence space remains
the same, reduced degeneracy (which itself is an arguable disadvantage, see
[9] for discussion) must at least partly be attributed to usage of the smaller
search space. Therefore, while general conclusions that are drawn on ensemble
properties from models confined to MCS [15, 20] remain unaffected, we think
that the simplification of using MCS is an equally drastic simplification as
using reduced alphabets or simpler lattices. Consequently, systems as used in
[28, 15, 20, 1] should be considered as models with a different simplification
and not superior just because one simplification (reduced alphabet) is replaced
by another (reduced solution space). These problems are circumvent by our
method.

Applying more fine grained lattices has proved useful in kinetic folding simu-
lations [25]. It can also be useful for our approach, since the formulation of self-
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avoiding chains, position types, and surface extends easily to other lattices. It can
be expected that even part of the search strategy can be applied in the case of a
different lattice. What is required is an equivalent to the concept of a H-frame, and
the definition of corresponding bounding functions.

The extension of our approach to more fine grained lattices we deem instructive
for development of techniques which are much closer to solving realistic problems
rationally than most existing ones.
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