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Abstract. Detecting local common sequence-structure regions of RNAs is a bi-
ologically meaningful problem. By detecting such regions, biologists are able to
identify functional similarity between the inspected molecules. We developed dy-
namic programming algorithms for finding common structure-sequence patterns
between two RNAs. The RNAs are given by their sequence and a set of potential
base pairs with associated probabilities. In contrast to prior work which matches
fixed structures, we support the arc breaking edit operation; this allows to match
only a subset of the given base pairs. We present an O(n3) algorithm for local
exact pattern matching between two nested RNAs, and an O(n3 logn) algorithm
for one nested RNA and one bounded-unlimited RNA.

1 Introduction

Ribonucleic acid (RNA) is a chain of nucleotides present in the cells of all living or-
ganisms. Most RNAs are single-stranded. RNA strands have a backbone made from
groups of phosphates and ribose sugar, to which one of four bases can attach (Adenine,
Cytosine, Guanine, and Uracil). The bases are linked together by their phosphodiester
bonds (usually referred to as backbone connection), and interact with each other using
hydrogen bonds (usually referred to as bond connections), forming the RNA structure.
We further denote two bases that are connected by bond connection as base pairs and
a base that has only backbone connections as a single base. RNA performs important
functions for living organisms, ranging from the regulation of gene expression to as-
sistance with copying genes. The important role that small RNA take in operating the
cell’s control has been discovered recently and it was referred to as the breakthrough of
the year 2002 in Science magazine [4].
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Finding similarity between sequences and structures of RNAs is an important and well
studied task. The reason is that the activity and functionality of RNA is determined
by its sequence and mainly by its secondary and tertiary structure [15]. Furthermore,
the structure of a molecule is usually much more preserved during evolution than its
sequence alone. Thus, analyzing and comparing the secondary (and tertiary) structures
of given RNAs plays a very important role in the RNA research.
The complexity of RNA secondary structure is defined by the amount and order of the
base pairs that it contains. It is commonly categorized as follows:

– Plain: no arcs at all (this is the primary structure of the RNA)
– Nested: each base can be connected to at most one other base, and there are no

crossing arcs
– Crossing: each base can be maximally connected to one other base
– Bounded-Unlimited: each base can be maximally connected to a constant number

of other bases
– Unlimited: no restrictions on the arcs

Figure 1 demonstrates three ways of visualizing RNA nested structure. Throughout
this work we use the arc-annotated sequence, that represents both the sequence and
the structure of the RNA by adding an arc between each two bases that have a bond
connection. This representation can describe both nested and bounded-unlimited RNA
structures (see figure 1).

Fig. 1: RNA secondary structure representations: figures (a-c) represent the same RNA sample
of length 18 with depth 5. (a) schematic two dimensional description of RNA folding (b) arc
annotated sequence (c) an ordered tree: a single base is represented as a leaf and a base pair is
represented as either a leaf (if the base pair’s size is 2) or as an internal node with child nodes (of
the base pairs and single bases that it contains). Figure (d) represents a bounded-unlimited RNA
structure with an arc-annotated sequence.

There are several approaches to compute the similarity between two given RNAs, among
them are tree similarity algorithms such as edit distance ([19], [20], [11], [5], [2], [6]),
alignment ([10], [16], [1], [14]), and LAPCS ([7], [13], [9]). An edit distance between
two ordered trees, T1 and T2, of sizes n and m (n > m), is a set of edit operations
applied on T1 in order to turn it into T2. The optimal edit distance between two trees
is such set of edit operations with minimum cost. Tree alignment restricts the edit op-
erations such that insertions are made for both T1 and T2 to make them isomorphic,
and then relabeling of the nodes is done (see [3] for a thorough survey). Zhang and
Shasha [20] present an edit distance algorithm that works in O(nm×min{D1, L1} ×
min{D2, L2}) where Di is the depth of tree i and Li is the number of leaves in tree i.



Klein [11] presents an O(m2n log n) algorithm, which in some cases performs better
than the previous algorithm. Recently an optimal O(n3) decomposition algorithm for
tree edit distance was given by Demaine et al. [5]. Ma et al. [21] compute the edit dis-
tance between two RNAs where at least one is of nested structure. This algorithm runs
in O(n2D1D2), and an explanation of how to modify it to run in O(n3 log n) is given.
Jansson and Peng [8] describe O(n4) algorithms for finding a subforest F of T1 such
that F has a minimal edit distance from T2. The structure of F is restricted to being
a simple, sibling or closed subforest, where a simple subforest is a subtree, a sibling
subforest is a set of simple subforests whose roots are siblings in T1, and closed is a
complete subtree of T1.
Another approach for similarity checking is finding common motifs between two RNAs.
In this problem, local maximal exact sequence-structure patterns are computed. Back-
ofen and Siebert [17] solve this problem in O(n2) time.

1.1 Our Results

In this work, we are looking for local exact pattern matching between two RNA molecules.
We use the definitions from [17], and add an additional edit operation: arc breaking,
which breaks a base pair into two single bases. Adding the arc breaking operation means
that the bonds are not necessarily preserved in the common substructure. This enhance-
ment to the pattern matching algorithm allows greater flexibility in both the input and
the output. Instead of representing a fixed structure, the input can be interpreted as a
set of weighted secondary structures. This is encoded by base pairs with probabilities.
For this purpose we score the match of two base pairs according to their probabilities.
The arc breaking operation is not supported in [17],[21], or any other algorithms based
on tree edit distance, and it is one of our major achievements in this paper. Figure 2
demonstrates the arc breaking edit operation. The formal definitions of the problems
are given in section 2.

Fig. 2: Arc breaking operation: both representations show the result of the arc breaking operation
for base pair CG in positions (10,16).

We present a simple O(n4) algorithm for computing the local exact pattern matching
between two nested RNAs (section 3). In section 4, we continue with an O(n3 log n)
algorithm, and in section 6 we show how to modify the algorithm to support one
nested and one bounded-unlimited input structure ((Nested,Bounded−Unlimited),
in short). In section 5 we show how to improve the algorithm for (Nested,Nested)
RNAs to O(n3).
Due to space limitations we will describe the following algorithms in the extended
version of this paper:



– AnO(n3k2) algorithm for computing the local approximate matching between two
nested RNAs with at most k mismatches. This algorithm can be also modified to
work in O(n3k2 log n) for (Nested,Bounded− Unlimited) RNAs.

– An O(n3) algorithm for computing the most similar sibling substructure between
two (Nested,Nested) RNAs, as defined in [8].

2 Notations and Definitions

RNA sequence is an ordered pair R = (S,B), where S = s1, . . . , s|S|, and si is defined
over the alphabet Σ = {A,C,G,U} and represents the RNA primary structure. B, the
optional secondary structure, is a set of tuples {(a, b, p)|1 ≤ a < b ≤ |S|, 0 < p ≤ 1},
such that a tuple bp = (a, b, p) ∈ B represents a hydrogen bond (a base pair) between
bases a and b that exists with probability p in R. We denote a and b as the left and right
endpoints of bp, respectively. A base that is neither left nor right endpoint is denoted
as a single base. We further distinguish between two connection types of bases in R:
the connection between a base i and its subsequent base i+ 1 is denoted as a backbone
connection, and a base pair connection is denoted as a bond connection. The size of
a base pair bp = (a, b, p) ∈ B is the number of bases that it contains. i.e., |bp| =
(b − a + 1). We assume that the number of base pairs in R is O(n), which holds for
nested and bounded-unlimited structures by definition.

Definition 1 (Parent-child relation between bases). A parent of base pair bp = (a, b, p) ∈
B (resp. single base i) is the smallest size base pair pbp = (c, d, q) ∈ B that con-
tains bp (resp. i) in it. That is, c, d are the closest endpoints of a base pair such that
c < a < b < d (resp. c < i < d). We denote bp (resp. i) as the child of pbp.

We proceed with definitions of substructures of R (see figure 3 for examples):

Definition 2 (Path). A path in RNA R is a sequence of positions (i1, . . . , iy) such that
∀1 ≤ k < y, ik is connected to ik+1 with either a backbone or a bond connection. If ik
is connected to ik+1 with a bond connection we say that the base pair bp = (ik, ik+1, p)
is contained in the path.

Definition 3 (Pattern). A pattern in RNA R is a set of positions P = {i1, . . . , iy} such
that ∀k, l ∈ P there exists a path in P that connects ik and il.

Definition 4 (Exact Pattern Matching). Given two RNAs R1 = (S1, B1) and R2 =
(S2, B2), with sizes n and m respectively, an exact pattern matching (in short, matching)
M , over R1 and R2 is a set of pairs M = {(i1, j1), . . . , (ik, jk)| ∀1 ≤ ` ≤ k, 1 ≤ i` ≤
n, 1 ≤ j` ≤ m} that satisfies the following conditions:

1. S1(i`) = S2(j`) ∀1 ≤ ` ≤ k.
2. P1 = {i1, . . . , ik} is a pattern in R1.
3. P2 = {j1, . . . , jk} is a pattern in R2.
4. For each 1 ≤ x, y ≤ k, a base pair bp1 = (ix, iy, p) is contained in P1 if and only

if a base pair bp2 = (jx, jy, q) is contained in P2.
5. M is maximally extended.



The first condition applies to the sequence equivalence requirement, whereas the rest of
the conditions apply to the structural equivalence requirement. The last condition refers
to the maximality of the matching, meaning that it cannot be extended sequence- or
structure- wise. For two base pairs in the matching, bp1 = (a, b, p) ∈ B1 and bp2 =
(c, d, q) ∈ B2, we say that (bp1, bp2) ∈M .

Fig. 3: Path and pattern examples in two different representations of the same RNA sample. A
path is marked with horizontal lines and contains the bases {1,2,3,20,21}, a pattern is shadowed
and contains the bases {5,6,8,9,12,13,14,15,16,17,18}. Note that the pattern contains the base
pairs (5,18), (8,14) and (9,13), whereas the base pairs (3,20) and (10,12) are not included.

Each matching M has an associated score that can be described as:
score(M) =

∑
(i,j)∈M

α(i, j) +
∑

(bp1,bp2)∈M

β(bp1, bp2),

where α : [1, |Σ|]× [1, |Σ|]→ R returns the score of matching two single bases:
α(i, j) = 1 if S1(i) = S2(j) or −∞ otherwise,

and β : ([1, |B1|]) × ([1, |B2|]) → R returns the score of matching two base pairs
bp1 = (a, b, p), bp2 = (c, d, q):
β(bp1, bp2) = ((1 + p)× (1 + q)) if S1(a) = S2(c) and S1(b) = S2(d), or −∞,

otherwise.
The definition of the scoring functions enables finding biologically meaningful struc-
tures via the scoring. In the general case the scoring functions can be defined to return
scores other than 1 or (1 + p)× (1 + q) when the bases match. The optimal sequence-
structure matching depends on both the matching of single bases and base pairs. This
enables us to sometimes prefer a matching of a base pair with a high probability over
matching a single base, or prefer matching large sequence of single bases over low
probability base pair (see figure 4).

2.1 Local Exact Pattern Matching Problem Definition

Given two RNAs, R1 = (S1, B1) and R2 = (S2, B2) with sizes n and m, resp. (n ≥
m), scoring functions α() and β(), and a number c, we want to find the setM containing
all matchings with a score greater than c. i.e,

M = {M |M is a matching and score(M) ≥ c)}
Note that the definition of the problem does not restrict the structure of the given RNA
molecules. We will explore two different settings of RNAs: (Nested,Nested) and
(Nested,Bounded− Unlimited).

3 A Simple O(n4) Algorithm for Local Exact Pattern Matching

In this section we solve the local exact pattern matching problem following its definition
in section 2.1. We use similar ideas to those in Zhang and Shasha’s tree edit distance



Fig. 4: Two matchings example. The figure presents two matching examples that can be defined
between R1 and R2. In both cases the matchings are maximally extended. Note that matching
(a) contains the base pairs (b1, b

′
1) and (b2, b

′
2), and matching (b) contains (b1, b

′
1), (b2, b′2)

and (b3, b
′
3). The matching scores depend on the definition of α and β functions. Given b1 =

(3, 21, 0.9), b2 = (6, 16, 0.6), b3 = (8, 14, 0.1), b′1 = (3, 20, 0.8), b′2 = (6, 17, 0.5), and b′3 =
(8, 11, 0.3) and using our function definitions, score(a) = 15+(1.9 ·1.8)+(1.6 ·1.5) = 20.82
and score(b) = 12 + (1.9 · 1.8) + (1.6 · 1.5) + (1.1 · 1.3) = 19.25, thus the matching with the
maximal score is (a).

algorithm [20]. The algorithm distinguishes between two cases of matchings: those that
don’t contain any base pair matching and those that contain at least one. In the first case,
no base pair from B1 is matched with a base pair from B2. The problem is, therefore,
finding common substrings using suffix trees in time and space O(n +m) ([12]). The
second case is the more interesting one, and we will explore its implementation in the
following sections. The key idea is that we find the matchings between each combina-
tion of a base pair fromB1 and a base pair fromB2. For convenience reasons, we refer
to arc-annotated substrings as substrings.

3.1 Finding the Maximal Matching Between Two Base Pairs

The algorithm divides the process of finding the matching into two stages: finding the
maximal matching in between the two endpoints of both base pairs (discussed in sec-
tions 3.2), and extending the match ”outside” of the base pairs (discussed in section 3.3).
On each of these stages, the maximal score is saved in table M , of size O(|B1||B2|), in
which an entry Mbp1,bp2 contains the scores of comparing the two base pairs bp1 ∈ B1

and bp2 ∈ B2: inside the base pairs, their maximal extensions and the total score. We
denote these scores as M in

bp1,bp2
, Mout

bp1,bp2
, and M total

bp1,bp2
respectively.

3.2 Finding the Maximal Score Matching Inside the Base Pairs

The input of the algorithm is two RNAs R1 = (S1, B1) and R2 = (S2, B2) and the
output is M in table, in which an entry M in

bp1,bp2
contains the maximal matching score

between the base pairs bp1 ∈ B1 and bp2 ∈ B2 and their inner parts. The values of
M in table are computed in increasing order of the base pairs’ sizes in order to enable
reuse of calculations: if two base pairs are contained in two other base pairs, then the
calculation of the smaller base pairs’ maximal matching is already calculated and there
is no need to recalculate it (see figure 5 case (c) for an example).
The main procedure of the algorithm computes for every combination of a base pair
bp1 = (a, b, p) ∈ B1 and a base pair bp2 = (c, d, q) ∈ B2, their maximal matching
score by comparing the two substrings s = (sa, . . . , sb) and t = (tc, . . . , td) that are



Fig. 5: Lmatch,Rmatch,Full and Score matchings between substrings si and ti: Lmatch is
marked with ’L’ right arrows, and Rmatch is marked with ’R’ left arrows. The probabilities of
b1 and b2 to exist in si and ti are 0.2 and 0.2, resp.
(a) Non-overlapping: Lmatch(s1, t1) contains ’CCA’ and Rmatch(s1, t1) contains ’GGAC’,
Full = −∞ and Score(s1, t1) = 7 (both ’CCA’ and ’GGAC’) .
(b) Overlapping: Lmatch(s2, t2) contains positions (6,33) and (7,34), Rmatch(s2, t2) contains
positions (7,35) and (6,34). Note that using both (7,34) and (7,35) (or both (6,33) and (6,34))
would have created an overlapping matching. Therefore, Score(s2, t2) = 9 (all single bases of
s2 and t2 excluding base 35), and Full(s2, t2) = −∞ since there is no matching that contains
both (3,30) and (11,39). Note that in this case, the maximal score is the one that uses arc breaking
operation: Score(s2, t2) does not include ”jumping over” b1 and b2.
(c) ”Jumping over” base pairs: Lmatch(s3, t3) contains ’CC’, Rmatch(s3, t3) contains ’GG’,
(b1, b2), and ’A’. Note that since b1 and b2 are contained in Rmatch(s3, t3), the matching bases
inside of them (’AC’ and ’U’) are also contained inRmatch(s3, t3). Also note that the matching
between b1 and b2 is a Fullmatching: the matching bases {(17, 50), (19, 53), (20, 54)} contains
both endpoints of b1 and b2. Full(s3, t3) = −∞ and Score(s3, t3) = 9.43 (contains ’CC’ from
left and ’GG’, (b1, b2), and ’A’ from right).
(d) Full < Lmatch: Full(s4, t4) = 9 by matching all bases of both s4 and t4 and arc-
breaking b1 and b2. Lmatch(s4, t4) = 9.43 by ”jumping over” the base pairs b1 and b2,
Rmatch(s4, t4) = 9. Hence, Score(s4, t4) = Lmatch(s4, t4).

defined over bp1 and bp2, respectively. It is a dynamic programming algorithm that
computes matchings between prefixes of the substrings s and t, in increasing order of
their sizes.
We next describe the patternMatch() function that computes the maximal matching
score between two substring s and t.
The pattern matching function
For every two substrings s = (sa, . . . , si) and t = (tc, . . . , tj) the function computes
four different matchings:

– Lmatch: The maximal left-to-right matching that starts at positions (a, c) and con-
tinues going from left to right using a backbone or bond connections until either a
mismatch occurs or the rightmost bases of s or t are reached.

– Rmatch: The maximal right-to-left matching that starts at (i, j) and continues go-
ing from right to left until either a mismatch occurs or the leftmost bases of s or t
are reached.



– Full: The maximal matching that contains both (a, c) and (i, j) indices, if such
matching exists.

– Score: The maximal left to right and right to left matchings between the two sub-
strings, such that they do not overlap and are maximally extended.

Note that the maximal matching score does not necessarily include both Rmatch and
Lmatch, since the bases they contain may overlap. Another observation is that the score
of a Full matching is not always greater than Score (see figure 5 for examples).
We use Score(a . . . i, c . . . j) to refer to Score between substrings s = (sa, . . . , si) and
t = (tc, . . . , tj). We refer to Lmatch, Rmatch and Full properties in a similar way.
The values are computed according to the following equations (in the same order):

Full(a . . . i, c . . . j) = max

{
Full(a . . . i− 1, c . . . j − 1) + α(i, j)

Full(a . . . e− 1, c . . . f − 1) +M in
b1,b2

(1)

Lmatch(a . . . i, c . . . j) = max


Lmatch(a . . . i− 1, c . . . j)

Lmatch(a . . . i, c . . . j − 1)

Full(a . . . i, c . . . j)

(2)

Rmatch(a . . . i, c . . . j) = max


Rmatch(a . . . i− 1, c . . . j − 1) + α(i, j)

Rmatch(a . . . e− 1, c . . . f − 1) +M in
b1,b2

0

(3)

Score(a . . . i, c . . . j) = max


Lmatch(a . . . i, c . . . j)

Score(a . . . i− 1, c . . . j − 1) + α(i, j)

Score(a . . . e− 1, c . . . f − 1) +M in
b1,b2

(4)

where b1 = (e, i, r) ∈ B1 and b2 = (f, j, w) ∈ B2 (if such base pairs do not exist the
value of M in

b1,b2
is −∞).

Finally, the score of M in
bp1,bp2

is set as follows:
M in

bp1,bp2
= β(bp1, bp2) + Score(a . . . b, c . . . d).

The computation of Full values is straight-forward: either the matching is extended to
include the rightmost bases, or it is extended to include the rightmost base pairs and
their inner parts. If the matching cannot be extended, the value is set to −∞. Lmatch
value is the maximum between previously computed Lmatch scores and the current
computed Full value. Rmatch contains the maximal score that includes i, j, therefore,
if the bases mismatch, it is set to 0. Otherwise, it is the maximum between extending the
matching with the rightmost bases or base pairs. The value of Score is the maximum
between extending the maximal score with either single base or base pairs matching, or
the maximal left to right matching, Lmatch, that was computed between the substrings.
The reason for that is that each one of the allowed operations can set Rmatch score to
0. Lmatch, on the other hand, cannot be decreased and it can only be increased to
contain the Full matching score (if it is bigger).



Note that in any of the computations the structure of the rightmost bases is not checked,
which can lead to arc-breaking - the case when a base pair is treated as two single bases
with no bond connection between them.
The value of Rmatch is not used for the total score in this algorithm, but in the im-
proved algorithm it will be used and for clarity we define it here.

3.3 Extending the Match Outside the Base Pairs

This section describes the algorithm for computing the maximal extension of the match-
ing outside the endpoints of base pairs. The input of the algorithm is two RNAs, R1 =
(S1, B1) and R2 = (S2, B2), and the table M in. The output is Mout table. Each base
pairs comparison can be extended to both left and right, in this section we describe the
algorithm for the extension to the right; the extension to the left is similar.
The algorithm computes the maximal extensions scores for every position i ∈ R1 and
j ∈ R2, in decreasing order of i and j. The values are kept in Rextend table (of size
O(n2)), in which an entry Rextend(i, j) contains the maximal extension starting at
positions i, j going right. If a mismatch occurs between si and tj , the value is set to
0. Otherwise, the value is the maximum between matching single bases and matching
base pairs, as follows:

Rextend(i, j) = max


Rextend(i+ 1, j + 1) + α(i, j)

Rextend(b+ 1, d+ 1) +M in
b1,b2

0

(5)

where b1 = (i, b, r) ∈ B1 and b2 = (j, d, w) ∈ B2.
Eventually, for every two base pairs, bp1 = (a, b, p) ∈ B1 and bp2 = (c, d, q) ∈ B2,
the values in Mout

bp1,bp2
table are set as follows: Mout

bp1,bp2
= Rextend(b + 1, d + 1) +

Lextend(a− 1, c− 1).

3.4 Complete O(n4) Algorithm

The algorithm for computing the local exact pattern matching between two given RNA
molecules is as follows:

(a) Compute the pattern matching inside all base pairs into M in.
(b) Compute the extension tables Rextend and Lextend and the table Mout accord-

ingly.
(c) For each base pair bp1 ∈ B1 and each base pair bp2 ∈ B2: M total

bp1,bp2
=M in

bp1,bp2
+

Mout
bp1,bp2

.

Time Complexity: the time complexity of step (a) is equal to the total number of prefixes
compared (since each of the allowed operations computation is done in constant time),
which can be bounded byO(n4). In step (b), the computation of each entry inRextend
and Lextend tables is again done in constant time. Therefore, its time complexity is the
number of entries in the tables, which is O(n2). In addition, in step (b) the algorithm
computes Mout table is O(n2) time.



The last step runs in O(n2) time: for each combination of a base pair from B1 and a
base pair from B2, the computation is done in constant time.
Therefore, the time complexity of the complete algorithm isO(n4+n2+n2) = O(n4).
From this time complexity analysis we immediately observe that the bottleneck of the
algorithm is computing the maximal matching score inside the base pairs. In the next
sections (4 and 5) we show how to improve this time complexity.

4 An O(n3 logn) Algorithm for Local Exact Pattern Matching

In this algorithm we take advantage of the fact that not all substrings that are compared
as part of the O(n4) algorithm need to be compared. We use similar ideas of Klein’s
tree edit distance algorithm [11]. We first explain the heavy path decomposition concept
in regarding RNAs and continue with the modifications to the O(n4) algorithm.

Definition 5 (heavy-light base pairs). For a given RNA R = (S,B), we define each
base pair in B as heavy or light by the following recursive definition: the base pair
bp1 = (1, |R|, p) is defined light (if such base pair does not exist, we add it as a fictive
base pair). For each base pair bp ∈ B, we pick a child base pair of bp with maximal
size among the children of bp and mark it as heavy, the rest of the children are marked
as light. We say that heavy(bp) = hp if hp is the heavy child base pair of bp.

The sequence of bp1, heavy(bp1), heavy(heavy(bp1)), . . . defines a descending path
called the heavy path, let P (bp1) denote this path. We recursively decompose R into
heavy paths: we start with P (bp1) and add the heavy path of each light child base pair
of bp1 (see figure 6). We denote each light base pair as the root of the heavy path that it
contains.

Fig. 6: Heavy path decomposition: in this RNA structure, we have three heavy path routes. They
are presented in both tree and arc-annotated structures.

The following Lemma of Sleator and Tarjan [18] bounds the number of light base pairs
that contain a base in R:

Lemma 1 (Sleator and Tarjan [18]). Each base in RNA R = (S,B), of size n, is
contained in at most O(log n) light base pairs.

Definition 6 (Special Substrings). The set of special substrings of a substring s =
(sa, . . . , sb), that is defined over a base pair bp = (a, b, p) ∈ B1 with heavy(bp) =
(x, y, r) ∈ B1, consists of the suffixes of (sa, . . . , sy) starting at positions a, . . . , x, and
the prefixes of (sa, . . . , sb) ending at positions y, . . . , b (see figure 7).



Fig. 7: Special Substrings Example: the special substrings of a base pair, bp = (a, b, p), with a
heavy child base pair, hp = (x, y, r).

Let s be a substring. We denote last(s) as either the rightmost or the leftmost base of
s. We define last(s) of a suffix special substring, s, to be the leftmost base in s, and
last(s) of a prefix special substring s to be its rightmost base. Each base i in (a, . . . , b)
that is not contained in the heavy child base pair of bp, hp, defines exactly one special
substring that contains i as its last base. Thus, the number of special substrings defined
over the base pair is: size(bp)− size(hp).
Let bp1 = (a, b, p) ∈ B1 with heavy(bp) = hp = (x, y, r) ∈ B1, bp2 = (c, d, q) ∈ B2,
and let s = (sa, . . . , sb), h = (sx, . . . , sy) and t = (tc, . . . , td) be the substrings
defined over bp1, hp and bp2, respectively.
The algorithm is based on two changes to the O(n4) algorithm: the first modification
is in the compared substrings: we compare all substrings of t and only the special sub-
strings of s as part of the patternMatch() function. The special substrings are com-
pared in increasing order of their sizes: we start with the heavy child base pair’s sub-
string, h, and increase the substring from left, until the left endpoint of bp is reached
(the suffixes special substrings). Then, we continue with the prefixes of bp, starting
from sa, . . . , sy , and continue going from left to right until the right endpoint of bp is
reached.
The second modification is in the main procedure of patternMatch(): in the previous
algorithm, last(s) was always the rightmost base, in this version it is sometimes the
leftmost base. Thus, the function should support ignoring or matching of both last(s)
positions. The function is therefore the combination of two patternMatch() versions:
for the prefixes comparisons the computation is exactly as described in section 3.2. For
the suffixes comparisons the values are set according to the following equations:

Full(i . . . b, j . . . d) = max

{
Full(i+ 1 . . . b, j + 1 . . . d) + α(i, j)

Full(e+ 1 . . . b, f + 1 . . . d) +M in
b1,b2

(6)

Lmatch(i . . . b, j . . . d) = max


Lmatch(i+ 1 . . . b, j + 1 . . . d) + α(i, j)

Lmatch(e+ 1 . . . b, f + 1 . . . d) +M in
b1,b2

0

(7)

Rmatch(i . . . b, j . . . d) = max


Rmatch(i+ 1 . . . b, j . . . d)

Rmatch(i . . . b, j + 1 . . . d)

Full(i . . . b, j . . . d)

(8)



Score(i . . . b, j . . . d) = max


Rmatch(i . . . b, j . . . d)

Score(i+ 1 . . . b, j + 1 . . . d) + α(i, j)

Score(e+ 1 . . . b, f + 1 . . . d) +M in
b1,b2

(9)

where b1 = (i, e, r) ∈ B1 and b2 = (j, f, w) ∈ B2.
Eventually, the value in M in table is set to:
M in

bp1,bp2
= β(bp1, bp2) + Score(a . . . b, c . . . d).

Time Complexity: the same reasons that the O(n4) algorithm gave constant time for
each patternMatch(s, t) function call apply here, too. We therefore count the number
of compared substrings: following Lemma 1, each base is defined as last(s) of at most
O(log n) special substrings, which gives a total of O(n log n) special substrings. The
set of substrings t, are all O(n2) substrings of R2. The number of compared substrings
is therefore O(n log n× n2) = O(n3 log n).
Thus, the time complexity of the above algorithm for computing the matching inside
each combination of a base pair from B1 and a base pair from B2 is O(n3 log n) time.

5 An O(n3) Algorithm for Local Exact Pattern Matching

In the previous algorithm (section 4) we select the larger RNA structure as the dominant
structure. w.l.o.g. we defined R1 to be the dominant structure, and for each bp1 ∈ B1,
bp1 was the dominant base pair, by which special substrings were defined.
An improvement for this algorithm can be done using the optimal decomposition al-
gorithm described in [5]. The key observation is that the dominant structure can be
decided for each combination of base pairs comparison rather than once for the entire
algorithm. The complete description and proof of the algorithm are given in [5]. In this
section we give the highlights of the algorithm and ”translate” it into the arc-annotated
representation of RNA molecules.
As an initialization step of the algorithm, both R1 and R2 are recursively decomposed
into heavy paths (see figure 8). The algorithm computes the matching between each
combination of a base pair bp1 ∈ B1 and a base pair bp2 ∈ B2. The difference is that on
each such comparison, the algorithm selects the dominant base pair to be the one with
the larger root (i.e. |root(bp1)| and |root(bp2)|). The rest of the algorithm is exactly the
same as the previous O(n3 log n) algorithm, meaning that the special substrings of the
dominant base pair are compared with all substrings of the other base pair (see figure 8
for an example).
This enhancement to the algorithm improves the time complexity to O(n3). The in-
tuition to this improvement is that on each comparison between two base pairs, we
compare all substrings of the relatively smaller base pair with the special substrings of
the relatively larger base pair (see complete proof in [5]).



Fig. 8: Heavy Path Decomposition of Both RNA Molecules: R1 contains the heavy path
(1, 4, 6, 7, U). In addition R1 contains the heavy paths (2, 8, 9, A), (3, G), and 5. In the com-
parison between 6 ∈ B1 and E ∈ B2 the dominant base pair is 6, whereas in the comparison
between 8 ∈ B1 (or 2 ∈ B1) and B ∈ B2 the dominant base pair is B.

6 Local Exact Pattern Matching for (Nested,Bounded-Unlimited)
Inputs

The input of this algorithm consists of two RNA structures R1 = (S1, B1) and R2 =
(S2, B2), where R1 is a nested structure and R2 is a bounded-unlimited structure. The
output is the maximal local exact matching set M defined over R1 and R2.
The algorithm is similar to the O(n3 log n) algorithm described in section 4. The dif-
ference is that the bounded-unlimited structure of R2 needs to be handled: as opposed
to the previous algorithm, where each base can be connected by a bond connection to
at most one other base, in the bounded-unlimited structure it can be connected to O(1)
other bases. Let i be last(s) of substring s, and let the last(s) be the rightmost base
in s, w.l.o.g.. If i is a right endpoint of a base pair bp1 = (e, i, p) ∈ R1, there can be
several base pairs in R2 with j being their right endpoint (e.g. bpk = (fk, j, qk) ∈ R2).
All of these base pairs should be considered in the matching between s and t.
Note that even thoughR2 has a bounded-unlimited structure, the output matching struc-
ture is always nested. Hence the only modification that is necessary is to iterate over all
base pairs with right endpoint j and pick the one that gives the maximal total score.
In an analogous way, the algorithm for extending the matching outside of the base pairs,
as described in section 3.3, is also modified to support the bounded-unlimited structure
of R2. Again, on each base pairs comparison the algorithm compares at most O(1)
options of base pairs matching.

Time Complexity: the only modification to patternMatch() function is that we com-
pare O(1) base pairs of substring t with the base pair that starts at last(s), if such
exist. This, of course, does not add to the overall time complexity analysis. In a similar
way, the modification to the algorithm for computing the maximal extensions does not
change its time complexity.
The total time complexity of the entire algorithm is therefore O(n3 log n).
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