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Abstract

Motivation: The CRISPR-Cas system is an adaptive immune system in many archaea and bacteria,

which provides resistance against invading genetic elements. The first phase of CRISPR-Cas im-

munity is called adaptation, in which small DNA fragments are excised from genetic elements and

are inserted into a CRISPR array generally adjacent to its so called leader sequence at one end of

the array. It has been shown that transcription initiation and adaptation signals of the CRISPR array

are located within the leader. However, apart from promoters, there is very little knowledge of se-

quence or structural motifs or their possible functions. Leader properties have mainly been charac-

terized through transcriptional initiation data from single organisms but large-scale characteriza-

tion of leaders has remained challenging due to their low level of sequence conservation.

Results: We developed a method to successfully detect leader sequences by focusing on the con-

sensus repeat of the adjacent CRISPR array and weak upstream conservation signals. We applied

our tool to the analysis of a comprehensive genomic database and identified several characteristic

properties of leader sequences specific to archaea and bacteria, ranging from distinctive sizes to

preferential indel localization. CRISPRleader provides a full annotation of the CRISPR array, its

strand orientation as well as conserved core leader boundaries that can be uploaded to any gen-

ome browser. In addition, it outputs reader-friendly HTML pages for conserved leader clusters

from our database.

Availability and Implementation: CRISPRleader and multiple sequence alignments for all 195

leader clusters are available at http://www.bioinf.uni-freiburg.de/Software/CRISPRleader/.

Contact: costa@informatik.uni-freiburg.de or backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

CRISPR-Cas is an adaptive immune system of archaea and bacteria

that provides resistance against invading viruses and plasmids

(Barrangou and van der Oost, 2013). 84 and 45% of sequenced

archaeal and bacterial genomes, respectively, encode a CRISPR-Cas

system (Barrangou and van der Oost, 2013). Each CRISPR-Cas

locus comprises several regions. Central to the system is a small 19–

48 bp sequence, the CRISPR repeat, which plays a key role in regu-

lating all aspects of CRISPR-Cas function. The CRISPR repeat acts

as a regulatory guide and the associated Cas proteins provide the

main machinery required for the defence mechanism. The CRISPR

array contains repetitions of a CRISPR repeat sequence interspaced

by foreign DNA fragments (spacers) and can consist of hundreds of

repeat-spacer units. Currently, CRISPR-Cas systems are classified

into five types and at least 16 subtypes (Makarova et al., 2015;

Vestergaard et al., 2014). CRISPR-Cas systems have had a monu-

mental impact on biotechnology as a basis for developing cheap and

effective genome-editing techniques for almost any organism (Hsu

et al., 2014; Li et al., 2016).

The function of CRISPR-Cas systems can be divided into three

major phases: (i) adaptation, where a short fragment of invading

DNA is inserted into the CRISPR locus for future recognition of that

invader; (ii) expression, which involves the biogenesis of guide RNA

units (crRNA) and their integration into large RNA–protein effector

complexes and (iii) interference, where these effector complexes

vigilantly scan for and degrade invading genetic material previously

identified by—and integrated into—the CRISPR-Cas system

(Barrangou and van der Oost, 2013). The least understood phase in
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CRISPR-Cas immunity is adaptation where a foreign DNA fragment

from invading genetic material is integrated.

The integration usually occurs upstream of the first repeat, be-

fore a region denoted as the leader, which contains regulatory elem-

ents important for adaptation. The leaders vary in size, extending

from 47 bp in some bacteria to a few hundred bp in some hyperther-

mophilic archaea, and they tend to exhibit longer regions of low

complexity sequence, with limited sequence conservation (Shah and

Garrett, 2011). Owing to their limited sequence conservation, even

between very similar archaea and bacteria, very little information is

available to date and no bioinformatic tool currently exists that can

automatically annotate leaders and define their boundaries.

To improve our understanding of the adaptation phase, we

studied leader sequences in more detail. Individual experimental

studies have demonstrated that the leaders carry the main bacteria-

or archaea-specific promoters for CRISPR transcription (Brouns

et al., 2008; Lillestol et al. 2006, 2009), and that they contain sig-

nals for CRISPR-Cas adaptation (Diez-Villasenor et al., 2013;

Erdmann and Garrett, 2012; Yosef et al., 2012). The existence of

adaptation signals in the leader region is also supported by the exist-

ence of leaderless CRISPR-arrays in some crenarchaea, which do not

acquire new spacers (Gudbergsdottir et al., 2011; Lillestol et al.,

2006, 2009). However, leaderless CRISPR are still functional in the

remaining immunity steps because they yield processed CRISPR

RNAs (crRNAs), presumably as a result of transcription from pro-

moters taken up randomly in spacers (Deng et al., 2012; Wurtzel

et al., 2010).

Concerning the typical length of a leader region, experimental

studies of the type I–E CRISPR-Cas system of Escherichia coli pro-

vided evidence for 40–60 bp of the leader region, located immedi-

ately upstream from the first CRISPR repeat, being essential for

spacer acquisition (Yosef et al., 2012). Further experiments with the

same type I–E system narrowed the critical region to positions �1 to

�43 (in relation to the first CRISPR repeat) (Diez-Villasenor et al.,

2013). Moreover, for the type I–A system of Sulfolobus, a natural

deletion of the leader region from positions �47 to �70 resulted in

a low level of adaptation activity and also a decreased specificity of

spacer acquisition whereby spacer insertions occurred all along the

CRISPR array and not just at the first repeat (Erdmann and Garrett,

2012; Garrett et al., 2015).

The existence of adaptation signals in the leader region is also

supported by evolutionary studies. Despite their relatively low se-

quence conservation, sequence clustering studies for the Sulfolobales

have shown that the leaders tend to coevolve with CRISPR repeat,

the adaptation module (Cas1, 2 and 4) and the protospacer-adjacent

motif (PAM) (Shah and Garrett, 2011). Experimental support for

this coevolution was provided by studies on the E.coli type I–E sys-

tem (Diez-Villasenor et al., 2013). Leaders also carry conserved se-

quence motifs, currently of unknown function (Garrett et al., 2015;

Mojica and Garrett, 2013). The latter are possibly involved in align-

ing multiple RNA polymerase complexes for CRISPR transcription

and/or in assembling Cas proteins adjacent to the CRISPR adapta-

tion site (Lillestol et al., 2009; Marraffini and Sontheimer, 2008;

Mojica et al., 2009; Rollie et al., 2015; Shah et al., 2009).

Existing CRISPR-prediction tools do not provide any informa-

tion regarding CRISPR leaders. In this study, we developed

CRISPRleader, an efficient approach to determining CRISPR leader

boundaries by focusing on leader sequence conservation within

groupings based on the similarity of the repeats in the adjacent

CRISPR arrays. Our method utilizes a string-kernel technique that

can capture more information than traditional sequence alignments

and is especially capable of detecting a collection of local motifs. We

built specialized HMM models for each of the 51 and the 144

CRISPR-leader clusters from archaea and bacteria, respectively. The

method takes a complete genome or draft genome as input and first

predicts all possible CRISPR arrays in the correct orientation, and

then annotates the CRISPR-leader boundaries.

2 Materials and methods

2.1 CRISPR dataset
In this study, we use the comprehensive dataset of CRISPR arrays of

archaeal and bacterial genomes which were downloaded from the

CRISPRmap webserver (Alkhnbashi et al., 2014; Lange et al.,

2013). The dataset contains 217 archaeal genomes that encode

around 985 CRISPR arrays and 1409 bacterial genomes with 3515

CRISPR arrays (a total of 4500 CRISPR arrays). In achaeal CRISPR

arrays, the average length of repeats is 29 nt and the average number

of repeats per array is 18. In bacteria, in contrast, the average num-

ber of repeats per array is 13 and the average repeat length is 30 nt.

2.2 CRISPR leader sequence identification
Although the characteristic repeat-spacer architecture of CRISPR

arrays can be easily detected, the orientation of the CRISPR array is

inherently ambiguous and thus the determination of the strand from

which crRNAs are generated is uncertain. Using the machine learn-

ing approach presented in Alkhnbashi et al. (2014), it is, however,

possible to identify the most probable orientation. Given the array

orientation, it is generally assumed that the 30 boundary of the

leader sequence is immediately adjacent to the first CRISPR repeat

as both leader and CRISPR array is transcribed in a single transcript

(Scholz et al., 2013). Figure 1 depicts a schematic view of a CRISPR

locus with the CRISPR array and its respective leader region.

2.2.1 Criteria to determine leaderless CRISPR arrays

In this work, we define a leaderless CRISPR array with the following

criteria. First, the distance between the 30 end of an annotated gene

and the 50 end of the CRISPR array should be less than 20 bp. In the

literature, leader regions with experimentally verified function are

definitely longer than 20 bp. Second, if the curve fitting procedure

fails, it indicates a complete lack of detectable sequence similarity,

and we, therefore, discard all the sequences in the leader cluster.

Third, we check if the average pairwise similarity as computed by

the Needleman–Wunsh algorithm is less than 50%. In this case,

there could still be a functional leader present, however, since the se-

quence similarity between the associated CRISPR repeats is already

high, we assume that it is unlikely for such a divergent leader to

exist.

2.2.2 CRISPR-leader clusters

It has been shown that the leader sequence coevolves with CRISPR

repeats, with the Cas1 protein and with the PAM motif (Shah and

Garrett, 2011). To make use of this evolutionary information, we

introduce the notion of a leader cluster, which consists of leaders

grouped together according to their associated repeat families. By

doing so, we overcome the problem of the limited sequence similar-

ity of leaders. To group the repeat sequences, we follow the ap-

proach presented in CRISPRmap (Alkhnbashi et al., 2014; Lange

et al., 2013). In detail, given a CRISPR array, we first compute the

consensus-repeat sequence by aligning all repeat sequences without

gaps and then take for each position the most frequent nucleotide.

We define the similarity between two consensus repeat sequences as
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the global pairwise alignment score computed using the

Needleman–Wunsch algorithm (Needleman and Wunsch, 1970). To

obtain coherent sets, we then apply Markov Clustering (MCL)

(Enright et al., 2002). In CRISPRmap, it was found that better re-

sults can be obtained if the similarity matrix is thresholded, i.e. if we

set to 0, the similarity value for pairs of repeat sequences that are

not sufficiently similar. The only tunable parameter for the MCL al-

gorithm is called ‘inflation’ and determines the scale of the clustering

(i.e. if we prefer many small clusters or few large ones). We opti-

mized these parameters to guarantee that archaea and bacteria are

always placed in distinct clusters. This yielded a value of 86 for the

similarity threshold and a value of 2.2 for inflation. In this setting,

CRISPRleader identifies 52 clusters in our dataset of 770 archaeal

CRISPR leaders (with a number of leader sequences per cluster that

ranges from 3 to 69) and 144 clusters in our set of 2224 bacterial

CRISPR leaders (with a number of leader sequences per cluster that

ranges from 3 to 184). See Table 1 for details.

2.2.3 CRISPR-leader similarity profile

In the following, we describe how CRISPRleader estimates the 50

leader boundary (CRISPR repeat distal) based loosely on the se-

quence conservation within a set of leader sequences that are clus-

tered together. We exploit two key assumptions: (i) the 30 end of the

leader (CRISPR repeat proximal) is immediately upstream of the

first repeat in the CRISPR array (Brouns et al., 2008; Lillestol et al.,

2006, 2009) and (ii) due to evolution-related adaptation signals, the

leader sequence will likely exhibit detectable signals of sequence

conservation.

First, we trim all the leader sequences to the smallest of (i) an

upper limit of 600 nt or (ii) the first occurrence of a predicted

protein-coding gene using PRODIGAL (Hyatt et al., 2010) version

2.6.2.

A traditional approach to finding the leader boundaries based on

sequence conservation would be to perform a global or local

multiple-sequence alignment. In practice, however, the resulting

alignments are too noisy. This is likely due to the small size of the

conserved regions relative to the sequences length (e.g. 40 nt within

600 nt) and to the small number of sequences (see Section 3.1 for a

more detailed analysis). To overcome this issue, we developed a

more robust approach based on string kernels (see the following

Section for details on the notion of kernels). We start by exploiting

the fact that the 30 boundary of the leader is known to be adjacent to

the CRISPR array. We then align all sequences at the CRISPR

array’s boundary. Subsequently, we apply a running windowing ap-

proach: we extract a subsequence from each leader that spans the

same W positions and we consider a newly developed average pair-

wise similarity among these subsequences; we shift the window of a

step of S nucleotides and repeat the procedure on the next set of sub-

sequences. Our new pairwise sequence similarity is computed using

the Neighbourhood Subgraph Pairwise Decomposition Kernel

(NSPDK) (Costa and Grave, 2010). To normalize this similarity

value, we consider the average pairwise similarity of the subse-

quences after a random di- or tri-nucleotide shuffle. The conserva-

tion signal is then the log ratio of these two average similarities:

when the subsequences are not evolutionarily related, we expect the

two similarity values to be comparable yielding log odds scores close

to 0. To detect the end of the conserved region, we smoothed the log

odds signal by subsequently fitting a parameterized sigmoid curve rh

with parameters h ¼ ½h1; h2; h3� under the constraints that it satur-

ates to 0 at one of the extremes. The parameterization’s semantics

A

B

Fig. 1. (A) Schematic view of the elements of a CRISPR array showing the repeats (blue diamonds) and spacers (coloured rectangles) of a CRISPR array and the

leader region, which we separate into a core and an extended leader. The core leader is generally conserved across different host species and is shorter than the

extended leader which is normally only conserved between multiple leader copies in the same genome. (B) Sequences correspond to a cluster of related leaders

shared between species of the genera Acidianus, Metalosphaera and Sulfolobus. Each leader is identified by the number of repeats in the adjacent CRISPR.

CRISPRleader predicts the length of the core leader, since the extended leader is assumed to be functionally less important. In the bottom, we provide an example

of a leader alignment to show a detailed view at the junction between the core and extended leader. Here it is possible to see how the extended part is only con-

served between multiple copies in the same organism. In contrast, the core part is conserved across all of the different hosts, is underlined by the sequence logo

below. The leader boundary predicted by CRISPRleader and the boundary determined by expert inspection are indicated by black arrows at the bottom

i578 O.S.Alkhnbashi et al.
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is: h1 represents the maximal conservation log odds value, h2 repre-

sents the length scale factor and h3 encodes the position of maximal

slope, i.e. the point when the signal transitions from one of the satu-

rated region to the other:

rhðxÞ ¼ h1 �
e
�x�h3

h2

1þ e
�ðx�h3 Þ

h2

:

The estimated leader 50 boundary is then directly read from h3.

Figure 2 visualizes the complete process for detecting the boundary

of the conservation signal within each leader cluster.

2.2.4 String kernels and explicit feature construction

A string kernel is a function that allows the computational manipu-

lation of strings in a high-dimensional, implicit feature space with-

out ever computing the actual coordinates of the string in that space,

but rather by simply computing the inner products between the

images of pairs of strings in the feature space. The inner product

computed by the kernel function can be used to define a similarity

notion. When normalized, the kernel maps pairs of strings s and s0

into the interval ½0; 1�, where 1 means that the two strings are indis-

tinguishable (for the kernel) and 0 that they do not share any resem-

blance. Popular string kernels are based on the notion of k-mers, i.e.

substrings of size k. The k-mer kernel (also called spectral kernel in

Leslie et al., 2002) between s and s0, i.e. Kðs; s0Þ, is the number of the

k-mers that are identical between s and s0. A normalized kernel com-

putes the fraction of identical k-mers w.r.t. the total number of k-

mers present in the two strings s and s0, often as the quantity:

Kðs; s0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðs; sÞ � Kðs0; s0Þ

p
. Since the occurrence of k-mers is expo-

nentially less probable w.r.t. their size k, there is little to gain in con-

sidering large k-mers (e.g. k>10) when comparing biological

Table 1 The leader clusters are summarized at the CRISPRmap repeat family level

Repeat Repeat consensus sequence Phylogenetic distribution Clusters # Leaders Avg length

F3(402) GXXXXXXXXXXXAXXGXATTGAAAG Crenarchaeota 22 294 210 (650)

F4(329) GTTXXAATMAGACXXXWXXXGRATXGAAAX Euryarchaeota 12 280 236 (6115)

F12(68) GTTXCAGAXGXACCXTTGTGGGXTTGAA Euryarchaeota 8 57 111 (616)

F15(45) GTTTCXGWAGACATGTXTGGAAA Euryarchaeota 2 23 366 (674)

F16(45) CCAGAAATCAAAAGATAGTWGAAAC Crenarchaeota 4 41 199 (63)

F2(556) GTTTXXAKXXTACCTATXXGGRATTGAAAC Bacteroidetes/Crenarchaeota/Firmicutes/

Thermotogae

27 437 158 (646)

F10(89) TTXXARWXXXXTCCAXTAAAACAAGGATTGAAAC Euryarchaeota/Firmicutes 6 45 254 (6121)

F1(671) GTXXTCCCCGCGCXXGCGGGGATRXXCCX Proteobacteria/Actinobacteria 21 540 103 (653)

F5(296) GTCGCXCCCYXXXXGXGXGCGTGGATTGAAAX Actinobacteria/Planctomycetes/Firmicutes 7 208 83 (666)

F6(264) GTTCACTGCCGYAYAGGCAGCTTAGAAA Proteobacteria 3 230 146 (614)

F7(236) XXTKXAMXXTAAXXXXXGWXGTATXTAAAT Firmicutes/Fusobacteria 13 180 191 (654)

F8(175) TXXXXXXXXXCCCCGXXAGGGGAYKGAAAC Actinobacteria/Deinococcus-Thermus 12 117 157 (690)

F9(146) TTXXAAXXXCCCTXTXAGGGATTGAAAC Cyanobacteria/Firmicutes 10 112 149 (663)

F11(76) GTXXXAXXGXCCYGATKXXXARGGGATTRMGAC Proteobacteria/Bacteroidetes 6 36 107 (629)

F13(61) GTTTTAGAGCXXTGTTRTTTXGAATGGTXCCAAAAC Firmicutes 2 44 210 (615)

F14(53) GXXXCXXCGCXGXGGCCXCATTGAAGC Proteobacteria/Planctomycetes/Firmicutes 3 29 137 (674)

F17(38) STGCXXTGATGCCGXWAGGCGTTGACAC Cyanobacteria/Proteobacteria/Spirochaetes 1 4 213 (67)

F18(36) GTTTCYCCTGRRGGTTGAAA Cyanobacteria/Firmicutes 5 16 176 (670)

F19(29) GTTKTAGYYCCYTTTYWMATTTCKYWRTGSTAAAT Proteobacteria 3 18 116 (614)

F20(26) XXXXXGCGXXXCGGCGGXXGXGGX Acidobacteria/Proteobacteria 1 4 101 (615)

F21(25) GTTGWYAAARTAAATTGAAAGCAAWTCACAAC Bacteroidetes/Ignavibacteriae 1 15 100 (60.0)

F22(19) GTYTAGRTGATGTRATCAATAGKTYAAGAC Firmicutes 2 10 599 (60.46)

F23(14) GTTTTGTACTCTARATTTAAGTAACGTAAAAC Firmicutes 1 6 197 (68)

F24(11) WMRTAMCCCCXXAKXAXAGGGGACKARAAC Firmicutes 1 3 382 (62)

For each repeat family, the total number of members is given in parentheses, along with the consensus repeat sequence and the taxonomic distribution. The

number of leader clusters within each repeat family is also given, along with the total number of leaders found, as well as their average length.

Fig. 2. Leader boundary identification: (A) leader sequences are clustered to-

gether according to the similarity between the associated repeat sequences;

the 30 end of the sequences in a cluster is aligned w.r.t. the first CRISPR repeat

and (B) shifting windows spanning the same positions are extracted. (C) The

average pairwise similarity between all subsequences in a window is com-

puted using the proposed string kernel; the same procedure is applied to

shuffled sequences to compute the log odds ratio and (D) a saturating func-

tion is fitted to distinguish the highly conserved region from the non-con-

served one; the point of maximum slope h3 is returned as leader boundary
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sequences from different species. Small k-mers, however, might not

yield a sufficient discriminative power. To mitigate these problems,

a notion of ‘approximate match’ was introduced in Leslie et al.

(2004), where the insertion, deletion or mismatch of up to m compo-

nents of the k-mer is tolerated when counting the correspondences.

In practice however, these approximate techniques lead to an in-

crease in run-times and are not always effective in significantly

increasing the discriminative power.

The NSPDK approach tries to find a better compromise by re-

stricting the type of mismatches. While the kernel introduced in

Costa and Grave (2010) is primarily designed for graphs, here we

develop a restricted version for sequences. In detail, the features con-

sidered here are pairs of k-mers at a fixed distance d, i.e. we assume

that there exist a relation Uðs;k; dÞ that is verified for pairs of sub-

strings a, b of s that are of length k and such that their distance is d,

we denote such a pair as /i. The distance between two substrings a,

b of s is defined as the length of the substring between the first char-

acter of a and the first character of b. The kernel is defined as:

Kk;dðs; s0Þ ¼
X

/i 2 U�1ðs; k; dÞ

/j 2 U�1ðs0; k; dÞ

dð/i;/jÞ

where U�1ðs;k; dÞ is the inverse of the relation Uðs;k; dÞ, i.e. it is the

set of all /i, i.e. pairs of substrings of length k at distance d, and dðx; yÞ
is the Kronecker delta, i.e. the function that evaluates to 1 if x¼ y and

to 0 otherwise. We consider the normalized kernel: bKk;d
ðs; s0Þ ¼

Kk;dðs; s0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kk;dðs; sÞ � Kk;dðs0; s0Þ

p
. Given a maximal value for k � k�

and d � d�, we consider all the possible combination of values for k

and d:

jðs; s0Þ ¼
X

k � k�

d � d�

bKk;d
ðs; s0Þ

and finally, we consider the normalized kernel: bjðs; s0Þ ¼ jðs; s0Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðs; sÞ � jðs0; s0Þ

p
.

Differently from the standard kernel approach, where the inner

product is computed implicitly without having to compute the co-

ordinates of a string in the high-dimensional space, a variant of

NPDK, introduced in Frasconi et al. (2012), allows one to construct

the explicit feature representation in an efficient way. The idea is to

exploit a hashing encoding of the decomposed parts. Here, since

each feature is a pair of k-mers at a given distance, we first hash the

k-mers individually and then hash the integer triplet formed by the

hash values for the two k-mers and the distance value into a single

integer code. This integer code is then the feature indicator. For each

such feature, we count how many times that specific pair of k-mers

occurs in the sequence. The resulting data structure is a sparse vector

representation of the string, which allows an efficient computation

of Kk;dðs; s0Þ as a dot product.

2.2.5 Optimization of parameters

The method we have employed for the leader boundary determin-

ation exposes several parametric choices: the window and step size

(W, S), the string kernel complexity (k�; d�), the shuffling order for

the normalization. To optimize their values, we used supervised

data from the work by Lillestol et al. (2009) which provides two sets

of six and eight leaders for archaeal organisms with experimental

evidence for their boundaries. We computed the discrepancy be-

tween the experimental and the predicted boundaries as the average

squared difference expressed in number of nucleotides. In this set-

ting, we obtained the best results when the window size was

W¼40 nt (selected from f10;20;30;40;60g), the step size S¼10 nt

(selected from f5;10;15; 20; 30g), the maximal k-mer size k� ¼ 3

and the maximal gap size d� ¼ 3 (selected from f1; 2;3; 4; 5;6;7;
8; 9;10g), and the order of the shuffling 2 (selected from {1, 2, 3}),

i.e. we used dinucleotide shuffling.

2.2.6 CRISPR-leader boundary adjustment via sequence alignment

CRISPR-leaders are inherently quite long, surpassing hundreds of

nucleotides in many cases. Thus, there is a potential for indels to ac-

cumulate in regions within the leader which are relatively less im-

portant, functionally. This means that even closely related leaders

can differ in size by tens of nucleotides. To deal with this problem,

CRISPRleader implements a post-processing procedure to refine the

boundary estimate for each individual leader within a cluster. After

determining the leader cluster and an initial boundary estimate as

previously detailed, we extend the length of each leader sequence (in

the 50 direction) by one third of the respective sequence alignment

length of its leader cluster to accommodate undetected indels events.

We then perform multiple sequence alignment using the MAFFT

tool (Katoh et al., 2002) on the extended sequences belonging to

each cluster. The length of the conserved consensus sequence is then

yielded as the adjusted boundary.

2.2.7 Automated annotation of core leaders

When given CRISPR arrays of a single organism, CRISPRleader

automatically annotates the leader region according to our data and

delivers a detailed report of all CRISPR arrays, including the bound-

ary of the core leader and the consensus repeat. For the core leader

annotation, we first identify the leader cluster from our dataset ac-

cording to the best-matching consensus repeat. Second, we use the

boundaries associated to the corresponding leader cluster to extract

the candidate leader core region. Third, we determine whether the

putative leader sequence shows sufficient sequence similarity to that

leader cluster. For that purpose, we use Hidden Markov Models

(HMMs) that we have computed for each leader cluster using

HMMER (Eddy, 2011). The corresponding HMM is then used to

compute the log-odds score to test whether the new candidate is

similar enough to the sequences in the cluster. If the score lies within

two standard deviations from the mean log-odds score of the group

we accept the sequence, align it to the clustered leaders and compute

the length of the conserved consensus sequence. Finally, we report

the full alignment with the other clustered leader sequences to high-

light insertion or deletion events.

3 Results and discussion

3.1 Conservation profiles could not be detected by

alignment-based methods
The more traditional approach to finding the leader boundaries

based on sequence conservation would be to perform a global

multiple-sequence alignment. In practice, however, the resulting

alignment is too noisy to be used to derive a reliable signal. We can

hypothesize several reasons that contribute to this situation. First,

the conserved region is generally small relative to the sequence

lengths, e.g. values of 60 nt within the overall 600 nt sequence are

not uncommon. Second, the number of leader sequences that are

grouped together in a cluster can be small (less than five). Third, cur-

rent alignment techniques cannot consistently accommodate trans-

position events. In practice, it is hard to globally align sequences
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when relatively large insertions, deletions and transposition events

are possible. For this reason, a more ‘local’ approach based on k-

mers can be more effective. To experimentally determine the quality

of the conservation signals that can be obtained via alignment strat-

egies, we applied both a global multiple-sequence alignment and a

local-alignment strategy to the sequences in the leader clusters. We

proceed by incrementally extending the aligned sequence lengths by

10 nt, always starting from the CRISPR array boundary. As shown

anecdotally in Supplementary Figure 2, a clear end of the conserved

region cannot be reliably detected using global and local alignments,

whereas our string-kernel approach shows a very clear conservation

boundary on the same data. Owing to this described limitation of

leader-boundary detection using the traditional alignment

approaches, leaders have not been well characterized in the litera-

ture to date. Once detected with our method, however, we could

produce well-conserved multiple sequence alignments of pre-

computed leader clusters for all published genomes that we publish

on our website (see availability).

3.2 A well-conserved core leader controls adaptation

and transcription
The region of sequence conservation in leaders tends to extend fur-

ther upstream of the CRISPR locus when similar leaders are com-

pared within the same genome or between closely related strains of

the same species. In contrast, when comparing similar leaders

across different species, the conserved regions end closer to the

CRISPR locus. Here we define the former as the extended leader

and the latter as the core leader (Fig. 1). The sequence conservation

in the CRISPR-distal regions of the extended leader is likely to

have resulted from relatively recent duplication events. The core

leader, on the other hand, tends to be well conserved, even for di-

vergent hosts, which implies that only the core region is of special

functional significance. In the present study, we predict the bound-

ary of the core leader on the assumption that the additional se-

quence in the extended leader carries less significant and unknown

functions.

According to the literature, two types of regulatory signals fall

into the core-leader region. First, both archaeal and bacterial pro-

motors (for transcription) have been detected in the region directly

upstream of the CRISPR locus in different type I systems (Brouns

et al., 2008; Lillestol et al., 2009). Second, various lines of evidence

have implicated this leader region in the adaptation mechanism. In a

type I–A system in Sulfolobus solfataricus, a natural leader deletion

(Fig. 5B) extending from positions �47 to �70 (from the first

CRISPR repeat) led to relatively infrequent spacer insertions at dif-

ferent positions along the CRISPR locus (Erdmann and Garrett,

2012; Garrett et al., 2015). In the type I–E system of E.coli, it was

shown that exchanging leaders between similar CRISPR loci re-

sulted in inverted spacer insertion and in altered sizes of incorpo-

rated spacers (Diez-Villasenor et al., 2013). Moreover, attempts to

localize the leader regions that are essential for adaptation in type I–

E systems demonstrated that some sequences contained within the

region �1 to �41 or �60 were essential for adaptation (Yosef et al.,

2012). Thus, it is likely that the sequence elements in the core leader

normally regulate the frequency and specificity of spacer insertion at

the first repeat (by Cas1, demonstrated experimentally to facilitate

insertion (Rollie et al., 2015)) as well as controlling the size and

orientation of the new spacer.

3.3 The conservation of core leaders is more

widespread than previously believed
Early studies characterizing the leader noted its lack of conservation

beyond the species boundary (Jansen et al., 2002; Mojica et al.,

2000), and this observation was reiterated in later studies (Horvath

et al., 2009; Lillestol et al., 2006) when more genome data were

available. The first report of related leaders spanning several species

and genera was for the crenarchaeal order Sulfolobales (Lillestol

et al., 2009), but similar findings have not been made subsequently

for other archaea or bacteria. This has probably been due to insuffi-

cient genomic data being available and to the difficulty in identifying

the leaders using traditional alignment approaches. Nevertheless,

the restriction of leaders within tight phylogenetic boundaries stands

in contrast to what has otherwise been shown for CRISPR-Cas sys-

tems, where most subtypes (except those of type II systems) are

shared between the bacterial and archaeal domains (Makarova

et al., 2015).

In our study, we find numerous archaeal leader clusters that are

shared between several species and genera, but seldom cross the

order boundary (Supplementary Fig. 7). For example, the largest

archaeal leader cluster contains sequences from Pyrococcus and

Thermococcus species only, both members of the order

Thermococcales. Of the 10 largest archaeal leader clusters, only one

is represented across more than one order (Table 1 and

Supplementary Table S1). In contrast, bacterial leader clusters are

much more diverse taxonomically (compare Fig. 3A and

Supplementary Fig. 7). The two largest bacterial leader clusters are

represented by several orders within the phylum Proteobacteria. The

third-largest bacterial leader cluster contains members from multiple

phyla, including, but not restricted to, Proteobacteria, Firmicutes,

Actinobacteria, Chlorobi and Spirochaetes, all within a single leader

cluster. The same staggering diversity is seen throughout the other

major bacterial leader clusters (Fig. 3).

Conventional wisdom within the field has long been that

CRISPR leaders are not conserved beyond the species boundary.

Conservation across the order Sulfolobales was shown previously

(Lillestol et al., 2009) and our results show that order-wide conser-

vation is normal for archaea. In contrast, for bacteria there seem to

be no taxonomic boundaries for leader-cluster diversity. We found

similar leaders in bacteria as diverse as Pseudomonas and

Clostridium and the compatibility of leaders across diverse phyla is

comparable to that of the CRISPR subtypes themselves. This kind of

diversity within bacterial leader clusters seems to be the rule rather

than the exception, but has so far gone undetected owing to the lack

of reliable methods for leader identification. As for the stark differ-

ence between archaea and bacteria, in terms how widely conserved

their leader clusters are, no straightforward explanation arose from

the data. One factor may be that the currently sequenced archaeal

genomes are strongly biased to extremophiles present in isolated en-

vironments which include salt lakes and acidophilic hot springs that

exhibit more limited biodiversity. The few archaeal genomes that do

originate from more complex microbial environments do not tend to

carry CRISPRs. Thus, the lack of widespread conservation of cur-

rently sequenced archaeal leader clusters may simply result from the

formidable barriers to horizontal gene transfer imposed by their

habitats.

3.4 Core leaders display different patterns

of conservation
Leader clusters that are more taxonomically restricted tend to show

a relatively high and uniform sequence conservation throughout the
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entire core length (Fig. 1B). This uniform conservation may just re-

flect that the leaders have not yet had time to diverge sufficiently in

order for functionally important regions to stand out from their

background. In contrast, the taxonomically diverse bacterial leader

clusters have diverged to such an extent that sequence identity is un-

detectable throughout most of the sequence length (Fig. 3B).

Instead, small motifs exist that are conserved in both sequence and

position across diverse members of the same cluster. These motifs

not only confirm a common origin for the leaders within that clus-

ter, but also may be crucial for their function. Prominent sequence

motifs are featured towards repeat-distal ends of core leaders for the

major bacterial leader clusters F5B3, F2B5 and F2B5

(Supplementary Table S1). In contrast, the repeat proximal end is

more divergent with numerous indels (Fig. 5A), showing little to no

overall sequence conservation. Low sequence conservation towards

the repeat proximal end in bacterial leaders, although common, is

not the rule, as some leader clusters (e.g. bacterial cluster F1B12) do

show the opposite pattern with a conserved proximal end and a di-

vergent distal end (Supplementary Table S1).

3.5 Predicted core leaders coincide with published

results and are generally longer in archaea than in

bacteria
Using our CRISPRleader approach, we determined the conservation

boundaries and respective leader length distributions for archaea and

bacteria separately. The frequency of leader lengths peaked at about

60 and 130 bp in bacteria with a smaller peak at 190 bp, while in

archaea, lengths were larger with peaks at 100, 220 and 290 bp

(Fig. 4A) suggestive of some diversity of function. The leader bounda-

ries obtained coincided closely with previously described CRISPR

leaders for a few organisms in the literature (summarized in Table 2).

3.6 CRISPR loci are frequently leaderless
Individual observations of leaderless CRISPR loci have been re-

ported that are defective in transcription and inactive in adaptation

but it remains unclear whether they have lost their leaders or

whether they have simply been separated from the leader distal ends

of other CRISPR loci, possibly as a result of transposition events

There are no data available on the extent of leaderless loci and,

Fig. 3. (A) The taxonomic distribution is shown, on the phylum-level, for each of the ten largest bacterial leader clusters. Despite proteobacteria and firmicutes

dominating the underlying genomic data, diversity is still evident with most clusters representing several additional phyla. The number of leaders in each family

is also shown along with the principal CRISPR-Cas subtype associated with the leaders. (B) An alignment of the core leader from 10 randomly selected members

of cluster 3 is shown, along with names of the genera and phyla they originated from. The logo plot at the bottom is based on all 109 members of bacterial cluster

F5B3. The wide taxonomic distribution within the cluster is reflected in the individual leader sequences, which are evidently very diverse. Throughout much of

the alignment, any sequence identity is undetectable. However, the alignment is anchored near either end by two prominent sequence motifs which are present

in most sequences despite their divergence
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therefore, we estimated the percentage of CRISPR loci that lack

leaders and calculated the sizes of their arrays (number of spacer-

repeat units) relative to those loci with conserved leaders. The re-

sults demonstrated that 13% of 980 archaeal CRISPR loci, and

24% of 2852 bacterial loci, were considered leaderless (Fig. 4B).

Moreover, the sizes of the leaderless CRISPR arrays were much

smaller on average (Fig. 4B). The smaller sizes are consistent with

the leaderless loci being inactive in CRISPR adaptation and unable

to increase in size but they are also consistent with them having sep-

arated from the ends of other CRISPR loci.

3.7 Leader clusters correlate more with Cas1 phylogeny

than the subtype classification
Earlier studies have demonstrated that the sequences of leaders,

repeats and Cas1 tend to coevolve for the type I–A CRISPR-Cas

systems of the Sulfolobales (Shah and Garrett, 2011) and

Thermoproteales (Garrett et al., 2011). It was inferred that all

these components were involved in spacer acquisition, whereas

components of the interference effector complex evolved

separately.

We quantified the degree of interdependence and coevolution of

the leader clusters against Cas1 phylogeny and the cognate CRISPR

subtype, respectively, by applying the Adjusted Rand Index (ARI)

(Rand, 1971) that measures correlation between clusters. Leader

clusters correlated with Cas1 clusters yielding an ARI value of 0.75,

indicating a high degree of correlation. Conversely, the ARI between

leader clusters and CRISPR subtypes was only 0.37. We infer that

the lower correlation between the leader cluster and CRISPR sub-

type indicates that the same leader type can cofunction with

CRISPR systems of different subtypes, and vice versa, as long as the

correct adaptation module (i.e. Cas1, Cas2 and Cas4) is present to

interact with the leader and maintain the CRISPR locus. This is con-

sistent with the numerous reports of modular exchange where differ-

ent adaptation and interference modules interchange to form new

combinations of functional CRISPR-Cas systems (Garrett et al.,

2011; Makarova et al., 2015; Vestergaard et al., 2014). Since the

latest CRISPR-subtype classification (Makarova et al., 2015) pri-

marily reflects the diversity of the interference modules, a lower cor-

relation between CRISPR subtypes and leader clusters is to be

expected.

3.8 Automated annotation of core leaders and CRISPR

arrays using CRISPRleader
CRISPRleader accepts either a complete or partial genome sequence

as input and provides a full annotation of the CRISPR array, their

strand orientation as well as conserved core leader boundaries. In

addition, it outputs reader-friendly HTML pages for conserved

leader clusters from our database and it provides a standardized

BED format that can be used to visualize CRISPR arrays and leader

annotations in any genome browser.

4 Conclusion

Adaptation is currently the least understood of the main phases in

the CRISPR-Cas immune system. Although it is known that

Fig. 4. (A) A comparison of the CRISPR leader length distributions between ar-

chaea and bacteria. It shows that archaea and bacteria are grouped into lim-

ited size ranges. The archaea peak leader sizes are larger with average values

100, 220 and 290 bp while the bacteria leader sizes are smaller with average

values 60 and 160 bp. (B) The distribution of leader-containing and leaderless

CRISPR loci in archaea and bacteria. The size distributions for leaderless

CRISPR loci are similar for archaea and bacteria

A

B

Fig. 5. (A) The distributions of insertions and deletions (indels) in the leader

regions. Bacterial leaders more often carry indels towards the repeat prox-

imal end, while archaeal leaders have them at the repeat distal end. (B)

Sulfolobus leader deletions implicated in the adaptation phase. Part of an

alignment between a series of Sulfolobus CRISPR leaders of cluster 2 is

shown. S. solfataricus CRISPRs C and D acquire spacers during viral chal-

lenges, as does S. islandicus REY15A locus 115. S.solfataricus locus E is defi-

cient in adaptation, acquiring spacers abnormally and at a very low rate, in

turn making the CRISPR very small. A similar small locus is found in

S.islandicus L.D.8.5. The leaders of both loci share a deletion around 50 bp

from the first repeat, which is not found in the adaptation proficient leaders,

consistent with a role in adaptation deficiency

Table 2. Comparison of predicted leader lengths against published

leaders

Organism name Published Predicted Difference

E.coli IYB5101 (Yosef et al., 2012) 100 105 5

E.coli BL21-AI (Yosef et al., 2012) 100 95 5

C.jejuni (Tasaki et al., 2012) 146 144 2

Synechocystis pcc6803

(Scholz et al., 2013)

125 116 9

S.pyogenes (Fonfara et al., 2014) 109 108 1

S.solfataricus (Lillestol et al., 2009) 238 237 1

M.marzei Gö1 (Nickel et al., 2013) 108 108 0

M.marzei Gö1 (Nickel et al., 2013) 108 111 3
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adaptation is affected by signals present in the region upstream of

the CRISPR array, the so-called leader sequence, no bioinformatic

tool exists that can automatically annotate these leader sequences to

date. This is due to the fact that the known leader sequences exhibit

only limited sequence conservation. To gain a deeper understanding,

we developed a novel k-mer-based tool, CRISPRleader, that can re-

liably detect the CRISPR leader boundaries.

We analyzed 1426 archaeal and bacterial genomes using

CRISPRleader and identified several characteristic properties of the

leader sequences. Results show that although an extended region

can be conserved between few very closely related species or

CRISPR loci, generally a smaller core leader region, directly adja-

cent to the CRISPR locus, is conserved between more distantly

related species.

We identified core leaders from 770 archaeal and 2224 bacterial

CRISPR loci and observed significant differences between leader

clusters. First, core leaders tend to be longer in archaea than in bac-

teria. Second, leader clusters in archaea are more homogeneous in

terms of phyla than in bacteria. This may reflect the fact that ar-

chaea have survived primarily in low-energy environments which

are often quite isolated (e.g. solfataric fields or hypersaline lakes)

such that genetic exchange is much more limited than for most bac-

teria. Third, bacteria exhibit more indels in the CRISPR-proximal

region of the core leaders than archaea. This core leader region has

been shown to be important for CRISPR transcription and CRISPR-

Cas adaptation and may be readily inactivated, or modulated, by

indel activity, possibly triggered by an invader to circumvent

targeting.

Regarding common characteristics, we showed that in both ar-

chaea and bacteria (i) leader sequences and repeats tend to coevolve

with the Cas1 protein more broadly than previously believed, i.e.

irrespectively of the system’s subtype and (ii) leaderless CRISPR loci

tend to be much smaller than loci with a leader present. This is pos-

sibly indicative of a displacement event from the leader-distal ends

of other CRISPR loci. Leaderless CRISPR loci have been shown not

to undergo adaptation but can still contribute to crRNA-directed

interference.
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