Cluster based prediction of SH2 domain-peptide interactions using Graph Kernel

Vasumathi Jayakumar - 3210535

Department of Bioinformatics, University of Freiburg
Supervised by : Kousik Kundu

June 28, 2013
Overview

- Introduction
- Motivation
- Researches and Results
- Our research
- Result
- Conclusion
Introduction

Protein-protein interactions are crucial for cellular processes such as signalling, cell communication, etc.
Introduction

Protein-protein interactions

Cluster based prediction of SH2 domain-peptide interactions
Introduction

- Protein-protein interactions
- **cellular processes** - signalling, Cell communication, etc.
Introduction

Cluster based prediction of SH2 domain-peptide interactions
Introduction

PRMs
- Peptide-recognition modules
Introduction

Receptor tyrosine kinases (RTKs)

1. **Signal molecule**
 - Signal-binding site
 - α Helix in the membrane

2. **Receptor tyrosine kinase proteins**
 - Inactive monomers

3. **Abbreviations**
 - tyrosines (Tyr)
 - ATP
 - ADP
 - Activated tyrosine-kinase regions (unphosphorylated dimer)
 - Fully activated receptor tyrosine-kinase (phosphorylated dimer)

4. **Activated relay proteins**
 - Cellular response 1
 - Cellular response 2
 - Inactive relay proteins

Cluster based prediction of SH2 domain-peptide interactions
Introduction

Receptor tyrosine kinases (RTKs)

Src homology 2 (SH2)

Peptide tyrosine binding (PTB)

Cluster based prediction of SH2 domain-peptide interactions
Introduction

- Receptor tyrosine kinases (RTKs)
 - Src homology 2 (SH2)
 - Peptide tyrosine binding (PTB)
Introduction

SH2 domains

- Main for cellular communication
- Found in intracellular signal transducing proteins
- Large beta sheet flanked by two alpha-helices
- 120 SH2 domain in 110 human proteins
- Binds with distinct phosphopeptides
- Domain mutation causes many human diseases
Introduction

SH2 domains

- main for cellular communication
- found in intracellular signal transducing proteins
- Large beta sheet flanked by two alpha-helices
- 120 SH2 domain in 110 human proteins
- Binds with distinct phosphopeptides.
- Domain mutation causes many human disease
Motivation
Previous Researches

- Scansite
- SMALI
- Dompep
Previous Researches

Scansite
- Most popular tool, Yaffe et. al. in 2003
- Based on position specific scoring matrices (PSSMs)
- Derived from chemically synthesized peptide array libraries

SMALI
- SMALI - Scoring matrix-assisted ligand
- Recent approach, Li et. al. in 2008
- Based on (PSSMs)
- Derived from OPAL (oriented peptide array libraries)

Dompep
- More recent approach, Li et. al. in 2011
- Based on linear SVM (support vector machine)
Results of researches

- Position take important role in binding
- Used inear models - Complex dependencies between amino acids cannot be reflected
- Uses only positive interactions
Other approaches

- Uses structural information of SH2-peptide complex and
- Energy models derived from the structure
- A few approach - CoMFA, FoldX algorithm
- Computationally very expensive
- Depends of solved structures - available for few SH2-peptide complexes
Our approach

- Non-linear models
- Graph kernel approach
- Considered negative interactions
Graph Kernel Approach

- Computation of similarity measure between graphs in terms of a dot product function – Graph kernel
- Costa and Grave, 2010 - Neighborhood Subgraph Pairwise Distance Kernel (NSPDK)

NSPDK

- An instance of *decomposition kernel*
- A composite kernel operates over all possible "parts"
- Parts - "*neighborhood subgraphs*"
- Increasing radii $r < r_{max}$
- Distance not greater than d_{max}
Cluster based prediction of SH2 domain-peptide interactions
Data Collection

- Microarray Dataset I (positive and negative)
- Microarray Dataset II (positive and negative)
- Netphores Dataset (positive)
- Positive interactions - 1098
- Needleman Wunsch alignment - SH2 domains
- MCL clustering of alignment - isolation value
- Identity \(\geq 60\% \)
- Mafft alignment - SH2 domains
- Interactive Tree Of Life (ITOL)
- Finalized the clusters
Machine Learning

- Divide data set
- 75% - training set
- 25% - test set
- Used tool EDeN
- Find *Optimal parameter* - 5 fold *Cross Validation*
- Model 75% training set with optimal parameter
- Test 25% test set over the models
- Calculate performance using *Perf*
- Result
- Interactive Tree Of Life (ITOL)
- Finalized the clusters
Result

- Calculate performance using **Perf**
- Sensitivity, Specificity, Precision, AUC Precision, AUC ROC