

Bioinformatics

Detecting Structural Elements of lincRNAs using RNAz

Kaswara Kraibooj, Dominic Rose

Outline

- 1. Motivation: what is the project about?
- 2. Workflow, tools and methods
- 3. Results
- 4. Discussion

Outline

1. Motivation: what is the project about?

- 2. Work flow and tools and methods
- 3. Results
- 4. Discussion

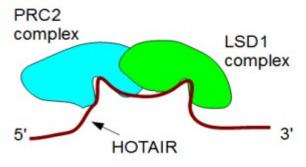
Motivation: Input

- Dataset: 8195 transcripts of long intergenic noncoding RNAs of hg19 as a BED file
- Long intergenic non-coding (lincRNAs):
 - Long: length > 200 bp
 - Intergenic: stretches between the genes
 - Non-coding: do not code proteins

Motivation: Intended output

- Prediction of conserved (secondary) structural elements of lincRNAs using RNAz (classified as functional)
- Detection of common secondary structure motifs of the predicted elements using RNAclust

Motivation: LincRNAs (important?)


- Form the vast majority of RNA transcripts
- Regulate important biological processes in the cell
 Example is HOTAIR

UNI FREIBURG

Motivation: LincRNAs example (HOTAIR)

- Cancer lincRNA (for HOX antisense intergenic RNA)
- Belongs to chromosome 12 (human genome)
- Interacts with two protein complexes together (LSD1, PRC2) to target genomic regions or genes (chromosome 2)
- Helps regulate immune response, cancer growth and production of cells.

Motivation: How (principle) ?

- Problem: the primary sequence of non coding RNAs does not have the same features as protein coding RNAs such as start/stop codons.
- Solution: exploit secondary structure (the function of ncRNAs are deeply related with their secondary structures)
- Detect:

- Stable secondary structure
- Conserved secondary structure

Outline

Motivation: what is the project about? Workflow, tools and methods

- 3. Results
- 4. Discussion

Analysis Workflow

1. Fetch alignments

- 2. Pre-process the alignments (windows)
- 3. Predict the hits (windows)
- 4. Cluster the hits (windows) to loci
- 5. Estimate false discovery rate (FDR)
- 6. Find clusters of loci which share secondary structure motifs (tree)
- 7. Visualize the tree

1. Fetch alignments

- Using the free public server 'Galaxy'
- Two screens:

- Stitch gene blocks given a set of coding exon intervals (screen1)
- 2. Extract MAF blocks given a set of genomic intervals (screen2)

2. Pre-process the alignments

- Using rnazWindow.pl:

- 1. Get rid of gaps, repeats
- 2. Split large alignments into smaller windows such as:
 - Length of one window 120 nt
 - Shift between the beginning of two successive windows is 40 nt
 - 120 and 40 result in optimal behavior of RNAz

UNI FREIBURG

3. Predict the hits (RNAz)

- Two independent measurements:
 - 1. Thermodynamical stability (z-score)
 - 2. Structural conversation Index (SCI)
- Classification: support vector machine learning (SVM) algorithm trained on a large number of well known ncRNA.
- Predicted sequences of probability value bigger than
 0.5 are classified as functional

4. Cluster the hits

- It clusters the overlapping windows in one hit to one locus.
- Locus: the stretch on the overlapping windows which have one hit, from the beginning of the first window to the end of the last window.

5. Estimate false discovery rate (FDR)

- Statistical measurement of the error percentage of the predicted hits number
- FDR_1= $\frac{number of windows(shuffled)}{number of windows(original)}$
- FDR_2= $\frac{number of loci(shuffled)}{number of loci(original)}$
- FDR_3= $\frac{length of loci(shuffled)}{length of loci(original)}$

5. Estimate false discovery rate (FDR)

- How:

- 1. Shuffle the windows (SISSIz)
- 2. Run RNAz again but on the shuffled windows
- 3. Calculate FDR
- Note: SISSIz tools do not change the alignment characteristics.

5. Detect common secondary structure motifs

- RNAclust.pl clusters the loci in order to discover shared secondary structure motifs.
- Its output is a tree:

- its internal nodes are the clusters
- its leaves are the loci sequences

6. Visualize the tree

- The tree resulting from RNAclust.pl can be visualized by iTOI and Soupviewer.
- Purpose: facilitate showing and studying the tree.
- iTOL has more visualizing abilities than Soupviewer does such as coloring according to colors defined by the user.

Outline

Motivation: what is the project about?
 Work flow and tools and methods
 Baresults Discussion

Results: Comparison

Number of loci	screen1	screen2
(0.5)	2279	8158
(0.9)	877	2700

Loci of high reliability (0.9):

- 2700 loci are located in introns and exons, or span splice sites.
- 1823 (67.51%) are located in introns.
- 197 (7.29%) span splice sites.
- 680 (25.18%) are located in exons.

UNI FREIBURG

Results: Comparison

- Loci of high reliability (0.9):
 - 2700 loci are located in introns and exons, or span splice sites.
 - 1823 (67.51%) are located in introns.
 - 197 (7.29%) span splice sites.
 - 680 (25.18%) are located in exons.
- Observation: there are more hits in introns than hits in exons or/and splice sites.
- Possible interpretation: small ncRNAs are hosted by IncRNAs in their introns.

Results: FDR

- The average value of the FDRs resulting from the three used equations are:

	screen1	screen2
FDR (0.5)	0.30	0.60
FDR (0.9)	0.28	0.48

- FDR of screen1 is optimistic, whereas FDR of screen2 is pessimistic.

Results: FDR

FREIBURG

- In screen1 (0.9): approximately 630 loci (72 %) show signals of stability and conservativity, and therefore are most likely functional of high reliability.
- In screen2 (0.9): more than 1400 loci (52%) show signals of stability and conservativity, and therefore are most likely functional of high reliability.

Results: FDR

FREIBURG

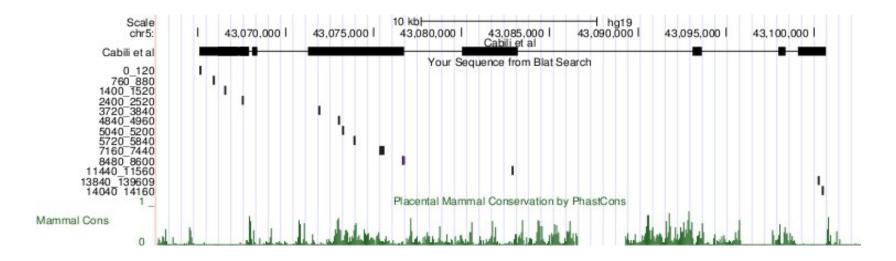
- In screen1 (0.5): approximately 1595 loci (70 %) show signals of stability and conservativity, and therefore are most likely functional (optimistic).
- In screen2 (0.5): about 3263 loci (40 %) show signals of stability and conservativity, and therefore are most likely functional (pessimistic).
- Observation: FDR of screen2 is remarkably bigger than FDR in screen1
- possible interpretation: future work!

UNI FREIBURG

Results: Transcripts/screen1

	Number of transcripts	Length of transcripts
Original	8195 (100%)	426642903 (100 %)
Alignments	99.75%	31%
Windows	66.21%	0.94%
Loci (0.5)	15.57%	0.076%
Loci (0.9)	7.78%	(0.027%)

- Observation: the total length of loci is too small
- Interpretation: the big loss of signals by aligning and windowing
- Conclusion: not sufficient


Results: 13 hits in one transcript

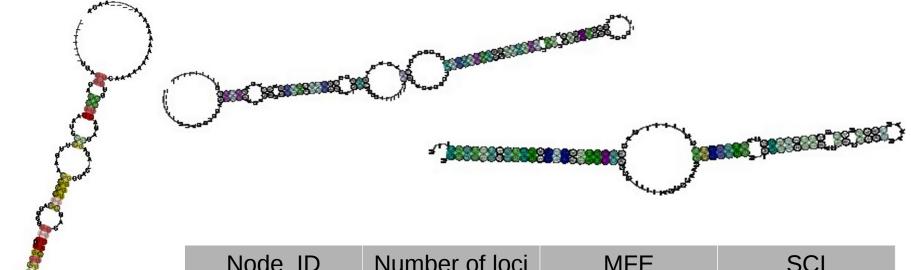
Number of transcripts	Number of hits
476	1
119	2
25	3
13	4
4	5
1	6
1	13

Results: 13 hits in one transcript (UCSC)

- Observation: loci are grouped in clusters.
- Possible interpretation: they might have a common function.

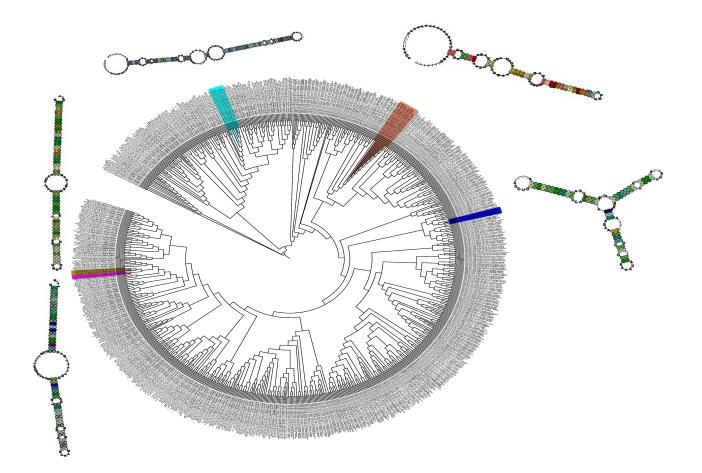
Results: Common secondary structure

- Input: loci
- Output: clusters share common secondary structure motifs, represented by a hierarchical tree.


Node_ID	Number of loci	MFE	SCI
1284	14	-24.54	0.56
1568	10	-42.29	0.57
138	7	-39.15	0.77

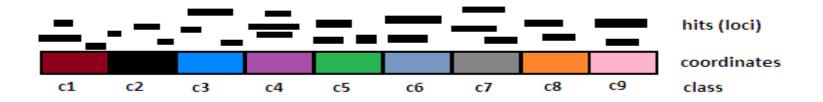
- Observation: few loci clusters have shared secondary motifs.
- Possible biological meaning: the loci have few common functions.

Results: Common secondary structure



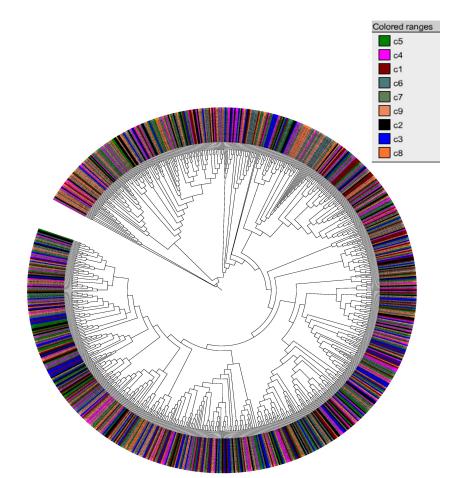
Node_ID	Number of loci	MFE	SCI
1284	14	-24.54	0.56
1568	10	-42.29	0.57
138	7	-39.15	0.77

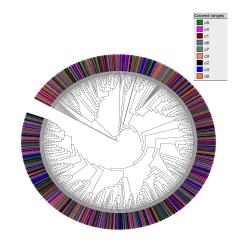
Results: Common secondary structure (iTOL)



UNI FREIBURG

Results: Similarity of loci located in the same relative locations


The relative locations of the hits on its transcripts were segmented into nine locations (classes: c1, c2, c3, ..., c9).
The hits that belong to one class have the same color.


Results: Similarity of loci located in the same relative locations (visualized by iTOL)

Results: Similarity of loci located in the same relative locations (visualized by iTOL)

- Observation: the colors are randomly distributed
- Conclusion: the hits that are located in the same segments of the same or different transcripts do not show common secondary structures.

Outline

- 1. Motivation: what is the project about?
- 2. Work flow and tools and methods
- 3. Results

4. Discussion

Discussion

- Interesting:
 - Most of the hits are located in introns. Why?
 - FDR of screen2 is bigger than FDR of screen1. Why?
- Negative:
 - The total length of the hits (loci) is too small for considering the analysis as comprehensive and sufficient one.
 - The number of clusters of the loci which have common secondary structure are few.
 - Similarity in secondary structure according to the relative locations are too sparse.

Discussion

- Positive:

- Nevertheless, the 13 loci of chromosome 5 are very interesting and might together have biological functionality.
- Additionally, the loci of one cluster, which share secondary structure motif, likely have the same function.

- Drawbacks:

- The length of the aligned sequences are too short
- Suggestion: new methods do not depend on alignments

Bioinformatics

Vielen Dank!