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1 Introduction

1 Introduction

The three-dimensional structure of DNA has recently become an active field of research,
because it influences many biological processes within living organisms. However, the
lab procedures required to investigate the so-called chromosome conformation are still
comparatively expensive, which has stimulated research in predicting 3D-structure from
available data to save time and money.

One such software package to predict the 3D-structure of DNA, HiC-Reg, was conceived
by Zhang et al. in 2018/2019 [1, 2]. It is using a random forest regressor to learn DNA
conformation from known DNA-DNA- and DNA-protein interactions. Unfortunately, HiC-
Reg requires customized input data, produces custom output data and has a high demand
for computational resources, making it inconvenient to use for scientists.

To improve on HiC-Reg’s weaknesses, a previous masterproject at the University of
Freiburg has resulted in the development of hicprediction [3], which is basically a more
efficient python implementation of HiC-Reg with standard in- and output formats. How-
ever, its predictions are currently not on par with the ones published for HiC-Reg.
The goal of this present masterproject is thus to investigate reasons for hicprediction’s
underperformance and improve the predictions.

1.1 Motivation

Ever since the discovery of the DNA double-helix structure [4] and the central dogma of
molecular biology [5] in the 1950s, the vital role of Deoxyribonucleic Acid (DNA) for the
existence of all living organisms has been generally known. Less known, however, is the fact
that DNA is not only a long molecule holding genetic information, but also forms a spatial
structure termed chromosome conformation, which facilitates contacts and loops among
linearly distant regions in the DNA. Besides the DNA-sequence, the 3D-conformation has
a strong influence on important DNA-driven processes like gene expression as well [6, 7].

While techniques to “read” sequences of DNA base pairs are nowadays fast and reliable,
methods to determine the spatial structure of DNA are less mature. These so-called
chromosome conformation capture methods all rely on a chemical fixation of the DNA-
structure and some post-processing to count DNA-DNA interactions for certain loci of
defined size. The original method from 2002, 3C [8], could only determine interactions
between two distinct loci at a time (one vs. one), while more advanced techniques like
4C [9] (one vs. all loci) and 5C [10] (many vs. many loci) have a higher performance.
The currently preferred method, Hi-C [11, 12], is capable of determining all DNA-DNA
interactions on the genome scale in a single experiment (all vs. all loci). The main output
of Hi-C is the so-called contact- or interaction count matrix, which holds the numbers of
interactions between all pairs of loci, genome-wide. Hi-C is explained in more detail in
subsection 1.2.

Despite the progress in recent years, chromosome conformation capture methods still in-
volve prohibitively expensive and tedious wet-lab processes, which limit their range of
applications. In this regard, it must also be noted, that – unlike the DNA sequence –
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chromosome conformation is both dynamic and cell-specific, so a large number of experi-
ments is required to get an overview over a whole organism.

Irrespective of the costs, high-resolution Hi-C datasets are already available for several
human-, mouse- and drosophila cell lines. Research on these datasets has revealed signifi-
cant correlations between chromosome conformation and certain proteins bound to DNA,
namely specific types of histones and transcription factors [7, 13]. Independent of Hi-C,
the corresponding interaction sites between such proteins and DNA can be found with
the well-established ChIP-Seq method, a combination of chromatin immunoprecipitation
and DNA-sequencing technologies [14, 15], see subsection 1.3. In contrast to Hi-C, this
method is fast, affordable, and a plethora of datasets for different proteins and genomes
already exists in databases. Researchers are therefore currently investigating possibilities
to predict DNA-DNA interaction sites from DNA-protein interaction sites. Conforma-
tion capture methods similar to Capture-C [16] could then be employed with a focus on
the predicted interaction regions, which would be much more efficient than running Hi-C
experiments on the whole genome.

Detecting hidden patterns in large sets of input data and figuring out – potentially non-
linear – dependencies between input and output has recently become a domain of machine
learning algorithms. For that reason, different machine learning techniques have been ap-
plied in the last five years – more or less successfully – to predict DNA-DNA interactions
and -structure from available data [2, 17, 18, 19, 20].

During a previous masterproject by Andre Bajorat [3], a regression model based on random
forests as proposed by Zhang et al. [2, 1] has been implemented, which permits a direct
estimation of contact matrices from ChIP-seq data and genomic distance. The matrices
obtained with this approach look promising, but are currently not deemed good enough
for general usage.

The goal of this masterproject is therefore to investigate ideas for improving the predic-
tions of the existing machine learning algorithm. This includes discarding, scaling and
emphasizing parts of the training sets, concatenating datasets from different cell lines and
adding input data with higher peak density than the currently used ChIP-seq narrowPeak
files.

However, before going into details, the underlying Hi-C- and ChIP-seq processes shall be
explained in more detail, since they are central for understanding the rest of the report.
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1.2 Introduction to Hi-C

Crosslinked DNA

1. Digest DNA

2. Fill & Mark ends

4. Purify & Shear

3. Ligate

5. Pull down biotin

6. Paired-end sequencing

...ACGA
CGTA...

Figure 1: Hi-C lab process

The Hi-C process is targeted at investigating the three-
dimensional structure of DNA by detecting DNA-DNA in-
teractions, as depicted in simplified form in Figure 1.

The typical input to Hi-C are about 20-25 million cells of the
same type [12], which are first crosslinked to fix DNA-DNA
contacts, e. g. using formaldehyde, and then lysed to extract
the DNA. Next, the obtained DNA is cut into fragments by
restriction enzymes (1), usually HindIII or DpnII, and the cut
ends are filled up with nucleotides partially marked by biotin
(2). Blunt ends are then joined (3) under conditions which
prefer ligations among open ends over ligations between dif-
ferent fragments, usually achieved by high dilution of the
fragments in solvent. The ligated fragments are then puri-
fied and sheared into shorter pieces, some of which contain
biotinylated nucleotides and some not (4). Those fragments
which contain biotinylated nucleotides are then pulled down
(5) and subjected to paired-end DNA-sequencing (6). In the
end, the outcome of the Hi-C lab process is a bunch of short
genomic sequences, so-called reads, which are subsequently
processed in the bioinformatics part of the Hi-C protocol.

On the bioinformatics side, the reads are first mapped to
the relevant reference genome. Here, only so-called chimeric
reads are kept, where the sequence from the “left” end of a
read uniquely maps to one region of the reference genome and
the sequence from the “right” end of the read uniquely maps
to another one. These reads are subjected to quality control,
and those passing are counted as an interaction between the
two regions where both ends have been mapped. The final
outcome of a Hi-C experiment is then a (sparse) matrix with
interaction counts between all possible pairs of regions. The
size of these regions – or resolution of the matrix – depends
on the read coverage of the experiment and is often set to
5000 bp, especially in this masterproject.

Often just a small fraction of all reads fulfill the selection
criteria outlined above, which makes Hi-C a comparatively
expensive process, because several billions of reads may be
required to obtain meaningful results [13].

5



1 Introduction

1.3 Introduction to ChIP-seq

DNA + proteins

1. Fixation

2. Shearing

4. Immunoprecipitation

3. adding antibodies

5. Purification

6. Sequencing
ACGA... TGGT...
CGTA... CCTG...

Figure 2: ChIP-seq lab
process

The ChIP-seq process is a combination of Chromatin-
Immunoprecipitation and DNA-sequencing, designed for in-
vestigating DNA-protein interactions.

The typical input to ChIP-seq is a number of cells with DNA
that has proteins, histones etc. attached to it, Figure 2, top.
As a first step, all these DNA-protein contacts get fixed, e. g.
by adding formaldehyde to the cells (1). The cells are then
lysed, the DNA-protein structure is extracted and cut into
fragments, for example by sonication (2). Next, specific anti-
bodies are added, designed to bind only to a certain protein
of interest (3). These antibodies are additionally equipped
with a tag, for example a magnetic one, so that the DNA-
protein-antibody structures can be precipitated, while frag-
ments without antibodies are discarded (4). The proteins
and antibodies are then removed (5), the DNA is purified and
finally sequenced (6). Typically, a control experiment is per-
formed together with the ChIP-seq process, which comprises
all steps described above, except the immunoprecipitation.

As with Hi-C and all other sequencing-based methods, the
outcome of the ChIP-seq lab process is again a bunch of short
genomic sequences, which are then fed into the bioinformatics
part of the pipeline.

The first data processing step for ChIP-seq, too, is quality
control (QC), as with all other sequencing-based processes.
Those reads passing QC are next mapped to an appropriate
reference genome, to find out where the protein under in-
vestigation binds to DNA. Therefore the number of mapped
reads per genomic position is counted and compared to the
numbers of reads stemming from the control experiment men-
tioned above. So-called “peaks” are then called at those posi-
tions where the number of mapped ChIP-seq reads is statisti-
cally significant compared to the control signal. The resulting
peaks, i. e. their start-, end- and peak position, along with
peak-quality- and strand information, are commonly stored
in so-called narrowPeak files. These are simple text files with
ten tab-separated columns [21], which currently also serve as
input to hicprediction.
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2 Prior Work

Having introduced the fundamentals of both processes, it shall now be shown how existing
ChIP-seq- and Hi-C data can be used to to predict unknown Hi-C matrices. The following
subsections will thus give an overview of the method developed by Andre Bajorat during his
masterproject, hicprediction [3], and its foundation, HiC-Reg [2, 1]. This is preceded by a
brief introduction into random forests, which are the common basis of both approaches.

2.1 Random forest

Random forests were conceived by Leo Breiman in 2001 [22] and are based on decision
trees, probably the most simple approach for supervised machine learning.

Decision trees take as input a set of samples with relevant features and then “learn” to
predict a target feature by splitting the input dataset step by step, until the target feature
can be decided on. Here, only binary decision criteria on the training features are allowed
(True/False), so the decision path can be visualized in form of a tree, see Table 1 and
Figure 3.

train. features target feature
sample nr. p0 p2 interact. count
0 0.0 0.0 0
... ... ... ...
40000 10.0 10.0 100
40001 10.0 0.0 100
40002 10.0 0.0 100
... ... ... ...

Table 1: excerpt of a training dataset for a decision tree

p2 ≤ 5.0
mse = 584.86961
samples = 42140
value = 6.237797

p0 ≤ 5.0
mse = 574.540762
samples = 41825
value = 6.119945

p0 ≤ 5.0
mse = 1744.068992

samples = 315
value = 22.5058

mse = 563.210147
samples = 41500
value = 5.991025

mse = 1795.75656
samples = 325

value = 23.462415

mse = 1703.623669
samples = 312

value = 21.779859

mse = 0.0
samples = 3
value = 100.0

FalseTrue

p0: protein feature 0
p2: protein feature 2
mse: mean squared error
value: predicted interaction count

FalseTrue FalseTrue

Figure 3: decision tree from hicprediction
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Within this masterproject, the target feature is Hi-C interaction count and the training
features are the signal values from ChIP-seq data of several proteins, along with the
genomic distance of the interacting regions.

Because decision trees are well known for overfitting, i. e. having a low bias but a very high
variance, random forests contain not only one, but generally a large number of decision
trees. Each tree is trained on a random subset of the original samples, potentially using
random subsets of the features for each splitting step. For regression problems, the final
prediction is then the average output of all trees, for classification problems usually the
majority vote. The rationale here is that random selection of the samples and features
reduces the variance, usually at the cost of increased bias. However, in most applications,
the reduction in variance more than outweighs the increase in bias.

For regression trees, the cut points, e. g. “p2 ≤ 5.0”, cf. Figure 3, are usually selected
such that the variance in the remaining two datasets – here, all samples with p2 ≤ 5.0
on the one hand and all samples with p2 > 5.0 on the other hand – is reduced the most.
Searching for the optimal cut-point is computationally involved, but meanwhile there are
several open source implementations which handle the task efficiently.

Random forests have a number of tuning parameters. Probably the most important ones
are the number of trees in the forest, the size of the subsample used to train each tree,
the maximum number of features to investigate for splitting and the minimum number of
samples allowed to remain in internal nodes, cf. [23]. All of these are used by HiC-Reg and
hicprediction, two random-forest-based methods to predict unknown Hi-C matrices.

2.2 HiC-Reg

HiC-Reg was proposed by Shilu Zhang and colleagues at the Wisconsin Institute for Dis-
covery in 2018 [2, 1]. It takes known Hi-C matrices and ChIP-seq data as inputs to predict
unknown Hi-C matrices using random forest regression.

HiC-reg accepts inputs as custom tab-separated text files [24]. For all pairs of (5000 kbp)-
regions within a size-adjustable window, the average ChIP-seq read counts of all bins
within the window and the distance itself are computed and a so-called window-dataset
is formed from the valid pairs, see Figure 4, upper left and middle. Such a dataset and
corresponding Hi-C interaction counts are then merged into a training set for a custom
random forest regressor.

After training the regressor, predicting Hi-C interaction counts just requires feeding a test
dataset, i. e. processed ChIP-seq data for the target cell line, into the trained random
forest, which yields predicted interaction counts as output, Figure 4, middle left. The
results, too, are stored in a custom tab-separated text format.

In case data from multiple cell lines is available for training, the window features of all
training cell lines can be concatenated into so-called multi-cell test sets, cf. [2, Fig. 1],
but these were not used throughout this masterproject. By default, HiC-Reg is using five-
fold cross validation on training sets, so it actually trains five different models for each
training cell line and chromosome. These models can then be used to predict interactions
for a different chromosome in the same cell line (cross-chromosome) or to predict
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interactions for the same chromosome in another cell line (cross-cell) – which is more
relevant for practical use cases of HiC-Reg. The final predicted matrix is just the average
output of the five models.

Despite the aim of predicting Hi-C interaction counts, the publication by Zhang et al.
unfortunately contains only two small plots of actual Hi-C matrix snippets, depicted in
their original size in Figure 5, and instead relies on statistical measures to assess the
quality of the predictions. To this end, the two main metrics used are distance stratified
Pearson correlation and the corresponding area under the correlation curve, auc. While
this choice is in line with other relevant publications in the field [17, 18, 19], it seems
unfavorable to rely on Pearson correlation too much, since the correlation can be high for
Hi-C matrices of biologically unrelated origin [25]. Within this report, correlation plots
are thus always used in combination with plots of Hi-C matrix snippets.

Most of HiC-Reg, including the custom random forest regression model, is implemented
in C++, complemented by python-, shell- and matlab scripts e. g. for converting and
concatenating input data or computing various metrics. The source code and most binaries
are available from github [24].

2.3 Hicprediction

Hicprediction was conceived and implemented as part of Andre Bajorat’s masterproject at
the Bioinformatics Group of the University of Freiburg in 2019 [3]. It is basically a python
implementation of the ideas of Zhang et al. outlined above, yet with a few technical
differences.

In distinction from HiC-Reg, hicprediction accepts the common file formats narrowPeak
and cooler [26] as inputs for ChIP-seq and Hi-C data, respectively, and also outputs Hi-C
matrices directly in cooler format. This eliminates the need for text format conversions,
but also limits applicability to cases where appropriate input files are available. An-
other major difference to HiC-Reg is that hicprediction does not perform cross-validation
on the training data for cross-cell and cross-chromosome predictions. Instead, it
always trains its random forest on the full training set, employing HiC-Reg’s window
approach described above. With regard to binning proteins and computing window-
features, hicprediction supports more aggregation methods than HiC-Reg, mean (“avg”),
sum and max, see Figure 6. While this might be interesting for future research, sum and
max have not been used throughout this masterproject to maintain comparability with
the results from Zhang and colleagues.

Hicprediction is made up from four main python modules, which basically implement
the workflow depicted in Figure 4. First, createBaseFile.py [27] aggregates the protein
data for training and test into bins of fixed width and stores them in an h5py file, see
Figure 6, upper and lower left. Additionally, input Hi-C matrices are cut into separate
matrices, one per chromosome, and stored for further usage. Next, createTrainingSet.py
[28] joins binned protein data with Hi-C interaction counts, computes the window-features
mentioned above and stores the resulting datasets in a compressed binary format (Figure 6,
right). The training dataset is then used by training.py [29] to train a scikit-learn random
forest regressor [30], which is again stored in binary format (Figure 6, middle). Finally,
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createBaseFile.py

narrowPeak

cooler matrix

training.py

basefile

cooler matrix
chr1

trainedmodelpredict.pycooler matrix
chr2

createTrainingSet.py

test set

chr1, chr2, ...

metrics

sum maxavg

basefile

cooler matrix
chr2

training set

training inputs

test inputs

start end window dist.

createBaseFile.py

sum maxavg

– predicted –

chr2

chr1

chr1

chr1, chr2 are examples
any numerical chromosome is possible
mutliple narrowPeak files possible

createTrainingSet.py

start end window dist.

files

narrowPeak

cooler matrix
chr1, chr2, ...

files

outputs

Figure 6: Flow diagram of hicprediction (cross-chromosome prediction)

predict.py [31] takes the test set with protein data from the target cell line, runs it through
the trained model and outputs a predicted Hi-C matrix in cooler format (Figure 6, middle
left). Additionally, a tab-separated text file can be output, containing distance stratified
Pearson correlation values and auc, plus some other statistical measures and parameter
settings for reference.

The original version of hicprediction is available from github [32] and can be installed
using conda [33]. Each of the four python modules mentioned above takes a number of
options and further inputs, which are described in detail on the readme page in github.
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3 Ideas to improve hicprediction

Despite noticeable progress in recent years, no machine learning method is currently able to
predict flawless Hi-C matrices, hicprediction being no exception. The following subsections
will thus investigate some of its shortcomings and present ideas to improve on them.

While the reasons for erroneous predictions can be manifold, this report mainly focuses on
filtering, rectifying and enhancing input data. Additionally, a different machine learning
model for hicprediction – extra trees – will be investigated.

3.1 Avoiding training samples without protein data

In the initial results from hicprediction, at least two issues are obvious, Figure 7: The
gradient-like regions (A) and the ubiquitous inverted “triangles” (B) in the prediction.

1.0
2.0
5.0

10.0
20.0
50.0

100.0
200.0

1.0
2.0
5.0

10.0
20.0
50.0
100.0
200.0
500.0

1000.0 Prediction GM12878 on K562 vs. target
K562 predicted from GM12878

K562 from Rao et al. 2014 [13]

12.0 12.5 13.0 13.5 14.0 14.5 Mbp chr17

A

B B
A

B
B B B

B
B

Figure 7: Example prediction from hicprediction with gradients and inverted triangles

The causes of these errors shall be investigated by means of a simple example. Assume a
training situation as in Figure 8a, which comprises one region with a lot of interactions,
a large remaining area without any interactions and three ChIP-seq peaks from a single
protein distributed within and delimiting the interacting region. From that, it should be
easy to predict the target situation in Figure 8b, since the latter is just the training situa-
tion shifted 1 Mbp to the right. However, even in such a simple case, the predicted matrix
from hicprediction is erroneous and contains both gradient-like regions and a number of
inverted triangles, Figure 8c. What looks confused at the first glance is actually to a large
extent well explainable, if one considers the values of the features for different regions
of the training set and recalls what the algorithm could learn from them, Figure 9a and
Table 2.

Gradient-like predictions are most prevalent in those regions where distance is the only
feature available for predicting, Figure 9b (α + β), corresponding to training regions (A)
and (B), Figure 9a. To understand this fact, it helps to recall how decision trees can split

12



3 Ideas to improve hicprediction

1.0
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100.0
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train protein 1

8.0 Mbp

example train
matrix

example target
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test protein 1
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20.0
50.0
100.0

0
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0.0 2.0 4.0 6.0 8.0 Mbp 10.0
1.0
2.0
5.0

10.0
20.0
50.0

100.0

example
prediction

a) Train Situation

b) Test Situation
1 Mbp

c) actual prediction

(target matrix and test protein 1)

Figure 8: example with inverted triangles and gradient-style predictions

the datasets in such distance-only cases. For a distance of 1 bp for example, there are
approximately four times more training samples in region (A) with a target read count
of zero than in region (B) with a read count of 100. The resulting predictions for such
samples are then around the mean, 4·0+1·100

5 = 20. For a distance of 500 000 bp, there
are about 8 times more samples in region (A) than in (B), causing predictions of around
8·0+1·100

9 ≈ 11.1. For distances greater than 1 Mbp (and all other features still zero), there
are no more samples in region (B), so the prediction relies on training samples from region
(A), which are all zero, Figure 9b (α) and (ε).

For distances greater than 1 Mbp (and all other features still zero), the prediction relies
on training samples which all have zero interaction count, Figure 9b (α) and (ε).

The inverted-triangle predictions from Figure 8c occur in situations where distance and
window protein are the only available training features, Figure 9b, (γ1), (γ2), (γ3) and (δ),
corresponding to training regions Figure 9a (C1), (C2), (C3) and (D). Again, it helps to
look at different distances. Between 1 bp and 1 Mbp, there are constantly about twice as
many training samples in region (C1) than in (C2), with target read counts of 0 and 100,
respectively. The resulting prediction is thus about 2·0+1·100

3 ≈ 33.3, Figure 9b, (γ1, γ2).
For distances greater than 1 Mbp, the number of samples in region (C1) grows linearly,
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Figure 9: explanation approach for inverted triangles and gradient-style predictions

while the number of samples in region (C3) shrinks linearly, causing a gradient prediction
within the inverted triangles, Figure 9b (γ1, γ3). Region (D) is distinguishable from regions
(C1) to (C3) by the window feature value, which is always twice as large in region (D)
for the same distance, because the window contains two protein peaks. Since all training
samples within region (D) are zero, the corresponding regions (δ) in the prediction are
also zero, causing the inverted-triangle-shaped “cut-outs” in the prediction, Figure 9b.

In reality, the learning process is of course more complicated than described above, because
not all features are taken into account at each split, cf. subsection 2.1, so that some trees
put more weight on features like start and end. This is probably the reason for the few
outliers in the prediction, Figure 9b (ζ), which cannot directly be explained from the
learning regions above. Across all trees, distance is still by far the most important feature,
Figure 10, followed by the window feature and lastly by the equally (un-)important start
and end features.

Probably the most simple way to prevent the random forest from learning gradients and
inverted triangles is discarding all “empty” training- and test samples, i. e. samples which
have zero signal value for all proteins, cf. subsection 4.4. The results of this approach
are shown in subsection 5.1. However, discarding empty samples usually leads to sparse
training- and test sets, causing other types of problems. These will be handled below in
subsection 3.2.
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region (fig. 9a) potential decision rules learned
A When all features except distance are zero, the

target value is 0
B When all features except distance are zero and

distance ≤ 1 Mbp, the target value is 100
C1 When window feature = 10

distance , the target value
is 0

C2 When window feature = 10
distance and

distance ≤ 1 Mbp, the target value is 100
C3 When window feature = 10

distance and
distance > 1 Mbp, the target value is 100

D When window feature = 2·10
distance , the target value

is 0
E When distance > 2 Mbp or

window feature = 3·10
distance , the target value is 0

yellow solid lines When end feature nonzero, the target value is
between 0 (about 80% of samples) and 100 (about
20% of samples)

yellow dashed lines When start feature nonzero, the target value is
between 0 (about 80% of samples) and 100 (about
20% of samples)

yellow circles When start- and end feature nonzero, the
target value is 100

Table 2: learning regions for the random forest
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3.2 Dealing with sparse input data

As already mentioned in subsection 1.3 and Figure 6, hicprediction thus far relies on
narrowPeak-files for incorporating ChIP-seq data, cf. subsection 4.2. Compared to the
length of the single chromosomes, the number of peaks contained in these files is often
small. For example, in K562, there are 2180 ChIP-seq peaks in the CTCF-narrowPeak file
for chromosome 17, while the length of the chromosome is 81 195 210 bp1 – roughly one
peak every 37 246 bp. After binning at 5 kbp resolution, only 1943, or 11.96% of 16 240
CTCF bins are nonzero in K562, cf. Table 3.

protein GM12878 HMEC HUVEC K562 NHEK
pk bw pk bw pk bw pk bw pk bw

CTCF 10.39 94.86 9.01 94.77 9.75 94.36 11.96 94.42 10.68 93.85
DNaseI 29.53 93.95 34.05 93.80 28.25 93.61 27.03 94.28 31.38 93.94
H3K4me1 9.06 93.83 9.48 94.52 9.01 94.05 8.34 94.33 10.39 93.23
H3K4me2 2.51 94.54 2.08 94.78 6.45 94.30 6.70 94.44 7.07 94.20
H3K4me3 11.06 94.55 8.23 94.66 7.92 94.18 9.76 93.93 12.60 93.44
H3K9ac 12.19 94.59 17.34 94.90 14.53 94.04 15.14 94.16 18.28 93.53
H3K9me3 12.64 94.20 13.78 94.73 10.92 94.08 11.07 94.14 15.25 93.89
H3K27ac 7.78 94.77 8.90 94.61 6.91 93.96 7.39 94.42 8.86 94.22
H3K27me3 8.95 94.83 6.96 94.95 6.50 94.85 7.19 94.83 6.88 95.26
H3K36me3 7.16 94.33 7.37 94.74 7.77 94.17 6.64 94.48 9.61 94.34
H3K79me2 3.75 94.95 8.19 94.76 7.57 95.21 1.03 95.14 10.95 95.33
H4K20me1 2.42 94.56 1.75 95.06 1.77 94.60 5.21 94.53 3.50 94.22

total 16240 bins, pk: narrow-/broadPeak, bw: bigwig

Table 3: percentage of nonzero bins for chr17 at 5 kbp resolution

Even with the 12 proteins used throughout this masterproject, the training sets remain
quite sparse. When discarding empty samples to avoid inverted triangles and gradient-
style predictions, often only few valid samples remain in the datasets, causing fragmented
predictions, Figure 15 (p. 29).

To reduce the number of empty ranges in the predictions, two simple techniques were
tried first, filling empty areas in the predicted matrix using a two-dimensional Gaussian
kernel and filling empty bins in the inputs using a one-dimensional Gauss filter on each of
the narrowPeak Files. While the first filtering approach is mitigating the symptoms, the
second is addressing the underlying problem of sparse input data directly. Both smoothing
techniques could in principle also be combined, but this has not been investigated.

Another option for dealing with sparse inputs is coarsening the resolution of all Hi-C
matrices to 25 kbp. This leads to a five times smaller number of bins in every chromosome,
reducing the probability of empty bins and thus the sparsity of the input data.

Since the three approaches mentioned above either did not yield satisfying results or in-
volved a loss of resolution, another approach directed at generating more dense inputs
was made. The reason for the narrowPeak-files being sparse is that they contain peaks

1reference genome hg19
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only at those genomic positions were a certain protein is most likely to interact with the
appropriate DNA. However, it is also possible to directly use the (normalized) number of
mapped ChIP-seq reads per genomic position for the protein of interest, the so-called read
coverage, and let the random forest learn the relation between read coverage and interac-
tion count itself. For convenience, the read coverage was computed from the mapped reads
in BAM-format and stored in so-called bigwig files, see subsection 4.2. It is obvious from
Figure 11 and Table 3 that these files cover more genomic positions than the corresponding
narrowPeak files, but they may also have the disadvantage of including background noise.

CTCF

CTCF

12.0 12.5 13.0 13.5 14.0 14.5 Mbp 15.0 chr17

ChIP-seq data comparison for K562

0

1164

0

273

narrowPeak

bigwig

Figure 11: ChIP-seq data for CTCF from bigwig and narrowPeak files

This is because they usually contain reads from genomic positions where the proteins
of interest were found only accidentally, e. g. because they were floating around these
positions when the fixation step of the ChIP-seq process (Figure 1, top) was performed.

The results for the two filter-based approaches and predictions from bigwig files at 5 and
25 kbp resolution are shown in subsection 5.2.

3.3 Scaling protein signal values and Hi-C interaction counts

Remarkably, no matter which types of input files were used thus far, the absolute values of
the predicted Hi-C interaction counts were usually not in the target range, and sometimes
off by factors of 5 or more, see e. g. Figure 15 and 19. Such discrepancies can arise
when the magnitude and distribution of the values in training samples differ from the
target – which is often the case for the cell lines and chromosomes used throughout this
masterproject. For example, when predicting K562 from GM12878, the random forest is
trained on interaction counts from GM12878, which are mainly in the range [0...4000],
Figure 12, top panel. As the algorithm has seen many training samples within this value
range, it overestimates the interaction counts from K562, which are actually mostly in
the smaller range [0...800], Figure 12 bottom panel. To circumvent this, all Hi-C matrices
were scaled to the same fixed value range on a per-chromosome basis. Four ranges were
tried, [0...1], [0...10], [0...100] and [0...1000]; the results are shown in subsection 5.3.

Looking at the protein data, it can be seen that the absolute read coverage values (signal
values) also vary significantly among the 12 inputs of each cell line, see e. g. Figure 13.
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Figure 12: Hi-C interaction count distributions for chr17
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Figure 13: bigwig signal value comparison GM12878, chromosome 17

The same holds for the signal values of narrow- and broadPeak files. The signal values
were thus again scaled into the same fixed ranges as above, on a per-chromosome basis.

In a further test, all protein signal values were scaled by dividing them by their respective
mean. This somewhat unorthodox way of scaling was found commented out in the code
by Zhang et al. [24]. Division-by-mean scaling reduces the value ranges of all proteins, as
the mean values of the protein signals are all greater than one, but does not guarantee a
uniform value range, Figure 52a and 52b (p. 60). For chromosome 17, it turned out that
the divisors differed from protein to protein, but within a single protein, they were often
roughly equivalent across all five cell lines, Figure 53. Note that a unified range could be
achieved by subsequent value range scaling, but this was not tested.

Feature- and interaction count scaling should theoretically not affect the performance of
hicprediction. Pearson correlation is invariant to scaling by definition, and random forests,
unlike many other supervised learning techniques, are also impervious to different value
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ranges of the features. The latter holds because split points for the decision trees are
only computed for a single feature at a time, compare subsection 2.1. For example, if the
optimal cut-point was 0.8 for a certain feature with value range [0...1], it would simply be
8.0 for the same feature scaled to range [0...10], and the cut-point would be no different,
if another feature had value range [0...5] or [20...1000]. However, adjusting value ranges
should be useful for concatenating datasets from different cell lines, see below, and can
help avoid problems interpreting feature importances [34].

3.4 Concatenating datasets and predictions from different cell lines

In the previous sections, only training data from single cell lines have been used at a
time to predict interactions in another cell line. However, as the cell lines used within
this masterproject have different biological functions, they are likely to have alternative
3D-conformations, too. This means that different relations between proteins and Hi-C
interaction counts can be learned from each cell line, so that the choice of the training cell
line can make a significant difference.

To reduce the dependency on the choice of the training cell line on the one hand and make
full use of all available training data on the other hand, two approaches were investigated.
Firstly, it is obviously possible to train models separately for all (four) available cell lines,
sum up the predicted matrices and compute the mean. This is somewhat similar to the
ensemble approach by Zhang et al. [2] and can easily be accomplished using existing
scripts from deeptools, see subsection 4.6. Secondly, although the multi-cell approach
from [2] is not yet implemented, it is still possible to create a joint dataset by simply
concatenating the datasets from the single training cell lines into one larger dataset. This
joint dataset can then be used as input to the existing training- and prediction modules
of hicprediction.

The results of both concatenation approaches are to be found in subsection 5.4.

3.5 Emphasizing certain samples

Revisiting the read count distribution in Figure 12, it is obvious that the vast majority of
training samples will have an interaction count close to zero. The random forest is thus
likely to associate the protein inputs of the corresponding training samples with small
interaction counts. However, strongly interacting regions like Topologically Associating
Domains (TADs) should correspond to samples with nonzero, hopefully comparatively
high interaction counts, which seem underrepresented in the training data. In total, three
options to improve on this were investigated. First, samples with “high” Hi-C interaction
counts were given higher weights to make them more relevant when the splits for the
single decision trees were computed. Second, samples within certain TADs were given
higher weights, and finally, samples with “high” CTCF signal value were given higher
weights. The last method is based on the idea that CTCF is known to be enriched in
interacting regions of various genomes [35, 36, 37], and determining samples with “high”
CTCF signal value is easier than finding TADs.
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A problem common to all methods mentioned above is that the choice of the samples to
emphasize is not straightforward – for example, there is no obvious way to define “high”
CTCF signal values. Within this report, three parameters were used to select and weight
samples: lower and upper for selecting samples based on their CTCF signal value and
interaction count, respectively, and a factor k, which allows to control the weights of the
selected samples in relation to the weights of the non-selected ones. To find optimal values
for the three parameters, a search strategy based on tree-structured Parzen estimators was
followed [38]. For TAD-based weighting, TADs were called with an established algorithm
and samples within TADs were then weighted using a factor k as above. Details for all
sample-emphasizing methods are to be found in subsection 4.7.

One further approach, which is in a similar spirit as the weight-based ones above, was
again borrowed from Zhang et al. [2]. Although apparently not documented anywhere in
the paper, the supplementary data as well as the two small plots of predicted matrices,
Figure 5, suggest that interacting pairs with a distance of less than 5000 bp have been
discarded from the HiC-Reg datasets. Since the highest interaction counts typically occur
at the lowest distances, this way of pruning the datasets predominantly discards samples
with high interaction counts and thus implicitly gives more weight to samples with lower
interaction counts. As a side effect, outliers with very high interaction counts are often
also removed, because they commonly stem from the main- or first side diagonal of the
matrix, i. e. have a distance less or equal to 5 kbp.

The results of all sample-emphasizing methods are to be found in subsection 5.5.

3.6 Replacing random forest by extra tree regression

Extremely randomized trees, or extra trees, are an advancement from random forests [39].
They have the same adjustment parameters as random forests and are thus a natural
choice to be investigated.

The main difference between the two models is that the computation of the cut-points is
randomized in extra trees, while random forests always search for the optimal cut-point in
the given (sub-)set of features. Additionally, extra trees typically draw from the training
datasets without replacement, while random forests use bootstrapping by default. Both
changes are meant to reduce variance while maintaining a low bias [39].

The results for all improvement ideas discussed above, as well as a concluding comparison
between (improved) hicprediction- and HiC-Reg results will be shown in section 5, while
the following section 4 will provide implementation details for the methods introduced
above.
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4 Methods

In the following subsections, implementation details are provided for the measures to im-
prove hicprediction described in section 3, preceded by a description of input data prepa-
ration. Finally, the approach for comparing hicprediction and HiC-Reg is discussed.

4.1 Hi-C matrices and matrix plots

As in Zhang et al. [2], Hi-C matrices of five well-investigated training and test cell lines
were taken from Rao et al. [13]. All matrices were downloaded directly from the gene
expression omnibus, accession GSE63525, in .hic-format, see Table 4. In all cases, the
“combined_30” datasets were selected, which contain only high-quality read pairs from
primary and replicate.

cell line file name link
GM12878 GSE63525_GM12878_insitu_primary+replicate_combined_30.hic [40]
HMEC GSE63525_HMEC_combined_30.hic [41]
HUVEC GSE63525_HUVEC_combined_30.hic [42]
K562 GSE63525_K562_combined_30.hic [43]
NHEK GSE63525_NHEK_combined_30.hic [44]

Table 4: File names and links for Hi-C matrices

All Hi-C matrices were then converted to cooler format using hic2cool convert, version
0.7.1. This was done twice, for 5000 bp and 25 000 bp resolution, using hic2cool’s -r
option with values of 5000 and 25 000, respectively. For HMEC, HUVEC and NHEK,
5 kbp is the highest available resolution.

All heatmap plots of Hi-C matrices within this report were made with pyGenomeTracks
setting a width of 15 cm at 200 dpi resolution (–width 15 –dpi 200), using the log scale
plus one, “log1p”. As is common for Hi-C matrices, only the upper or lower triangular part
is shown, rotated counterclockwise by 45◦, so that the diagonals become horizontal lines.
The plotted region is given at the bottom of each plot – here, chromosome 17, 12...15 Mbp
was often used, because this region originally featured many “inverted triangles” and
“gradient-style” predictions, see Figure 7. Any improvements made to the predictions
were thus thought to appear particularly obvious in this region. The color coding of the
plots was approximately scaled to the actual value range in the plotted region, and not
to the value range of the full matrix. This is advantageous for identifying structures in
the plots, but also means that different plots as well as different panels in the same plot
may have different scales and color coding. To ensure comparability with the data from
Zhang et al. [2], only interacting regions with a distance below 1 Mbp were considered for
hicprediction, and the plots were limited to 1.1 Mbp.
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4.2 ChIP-seq data

In their publication on HiC-Reg [2], Zhang and colleagues used data from 14 proteins
and histones, which they partially downloaded from ENCODE and partially feature-
engineered, see table Table 5 for a list of all features used.

hicprediction
protein HiC-Reg npk bpk bigwig
CTCF + + - +
DNaseI + + - +
H3K27ac + + - +
H3K27me3 + + - +
H3K36me3 + + - +
H3K4me1 + + - +
H3K4me2 + + - +
H3K4me3 + + - +
H3K79me2 + 1) 2) +
H3K9ac + + - +
H3K9me3 + 1) 2) +
H4K20me1 + + - +
RAD21 + - - -
TBP + - - -

npk: narrowPeak
bpk: broadpeak
1) GM12878, K562
2) HMEC, HUVEC, NHEK

Table 5: proteins and histones for HiC-reg and hicprediction

For hicprediction, the relevant narrowPeak files of the proteins and histones in Table 5
were downloaded from ENCODE/Broad Institute http : / / ftp . ebi . ac . uk / pub /
databases / ensembl / encode / integration _ data _ jan2011 / byDataType / peaks /
jan2011 / spp / optimal/ and unpacked into separate folders, one per cell line. DNAse
data was downloaded from https://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeOpenChromDnase/. Next, the 12 files in each of the five folders were
renamed such that the lexicographic order of the files, and thus the order of processing in
hicprediction, was the same within each folder.

To enable working with higher-density input data, BAM files containing mapped reads
from ChIP-seq experiments were downloaded from https : / / hgdownload . cse .
ucsc . edu / goldenPath / hg19 / encodeDCC / wgEncodeBroadHistone/ (proteins,
histones) and https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeOpenChromDnase/ (DNaseI). The files were then indexed using samtools version
1.9 and aggregated into bigwig files using bamCoverage version 3.3.1. These steps were
done for replicate 1 and 2 of each ChIP-seq experiment. Next, the mean read coverage
was computed from each pair of replicates using bigwigCompare version 3.3.1, resulting
in a single bigwig file per cell line per protein/histone/DNaseI. The full commands and
their corresponding options are given below in Listing 1 (p. 68). Finally, the bigwig files
were renamed as described above.
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Bigwig files can efficiently be queried for aggregated read counts from selected regions
and are comparatively small when stored at a resolution of 5 kbp, which allows fast and
simple protein binning. For all ChIP-seq experiments in this masterproject, bigwig files
could also have been downloaded directly from the sources mentioned above. However, it
proved difficult to find out how exactly these files were created, so this was not done.

In HMEC, HUVEC and NHEK, ChIP-seq data for H3k79me2 and H3k9me3 are not avail-
able in narrowPeak, but instead in broadPeak format. This is format-wise essentially the
same as narrowPeak without the “Peak” column, i. e. without the position of the called
peaks. BroadPeak files were downloaded from https : / / hgdownload . cse . ucsc .
edu / goldenPath / hg19 / encodeDCC / wgEncodeBroadHistone/, unpacked and renamed
as described above. Hicprediction was then modified to internally convert the broadPeak
files to narrowPeak, taking b start+end2 c as peak position. It is possible to use narrowPeak-,
broadPeak- and bigWig-files simultaneously in hicprediction, provided the same order of
the inputs is maintained across all cell lines and chromosomes, cf. subsection 5.2.

For RAD21 and TBP, no BAM-files and neither of the three usable file formats bigwig,
narrow- or broadPeak could be found for cell lines HMEC, HUVEC and NHEK. This is
probably because no ChIP-seq experiments have been published for those two proteins in
these three cell lines so far. RAD21 and TBP were therefore excluded from hicprediction
to maintain compatibility among the datasets from different cell lines.

Text files containing the download links for all protein- and histone files in BAM- and
narrow-/broadPeak format can be found in the github repository [45]; wget -i can be
used with these to conveniently download all relevant files for each cell line at once.

ChIP-seq data in bigwig- and narrowPeak format were plotted with pyGenomeTracks, the
bin number of the bigwig files being adjusted according to the bin size of the corresponding
Hi-C matrices.

4.3 Random forest and Extra trees implementation

Hicprediction’s random forest implementation is imported from sklearn.ensemble [30, 23].
All parameters are adjustable from the command line, but only the default values in
Listing 2 (p. 68) were used for the investigations in this report, compare training.py in the
github repository [29].

The number of trees, n_estimators, and the max_features parameter, which controls the
number of features drawn at random for each split, were chosen to match the corresponding
settings of HiC-Reg. All other parameters are either sklearn defaults or were set to values
deemed reasonable for the task at hand.

The extra trees algorithm was also imported from sklearn.ensemble, using the same pa-
rameters as shown in Listing 2 for the random forest, except for bootstrap, which was
set to False. To allow handling random forests and extra trees in the same module, the
boolean parameter –useExtraTrees has been added to training.py to select the desired
algorithm, see the hicprediction github for details [29].
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4.4 Investigations on discarding empty samples and input density

The example training- and test matrices for investigations on empty samples in subsec-
tion 3.1 were created using a small python script, createFakeMatrices.py, which is available
from the masterproject github repository [45]. The bin width (matrix resolution) was set
to 20 000 bp and the maximum distance to 4 000 000 bp, which yields 79 900 training sam-
ples. The “interacting region” was adjusted to be 2 000 000 bp wide, which corresponds
to 5050 training samples, each with a read count of 100. The ChIP-seq data was entered
into hicprediction as narrowPeak files, these were simply handmade with a text editor.
Each peak was 200 bp wide with peak positions at 4 000 000 / 5 000 000 / 5 999 999 bp for
training and 5 000 000 / 6 000 000 / 6 999 999 bp for test. The signal value was 10 in all
cases.

For protein input smoothing, standard functions from pandas [46] were used to apply
Gaussian kernels, in this case truncated at four times the standard deviation (but at least
one bin on either side), see createTrainingSet.py for details [28]. The standard deviation
σ was manually adjusted between 0.1 and 10 until acceptable results were obtained; the
values used in subsection 5.2 are stated in the respective figures.

For matrix smoothing, the Gaussian_filter function from scipy.ndimage [47, 48] was
used, again manually adjusting the standard deviation, see predict.py [31]. This filter was
also truncated at four times the standard deviation.

Two different options for discarding “empty samples” without start- and end-feature were
considered, termed single-protein-rectification and any-protein rectification. Single-protein
rectification means keeping only samples in the datasets where at least one protein has
nonzero start- and end-features. Any-protein-rectification on the other hand keeps samples
where at least one start- and at least one end-feature are nonzero, no matter from which of
the proteins. It is obvious that any-protein-rectified datasets are in general a superset of
single-protein-rectified datasets, because they contain all samples from single-protein rec-
tification and additionally such samples where at least two different proteins have nonzero
start- and end feature, but no single protein has both nonzero start- and end-feature.
These additional samples all have zero window features, while the single-protein approach
keeps only – but generally not all – samples with at least one nonzero window feature.

Since it seemed impossible to conclude theoretically whether the single- or the any-protein-
method is better, the decision was made empirically. To this end, cross-cell predictions
were conducted from GM12878 on K562 at 25 kbp resolution on chromosomes 9 and 17
using both approaches. Across all tested datasets, the difference in the sample numbers
was typically small. The predictions were thus highly similar, with slightly better results
for any-protein rectification in some cases. All investigations in this report that involved
removing empty samples were therefore made using any-protein rectification.

Rectification was always done on both training- and test set to prevent the algorithm
from learning invalid decision criteria in areas with insufficient input data. Positions
in the target matrix which could not be predicted due to unavailability of inputs were
left unset in the sparse matrix data structure, corresponding to zero interaction count.
Distance stratified Pearson correlation was always computed including these “trivial” zero
counts.
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4.5 Scaling interaction counts and protein signal values

The interaction counts were scaled to value ranges [0...1], [0...10], [0...100] and [0...1000]
according to Equation 1, where sampleMin and sampleMax are the minimum and max-
imum value of a certain feature across all samples in a given per-chromosome dataset. It
should be noted that for typical Hi-C matrices, sampleMin is zero and targetMin was
set to zero, so that, with regard to interaction counts, eq. 1 is effectively a multiplication.

scaledV alue = targetMin+ actualV alue− sampleMin

sampleMax− sampleMin
· (targetMax− targetMin) (1)

For convenience, value range scaling was performed using the MinMaxScaler class from the
sklearn.preprocessing module. To suppress noise, values below 0.001 were set to zero after
scaling, except for computations with value range [0...1], where no set-to-zero threshold
was applied. The predicted interaction counts were scaled like the training inputs, using
the same value ranges and thresholds.

For protein scaling, Hi-C matrices were first scaled to range [0...1000] with a set-to-zero
threshold of 0.001. Value range scaling was then applied to the protein inputs in the same
fashion as described above, using the same value ranges. For division-by-mean scaling, all
proteins in a given dataset were divided by their respective mean without additional value
range scaling.

Both for matrix- and protein scaling, bigwig files were used as inputs without dropping
any values.

4.6 Concatenating datasets and predictions from different cell lines

To concatenate predictions from GM12878, HMEC, HUVEC and NHEK on K562, pre-
dictions from the first-named four cell lines on K562 were separately computed as before,
using bigwig files without sample dropping and scaling as inputs. The four training ma-
trices and the target matrix were scaled to [0...1000] with set-to-zero threshold of 0.001.
Next, the four predicted cooler matrices were summed using hicSumMatrices version 3.4.1
and then divided by four using hicNormalize version 3.4.1 [49]. Details can be found in
Listing 3 (p. 68).

To make a prediction on K562 from concatenated datasets, all of them, including the
target dataset for K562, were first computed separately as usual, again taking bigwig files
without sample dropping as protein inputs. Here, the matrices were scaled to [0...1000]
with set-to-zero threshold 0.001 and the proteins were used in their original value ranges.
The datasets from GM12878, HMEC, HUVEC and NHEK were then concatenated using
the concatTrainSet.py python script [45] with the four datasets as inputs and standard
options otherwise. Training was subsequently performed on the concatenated dataset, and
finally the resulting model was taken to predict the target matrix as usual.
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4.7 Emphasizing certain samples

To emphasize samples according to their interaction count, all samples were first given
an equal weight of one. Next, samples with interaction counts in the range [lower, upper]
were selected, and their weight was adjusted such that the weight sum of the selected
samples was k-times the weight sum of the unselected samples, Equation 2 and 3, where
k is an adjustable numeric parameter.

k = targetWeight · numberWeightedSamples

1 · numberUnweightedSamples (2)

targetWeight = k · numberUnweightedSamples
numberWeightedSamples

(3)

The target weight was rounded to integer, since the default weight of the sklearn.ensemble
methods is of integer type.
Finally, five-fold cross-validation (CV) was performed on the modified dataset, whereby
the weights were only applied to the five training sets. To measure the performance of a
certain parameter setting, the loss function was then defined by virtue of Equation 4

loss(lower, upper, k) = 1−mean[testScore1(lower, upper, k)...testScore5(lower, upper, k)] (4)

where testScoren is defined as the R2-coefficient of determination of the n-th CV-test set
for the given parameters lower, upper and k. It holds that ∀(lower, upper, k) ∈ R3 :
loss ∈ [0,∞), since R2 ∈ (−∞, 1] and thus ∀n ∈ 1, 2, ..., 5 : testScoren(lower, upper, k) ∈
(−∞, 1].

To find a suitable factor and range for sample weighting, hyperopt [38] was applied, using
its tree-parzen-estimator based search strategy to minimize the loss function in Equation 4.
To this end, evaluations of the function were performed with 200 different parameter
combinations, whereby lower and upper were uniformly sampled from the interaction
count value range, and factor k was uniformly sampled from [0.1, 100]. Due to the long
run time of the parameter search – 200 evaluations of the loss function took about 24 h
on the available infrastructure – the optimized parameters could only be determined for
chromosome 17 of the GM12878 cell line; these were subsequently applied to the full
training set and used to predict interaction counts in K562.

For the CTCF-based sample-emphasizing, the same procedure as above was followed,
only the sample selection was based on CTCF start-, end- and window-feature instead of
interaction counts. The full code for searching interaction count- and CTCF-based sample
weighting parameters can be found in the weightingParameterSearch.py module on github
[45]. Among other adjustment parameters, the names of the features used for computing
the weights can be modified from the command line, so that the code can also be used to
compute weights based on other proteins than CTCF.

For the TAD-based sample weighting method, TADs were called on the training cell line
using version 3.4.1 of hicFindTADs from the HiCExplorer suite [50], cf. Listing 4 (p. 69).
Due to time constraints, again, only GM12878 was used for training, and the parameters
were adjusted manually until the detected TADs “looked good” – unfortunately, there is
no ground truth with regard to TADs, which is a clear weakness of this approach.
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All samples within TADs shorter than 0.5 Mbp were then selected and weighted with factor
k and targetWeight defined as in Equation 3. Unlike interaction-count- and feature-based
weighting, TAD-based weighting was only tested for fixed factors k ∈ {0.1, 1.0, 10, 100}, to
save time but still find out if there was an effect worth being investigated in more detail.
The length restriction was chosen on the one hand to emphasize structures shorter than
0.5 Mbp, which were often not present in the predictions, and on the other hand to exclude
very long TADs which hicFindTADs often reports e. g. across centromere regions.

In order to remove the “diagonal” from the predictions as (probably) done by Zhang et al.,
all samples with distance ≤ 1 were discarded, in this case both from the training and test
datasets. Apart from that, predictions were computed as usual. Note that hicprediction
records distance in bins, whereas HiC-Reg is using base pairs.

For all sample-weighting investigations, interaction counts were scaled to [0...1000], while
protein data were taken in bigwig format, in their original value ranges and without
dropping empty samples.

4.8 Comparison between HiC-Reg and hicprediction

To compare hicprediction to HiC-Reg, the corresponding input parameters were set to
match, if known. This means that the default random forest was used for hicprediction
(see subsection 4.3), and empty samples were discarded, see subsection 4.4. The proteins
were not scaled, but matrices were adjusted to a value range of [0...1000]. Hicprediction
was then amended to allow a 5-fold cross-validation as described by Zhang et al. Here,
the training data was split using sklearn’s cross_validate() function, five models were
trained and subsequently used for predicting the target cell line. The single predictions
were then combined into one by taking the mean analogous to subsection 4.6.

To generate high-quality plots of the predictions in [2], supplementary data were down-
loaded from [51, 52, 53] and converted to cooler format using hicprediction’s convertHi-
CRegPrediction.py script [45]. That same script also computes Pearson correlation with
respect to the target interaction counts stored in the data. It is not exactly known how
the target data has been obtained, but it must have been processed in some way, as the
value range differs from the original one in [13].

To reduce the impact of different input data and improve comparability, HiC-Reg predic-
tions were additionally computed with training data generated by hicprediction. For this
purpose, five hicprediction (cross-validation) training- and test datasets were generated as
described above and then converted to text format using the convertForHicReg.py script
to be found on github [45]. With these datasets, training and prediction were performed
using the regForest binary as described in sections 2.1 and 2.2 of the HiC-Reg readme
[24]. The numeric parameters leaf size l, maxfactorsize k and number of trees n were
chosen as in the readme, i. e. k = 1, l = 10, n = 20 and the priors file (-b option)
is created by the convertForHicReg.py script, too. Since the regForest binary was not
available from github, it was recompiled with g++ version 5.4.0 (20160609) on Ubuntu
16.04. LTS, dynamically linking against the corresponding libgslcblas- and libgsl libraries.
Due to technical problems with our computation cluster and HiC-Reg’s memory demand
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at higher resolutions – around 120 GB for a resolution of 5 kbp – the comparisons described
above could only be computed at 25 kbp resolution.

Additionally, window-type predictions were made with HiC-Reg from ground up, taking
the same Hi-C matrices and BAM files2 as inputs that were used for hicprediction, cf.
subsection 4.1 and 4.2. To this end, the BAM files were split up per chromosome us-
ing samtools [54] version 1.9 and the coverage was computed using bedtools genomecov
v2.29.2 [55], see Listing 5 (p. 69) for an example. This produces a bedgraph-formatted out-
put which can serve as input for binning. The latter was then performed with HiC-Reg’s
aggregateSignal binary, taking the bedgraph files as inputs, while resolution was set
to 5 kbp and the hg19 reference genome was used. Unfortunately, the aggregateSignal
binary requires a third, yet underspecified input, the so-called region file, which was just
copied from the examples provided in the repository. Next, Hi-C matrices were con-
verted to text using the convertForHicReg.py script again, this time discarding its other
outputs. Window features for HiC-Reg were then generated for all 12 proteins, using the
genDatasetsRH binary as described in the readme [24]; refer to Listing 6 for an example.

Both the aggregateSignal- and genDatasetsRH binaries are present in the repository, but
were also recompiled due to problems with dynamic linking.

Due to time constraints, comparisons between hicprediction and HiC-Reg were only made
for cross-cell predictions GM12878 on K562, chromosome 17, using the window method.

Resource consumption for all steps above was measured with GNU time 1.7 on a machine
equipped with a quad Intel R© CoreTM i5-4200U CPU at 1.6 GHz and 8 GB memory, refer
to Listing 7 for the parameters used.

2here, replicate 2 only; to be repeated with both replicates
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5 Results

In the following subsections, the results for the changes to hicprediction introduced in
section 3 will be presented and interpreted. Furthermore, subsection 5.7 provides a direct
comparison of the (improved) results from hicprediction to the ones from HiC-Reg.

5.1 Avoiding training samples without protein data
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Figure 14: Pearson correlation before/after
removing samples

The effect of removing empty samples from
the datasets was clearly visible, both in
terms of Pearson correlation and matrix
plots, see Figure 14 and 15. It is obvi-
ous that inverted triangles and gradient-
style predictions were removed by discard-
ing empty samples, but the prediction is
also strongly fragmented, so that struc-
tures like TADs and loops are hardly visi-
ble in the plots. For example, in GM12878
and K562, only about 25% of the originally
3 227 900 samples remained in the datasets,
which means that 75% of all pairs in the
predicted Hi-C matrix for K562 had the
default interaction count zero. This effect
would be even more striking for the expla-
nation example from subsection 3.1, where
only 6 of 79 900 samples would remain in
the dataset. In this (staged) case, the algorithm then just “learns” the relation “sample
exists ⇒ read count is 100”, without any of the features (start, end, window, distance)
being considered as a decision criterion.
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Figure 15: Example prediction, without empty samples
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5.2 Dealing with sparse input data

Filtering fragmented output matrices like the ones obtained in subsection 5.1 was unsuc-
cessful, since no parametrization of the 2D-Gaussian filters proved useful – either the gaps
were not filled, or the structures in the matrix were blurred too much, or both, see Fig-
ure 16. Other kernel types and more sophisticated image-inpainting methods [56] might
do better, but choosing the appropriate ones and adapting them to the problem at hand
would be laborious and beyond the scope of this masterproject. Additionally, and even
more important, it is not clear whether such sparse matrices as depicted in Figure 15
would be a good starting point for suchlike approaches. The missing regions can be sev-
eral 100 000s of base pairs wide (e. g. Figure 15, upper right), and both the low Pearson
correlation (Figure 14) and the lack of structure in the predicted matrices (Figure 15)
suggest there might simply not be enough information for imputing missing values, with
whatever approach.

Filtering the inputs with one-dimensional Gaussian filters was more successful. While it
seems impossible to fill long stretches of empty bins by Gaussian smoothing alone, some
structures became quite well visible and the Pearson correlation also improved slightly,
Figure 17 and 18. Apart from the gaps remaining in the prediction, smoothing the pro-
teins also has the disadvantage of blurring and shifting the structures in the predictions
compared to the target matrices. This is typical for Gauss filters, but probably acceptable
in this case.

In predictions from bigwig files, there were much less empty bins and no inverted triangles
or gradient-style regions, Figure 19 and Figure 40 to 42 on page 51 ff. Due to the higher
peak density in the bigwig files, the effect of leaving out empty samples was sometimes
hardly recognizable, compare Figure 19 and 20. The Pearson correlations were also similar
for both approaches, and both were better than the ones from using peak files, Figure 21.
However, the effect of removing empty samples was found to be dependent on cell line,
chromosome and genomic position. Some chromosomes, e. g. 21, have large contiguous
regions which seem to be deprived of all proteins, probably for biological reasons. For such
regions, removing empty samples was significantly better, Figure 43, but detrimental for
other regions of the same chromosome, see Figure 44. This was unfortunately not reflected
in the Pearson correlation, Figure 47. Note that the area under the correlation curve is up
to 0.7, which is a surprisingly high value considering the modest look of the matrix plots,
Figure 43 and 44.

With regard to background signal and sequencing noise in the bigwig files, the results
from chromosome 17 suggest that the algorithm can at least partially learn which ChIP-
seq read count values are indicative of high interaction counts and which are not. Beyond
that, using a threshold to set signal values below a certain level to zero is possible, but
finding a value which works well across all cell lines, chromosomes and proteins seems
challenging. Too large values again lead to sparsity and too small values do not have
noteworthy influence on the result.

Avoiding empty bins in the inputs by increasing the input matrix resolution (bin size)
to 25 kbp worked surprisingly well, even without further measures, Figure 22. Especially
larger structures like the ones from 12...13 Mbp and 13...14 Mbp were usually at least
signified. However, gradient-style regions and inverted triangles triangles still occurred,
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albeit to a lesser extent, since the underlying problem remains the same, see e. g. the
regions around 13 and 14.5 Mbp in Figure 22.

As expected, discarding empty samples led to less fragmentation with 25 kbp than with
5 kbp, because fewer input bins were empty; the result was still not useful, Figure 23.
Again, it was not possible to fill in missing values with a Gauss filter without blurring the
matrix too much, Figure 24. For 25 kbp resolution, too, smoothing the proteins worked
better than smoothing the predicted matrix. Larger gaps could again not be closed, but
apart from that, structures were often more easy to identify than without smoothing,
compare Figure 22 and 25.

Predictions using bigwig files were also performed, but at 25 kbp resolution, it was even
more difficult to say whether these were better or worse than the ones from peak files,
compare Figure 28 and 22. As already mentioned above, it cannot generally be said
whether leaving out or keeping empty samples is better. In the example matrix snippet
from chromosome 17, it was again difficult to determine differences, Figure 28, 29 and 30,
but this might not hold for all regions.

In terms of Pearson correlation, all predictions from 25 kbp resolution were better than the
best one from 5 kbp, Figure 30, and structures indeed sometimes seemed more recognizable
in the plots for 25 kbp. Interestingly, the fragmented prediction from peak files without
empty samples, Figure 23, showed one of the best Pearson correlations obtained thus
far. This is probably because interaction counts of discarded regions are set to zero,
which seems to be correct in many cases, especially in the distance range [0.4...1.0]Mbp.
Independent of the root cause, this example again underscores that relying on Pearson
correlation alone is unfavorable, because the corresponding matrices can be useless in
practice.

For 25 kbp, predictions were also performed using bigwig- and peak files simultaneously,
thus increasing the number of features in the samples from 3 ·12+1 = 37 to 3 ·24+1 = 73
(2x12 start-, 2x12 window- and 2x12 end features plus distance). While the Pearson
correlations were mostly better than with bigwig files alone, especially when keeping empty
samples, Figure 48a and 48b, not much improvement was visible in the predicted matrices,
Figure 31, 45 and 46. Feature importance plots show that the influence of the start- and
end features from the peak files was generally negligible, but the window features were
often considered more important than most features from bigwig files, Figure 26 and 27.

5.3 Scaling protein signal values and Hi-C interaction counts

For three of four tested scales for Hi-C interaction counts, [0..10], [0...100] and [0...1000],
predicted and (scaled) target value were in the desired order of magnitude and the Pearson
correlation was very similar to the status quo, see Figure 32a and 49. For value range [0...1],
the Pearson correlation was notably worse than without scaling, at least for distances
greater than 0.2 Mbp. No obvious reason for this could be found in the plots of the
predicted matrices, but the usual “logarithm plus 1”-representation is also not well suited
for matrices with interaction counts generally smaller than 1. The target matrices, too,
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Figure 18: Pearson correlation, 5 kbp, proteins filtered σ = 4.0
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Prediction GM12878 on K562 vs. target
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Figure 22: Example prediction from narrow-/broadPeak, 25 kbp, all samples
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Figure 24: Example prediction from peaks, no empty samples, 25 kbp, matrix filtered
σ = 1.0
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Figure 26: feature importances, GM12878 on K562, chr17, bigwig- and peak files com-
bined
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Figure 27: feature importances, GM12878 on K562, chr21, bigwig- and peak files com-
bined
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Figure 28: Example prediction from bigwig, 25 kbp, all samples
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Figure 29: Example prediction from bigwig, no empty samples, 25 kbp
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Figure 30: Pearson correlation comparison
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Figure 31: Example combined prediction, 25 kbp
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do not look very informative when scaled and plotted this way, which is a reason on its
own to go without the [0...1] range.
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Figure 32: Pearson correlations, matrices / proteins scaled

Feature scaling yielded the expected outcome in terms of Pearson correlations, Figure 32b,
i. e. all value ranges had similar performance and were no better or worse than without.
In terms of Hi-C matrices, the results were surprisingly worse than without scaling, with
errors in the predictions e. g. around 13.5 and 14.0 Mbp, see Figure 50.

The comparatively bad outcome might partially be due to the small set-to-zero threshold
which was applied after adjusting the value range, subsection 4.5. As this is a non-
continuous transformation of the value range, thresholding could in principle affect the
splitting. However, it would be very surprising if this was the main cause, as only very
few values fell below the threshold for each protein; for example, in value range [0...10], at
most 53, or 0.3% of 16 240 samples from a single protein were set to zero. Additionally,
the threshold hypothesis does not explain the errors in predictions with value range [0...1],
where the threshold was not applied. On the other hand, it is also hard to imagine that
the errors in the predictions occurred by chance, as they were approximately at the same
positions across all concerned predictions.

To investigate further on the issue, predictions were also made for 25 kbp resolution, Here,
too, the outcome was partially unexpected. While the Pearson correlations indicated a
positive influence of scaling for all but the division-by-mean method, Figure 54, the plots
of the matrices looked very similar to the non-scaled state, Figure 51. The reason for this
behavior could unfortunately not be determined.

Because scaling input features does not seem very common for random forests, only a single
paper was found on the topic. Here, Dinc. et al. investigated the influence of value-range
(min-max) scaling and z-score normalization3 on the performance of several classifiers for
protein crystallization images [57]. For the random forest classifier, some improvements for
the z-score normalization, but only very little change for value-range scaling were recorded.

3 subtract mean and divide by standard deviation
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However, the reasons for the improvement were not investigated. The already mentioned
study by Strobl et colleagues [34] does not cover feature scaling directly, but found that
features with different value ranges can cause bias in variable selection, especially when
used in combination with categorical variables and bootstrapping with replacement.

Within this masterproject, it could not be clarified what exactly caused the unexpected re-
sults when scaling feature value ranges. However, first tests showed an interesting relation
between the floating point precision of the feature values and the predicted matrices, which
could be investigated in future studies. Currently, hicprediction is using 32-bit floating
point numbers rounded to 6 digits after the decimal point – and this may be insufficient
for small value ranges, considering the strongly nonuniform interaction count distribution,
Figure 12. For example, when using value range [0...1] and 5 kbp matrix resolution, there
are 100 000 different floating point numbers in the interval [0, 0.100000) after rounding to
six digits after the decimal point – but more than half of the approximately 3.2 million
samples have interaction counts lying in this interval.

Since protein scaling yielded unfavorable results, the remaining computations were per-
formed without.

5.4 Concatenating datasets and predictions from different cell lines

In order to combine predictions from different cell lines on K562, the single predictions were
computed first, Figure 55, top 4 panels. It is obvious that not all cell lines are equally
well suited for predicting K562, which is probably due to different biological functions.
Although e. g. the prediction from HUVEC showed only fairly few structures, the averaged
prediction from GM12878, HMEC, HUVEC and NHEK on K562 was still acceptable,
partially even better than the best single-cell-line prediction, Figure 33 and 55. Both the
Pearson correlation and the plot of the predicted matrix look more smooth than the ones
from single cell lines, which is due to the averaging process and thus not surprising. The
structures in the matrix plot were still distinguishable and not significantly worse than
the ones from single-cell-line predictions.

The prediction from concatenated datasets performed not as well as the averaged single
predictions, Figure 33 and 55, third panel from bottom, but still better than the single
predictions from “less suitable” cell lines. It should however be noted that the datasets
have been concatenated without prior feature scaling, due to the problems mentioned in
subsection 5.3 above. This is probably suboptimal, because the same features can have
significantly different value ranges in different cell lines, see Figure 52a. The predictions
from concatenated datasets might thus improve once the existing feature scaling problems
have been investigated and resolved.

5.5 Emphasizing certain samples

After 200 runs of the tree-structured Parzen estimator, see subsection 4.7, the supposedly
best parameters for weighting samples according to interaction count were determined as
lower = 292.635, upper = 857.073 and k = 14.625. This means that all samples with an
interaction count in the range [292.635...857.073] were given integer weights such that the
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Figure 33: Pearson correlations, single vs. joint predictions on K562

sum of the weighted samples was approximately 14.625 times the weight sum (=number)
of the unweighted samples. Unfortunately, there were only six samples in the given range,
so the effect of interaction-count-based weighting on the predictions was quite small. Both
the resulting Pearson correlation and the matrix plots looked fairly similar for predictions
with weighted samples and usual predictions, Figure 34a and 57.

With another 200 runs of the estimator, the supposedly best parameters for weighting
samples according to CTCF signal value were determined as lower = 228.8, upper =
670.112 and k = 4.241. In this case, there were 285 242 samples with CTCF start-, end-
or window-feature in the given range, so an influence of CTCF-based weighting on the
results was to be expected, which also precipitated in the feature importances, Figure 59.
Interestingly, only the CTCF-window feature gained importance, while start- and end-
feature remained at low levels. However, the Pearson correlation of the prediction from
weighted samples was actually worse than before, Figure 34b, and the matrix plots showed
at least no significant improvement, fig 58.

Removing all samples with a distance below 5000 bp surprisingly improved and also slightly
smoothened the Pearson correlation, Figure 34c. The matrix plots also clearly differed
from the standard predictions, but it is difficult to say whether they are better, Figure 60.
While some predicted structures were more distinct, there were also some which do not
seem to match any real interacting regions, and the contrast between interacting- and
non-interacting regions also seemed lower than in the standard predictions.

TAD-based weighting of samples did not change the prediction results much. Both the
Pearson correlation and the resulting matrices were quite similar to the ones from standard
predictions, Figure 34d and 61. Note that for weighting factor k = 0.1 the results were
identical to the the status quo, because it turned out that

∑
weightedSamples

weight∑
unweightedSamples

weight
≈ 0.1,

so no weighting was performed at all due to rounding (subsection 4.7).
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Figure 34: Pearson correlations for different sample weighting approaches
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5.6 Replacing random forest by extra tree regression

Predictions using the extra trees algorithm were generally similar to predictions from
random forests. While Pearson correlations were in favor of the random forest algorithm,
Figure 35, the matrix plots looked fairly similar, Figure 56. It remains for future research
whether this holds for other cell lines and chromosomes as well.
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Figure 35: Pearson correlations extra trees vs. random forest

5.7 Comparison between HiC-Reg and hicprediction

Looking at the matrices obtained with hicprediction thus far, it was obvious that – despite
some improvements compared to the original state – the predictions were still inferior to
the ones published for HiC-Reg. Figure 36 shows a direct juxtaposition between a cross-
cell prediction from HiC-Reg – reconstructed from data published along with the article [2]
– and the corresponding prediction from hicprediction. In terms of Pearson correlation,
the results from hicprediction and HiC-Reg were very different, see Figure 39a. While
hicprediction was sometimes better at smaller distances, in the given test case particularly
obvious below 0.5 Mbp, the published results from HiC-Reg were always – not only in the
test case plotted in Figure 39a – better for larger distances.

To check whether the comparatively worse results from hicprediction where due to the un-
derlying algorithm or to the input data, new HiC-Reg predictions were made by converting
the corresponding hicprediction training sets to text files and using them for training and
prediction with HiC-Reg. It is obvious from Figure 37 that the results did no longer differ
much, except for the value range. This indeed points to the input data as the main cause
for the differences between hicprediction and HiC-Reg.

However, the computations from hicprediction were much more efficient both in terms of
runtime and memory consumption, see Table 6. While training took almost three hours
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in HiC-Reg, it finished within around 90 seconds in hicprediction – and this even includes
the time spent to split the data into five cross-validation sets and store them. No efforts
were made to find the cause for the significant runtime difference, but it was obvious that
HiC-Reg was using only one CPU, while hicprediction was set up to use multithreading
on all available (here, four) CPUs for the random forest regressor.

training prediction
runtime / min memory / GB runtime / min memory / GB

HiC-Reg 175,58 4,29 3,70 1,92
hicprediction 1,26 0,70 1,18 1,17

Table 6: computational effort HiC-Reg vs. hicprediction

For the example of CTCF in GM12878, the bedgraph input file converted from the corre-
sponding BAM file proved qualitatively quite similar to the example file in the HiC-Reg
github repository [24]4, see Figure 62a and 62b. However, the newly created file contained
about 55 000 (14.2%) more lines than the example file, which suggests that the original
input data to HiC-Reg must have been filtered in some way. The paper [2] provides gen-
eral information on how the data have been processed, e. g. with regard to software tools,
but unfortunately lacks detailed information for example on specific filtering procedures
or parameters. Irrespective of this, predictions with HiC-Reg using the converted BAM
files did not yield useful results, see Figure 38. It could not be clarified what went wrong,
but gradient predictions like these can occur when only distance is considered as a fea-
ture, cf. subsection 3.1. This could have happened either due to a bug in HiC-Reg or a
misunderstanding of its input file formats, some of which are only specified by example.

A concluding discussion of all changes made to hicprediction within this masterproject
will be given in section 6.

4full url: https://github.com/Roy-lab/HiC-Reg/blob/master/Scripts/aggregateSignalInRegion/
wgEncodeBroadHistoneGm12878CtcfStdRawDataRep1_chr17.counts
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Figure 36: HiC-Reg vs. hicprediction, GM12878 on K562, chromosome 17, 5 kbp, HiC-
Reg prediction reconstructed from published data [2, 51, 52, 53]
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6 Discussion and Conclusion

Throughout this masterproject, hicprediction as been amended in many ways, and several
ideas for improving predictions have been investigated.

On the input side, hicprediction now supports protein inputs in broadPeak- and bigwig
formats, besides the originally used narrowPeak files, as well as a combination of all three.
Additionally, the protein inputs can be smoothed using a Gaussian kernel. With regard
to dataset creation and training, it is now possible to remove empty samples, remove sam-
ples with a distance smaller than a certain threshold and emphasize samples based on
interaction count, feature value or TADs. Furthermore, protein signal values and interac-
tion counts can be scaled to arbitrary value ranges, extra trees can be used in addition
to random forests, and training datasets from different cell lines can be concatenated.
Moreover, cross-validation can now be performed as proposed by Zhang and colleagues
[2]. With regard to predictions, it is now possible to smoothen the predicted matrix.

However, most of the changes did not improve the predictions significantly with respect to
the main metrics, distance stratified Pearson correlation, and in most cases, the predicted
matrices also did not improve visually.

Higher-density inputs, like bigwig files, have been shown to reduce “inverted-triangle”- and
gradient-style-errors in the predictions, but there were also regions where the predictions
from narrowPeak files were actually more informative. To this end, the combination of
narrowPeak- and bigwig-inputs might be a useful one, but would need further investiga-
tions. Smoothing the protein inputs also worked surprisingly well in some regions, but
was not able to fill all empty bins when using sparse input data (narrowPeak files), at
least not in the simple setting investigated within this masterproject.

Removing empty samples prevented errors like inverted triangles in the predictions, but
also made it impossible to detect interacting regions when sparse inputs like narrowPeak
files were used. Conversely, removing empty samples did not change the results much
when using higher-density inputs, since most samples were then actually not empty.

As expected, Hi-C matrix-scaling did not influence the results much, yet too small values
should be avoided to evade problems with “logarithm plus one” representations. Scaling
proteins unexpectedly had a negative impact on the resulting predictions. The underlying
problem should be investigated further, maybe starting with floating point resolution.

Computing the mean from several single predictions seems to have its merits, as it
smoothed out small errors and noise which occurred only in one (or few) of the single
predictions. In the example used throughout this masterproject report, the difference
between the best single prediction and the mean prediction was small; the averaged pre-
diction actually even looked a bit better. No efforts have been made to check whether
this generalizes to other cell lines. However, it is generally recommendable to always
compute predictions from all available (training-)cell lines, and then the overhead for
computing the mean from the predicted matrices should be acceptable. It would also be
conceivable to look into the single predictions first and then compute the mean only from
those predictions which actually have some structure. Similar considerations also hold for
predictions from concatenated datasets – based on the available results, using them alone

49



6 Discussion and Conclusion

seems questionable, but they may be useful as an addition to the single predictions, again
possibly leaving out datasets from cell lines where the single predictions justify doing so.
However, training concatenated datasets typically requires considerably more memory
than computing the mean of the corresponding cooler matrices, and it is much slower.

The usage of extra trees instead of random forests did not cause major changes in the
predictions made for this masterproject; however, this should be verified for other cell
lines and chromosomes. If the results proof comparable across all cell lines, then using
extra trees might be favorable, because computing random split points is usually faster
than computing the best split points, as required by random forests.

Emphasizing samples with interaction count or protein feature values in a certain range
as well as emphasizing samples within TADs did not have the anticipated positive effect
on the predictions. It is not yet clear whether these sample-weighting approaches do not
work in general or whether their failure was due e. g. to inappropriate parameter search
spaces. Also, the objective function has been selected in a rather ad-hoc fashion and might
be inappropriate, since cross-validation results were always quite good, usually greater
than 0.90, but did not – and still do not – generalize very well to cross-cell predictions.
Removing samples with distances smaller than 5 kbp can also not be considered successful,
but its influence on the results seemed generally stronger than the one from the sample
weighting approaches above. While removing all samples within a certain distance might
not be useful, dropping outliers might be, especially when adjusting the value range after
removing outliers.

The comparison between HiC-Reg and hicprediction supports the notion that the predic-
tion results strongly depend on the inputs. Using (converted) inputs from hicprediction in
HiC-Reg, the comparatively good results from the publication [2] could not be confirmed.
Instead, the predictions were very similar to the ones from hicprediction, the latter however
being much faster and requiring considerably less memory. In this regard, it should also
not be forgotten that hicprediction is using two proteins fewer than HiC-Reg, because data
for RAD21 and TBP was not available in the required input formats, cf. subsection 4.2.

To comprehend, at least three tasks have to remain for future research. First, there are
meanwhile a vast number of tuning parameters for hicprediction, so figuring out useful
combinations and testing them within a reasonable timeframe has become a challenging
task. Within this masterproject, usually only one parameter has been tuned at a time,
leaving open the question whether various combinations would yield better results. Sec-
ondly, the generalization of learned models to different cell lines seems still insufficient,
despite acceptable cross-validation results on the training datasets. Investing time in
improving generalization, whether from the input or the models’ side, would therefore
certainly pay off. Thirdly, selecting and possibly filtering inputs such that they are on the
one hand dense enough to allow predicting a reasonable portion of the interaction count
matrix, but on the other hand are still indicative of DNA-DNA interactions remains a
challenge. Looking at the comparison between the published results from HiC-Reg and
the ones from hicprediction in subsection 5.7, this task seems the most important.

50



Appendices

Figures

2.0
5.0

10.0
20.0
50.0

100.0
200.0

1.0
2.0
5.0

10.0
20.0
50.0

100.0
200.0

2.0
5.0

10.0
20.0
50.0

100.0
200.0

1.0
2.0

5.0
10.0
20.0

50.0
100.0

14.5 Mbp13.5 14.0 chr 1712.0 12.5 13.0

HUVEC predicted from HMEC

HUVEC from Rao et al. 2014 [13]

NHEK predicted from K562

NHEK from Rao et al. 2014 [13]

Figure 40: Example predictions from bigwig, all samples, 5 kbp
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Figure 42: Pearson correlations for further cell lines

52



predicted from peak files

predicted from bigwig files
all samples

predicted from bigwig files
no empty samples

K562 from Rao et al. [13]

1.0
2.0
5.0

10.0
20.0
50.0

100.0
200.0
500.0

1000.0
2000.0
5000.0

1.0
2.0
5.0

10.0
20.0
50.0

100.0
200.0
500.0

1000.0
2000.0
5000.0

2.0
5.0

10.0
20.0
50.0

100.0
200.0
500.0

1000.0
2000.0
5000.0

2.0
5.0

10.0
20.0
50.0
100.0
200.0
500.0

1000.0

10.5 11.0 11.5 12.0 12.5 Mbp10.0 chr21
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Figure 46: combi prediction – many interactions, GM12878 on K562, chr21, 25 kbp
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Figure 47: Pearson correlation, GM12878 on K562, 25 kbp
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Figure 48: Pearson correlation for combined predictions, GM12878 on K562, 25 kbp
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Figure 50: Predictions GM12878 on K562 with scaled proteins, 5 kbp
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Figure 52: Protein signal value ranges for chromosome 17, 25 kbp
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Figure 53: chr17 division factors / mean signal values, 25 kbp
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Figure 54: Pearson correlation, GM12878 on K562, protein features scaled, 25 kbp
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Figure 58: matrix comparison: CTCF-based sample weighting vs. normal prediction,
GM12878 on K562, 5 kbp
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Figure 59: feature importances for CTCF-based sample weighting
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example data from Zhang et al. [24] (GM12878, CTCF)

computed from BAM file
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Figure 62: converted input data vs. example data from HiC-Reg github
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Listings

1 #bash -style code
2 # indexing a bam file
3 samtools index ${ BAMFILE } ${ BAMFILE %bam }. bai
4 # creating a bigwig file from the bam file above
5 OUTFILE ="${ BAMFILE %bam} bigwig "
6 hg19SIZE =" 2685511504 "
7 COMMAND ="-- numberOfProcessors 10 --bam ${ BAMFILE }"
8 COMMAND ="${ COMMAND } --outFileName ${ OUTFILE }"
9 COMMAND ="${ COMMAND } --outFileFormat bigwig "

10 COMMAND ="${ COMMAND } --binSize 5000 --normalizeUsing RPGC"
11 COMMAND ="${ COMMAND } -- effectiveGenomeSize ${ hg19SIZE }"
12 COMMAND ="${ COMMAND } --scaleFactor 1.0 --extendReads 200"
13 COMMAND ="${ COMMAND } -- minMappingQuality 30"
14 bamCoverage ${ COMMAND }
15 # computing mean from replicate 1 and 2 bigwig files
16 REPLICATE1 ="${ FOLDER1 }${ PROTEIN }. bigwig "
17 REPLICATE2 ="${ FOLDER2 }${ PROTEIN }. bigwig "
18 OUTFILE ="${ OUTFOLDER }${ PROTEIN }. bigwig "
19 COMMAND ="-b1 ${ REPLICATE1 } -b2 ${ REPLICATE2 }"
20 COMMAND ="${ COMMAND } -o ${ OUTFILE } -of bigwig "
21 COMMAND ="${ COMMAND } --operation mean -bs 5000"
22 COMMAND ="${ COMMAND } -p 10 -v"
23 bigwigCompare ${ COMMAND }

Listing 1: bam to bigwig

1 # default parameters for the random forest
2 #( trying to match HiC -Reg)
3 modelParamDict = dict( n_estimators =20,
4 criterion =’mse ’,
5 max_depth =None ,
6 min_samples_split =2,
7 min_samples_leaf =1,
8 min_weight_fraction_leaf =0.0 ,
9 max_features =1./3. ,

10 max_leaf_nodes =None ,
11 min_impurity_decrease =0.0 ,
12 min_impurity_split =None ,
13 bootstrap =True ,
14 oob_score =False ,
15 n_jobs =-1,
16 random_state =5,
17 verbose =2,
18 ccp_alpha =0.0 ,
19 max_samples =0.75)
20 # ... ... ...
21 #train (... , pModelParamDict = modelParamDict , ...)
22 # ... ... ...
23 model = sklearn . ensemble . RandomForestRegressor (** pModelParamDict )

Listing 2: hicprediction random forest

1 #sum up the four single predictions for cell line CL
2 #pred -On -CL_1 to _4 stand for the predicted
3 # cooler matrices from the four training cell lines
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4 cmd="--matrices "
5 cmd="${cmd} ${pred -On -CL_1} ${pred -On -Cl_2}"
6 cmd="${cmd} ${pred -on -CL_3} ${pred -On -CL_4}"
7 cmd="${cmd} -o summed -all -on -CL.cool"
8 hicSumMatrices ${cmd}
9 # divide the summed matrix by 4

10 cmd="-m summed -all -on -CL.cool"
11 cmd="${cmd} --normalize multiplicative "
12 cmd="${cmd} -- multiplicativeValue 0.25"
13 cmd="${cmd} -o mean -all -on -CL.cool"
14 hicNormalize ${cmd}

Listing 3: compute mean prediction

1 cmd="-m GSE63525_GM12878_combined_30_5kb .cool"
2 cmd="${cmd} --minDepth 80000"
3 cmd="${cmd} --maxDepth 160000 "
4 cmd="${cmd} -- correctForMultipleTesting fdr"
5 cmd="${cmd} --outPrefix ${ destinationFolder }"
6 hicFindTADs ${cmd}

Listing 4: command for finding TADs on GM12878

1 # prepare interaction count file e.g. for CTCF
2 chromosome ="chr17"
3 protName ="CTCF"
4 tmpfile ="${ protName }_${ chromosome }. bam"
5 countfile ="${ tmpfile %bam}count"
6 outfile ="${ tmpfile %bam}txt"
7 cmd="${ protName }. bam ${ chromosome }"
8 samtools view -b ${cmd} > ${ tmpfile }
9 cmd="-ibam ${ tmpfile } -bg"

10 bedtools genomecov ${cmd} > ${ countfile }
11 # $countfile is in bedgraph format
12

13 # bin the protein signals
14 # no specification could be found for the region file
15 # so just used the example
16 regionfile =" Scripts / aggregateSignalInRegion / hg19_5kbp_chr17 .txt"
17 chromsizefile ="hg19.fa.fai"
18 cmd="${ regionfile } ${ chromsizefile } ${ countfile } ${ outfile }"
19 ./ aggregateSignal ${cmd}
20 # outfile is in tab - separated text format

Listing 5: preparing inputs for HiC-Reg (example)

1 # text file which holds file names for all 12 protein features
2 featurefiles =" textfileWithNamesOfAllProteinInputs .txt"
3 # tab - separated Hi -C matrix created by convertForHicReg .py
4 matrixfile =" GM12878matrixConvertedFromHicprediction .txt"
5 outfolder ="out/"
6 cmd="${ matrixfile }"
7 cmd="${cmd} 1000000 5 regionwise ${ featurefiles }"
8 cmd="${cmd} no ${ outfolder } yes Window "
9 ./ genDatasetsRH ${cmd}

Listing 6: computing window features for HiC-Reg (example)
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1 /usr/bin/time -p -v -o $OUTFILE $COMMAND $ARGS

Listing 7: measuring resource consumption
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