
TAD detection with machine learning
classifiers
Albert Lidel

March 23, 2021

1 Introduction
Within mammalian organisms, the genomic material in form of DNA can be divided into
functional compartments called genes, which are the basic hereditary unit. Those genes
can be transcribed into RNA and later translated into proteins [5][9]. The hereditary
material of an organism can be understood as the set of genes, which is read and
analyzed with common DNA-sequencing methods [11]. The process of transcribing genes
is regulated, hence the analysis of DNA as a set of genes, is not enough, to get the
full picture of how the organism will develop with a given genome [9]. Which genes
are transcribed at a given point and time is called gene expression [9]. Determining
gene expression is an important and ongoing research topic in the field of Molecular
Biology. This is, because it allows for better understanding of how organisms develop
certain traits and how cells specialize into different functionality [3]. It also helps in
understanding the origin of certain diseases [3][9]. One aspect of how the cell regulates its
expression of genes is by the spatial formation of its genetic material [3]. Chromosomes
will entangle both within themselves, as well as with each other, forming a complex
spatial structure within the nucleus. This is accomplished with protein-DNA complexes,
which uses proteins, the so called histones, to bind two positions within the DNA strands
together. This complex is called chromatin. It serves multiple purposes, both during cell
division and outside of it. Those include reinforcement of DNA, gene expression and
dense packaging. At the smallest scale, DNA is packaged within a nucleosome. Those
nucleosomes can form higher structures. Other proteins, such as cohesin and CTCF also
play a role. The aforementioned sequencing methods are oblivious to those structures.
For this reason, sequencing methods for capturing the spatial structure of the genome
have been developed. The set of those methods is called Chromosome Conformation
Capture. While they share common steps in their pipeline, the goal of these and their
scopes vary [14]. We will look at Hi-C, which belongs to this set of methods. The pipeline
of Hi-C crosslinks DNA at a location of close spatial proximity of two strings. The DNA
will then be sheared at this location, ligated together and then sequenced. This read
is then called a di-tag or sometimes chimeric read, since it is build from two fragments

1



which were fused together because of close proximity and are not necessarily adjacent in
the original DNA string [29]. Hi-C, as all Chromosome Conformation Capture methods,
is a high-throughput approach [3]. Di-tags sequenced via Hi-C can be mapped against
a reference genome to link those tags to their two specific locations [29]. With this
information a so called Hi-C Matrix or contact matrix can be constructed. In this matrix,
one data point corresponds to the number of interactions between two locations on the
reference genome. The data is put together into bins of adjacent locations, to reduce
the size of the matrix [26]. DNA sequenced with Hi-C allows for analysis of a spatial
structure called a topological associated domain, in short TAD. TADs are formed mainly
by CTCF, but other proteins like cohesin and histones also play a role [3]. It is expected,
that they have an impact in gene expression [3]. Interactions are much more common
between loci inside a domain, than with outside loci. With this knowledge and a contact
matrix with the number of interactions between two loci, TADs and their boundaries
can be computed by a statistical approach [26]. A boundary of a TAD is defined as
either the start or end gene position of a domain [26]. Numerous programs with different
approaches for identifying boundaries and their respective TADs have been proposed
[33]. These programs are often referred to as TAD-Callers [33]. The types of detected
TADs can be either disjunctive, overlapping or hierarchical [33]. One of those programs
is hicFindTads, an algorithm which uses a sliding window of varying sizes. It computes a
score based on the number of interactions for each bin and then searches for local minima
to place disjunctive TAD boundaries [26].

2 Task
In this work, a Machine Learning approach for TAD-Calling will be implemented. To
this end, existing Machine Learning Models will be used to predict TAD boundaries from
an input Hi-C Matrix. The existing models will be classifiers from the sklearn library in
the python programming language. Different approaches and classifiers for this problem
will be tested and a few preprocessing steps to prepare and balance the Hi-C input
data will be integrated. The classification problem will consist of two classes, namely
”boundary” and ”non-boundary”. If a boundary is the start or end of a TAD will not be
distinguished and if the resulting TADs will be disjunctive, overlapping or hierarchical
might be dependent on the training set. At first, the behaviour of the hicFindTADs
TAD-Caller will be tried to emulate. Later, the quality of the prediction against a CTCF
protein track will be tried to be maximized and will also be tested against the outcome
of hicFindTADs. A few other TAD-Callers will also be tested.

3 Methods
3.1 Hi-C Matrix
As an input for our pipeline Hi-C contact matrices were used. Those contain the number
of interactions between bin i and bin j at position (i, j), resulting in a n × n matrix,

2



where n is the number of bins of the matrix. Typical bin size values range from 1
kilobases to 10 megabases, usually being referred to as the resolution of the matrix.
Kilobases and megabases in this context refer to the amount of DNA base pairs,i.e.
Adenine-Thymine, Guanine-Cytosine and reverse, in a bin. This matrix has an identity
diagonal, where position (i, i) refers to the number of interactions, a given bin has with
itself. The two halves above and below this diagonal are symmetrical to each other, i.e.
I(i, j) = I(j, i), where I(x1, x2) is the number of interactions at position (x1, x2). All
matrices are sorted by position. Multiple chromosomes can be contained in one matrix,
in which case it is grouped by chromosome in addition to being sorted by the position on
the chromosomes. The number of interactions in the matrix is a measured value by a
Chromosome Conformation Capture technique, and may be affected by artefacts and
varying coverage on different regions [31].

3.2 Normalization
A Hi-C contact matrix can be normalized to improve the comparability of matrices
of different origins and different read coverage [31]. Range normalization, sometimes
referred to min-max normalization is one of these techniques. With range normalization,
data in a set xi

in ∈ Xin is scaled to a given interval [rmin, rmax], which can be seen in
equation 1.

xi
norm = xi

in −min(Xin)
max(Xin)−min(Xin

) ∗ (rmax − rmin)− rmin[21] (1)

Another normalization option is obs/exp. With this option, an expected matrix is
computed from the observed input. This can be seen in the following equation 2, where
M is the Hi-C Matrix, i and j valid indices of this matrix and diag(i, j) the diagonal
between indices i and j.

expi,j = Σ(diag(i, j)) ∗ Σ(row(j)) ∗ Σ(row(i))/Σ(M)[31] (2)

A list of matrices M can also be scaled to the matrix of the lowest read coverage. This
matrix is defined as the matrix mi with the lowest sum of its elements si. All matrices
in the list are scaled using a scaling factor from this lowest sum, as seen in equation 3.
This is done to make matrices of different origin comparable.

S = {si|si = Σ(mi),mi ∈M} (3)
smin = min(S) (4)

m′
i = mi

si/smin
(5)

3



3.3 Boundary and protein data
As has been previously stated, boundaries are described as the start and end genes
of a given TAD. Those genes were expressed as positions on the matrix for a given
chromosome. For simplicity, disjunctive boundaries were assumed. The used input data
only contained disjunctive data. Protein track files for Hi-C inputs were also included.
Specifically CTCF track files were utilized, since a correlation between high amounts of
the CTCF protein and boundaries for TADs has been proposed [3]. Information about
domains and proteins was not directly stored within our Hi-C Matrices. Instead both
were stored in a so called BED file (browser extensible data), which can be understood
as a tab-delimited text file [24]. A BED file consists of three required columns and nine
optional columns, as can be seen in figure 1 [24]. At least the start and end position and
the chromosome, on which this data point resides, must be specified. Some of the used
protein files had custom columns for the measured peak value and other information,
which were not part of the BED standard, but were instead in the narrowPeak format
[12]. An overview of the columns for this format can be seen in table 2. Those protein
and domain files were intersected, to filter out low quality boundaries, for which no peak
could be found.

Table 1: BED file format [24]
column description
chrom chromosome name
chromStart start position on chromosome
chromEnd end position on chromosome
name custom name or .
score display value
strand +,- or . for orientation
thickStart start position for display
thickEnd end position for display
itemRgb RGB display value
blockCount number of sub-elements
blockSizes size of sub-elements
blockStarts start of sub-elements

3.4 Visualization
A matrix can be visualised with the help of a colourmap. In figure 1, a sample matrix is
displayed, with the identity diagonal over the points (i, i). For better visualization of
TADs, the matrix can be rotated by 45° and the triangle below the identity diagonal be
discarded. Then, boundary information can be inserted into the plot and a protein track
can be aligned below the matrix. Those boundaries can be visualised disjunctive, like in
figure 2 with a triangle shaped bracket. Pyramid-shape structures in the matrix of high
interaction count can be made out [31].

4



Table 2: narrowPeak file format [12]
column description
chrom chromosome name
chromStart start position on chromosome
chromEnd end position on chromosome
name custom name or .
score display darkness
strand +,- or . for orientation
signalValue measurement of this region
pValue statistical significance (p-value)
qValue statistical significance (q-value)
peak point source for peak

Figure 1: A sample Hi-C Matrix of a human chromosome 2 (high interaction areas bright)
[27]

3.5 Statistical Classification and Machine Learning
Classification in the field of Statistics is the discrimination of items into different classes
with respect to observed features. In this case a procedure was build by training a
mathematical model. Which was taught to discriminate between items with preset
classes. This is referred to as Supervised Learning. Machine Learning is an umbrella
term for procedures that learn from a given set of examples and will later be able to make

5



Figure 2: A sample Hi-C Matrix of a human chromosome 1, position 8mb to 9mb (high
interaction areas in orange) with boundary information [27]

predictions from its findings [16]. The learned examples are referred to as the training
set, whereas a set which will be predicted to validate the model is called the test set [22].
In this work, the pair of training and test set was called input set. Every example in
the input set has the same set of attributes, which are referred to as features. Those
features are used to describe the example for the classification procedure [16]. Supervised
Learning a subset of Machine Learning [16]. Within the scope of this paper, data was
discriminated between two classes, namely boundary and non-boundary. A number of
different models, also called classifiers, were tried on our data. The main approach in this
work was to make use of Ensemble Learning. Ensemble Learning is a general technique,
were multiple models are combined to improve performance [10]. Since within the scope
of this work it was necessary to train models on multiple datasets, the classifiers needed
to be able to be partially fitted [22]. Models can need fine tuning to better perform on
the given classification tasks. The parameters for the model and the pre-cleaning steps,
which have an impact on classification performance are called hyper-parameters. The
performance of different sets of values for these parameters is often tested and the best
set is later used for the classifier in production [22].

3.5.1 Decision Tree Classifier

As the name suggest, the Decision Tree Classifier internally relies upon a single Decision
Tree comprising of nodes, some of which are leaves. When training the classifier, new
nodes are build with the help of a single feature per node. The currently looked at
samples will be split by inventing a rule based on the singe feature dividing them into
subsets. This is done at multiple nodes. On predicting, which class an example belongs
to is decided by reaching a specific leaf. A classifier based on a single Decision Tree is
often not sufficient on its own, mostly because it tends to overfit on the training set [22].

6



3.5.2 Random Forest Classifier

The Random Forest Classifier belongs to the Ensemble methods and contains multiple
Decision Trees. These are trained using a subset of the training samples. Additionally, the
splitting of these samples at nodes can be controlled. Depending on the implementation,
the output of each Decision Tree by is combined by the average of the weighted output
of each tree instead or using majority voting [22]. Overall, the overfitting problem of the
Decision Tree Classifier is reduced by introducing randomness and using multiple trees
[22].

3.5.3 Bagging Classifier

The Bagging Classifier too belongs to the set of Ensemble methods. Instead of only using
internal Decision Trees, the Bagging Classifier is agnostic towards its internal classifiers,
hence a wide range of different types can be used. Sklearn recommends using so called
strong internal classifiers, which are those, who could be used as a full classifier on their
own. Like the Random Forest, the usage of multiple internal classifiers reduces the
overfitting problem and improves prediction quality [22] [15]. The training of this model
is done by so called bootstrapping, where random subsets of the training data are drawn
for each internal one. Here, the prediction is also achieved by combining the output [22].
Bagging allows for a wide range of hyper-parameters to control how many features and
samples are drawn.

3.5.4 Adaptive Boosting Classifier

Boosting is another way, as opposed to bagging, to combine multiple classifiers to improve
performance. As opposed to the later, Maclin et al. did not find a general improvement,
but calls the application of this technique more situational [15]. Also, boosting relies on
weak internal models, which could not be used as a functioning model on its own [22].
In the scope of this work, shallow Decision Trees in an Adaptive Boosting model were
used. These shallow Decision Tree are often called stumps, since they only consist of
one splitting node and leaves [6]. The Adaptive Boosting model was first introduced by
Freund et Schapire [7]. With the training set (X,Y ) with xi ∈ X being the feature and
yi ∈ Y being the label of example i, the model assigns equal weights di

t for every example.
Then, at step t, a new weak classifier is build which implements a hypothesis ht for the
data with the distribution Dt. The weak classifier either allows for weights internally
or it gets a subset of the data chosen by its weights. This hypothesis needs not to be
perfect, it just needs to be better than randomly assigning examples to classes. The error
of these hypothesis or classification εt is denoted as the sum of misaligned examples with
weights, as in equation 6. A weight for the next step at i will be updated using the old
weight, the overall weight distribution at time t, whether the hypothesis was correct for i
and the error εt. This update method will assign higher weights for misclassified samples.
This will lead to over-representation of difficult to classify examples. When predicting,
the result will be a majority vote. Adaptive Boosting is often shortened verbally to
AdaBoost [7].

7



εt =
∑

ht(i)6=yi

di
t[7] (6)

di
t+1 = update(di

t, Dt, εt, ht(i))[7] (7)

3.5.5 Other methods

Depending on the implementation, non-numerical values in numerical features may not
be accepted. This can make a pre-cleaning step necessary, where a strategy is enacted to
get rid of those values. This is being referred to as imputing. In this work, non-numeric
values where replaced with a constant number [22]. The Support Vector Classifier was
used as a comparison to other classifiers, since it is often used in classification problems
[22]. Principal Component Analysis was done for visualization of datasets and during
initial testing [22]. The Receiver Operating Statistic and feature importance plots were
used for the validation of classifiers [22].

3.6 Feature Selection
The features for our models were taken from Hi-C contact matrices. To this end, the
neighbourhood of every bin was selected. This neighbourhood contains every pair of
interactions between two bins up to a certain distance d from the observed bin b, as
in equation 8. Graphically, this leads to a square being selected over the diagonal of
the matrix for every bin, with the selected bin being at the center. Since the matrix is
symmetrical, selecting the triangle over the diagonal as can be seen in figure 3 is sufficient,
which corresponds to only selecting the Interactions between i and j, where i ≤ j as in
equation 8.

Figure 3: figure 2 with feature selection [27]

8



indicesb = [b− d, b+ d] (8)
featuresb = {I(i, j)|i ∈ indicesb, j ∈ indicesb, i ≤ j} (9)

3.7 Resampling methods
Generally a Hi-C Matrix contains more non-boundary positions than boundary positions
[31]. This makes our input dataset imbalanced, where one class has more examples
than the other one. Training Machine Learning models on imbalanced datasets can
skew models towards overemphasizing the majority class and leads to overall worse
performance [10]. Resampling methods were used to allow for meaningful classification.
These methods take an imbalanced dataset and try to balance them into a dataset
containing the same number of examples for every class [10]. In this work, four classes
of resampling methods were tested. Oversampling methods try to balance the dataset
by creating examples for the minority classes. Undersampling methods with prototype
selection try to choose examples of the majority class and discard the rest. Those with
prototype creation, try to synthesize examples from the majority class. Combined ones
try to combine both undersampling and oversampling techniques [13]. An overview of
the resampling methods that were used, can be seen in table ??. The most basic one
is Random Undersampling, in which examples are selected randomly from the majority
class. Cluster Centroids is the only prototype generation method, that we tested. It
resamples the given dataset by generating n samples, where n is the size of the minority
class, of each majority class. Those samples are generated by clustering the majority
class via KMeans Clustering, computing n clusters with one center each [13]. In the
method ”Edited Neares Neighbours”, samples are selected via local criteria. Those criteria
denote, whether or not samples with similar features are classified equally. If not, they
are pruned from the dataset. When used as a resampling method, only samples of the
majority classes are omitted. Multiple derivatives of this method exist, like Repeated
Edited Nearest Neighbour [13], but here, only the basic method was tested. Synthetic
Minority Oversampling Technique synthesizes samples for the minority classes and was
first introduced in Chawla et al.[4]. To this end, neighbours of a sample are taken and
combined to produce similar examples locally. Those neighbours are randomly chosen [4].
SMOTEENN combines Edited Nearest Neighbours and Synthetic Minority Oversampling
Technique [13].

3.8 Label Noise
An input set for training and testing can contain so called label noise. In noisy datasets,
examples are misclassified, where they are assigned to classes, to which they do not
actually belong. Common Machine Learning models for classification usually assume
a perfect input set and will be impacted severely by imperfect ones [8]. The paper
”Classification of in the Presence of Label Noise” [8] surveys multiple approaches to
learning with noisy data and calls Label Noise a big issue in many Machine Learning

9



Models. Two approaches, that were presented in this paper were used by us to improve
performance. The first approach was the testing of a label-noise-resistant model. In this
work, a Bagging Classifier was used, which belongs to this set of models [8]. This is done
by combining the output of multiple internal classifiers [8]. Another approach we took,
was to take the methodology described in the Confident Learning paper by Northcutt
et al. [17]. This work tried to estimate an input set without misclassified labels from
one with noisy labels. The authors claim, that it is a general approach, which does not
need a specific estimator to function and does not need hyperparameter tuning. To this
end, from the training set, a joint distribution between the true labels and the known
erroneous labels is estimated by computing a confident joint. From this confident joint,
the set of erroneously assigned labels is estimated. In a last step, the data is pruned
and reweighted using the confident joint and the set of erroneously assigned labels [17].
Another paper by the same authors is ”Learning with Confident Examples:Rank Pruning
for Robust Classification with Noisy Labels” [19]. This technique can be used on binary
classification problems, when one class does not contain falsely assigned labels. For our
case, this was not integrated, as it was not appropriate. But it might be done in the
future, if a class with only boundaries or one with only non-boundaries can be produced.

3.9 Easy Ensemble Classifier
In their paper ”Exploratory Undersampling for Class-Imbalance Learning”, Liu et al.
introduced two classifiers for imbalanced learning [10]. One of those two models is the
Easy Ensemble Classifier.This classifier is in actuality a Bagging Classifier, with internal
Adaptive Boosting Classifiers, which in turn use internal weak Decision Tree Classifiers.
Additionally, Random Undersampling is performed by the Easy Ensemble Classifier
beforehand. This leads to a model, which can work with an imbalanced dataset [13] [10].
As has been previously stated, Bagging is also a strategy for working with noisy datasets
[8]. This classifier was used as our default classifier in this paper.

3.10 HiCExplorer
HiCExplorer is a command line suite of tools for working with Hi-C Data [31]. It is
written in the python programming language. The most important method used in
this work was hicFindTADs, which we used by default for our training data and for
evaluation. Other tools used, were hicAdjustMatrix for cutting matrices, hicTransform
and hicNormalize for normalization, pyGenomeTracks and hicPlotMatrix for plotting
and hicInfo for getting basic information about a matrix. Also, some code snippets for
ingesting and preparing of Hi-C Matrices were taken from HiCExplorer [31]. hicFindTADs
is a subprogram of HiCExplorer. Here, from an input Hi-C Matrix TADs can be called.
hicFindTADs first computes a z-score matrix, based on the local contact frequency up to
a maximum bin distance d, similar to our feature selection method. So for every bin i,
the corresponding interactions I(x1, x2) where x1, x2 ∈ [i− d, i+ d] are considered. For
each bin in the matrix a so called TAD-separation score is calculated, which corresponds
to the mean of the values in this matrix within the interval [i− d, i+ d]. In contrast to

10



our selection method, this is done for varying distances, which can be set via parameters.
These scores are compared to the neighbourhood and local minima identified. These
minima are flagged as boundaries, if they pass as statistical significant [25].

3.11 Alternative TAD Callers
For Validation of our model we also tested it on TAD Callers other than HiCExplorer.
To this end we consulted the work ”Comparison of computational methods for the
identification of topologically associating domains” of Zufferey et al.[33] and picked TAD
Callers, which like hicFindTADs also compute disjunctive TADs. We were unsuccessful
in running SpectralTAD on our data. ClusterTAD is a unsupervised learning approach
to TAD calling. Internally, it relies on a number of clustering methods such as K-Means,
Expectation Maximization and Hierarchical Clustering. The method can be preset, if this
is not done, ClusterTAD will test multiple methods on the input data. It will also vary
the number of clusters K, which can alternatively set by a parameter. It was available
via a packaged JAR file and called via a python script [20]. rGMAP uses a Gaussian
Mixture model to classify interactions inside a domain and interactions between domains.
Then a proportion test is used to find blocks of high interaction count and TADs are
called using those two forms of information. It was available to us as a library in the R
language and called via a R script [32].

3.12 Python Libraries and Platform
For the implementation of our Machine Learning Pipeline, the python libraries scikit-
learn (sklearn for short), imbalanced-learn (imblearn) and clearnlab were imported. For
all classifiers, their implementation in the scikit-learn library was used. All classifiers
needed to implement the fit and predict methods, as can be seen in table 3 and need to
inherit from sklearn.BaseEstimator. For the directly called classifiers it was necessary
to implement a partial fit, which allows to fit an existing classifier on additional data.
In the context of sklearn, this means, that the classifier must allow a so called warm
start. The partial fit was implemented by adding additional internal classifiers via the
get_params and set_params methods [22]. An official implementation of the Easy
Ensemble Classifier exists within the imblearn library, which internally relies upon the
implementation of the Bagging Classifier and the AdaBoost Classifier of the sklearn
library [13]. This pipeline was rebuild following the source of the official version and
using the same implementations of the sklearn library. The imblearn library provided
all resampling methods [13]. The methodology of Confident Learning was integrated
from the Cleanlab library. This library provided Confident Learning as an out-of-box
pipeline called Learning with Noisy Labels. As has been previously stated, this pipeline
does not rely on hyper-parameters and works as a wrapper for any given classifier [18].
Parallelization options were provided by all libraries [22] [18] [13]. An overview of the
python libraries in our project can be found in table 8. During initial testing the Galaxy
instance of the University of Freiburg [2] was used. This included TAD calling with
hicFindTADs, as well as matrix normalization and cutting. Galaxy is a platform for

11



Table 3: methods and attributes of our classifiers
method description
fit train model on data
predict predict from passed set
get_params get parameter of estimator
set_params set parameter of estimator
attribute description
warm_start flag for partial fit
n_jobs thread count for parallelization
n_estimators number of internal classifiers

Data-Science Tasks within the field of Biomedical research [2]. It was accessed via its web
interface. For all other purposes, local computation resources were used. This included a
local installation of the Anaconda platform [1] and its associated Jupyter Notebooks [23]
for development and testing. For the TAD-Caller rGMAP, a local R distribution was
used and ClusterTAD was called via its packaged JAR version.

4 Results
In this work, the previously described methods were implemented into a python pipeline.
Then, input datasets were selected and TADs were called using hicFindTADs or alternative
TAD Callers. These called TADs, together with aforementioned datasets were used for
the training and testing of said pipeline. A default configuration was found for this
pipeline, which can be seen in table 5. Then, variations of these input parameters were
applied and tested. These variations are explained in table 6. In a last step, input data
was filtered with the help of a CTCF protein track. Then, the pipeline was tested with
this filtered data and the overlap with the protein track computed and the called TADs
visualized.

4.1 Implementation and Integration into HiCExplorer
Our pipeline was implemented into a library python file and two accessing programs.
In the library file, most of the functionality was implemented. Here, to a given input
Hi-C Matrix or a list of matrices, feature selection, normatlization and resampling can
be done. Optionally, cleanlab can be used in addition. After these pre-cleaning steps, a
given classifier can be trained on the data or TADs can be called. A pipeline to ingest
domain files in BED format and protein files in narrowPeak format was also implemented.
These files can be intersected, to filter out any low-quality TADs by checking against a
threshold value for protein peaks. Access of this library was divided into aforementioned
programs, namely into a training part and a predict part. Into the training program,
all necessary modes for training classifiers were integrated. The first mode is train_test,
which allows the testing of a new classifier with a single input set. On this set, a train-test

12



Table 4: datasets used in this work
name type genome resolution format
Rao2014 [27]. Hi-C Matrix human GM12878 10 kb cool
dm [30] Hi-C Matrix drosophelia melangaster 10 kb h5
CTCF_Rao2014 [28] protein track human GM12878 n.a. narrowPeak

split is performed and with the help of a domain file this classifier is trained and a
classification report is produced. With the train_new mode, a new classifier can be
defined and initially trained on a given input set and an associated domain file. By
default, an Easy Ensemble Classifier will be trained, but the user may specify a custom
sklearn classifier and may also pick a resampling method from a list or pass any imblearn
implementation of these methods. An additional set of hyper-parameters can be passed,
which includes the size of the feature selection and the imputing value. The output will
be a newly trained classifier in form of a pickled file. With the train_existing mode, a
pickled classifier can be passed to train it on additional input matrices with associated
domain files. The output will again be a pickled classifier in form of a file. Before using
a classifier for TAD calling, it is possible to check the performance of this classifier with
the help of the predict_test mode. Here, a given classifier with an input set can be
tested and the output compared against a passed domain file. The output will be a
classification report denoting the performance of the classifier. For all modes, a protein
file in the narrowPeak format and a threshold value can be passed to filter the passed
domain file. The actual TAD calling is provided by the second program. Here, a given
input set can either be predicted by provided default classifier, or a classifier in file form
may be passed. The output will be a domain file with the predicted boundaries. For all
nodes mentioned, the resolution and normalization method of all sets both for training
and predicted sets must match.

4.2 Datasets
For testing and fitting our pipeline, a couple of datasets were used from multiple sources.
Our main dataset, both for explorative testing and training of our pipeline, was the Hi-C
Matrix of the human genome from Rao et al. [27]. Another dataset was the genome of a
Drosophilia Melanogaster (a type of fly) from a Galaxy Tutorial [30]. For our matrices
protein track files were found, where possible. As previously stated, TAD boundaries for
our input sets were produced using hicFindTADs or our alternative TAD-Callers.

4.3 Exploration of parameters for hicFindTADs
With the goal to providing a first baseline for our classifier, hicFindTADs was used to
call TADs on the Rao2014 matrix. Hyper-parameters of hicFindTADs were varied and
the output was checked visually for the best result. This was repeated for every input
dataset. The results can be seen in table 5. These results were compiled into domain
files and associated protein files were found.

13



Table 5: Default parameters for hicFindTADs and our classification
hicFindTADs
parameter value
min. win. size 30000
max. win. size 100000
step size 10000
corrections FDR
q-value 0.03
threshold 0.01

classification
parameter value
resampling method Random Undersampling
classifier Easy Ensemble Classifier
number of estimators 90
distance 20
resolution 10kb
normalization obs/exp
impute value -1
use cleanlab no

4.4 Exploration of classifiers, resampling methods and parameters
For the decision on which model will be used, a number of different classifiers were
initially tested for their performance on the Rao2014 dataset and the domain file provided
by hicFindTADs. Due to its abundance in literature, the Random Forest Classifier
was tested at first, which yielded results, which were not significant enough to further
explore this classifier. Then, other Machine Learning approaches where tested, namely
boosting and bagging. Boosting alone, in form of a AdaBoost Classifier also under
performed on the given dataset. Approaches with Bagging on Decision Trees or Support
Vector Classifier were also abandoned. Initially very promising results yielded the
combination of boosting and bagging in form of the Easy Ensemble Classifier. Due to this
results, this classifier became the default from there on. Also, as a baseline, some initial
parameters were set 5. The default resampling method of Random Undersampling was
varied. The baseline method of each class of resampling methods, namely oversampling,
undersampling prototype creation and undersampling prototype selection, was tested.
Promising results beyond Random Resampling was given by the prototype creation
method Cluster Centroids. The results of these tests can be seen in table 6 test 1 - 9,
where chr1 of Rao2014 served as the test set and the remainder of the genome as the
training set. Some hyperparameters of our pipeline were explored, to get some insights
and exclude some ranges of parameters for later tuning. The results can be seen in table
6 test 13 - 22. Different normalization methods were tested, namely range normalization

14



and obs/exp normalization. Also, the maximum distance of the feature selection and
tried different ranges for the range normalization were varied. Imputing values were also
varied. In a last test, LearningWithNoisyLabels of the cleanlab library was used. Do
note, that this procedure assumes a perfect test set, which was not given in our case [18].
As an additional insight, Principal Component Analysis was performed in the feature
selection step. While this approach was abandoned during initial testing, the result of it
can be seen on a subset of the data in figure ?? with three components. As can be seen,
no clear distinction between boundaries and non-boundaries can be recognized. Also no
clear clusters seem to form. Do note, that the implementation of Principal Component
Analysis of the sklearn library has no knowledge about the classes of the data. For further
validation of the Easy Ensemble Classifier, the Receiver Operating Statistic was plotted.
This can be seen in figure 5. This plot shows a clear advantage of this classifier over
random assignment. Also, in figure 6, the importance of features was displayed. Here,
the distance was reduced to 15 for better visualization. Every bar in this plot denotes to
a feature in the training set. The height of each bar is equal to the importance of this
feature for classification. Hence, how big the value of this features has an impact on the
class of an example. Bars in red were interactions on the identity diagonal of the matrix.
Importance of features seem not to be uniformly distributed. While there were some
features in red, which seem to be overemphasized, this does not seem to be a general rule.

4.5 Testing on different datasets and TAD Callers
To check, whether our pipeline can generalize from the provided examples, our classifiers
were trained on the Rao2014 dataset and later tested on the matrix of Drosophilia
Melanogaster. The results can be seen in table 6 test 10 - 12. The prediction quality
dropped compared to the tests within the Rao2014 dataset itself, but remained clearly
over random chance. This was true for all tests, including variations of the resampling
method, although with worse prediction performance. As an additional validation of our
model, it was tested against other TAD callers. As has been previously mentioned, two
alternative TAD Callers were used. Instead of producing a domain file for the input set
with hicFindTADs, instead this set was produced with another TAD Caller. This means,
that the classifier was trained on the behaviour of the chosen TAD Caller and then tested
if it can reproduce this behaviour. This was done for rGMAP and ClusterTAD. The
classifier was able to reproduce the behaviour of rGMAP well within the Rao2014 dataset,
but performance dropped significantly when trained on the Rao2014 dataset and tested
on the dm dataset. When using ClusterTAD as a TAD Caller, only an accuracy of 0.867
could be achieved inside the Rao2014 dataset. On the dm dataset, the classification
performance dropped to the performance of random chance. The testing of SpectralTAD
failed. The results can be seen in table 6 test 23 - 26.

4.6 Validation against a CTCF track and Visualization of TADs
In a last step, TADs were called using aforementioned classifier on a matrix, like it would be
used in production. Here, instead of using the obs/exp normalization, range normalization

15



Table 6: condensed results table. If not otherwise noted, default parameters were used
#Test parameter variations training set test set accuracy
1 None Rao2014 Rao2014 0.917
2 Random Forest;ENN Rao2014 Rao2014 0.506
3 Random Forest;SMOTE Rao2014 Rao2014 0.554
4 Random Forest;Cluster Centroids Rao2014 Rao2014 0.661
5 Edited Nearest Neighbour Rao2014 Rao2014 0.682
6 SMOTE Rao2014 Rao2014 0.836
7 Cluster Centroids Rao2014 Rao2014 0.881
8 Bagging Classifier (SVC);Cluster Centroids Rao2014 Rao2014 0.62
9 Bagging Classifier (Decision Tree);Cluster Centroids Rao2014 Rao2014 0.722
10 None Rao2014 dm 0.808
11 Cluster Centroids Rao2014 dm 0.736
12 use cleanlab Rao2014 dm 0.771
13 distance = 4 Rao2014 Rao2014 0.886
14 distance = 5 Rao2014 Rao2014 0.917
15 distance = 10 Rao2014 Rao2014 0.892
16 distance = 15 Rao2014 Rao2014 0.931
17 distance = 20 Rao2014 Rao2014 0.917
18 distance = 25 Rao2014 Rao2014 0.914
19 range normalization (0-10) Rao2014 Rao2014 0.92
20 range normalization (0-1) Rao2014 Rao2014 0.92
21 impute value = 0 Rao2014 Rao2014 0.917
22 use cleanlab = True Rao2014 Rao2014 0.871
23 use input data build with ClusterTAD Rao2014 Rao2014 0.867
24 use input data build with ClusterTAD Rao2014 dm 0.447
25 use input data build with rGMAP Rao2014 Rao2014 0.958
26 use input data build with rGMAP Rao2014 dm 0.671

16



Figure 4: selection of boundary (blue) and non-boundary (red) data points on chromo-
some 2 of Rao 2014 [27] clustered with Principal Component Analysis with 3
components

was used and the parameter distance was reduced to 15, since those parameters seemed
to perform better. Instead of an unfiltered domain file from hicFindTADs, the classifier
was trained on a domain file, which was intersected with a CTCF protein track. Only
boundaries with a CTCF peak on the same position were considered. After TAD Calling,
the resulting domain files were tested against the same CTCF track and the percentage of
matched boundaries were written into table 7. An additional step was introduced, which
filtered out called boundaries at positions, where a boundary was already called in the
vicinity of 50kb. As can be seen, about 50% of the boundaries computed by our classifier
had a CTCF peak at their position. Due to the difference in number of boundaries called
between our classifier and hicFindTADs, it was difficult to compare outcomes. Instead, a
subset of the computed TADs were visualized in figure 7 for hicFindTADS, figure 8 for
the classifier without cleanlab used and figure 9 for the classifier with cleanlab used.

17



Figure 5: Receiver Operating Statistic for the Easy Ensemble Classifier of test 1

Figure 6: Feature importance of features in test 16. Features on diagonal in red

5 Discussion and Conclusion
Our proposed feature selection and choice of input matrices seemed to be sufficient to
describe the data. Our testing of resampling strategies with a high sample size of over
10000 samples, showed, that only Cluster Centroids provided a comparable performance
during initial testing to Random Undersampling. A functional model in the Bagging
Classifier with AdaBoost Classifiers as base estimators was found, which proved to be
noise robust and worked well with our imbalanced dataset. Overall, an accuracy score in

18



Table 7: Called TADs for chr1 of Rao2104 matched with a CTCF narrowPeak track
TAD Caller matched boundaries total boundaries match percentage
hicFindTADs 413 659 62.67%
classifier with cleanlab 624 1199 52.04%
classifier without cleanlab 581 1082 53.70%

Figure 7: subset of TADs called with hicFindTADs on Rao2014 and CTCF track[28]

Figure 8: subset of TADs called with our classifier without cleanlab on Rao2014 and
CTCF track[28]

Figure 9: subset of TADs called with our classifier with cleanlab on Rao2014 and CTCF
track[28]

19



Table 8: used python libraries and their versions
library version
sklearn 0.23.2
imblearn 0.7.0
cleanlab 0.1.1
hicexplorer 3.5
hicmatrix 14
pybedtools 0.8.1
python 3.7.8
pandas 1.1.0
numpy 1.19.1
matplotlib 3.3.0
scipy 1.5.2

the low 90% range could be achieved without hyper-parameter tuning. A score in the
low 80% range could be achieved when testing on a different dataset. Our chosen model
can be expanded by introducing additional estimators and training new data on them
[22]. We were able to implement our pipeline as a python application and integrate it
into HiCExplorer. The major challenge of our input was label noise introduced by false
positives and false negatives. We were not able to produce a input dataset with close to
perfect accuracy. Hence, our model can only mimic the behaviour of the tested TAD
Callers. This also means, that achieving a score close to 100% is not desirable and might
not reflect a better performance. Our classifier seemed to call more TADs than the input
data set it was trained with. The output of the TAD Calling had a large intersection
with a given CTCF track. The performance of our TAD Caller was difficult to compare
to the performance of hicFindTADs due to differing numbers of called TADs.

References
[1] Anaconda software distribution, 2020.

[2] Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier,
Martin Čech, John Chilton, Dave Clements, Nate Coraor, Björn A. Grüning, Aysam
Guerler, Jennifer Hillman-Jackson, Saskia Hiltemann, Vahid Jalili, Helena Rasche,
Nicola Soranzo, Jeremy Goecks, James Taylor, Anton Nekrutenko, and Daniel
Blankenberg. The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2018 update. Nucleic Acids Res., 46(W1):W537–W544, 2018.

[3] Boyan Bonev and Giacomo Cavalli. Organization and function of the 3d genome.
Nature Reviews Genetics, 17:661–678, 10 2016.

[4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

20



Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

[5] FRANCIS CRICK. Central dogma of molecular biology. Nature, 227(5258):561–563,
Aug 1970.

[6] Akash Desarda. Understanding adaboost, 2019.

[7] Yoav Freund and Robert E. Schapire. A short introduction to boosting. 1999.

[8] Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: A
survey. Neural Networks and Learning Systems, IEEE Transactions on, 25:845–869,
05 2014.

[9] Jiannan Guo. Transcription: the epicenter of gene expression. Journal of Zhejiang
University SCIENCE B, 15(5):409–411, May 2014.

[10] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou. On the class imbalance problem.
In 2008 Fourth International Conference on Natural Computation, volume 4, pages
192–201, 2008.

[11] James M. Heather and Benjamin Chain. The sequence of sequencers: The history
of sequencing dna. Genomics, 107(1):1–8, Jan 2016.

[12] W. James Kent, Charles W. Sugnet, Terrence S. Furey, Krishna M. Roskin, Tom H.
Pringle, Alan M. Zahler, Haussler, and David. The human genome browser at ucsc.
Genome Research, 12(6):996–1006, 2002.

[13] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn:
A python toolbox to tackle the curse of imbalanced datasets in machine learning.
Journal of Machine Learning Research, 18(17):1–5, 2017.

[14] Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev,
Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O.
Dorschner, Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark Groudine,
Andreas Gnirke, John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lander, and
Job Dekker. Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. Science, 326(5950):289–293, 2009.

[15] Richard Maclin and David Opitz. An empirical evaluation of bagging and boosting.
AAAI/IAAI, 1997:546–551, 1997.

[16] D. Michie, D. J. Spiegelhalter, and C.C. Taylor. Machine learning, neural and
statistical classification, 1994.

[17] Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Confident learning: Estimating
uncertainty in dataset labels, 2019.

[18] Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Cleanlab, 2021.

21



[19] Curtis G. Northcutt, Tailin Wu, and Isaac L. Chuang. Learning with confident
examples: Rank pruning for robust classification with noisy labels. In Proceedings of
the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI’17. AUAI
Press, 2017.

[20] Oluwatosin Oluwadare and Jianlin Cheng. Clustertad: an unsupervised machine
learning approach to detecting topologically associated domains of chromosomes
from hi-c data. BMC Bioinformatics, 18(1):480, Nov 2017.

[21] S. Gopal Krishna Patro and Kishore Kumar Sahu. Normalization: A preprocessing
stage. CoRR, abs/1503.06462, 2015.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[23] Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific
computing. Computing in Science and Engineering, 9(3):21–29, May 2007.

[24] Aaron R. Quinlan and Neil Kindlon. bedtools, Jan 2021.

[25] Fidel Ramirez, Vivek Bhardwaj, Laura Arrigoni, Kin Chung Lam, Björn A. Grüning,
José Villaveces, Bianca Habermann, Asifa Akhtar, and Thomas Manke. High-
resolution tads reveal dna sequences underlying genome organization in flies. Nature
Communications, 9(1):189, Jan 2018.

[26] Fidel Ramirez, Joachim Wolff, Björn Grüning, Vivek Bhardwaj, Devon Ryan, and
Friederike Dündar. Deeptools/hicexplorer/, 2020.

[27] Suhas S.P. Rao, Miriam H. Huntley, Neva C. Durand, Elena K. Stamenova, Ivan D.
Bochkov, James T. Robinson, Adrian L. Sanborn, Ido Machol, Arina D. Omer,
Eric S. Lander, and Erez Lieberman Aiden. A 3d map of the human genome at
kilobase resolution reveals principles of chromatin looping. Cell, 159(7):1665–1680,
Dec 2014.

[28] Snyder Stanford University. Stanfordchipseqgm12878ctcf(sc− 15914)std,Mar2021.

[29] Furlan-Magaril M et al. Wingett S, Ewels P. Hicup: pipeline for mapping and processing
hi-c data. 2015.

[30] Joachim Wolff. Galaxy hi-c training material dm3, Feb 2018.

[31] Joachim Wolff, Leily Rabbani, Ralf Gilsbach, Gautier Richard, Thomas Manke, Rolf
Backofen, and Björn A Grüning. Galaxy HiCExplorer 3: a web server for reproducible
Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization.
Nucleic Acids Research, 48(W1):W177–W184, 04 2020.

22



[32] Wenbao Yu, Bing He, and Kai Tan. Identifying topologically associating domains and
subdomains by gaussian mixture model and proportion test. Nature Communications,
8(1):535, Sep 2017.

[33] Marie Zufferey, Daniele Tavernari, Elisa Oricchio, and Giovanni Ciriello. Comparison
of computational methods for the identification of topologically associating domains.
Genome Biology, 19(1):217, Dec 2018.

23


	Introduction
	Task
	Methods
	Hi-C Matrix
	Normalization
	Boundary and protein data
	Visualization
	Statistical Classification and Machine Learning
	Decision Tree Classifier
	Random Forest Classifier
	Bagging Classifier
	Adaptive Boosting Classifier
	Other methods

	Feature Selection
	Resampling methods
	Label Noise
	Easy Ensemble Classifier
	HiCExplorer
	Alternative TAD Callers
	Python Libraries and Platform

	Results
	Implementation and Integration into HiCExplorer
	Datasets
	Exploration of parameters for hicFindTADs
	Exploration of classifiers, resampling methods and parameters
	Testing on different datasets and TAD Callers
	Validation against a CTCF track and Visualization of TADs

	Discussion and Conclusion

