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Abstract

Ribonucleic acid (RNA) is an essential biological macromolecule in all biological cells. Com-
putational prediction techniques may be used to determine how two RNA molecules will form
intermolecular base pairing. A variety of biophysical and biochemical approaches are there to
test the RNA-RNA interactions (RRIs). At very large computational expense, there are a range
of algorithms in the literature that can anticipate a lot of these interactions.

The identi�cation of non-coding (nc)RNA targets is largely regulated by two factors, namely
the consistency of the duplex between the two interacting RNAs and the internal structure of
both mRNA and ncRNA. Approaches may also be divided between various major categories
based on whether they consider the inter- and intramolecular structure. One such approach
is the accessibility based interaction prediction model, which helps us in �nding the single-site
interaction of two RNAs. IntaRNA is a tool for rapid and precise prediction of interactions for
an accessibility based approach.

Within this thesis, we developed a model using an iterative scheme that predicts concurrent
blocks of interactions within an accessibility based prediction model and provides us with the
prediction of joint structure for the interacting RNAs and total energy. The proof for the energy
of a respective Multi-site RRI is computed from the two energies is also shown. The respective
extensions of the IntaRNA package will be included in the main package for external usage and
further development. The comparison between various RNAs molecules have been tested and
the output is been provided with polygon plots. Further to that, alternative RRIs prediction
approaches and advance improvements and drawbacks are discussed within the thesis.
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Zusammenfassung

Ribonukleinsäure (RNA) ist ein essentielles biologisches Makromolekül in allen biologischen
Zellen. Computergestützte Vorhersagetechniken können verwendet werden, um zu bestimmen,
wie zwei RNA-Moleküle eine intermolekulare Basenpaarung bilden. Es gibt verschiedene bio-
physikalische und biochemische Ansätze, um die RNA-RNA-Wechselwirkungen (RRIs) zu testen.
Bei sehr hohem Rechenaufwand gibt es in der Literatur eine Reihe von Algorithmen, die viele
dieser Wechselwirkungen antizipieren können.

Die Identi�zierung von durch nicht-kodierende RNAs regulierten RNAs wird weitgehend
durch zwei beein�usst reguliert, nämlich die Konsistenz des Duplex zwischen den beiden in-
teragierenden RNAs und die interne Struktur von mRNA und ncRNA. Ansätze können auch in
verschiedene Hauptkategorien unterteilt werden, je nachdem, ob sie das inter- und intramoleku-
lare Gerüst berücksichtigen. Ein solcher Ansatz ist das auf Accessibility basierende Interak-
tionsvorhersagemodell, das uns hilft, die Single-Site-Interaktion zweier RNAs zu �nden. In-
taRNA ist ein Werkzeug zur schnellen und präzisen Vorhersage von Interaktionen für mit Hilfe
eines solchen Accessibility basierenden Ansatz.

In dieser Arbeit haben wir ein Modell entwickelt, das gleichzeitig auftretende Interaktionen
mit Hilfe eines auf Accessibility basierenden modells vorhersagt. Der Beweis für die Energie eines
jeweiligen RRI mit mehreren Standorten, der aus den beiden Energien berechnet wird, wird eben-
falls gezeigt. Die jeweiligen Erweiterungen des IntaRNA-Pakets werden zur externen Verwendung
und Weiterentwicklung in das Hauptpaket aufgenommen. Der Vergleich zwischen verschiedenen
RNAs-Molekülen wurde getestet und mit Polygon-Plots visualisiert. Darüber hinaus diskutierten
wir über den Vergleich zwischen den RRI-Vorhersageansätzen und über Verbesserungen und
Nachteile.

iv



Contents

Abstract iii

Kurzfassung iv

1 Introduction 1

1.1 Biological Background of RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Formal background of RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 RNA Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Nested secondary structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Nearest neighbor model and energy contributions . . . . . . . . . . . . . 4
1.2.4 Structure probabilities and McCaskill algorithm . . . . . . . . . . . . . . 6

1.3 RNA-RNA Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Formal background of RNA-RNA interactions . . . . . . . . . . . . . . . . 8

1.4 RNA-RNA Interaction Prediction Approaches . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Hybridization-only interaction prediction . . . . . . . . . . . . . . . . . . 11
1.4.2 General RNA�RNA interaction prediction . . . . . . . . . . . . . . . . . . 12
1.4.3 Concatenation-based RNA-RNA interaction prediction . . . . . . . . . . . 14
1.4.4 Accessibility-based interaction prediction . . . . . . . . . . . . . . . . . . 15
1.4.5 Comparison of approaches for RRI prediction . . . . . . . . . . . . . . . . 17

2 Multi-site Accessibility Based 19

2.1 RNAup - Exact Recursion for single-site . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 IntaRNA - Heuristic recursion for single site . . . . . . . . . . . . . . . . . . . . . 21
2.3 Iterative scheme for double-site RRIs . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Generalization to multi-site RRI prediction . . . . . . . . . . . . . . . . . . . . . 24

3 Results & Discussion 25

3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 OxyS � fhlA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Spot42 � sthA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Spot-42 - gltA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Spot-42 - srlA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Spot-42 - nanC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Spot-42 - xylF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 GcvB � oppA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 DicF - ftsZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 S-mRNA - EGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Details of studied RRIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



4 Summary 42

Bibliography 43

Appendices 46

A RNA Sequences 47

vi



Chapter 1

Introduction

RNA molecules play important roles in various biological processes. Their regulation and func-
tion are mediated by interacting with other molecules, e.g by forming base pairs between two
RNAs, called RNA-RNA interactions (RRI). Many RNAs interact via multiple synchronous,
non-overlapping sub-interactions (M-RRI), e.g. OxyS-fhlA. There are fast and reliable single in-
teraction site (S-RRI) prediction tools like IntaRNA, which helps us in predicting mRNA target
sites for given non-coding RNAs (ncRNAs), also they are capable of modeling all sites individu-
ally but not in a joint prediction. The simultaneous prediction of both intra- and inter-molecular
base-pairing allowing for multiple sites is computationally expensive. Some known approaches
are IRIS, piRNA, NUPACK. Here we use a S-RRI prediction tool (namely IntaRNA) for the
prediction of M-RRI.

1.1 Biological Background of RNA

In this thesis, I am focusing on Ribonucleic Acids (RNA). First of all, I would like to provide
the basic biological background that is essential for the thesis. Ribonucleic acid or RNA, DNA
(deoxyribonucleic acid) and proteins are the three major biological macromolecules that are im-
portant for all known forms of life. The interaction between the two RNAs plays a vital role in
basic cellular activities like transcription, RNA processing, and translation. Transcription is the
process in which DNA is copied to RNA. The Translation is the process in which RNA is used
to produce proteins. RNAs also play a vital role in protein synthesis.

The main di�erence between DNA and RNA is that, DNA is double-stranded and RNA is
a single-stranded molecule. Each strand of RNA is a sequence of four building blocks called
Nucleotides. Each nucleotide contains sugar, phosphate and nitrogen containing bases. The
sugar and phosphate groups form the backbone of the RNA strand and the bases bond to each
other. The RNA molecules are represented as a sequence S ∈ {A,C,G,U}∗, where A (adenine),
C (cytosine), G (guanine), U (uracil) are the bases of the nucleotide chain.

According to their potential for coding, RNAs are classi�ed into two major categories i.e.,
coding RNAs and non coding RNAs. Coding RNAs mostly refer to mRNA that encodes protein
to act as di�erent components including cell structures, signal transductors, and enzymes. Non
coding RNAs act as cellular regulators with no protein encoding.
Complementary bases C-G and A-U form stable base pairs with each other using hydrogen bonds.
These are called Watson-Crick pairs. U -G base pairs is the weaker wobble pairs. Together they
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are called canonical base pairs. In general, isolated base pairs are unstable. If interacting bases
belong to the same molecule of RNA, they form intra-molecular structures and if they belong to
di�erent molecules of RNA, they form inter-molecular structures.

The prediction of RNA-RNA interaction is intended to predict these intermolecular struc-
tures between two RNA molecules, an extremely important step in understanding the role of
ncRNAs. However, intramolecular and intermolecular structures are not mutually exclusive.

Figure 1.1: Schematic representation of the secondary structure (a set of base pairs) for the
RNase P RNA molecule of Methanococcus marapaludis from the RNase P Database. Thick blue
dots represents base pairs and red dashed boxes represent structural features such as stacking,
bulges, hairpin , interior, multi loops and pseduoknot structure. This �gure was taken from the
RNA Strand webpage. (Andronescu et al., 2008)

Single-stranded nucleic acid sequences contain many complementary regions that can form
double helices when the molecule is folded back onto itself. The resulting pattern of double
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helical stretches interspersed with loops is called the secondary structure of an RNA.

1.2 Formal background of RNA

Here in this section, I would like to bring up the formal de�nitions of ribonucleic acid.

1.2.1 RNA Structure

The RNA molecules are represented as a sequence S ∈ {A,C,G,U}∗. Formally, an RNA sec-
ondary structure P of S is a set of base pairs:

P ⊆ {(i, j)|1 ≤ i < j ≤ n, Si and Sj are complementary },

where n = |S| and for all (i, j), (i′, j′) ∈ P :

(i = i′ ⇔ j = j′) and i 6= j′

To form a valid secondary structure, the base pairs must satisfy some limitations. Let the
bases be numbered from 1 to N in a sequence. If the bases are complementary, a base pair may
form between positions i and j, if |j− i| ≥ 4, since there must usually be at least three unpaired
bases in a hairpin loop. Let k and l bases form another permissible pair. If the two pairs can
be present in a structure simultaneously, then the pair (k, l) is said to be compatible with the
pair (i, j) . If they are non-overlapping (e.g. i < j < k < l ) or if one is nested within the other
(e.g. i < k < l < j ) then the pairs are said to be compatible. The �nal case, where the pairs
are interlocking or crossing (e.g. i < k < j < l ) is called pseudo-knot. These pairs are taken to
be incompatible with most programs. A permitted secondary structure is a set of base pairs, all
compatible with one another.

They are di�erent types of RNA secondary structure. i.e. nested and crossing structures.
Crossing structures contain pseudo-knots, where two structure parts overlap. Nested structures
doesn't have any crossing arcs.

1.2.2 Nested secondary structure

Nested secondary structures can be uniquely decomposed into so called loops or secondary struc-
ture elements. Depending on the number of enclosed base pairs and unpaired bases, di�erent
types of secondary structure elements are distinguished. These are hairpin loop, stacking, bulge
loop, internal loop, multi loop.
Let S be a �xed sequence. Further, let P be an RNA structure for S.

• a base pair (i, j) ∈ P is a hairpin loop if
∀i < i′ ≤ j′ < j : (i′, j′) /∈ P.

• a base pair (i, j) ∈ P is a stacking if
(i+ 1, j − 1) ∈ P

• two base pairs (i, j) ∈ P and (i′, j′) ∈ P form an internal loop (i, j, i′, j′) if
i < i′ < j′ < j ; (i′ − i) + (j − j′) > 2 ; no base pair (k, l) between (i, j) and (i′, j′)
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• An internal loop is called left (right, resp.) bulge if
j = j′ + 1 or i′ = i+ 1

• A k-multiloop consists of multiple base pairs, (i1, j1)... (ik, jk) ∈ P with a closing base pair
(j0, ik+1) ∈ P with the property that
∀0 ≤ l ≤ k : (jl < il+1) ; ∀0 ≤ l, l′ ≤ k there is no base pair (i′, j′) ∈ P with i′ ∈ [jl...il+1]
and j′ ∈ [j′l ...il′+1] .

• (i1, j1)...(ik, jk) are called the helices of the multiloop.

1.2.3 Nearest neighbor model and energy contributions

DeVoe and Tinoco (1962) said vertical stacking of bases gives the largest contribution to the
stability of the RNA helix. The stacking of unpaired bases is less predictable and stable than the
paired bases. Hence, the directly neighboured bases must be taken into account while estimating
the energy contribution of a base pair, which results in the Nearest Neighbor Model (Borer et al.,
1974).

The Nearest Neighbor Model helps to measure a free energy estimate for a given RNA sec-
ondary structure. The free energy can be taken as the amount of energy stored in a system. The
system is more stable, when the energy is lower. Hence, for the most stable structure of RNA,
we go for minimum free energy (MFE). The energy di�erence between the reference state to the
system is measured. We have a reference system that we use to understand the stability of the
system. The reference is an RNA structure with no base pairing (the open chain) ie., E(φ) = 0.
Hence, we need to check not only the hydrogen bonds but also the stacking stability. The Nearest
Neighbor Model uses a loop-based structure decomposition. To avoid the duplication of stacking,
only inner stacking is taken into account.

The terminal mismatch consists of the �rst unpaired bases immediately after the stacking.
The identity of the terminal mismatch provides the energy of the loop. In Bulge or Internal loop
also we have the same energy contribution. Energy contributions for external base pairs, which
are not enclosed by any other base pairs, are referred to as dangling end contributions.
The energy E(P ) Eq. 1.2.1 of a nested secondary structure P can be estimated by the sum of
loop contributions (see Figure 1.2)

E(P ) =
∑

(i,j)∈P


eH(i, j) : if hairpin loop,

eSBI(i, j, k, l) : if stack/bulge/internal loop,

eM (i, j, x, x′) : if Multi loop,

(Eq. 1.2.1)

Where eH , eSBI , and eM are the context sensitive energy contributions of the loops. (k, l)
represents the enclosed base pair of the stack, bulge or internal and x represents the unpaired
bases and x′ represents the helices enclosed in the multi loop. There is an exponential number
of possible multi loop composition. The energy for them can be estimated as below

eM (i, j, x, x′) = eMa + eMb x+ eMc x
′

where the pseudo energy parameter eMa scores the multi loop closing base pair (i, j) , eMb rep-
resents the penalty for x directly enclosed unpaired bases x and eMc scores x′ enclosed helices.
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Thus the nearest neighbor model gives the energy contributions for the loop types.

Figure 1.2: Energy contributions of loops. The Figure is taken from (Andronescu et al., 2010)

From the above energy model, we can de�ne a recursive dynamic programming algorithm to
compute the structure which minimizes the energy function, this is called minimum free energy
(mfe) structure. This algorithm was introduced by Zuker and Stiegler (1981).

The basic substructures of the secondary structure of the RNA sequence (i.e., stack, hairpin,
internal and multi-loop) are independent of each other and the energy of the secondary structure
is assumed to be the sum of the energies of the substructures. The algorithm is executed in two
steps with a single RNA sequence as input. Firstly, the minimum free energy of the input RNA
sequences is calculated, then traceback is used to recover the respective secondary structure with
the base pairs. Thus given an RNA sequence S, Zuker's algorithm predicts the non-crossing,
minimal energy structure P of S in O(n3) time and O(n2) space.

The most commonly used are the Turner parameters ((Mathews et al., 1999), (Mathews et al.,
2004)) which can be found in the Nearest Neighbor Data Base NNDB. There are signi�cant dif-
ferences in the loop energies especially in the multi-loop scoring. Below is the parameter sets
from the Vienna RNA package.

For multi-loop param ( using turner 1999), by using eMabc as introduced above

A= 3.4 , B= 0.4 , C= 0
The stability of a 3 stem multi loop is calcualted by the equation:

4G = A+B + C
A+2(B) {loop degree of 2}
therefore, the value is 4.2

For multi-loop param ( using turner 2004),
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A= 9.3 , B= -0.9 , C= 0
The stability of a 3 stem multi loop is calcualted by the equation:

4G = A+B + C
A+2(B) {loop degree of 2}
therefore, the value is 7.5

1.2.4 Structure probabilities and McCaskill algorithm

Let's discuss about the structural information in terms of probabilities. According to the prin-
cipal of maximum entropy (Jaynes, 1957) the best probability distribution for the calculation of
the structure or base pair probability is the Boltzmann Distribution. These probabilities are cal-
culated according to the Boltzmann weight. For RNA structures, the unit of the energy value is
kcal
mol or

J
mol . The RNA structure energy is been rescaled for Boltzmann weight computation. i.e.,

we replace Boltzmann constant kB with the "mol-scaled" gas constant R to get the Boltzmann
weight w(P ) of a structure P as:

w(P ) = exp

(
−E(P )

RT

)
(Eq. 1.2.2)

Where E(P ) represents the state energy, R represents the gas constant and T is the temper-
ature.
The partition function Z can be calculated using the Boltzmann weights. Z is the sum of the
Boltzmann weights of all states within P, which is the set of all possible structures P that can
be formed by S.

Z =
∑
P∈P

w(P ) (Eq. 1.2.3)

Z is used for the calculation of structure and base pair probabilities. So in the total sum,
the distribution does not change from a macroscopic point of view, therefore thermodynamic
balance is reached.
The probability of an RNA structure P is given by

Pr[P |P] = w(P )

Z
(Eq. 1.2.4)

We can also calculate the probabilities of unpaired regions. Formally, we will identify the
probability of the subsequences i..j to be unpaired by Pu

i,j . This probability depends on the
whole ensemble of structures that can be formed by the RNA molecule of interest. Thus, it can
be computed by

Pu
i,j =

Zu
ij

Z

where Zu
i,j is the partition function of all structures where the subsequence i..j is unpaired. i.e.,

Zu
i,j =

∑
P⊂Pu

i,j

w(P ) = Z(Pu
i,j)

6



Figure 1.3: Exemplary structures that are unpaired in the subsequence i..j. The Figure was
inspired by the lecture material of RNA bioinformatics lecture.

where Pu
i,j is the ensemble of all structures that are unpaired between i and j. i.e.,

Pu
i,j= {P | @(k, l) ∈ P : i ≤ k ≤ j or i ≤ l ≤ j} ⊆ P

The calculation of accessibility of single stranded regions is carried out using unpaired prob-
ability (Mückstein et al., 2006), hence it is very important.

Di�erent probabilities can be calculated using McCaskill algorithm. The McCaskill algorithm
(McCaskill, 1990) is used to calculate the partition function Z for a given sequence S, which
can be used to compute probabilities. It enables e�cient computing of the probabilities of the
structure of the RNA as well as the probability that a certain base pair is formed. Also besides,
unpaired probabilities for subsequences can be calculated that re�ect the accessibility of RNA
parts for other interactions.

1.3 RNA-RNA Interaction

The interaction of RNA molecules is an essential factor for regulatory processes in all organisms.
Computational prediction of RNA-RNA interactions (RRI) is a central methodology for the
speci�c investigation of inter-molecular RNA interactions and regulatory e�ects of non-coding
RNAs. RNA�RNA interactions are fast emerging as a major functional component in many
newly discovered non-coding RNAs. They are important in many basic cellular activities includ-
ing transcription, RNA processing, localization, and translation. Many RNA species functions is
guided by their structure, which is de�ned by intramolecular base pair formation. Small prokary-
otic RNAs display evolutionary unstructured regions that control the expression of their target
mRNAs by intermolecular base pairing (Wright et al., 2013). Hence, the prediction of both func-
tional intramolecular and intermolecular structure of RNAs are important bioinformatics tasks.

In splicing, small nuclear RNAs (snRNA) can recognize intronic regions of precursor messen-
ger RNA(mRNA) which is an important step in identifying the RNA splicing products (Mod-
rek and Lee, 2002). In translation transfer RNA(tRNA) interact with (mRNA) by "reading"
the three letter code and de�ne amino acid sequence (Selmer et al., 2006), (Ibba and Söll,
2000). In RNA modi�cation, small nucleolar RNA(snoRNA) guides the modi�cation of ribo-
somal RNA(rRNA) (Kiss, 2002). In microRNA (miRNA) targeting, the base pairing between
miRNA and mRNA leads to degradation or translation inhibition of the mRNA (Bartel, 2004).
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RBS

mRNA

Ribosome

sRNA

Figure 1.4: sRNA translation inhibition. sRNAs bind to ribosomal binding site (RBS) by
complementary RNA-RNA interactions, which avoid ribosome binding.

For RNA function and regulation these examples show us the importance of RNA-RNA interac-
tion.

In order to allow highly accurate predictions, state-of-the-art methods do not only take the
stability (energy) of possible RNA�RNA interactions into account, but they also consider the
accessibility of the interacting subsequences (Umu and Gardner, 2017), i.e., the intramolecular
structure pattern.

Small regulatory RNAs (sRNAs) typically have a range of 50 to 500 nucleotides and are
transcribed through intergenic bacterial genome regions. sRNAs work in trans and display com-
plementarity with target mRNAs. Many sRNAs base pairs within the 5'-UTR of mRNA's target
and blocks the ribosome binding site, therefore stops the initiation of translation. Refer to Fig
1.4. This process is called the /textitInhibition of translation initiation.

1.3.1 Formal background of RNA-RNA interactions

Here, we will see the formal background of RNA-RNA interactions.
In general RNA�RNA interaction prediction (RIP) problem, given two RNA sequences S1 and
S2 (e.g., an antisense RNA and its target), the RIP problem asks one to predict their joint
secondary structure. A joint secondary structure between S1 and S2 is a set of �pairings� where
each nucleotide of S1 and S2 is paired with at most one other nucleotide, either from S1 or S2

(Alkan et al., 2006).

The RNA-RNA interaction is the combination of the set all of the base pairs in S1, the set
of all base pairs in S2, and the total intermolecular base pairs between two sequences. Formally,
the RRI can be modelled as RRI = ] bp (S1) ∪ ] bp (S2) ∪ ] (Inter). The set of all base pairs
of S1 is P 1 and S2 is P 2, then Inter is I which denotes the set of all intermolecular base pairs.

RRI = P 1 ∪ P 2 ∪ I

Now, we further decompose I into the sequence of subsets of consecutive base pairs that form
interaction blocks B which is depicted in Figure 1.5, where I = (B1, ..., Bx). A block B is the
interaction block or interaction site.

Further, the interaction block or interaction site "B" can be represented as,

8



Break

P1

P2

B1 B2

I

Figure 1.5: The RNA-RNA Interaction is the union of all base pairs in sequence 1 and sequence
2 are denoted as P 1 and P 2 (Blue colour) respectively. I (Green colour) denotes the union of
all intermolecular base pairs. B1, B2 are the interaction blocks. Break (Grey colour) is the loop
enclosed by two inter-molecular base pairs that also contains positions involved in intra-molecular
base pairs

B = {(i1, i2) | S1
i1
complementary to S2

i2
} ⊆ [1, n1] ∗ [1, n2]

Where for all (i1, i2), (j1, j2) within a block B is

(i1 < i2) ⇐⇒ (j1 > j2)

ie., They should be non-crossing. The block region R(B) is (i(B), j(B)) ie., left and right
most base pairs of B concerning S1.

i(B) = argmin
i=(i1,i2)∈B

(i1)

Figure 1.6: The left side �gure shows the positions are not paired within the loop. This problem
starts with the pseudoknot which is shown on the right side �gure where the same problem exists
for the scoring of crossing structures.
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S
1

s2

i1 j1

i2 j2

i(B) j(B) B

Figure 1.7: The block region R(B) where the left and rightmost base pairs of B concerning S1

Breaks

B1 B2 B3

P1

P2

Figure 1.8: The interaction energy of RRI is the energy de�ned by the loops enclosed by all
inter-molecular base pairs. E(B1) is the energy of block 1 and the E(breaks) can be calculated
from the sum of all breaks.

j(B) = argmax
i=(i1,i2)∈B

(i1)

Furthermore, no intramolecular base pairs are allowed in block region R(B) of P 1, P 2.
ie.,

∀B∈I :
(
@(k,l)∈P 1 : i(B)1 ≤ k ≤ j(B)1 ∨ i(B)1 ≤ l ≤ j(B)1

)
∧(

@(k′,l′)∈P 1 : i(B)2 ≤ k′ ≤ j(B)2 ∨ i(B)2 ≤ l′ ≤ j(B)2
)

where I is the union of all blocks (ie., all intermolecular base pairs) We compute the joint
structure between S1 and S2 through minimizing their total free energy.

The Energy for the block E(B) can be calculated as,

E(B) =
∑
i∈B

j=argmin(i′)
i′<B
i′1>i1

ESBI(i, j, k, l) (Eq. 1.3.1)

The E(I) can be calculated as follows,

E(I) = E(]B) + Einit (Eq. 1.3.2)
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where E(]B) =
∑

B E(B) + E(breaks) and Einit is �xed init score if I 6= φ. Einit is 4.1 as per
turner 99. Refer to section 1.2.3 .

In Fig 1.5, light violet colour represents the intramolecular loop with the intermolecular base
pairs paired. We will need to �nd out, how to score them. Here, without further knowledge
or energy parameters, we score it via standard loop scores ignoring the intermolecular pairings.
The problem is similar to pseudoknot scoring. These also contain the loops where the positions
are not paired within the loop, see Figure 1.6.

E(breaks) is de�ned by the sum over all individual breaks between blocks (Fig 1.8 ). For the
E(breaks) it depends on the prediction model which is a tricky part and that will be discussed
with the next section along with the approaches idea. Now, we will summarise the formal de�ni-
tion of the energy of RRI. By using the above RRI equation, we can write overall energy of RRI as

E(RRI) = E(P 1) + E(P 2) + Einit +
∑
Bi∈I

E(Bi) +
∑
Bi∈I

Ebreak(Bi, Bi+1, P
1, P 2) (Eq. 1.3.3)

1.4 RNA-RNA Interaction Prediction Approaches

There are several available methods, that can be classi�ed according to their underlying predic-
tion strategies, each implicating unique capabilities and restrictions often not transparent to the
non-expert user.
Mostly for RNA-RNA interaction prediction methods are based on thermodynamic models and
provide an e�cient computation since Richard Bellman's principle of optimality (Raden et al.,
2018) can be applied. RNA�RNA interaction prediction approaches are classi�ed into hybrid-only
interaction prediction, general interaction prediction, concatenation-based/co-folding interaction
prediction, and accessibility-based interaction prediction.

In the following subsections, we will see about the approaches used for predicting the RNA-
RNA interactions.

1.4.1 Hybridization-only interaction prediction

In the hybrid-only interaction approach, the identi�cation of RNA-RNA interaction doesn't con-
sider intramolecular base pairs (�g 1.9) and they can be done with O(nm) time and space
complexity for two RNA sequences S1, S2 of lengths n and m respectively (Tjaden et al., 2006).

Figure 1.9: A full-duplex structure where no intramolecular base pairs are assumed. The �gure
is taken from the paper (Wright et al., 2018)
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Figure 1.10: Recursion scheme to maximize intermolecular base pairs between two RNAs S1
and S2 represented in orange/blue, respectively

A dynamic programming approach using a simpli�ed energy model with two dimensional
table H is �lled via the pre�x-based recursion Eq. 1.4.1.

Hij = max


Hi−1,j−1 + 1 : if S1

i ,
←−
S2
j are compl. base pair ,

Hi−1,j

Hi,j−1,

(Eq. 1.4.1)

Where Hij is the maximal number of intermolecular base pairs for the pre�xes S1
1 ..i and

←−−−
S2
1 ..j

the reverse sequence of S2. The visual representation of the recursion scheme is given in Fig: 1.10
. The above equation is the variant of the global sequence alignment approach by Needleman
and Wunsch (1970) using the scoring scheme i.e., base pair instead of match/mismatch scoring

forS1
i ,
←−
S2
j no gap cost. Hence, when initialising Hi,0/H0,j with 0, the Hn,m gives the maximal

number of intermolecular base pairs and we can trace them back. As stated above, this approach
has very low runtime, which is preserved when extended to energy minimization.

To compute the energy of an RRI using Eq. 1.4.1, no intra-molecular structure is considered,
i.e. P 1 = P 2 = ∅ .

Thus, only one block of inter-molecular base pairs is modelled ie., (I = B) and no break
is present. They are implemented in tools like TargetRNA, RNAhybrid. The main advantage
of these approaches is they are very fast and easy to calculate the signi�cance of hits. Since,
intramolecular base pairing is ignored they are used for the identi�cation of short RNAs and
otherwise they overestimate the length of target sites. These disadvantages can be overcome by
concatenation and accessibility based approaches.

1.4.2 General RNA�RNA interaction prediction

One of the most general approach that is used for predicting the RRI of two intermolecular
RNA molecules is IRIS (Pervouchine, 2004) method. This method is implemented by dynamic
programming where it is the product of the sequence alignment and two MFOLD type secondary
structure prediction algorithms. It can predict general duplex structures. This method is applied
to some well known interactions such as OxyS with fhlA mRNA which basically forms a double
kissing hairpin interactions as shown in Fig 1.11.
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Figure 1.11: Double kissing hairpin interaction. The blue and green denotes the �rst and
second sequence of RNA. Base pairs are denoted by dash. The picture is taken from

(Wright et al., 2018)

It shares most common features with pseudoknots, but is less computationally intensive.
The input is made up of two sequences of RNA. Each sequence can form its own nested sec-
ondary structure and hybridize it into the other molecule. The time and space complexities are
O(n3m3) and O(n2m2), where n and m are the lengths of the sequences. The con�guration of
the OxyS-fhlA complex proposed in (Argaman and Altuvia, 2000) consists of four neighbouring
stem-loops, two in each of the molecules which connect, forming two stable kissing complexes.
In this method, the main goal is the simultaneous optimization of intra- and inter- molecular
base pairing.

IRIS also supports crossing of consecutive blocks treated by the last recursion case in the
lower right of Fig 1.12, which further complicates the energy scoring of breaks. The energy
contribution of the general approach doesn't follow the interaction energy model instead they
have pseudoknot energy. The energy associated with exterior pseudoknot can be given as (Xu
and Chen, 2015)

GPseudo = β1 + β2B
p + β3U

p (Eq. 1.4.2)

where β1 represents the penalty for introducing a pseudoknot, B
p is the number of base pairs

that border the interior of the pseudoknot (i.e. number of paired positions), and Up is the num-
ber of unpaired bases inside the pseudoknot 1.6(right). If a pseudoknot is inside a multiloop
then they can be represented as βm

1 ( by replacing the β1) and if pseudoknot is inside another
pseudoknot they can be represented as βp

1 (by replacing β1).

As an approximation, one could use E(PK− loop) with such pseudoknot energy terms based
on GPseudo to score breaks. Note, to get an even more accurate overall energy scoring of interac-
tion, one would have to use pseudoknot energy terms also for such loops formed by intra-molecular
base pairs (refer 1.6 (left)). For simplicity, Eq. 1.3.3 uses only nested energy terms to assess
intra-molecular energies. Thus, the exact energy computation of the general approach is not
covered by the formalizations used within this thesis.

The time and space usage of IRIS is O(n6) and O(n4), respectively. The partition function
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A) B) C)

D) E) F)

Figure 1.12: Depiction of the recursion M i..k
j..l which handles intramolecular (a,b) and inter-

molecular (d,e) base pair extensions as well as a general decomposition (c) and crossing (f) case.
The Figure is taken from the paper Pervouchine (2004)

version of RNA-RNA interaction prediction allows the computation of probabilities of inter-
molecular interactions, which is used to access the stability. Due to its high complexity, several
methods for reducing the requirements have been introduced. One such approach introduced by
Chitsaz et al. (2009a) called biRNA is used to predict the multiple simultaneous binding sites.

1.4.3 Concatenation-based RNA-RNA interaction prediction

Concatenation or co-folding approach is used for predicting the interacting base pairs of two
RNA molecules based on intramolecular structure prediction methods. Here, two or more se-
quences are concatenated into a single sequence with special inter-spacing linker sequences. The
�nal sequence is used within an adaptation of a standard structure prediction that takes care
of the linker sequences. MFOLD (Zuker, 2003) was the �rst Concatenation-based prediction
tool using the Nearest-Neighbor energy model, later implemented inMultiRNAfold (Andronescu
et al., 2005) and RNAcofold (Bernhart et al., 2006).

RNA sequences are concatenated by a linker of length l + 1, where l is the minimal loop
size, to ensure the concatenated sequence ends can form a base pair. We don't need any special
energy treatment because the intra- and inter- molecular loops are treated equally. Hence the
breaks are considered as multi-loop and scored accordingly.

Concatenation-based approaches overcome the disadvantage of the hybrid-only approach by
incorporating the competition of intra- and inter- molecular base pairing, still they cannot predict
all interaction patterns because both intra- and inter- molecular base pairs have to be nested. For
example, interactions like kissing stem-loop or kissing hairpin-loop (as seen in �g 1.13) cannot
be predicted by standard tools because they form a pseudoknot in the concatenation model.

NUPACK is a pseudoknot prediction tool that solves the problem but with the higher run-
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Figure 1.13: a) Pattern that can be predicated by Concatenation b)Kissing stem-loop and
c) kissing hairpin interaction. Both (b) and (c) cannot be predicted as they form a crossing
structure in the concatenated model. The blue and orange are the two di�erent RNA's and the
dotted green is the linker, black lines represent the base pairs. Figure inspired from the paper
(Raden et al., 2018)

time. They are based on dynamic programming approaches for speci�c classes of pseudoknot
structures but does not seem to be a signi�cant drawback in terms of the accuracy of predictions
for shorter sequences. (Dirks and Pierce, 2003).

1.4.4 Accessibility-based interaction prediction

To overcome the drawbacks of concatenation approaches, Accessibility approaches have been
introduced. The main aim of this approach is to integrate ensemble properties of the single
sequences that are necessary for the interaction. It can predict single site interaction patterns
of two respective RNA subsequences. Tools like RNAup (Mückstein et al., 2006) and IntaRNA
(Mann et al., 2017) implement this strategy. Here we have to dissolve intramolecular structure
before the intermolecular interaction is formed. That is, to form a stable interaction of inter-
molecular base pairs, the intramolecular base pairs have to be opened/broken.

Single-site RNA-RNA interactions can be classi�ed based on the structural context of the
respective subsequences.,

• exterior - not bounded by any base pair.

• hairpin loop - enclosed directly by a base pair.

• non-hairpin loop - subsequence surrounded by two base pairs creating a bulge, a multi-loop
or an interior.

IntaRNA can predict single-site interactions of the respective subsequences within any struc-
tural context, but concatenation-based approaches can only predict the exterior-exterior context
combinations. Energy scoring di�ers from normal E(RRI) since intramolecular structure is only
considered implicitly via ensemble energies.

The term Ensemble refers to the set of all secondary structures which can be formed through
an RNA sequence. In an RNA sequence S, the accessibility energy of a region [i, k] is determined
by the energy di�erence (referred to as ED):

ED(i, k) = −(Eall − Eu
i,k) (Eq. 1.4.3)
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Where Eall denotes the energy of the set of all possible secondary structures that can be
generated by sequence S and Eu

i,k denotes the energy of the ensemble of structures which have
a single stranded area [i, k].
The partition function is the total of all states P over the Boltzmann factors. The energy of the
ensemble Eall is

Eall = −RTln(Z) (Eq. 1.4.4)

The probability of unpaired regions can be used for calculating the accessibility penalty for an
interval [i, k], as shown below:

ED(i, k) = −(E(P)− E(Pu
i,k))

= E(Pu
i,k)− (E(P)

= −RTln(Zu
i,k)−−RTln(Z)

= −RTln(
Zu
ij

Z
)

Hence,
ED(i, k) = −RTln(Pu

i,k) (Eq. 1.4.5)

ED1
i,k = −RT · log(Pu1

i,k) (Eq. 1.4.6)

ED2
j,l = −RT · log(Pu2

j,l ) (Eq. 1.4.7)

Therefore, the alternative E(RRI) formula for a single interaction block B is:

E(RRI = (B)) = E(B) +Einit +Eall1 +ED1
i1(B),j1(B) +Eall2 +ED2i2(B), j2(B) (Eq. 1.4.8)

Since ED = Eu − Eall substituting ED value in ED + Eall gives,

Eu − Eall + Eall = Eu

E(RRI) = E(B) + Einit + Eu1 + Eu2 (Eq. 1.4.9)

Since Eall is constant for a given sequence, accessibility-based approaches only optimize
(E(B) + Einit + ED1

B + ED2
B). To this end P

u values are precomputed.

The energy of the accessibility approach has no break, since the interaction I form only one
interaction block. Approaches like RNAup and IntaRNA use pre-calculated ED values for all
possible interaction regions. They give us how much energy is needed to free of intramolecular
base pairs.

The main drawback of the accessibility approach is, it can handle only one non-crossing block.
These approaches cannot be modelled correctly for the double kissing hairpin interaction which
has more than one crossing blocks of interaction 1.15

16



Figure 1.14: Depiction how accessibility-based approaches score an interaction of two RNAs
S1 and S2 in orange and blue respectively. 4E1 + 4E2 are the energy needed to break the
intramolecular base pairs and D is hybridization/duplex energy. Figure is taken from the paper
(Raden et al., 2018)

Figure 1.15: Double stem loop interaction cannot be handled by standard accessibility-based
approaches as they have two binding sites (blocks) separated by intra- molecular structure. the
�gure is taken from COAT PhD summer school 2012

1.4.5 Comparison of approaches for RRI prediction

In this subsection, we will see the comparison between the approaches for some distinct interac-
tion pattern. Below Table 1.1 gives an overview which interaction pattern can be predicted by
which approaches.
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Table 1.1: Comparison of RNA-RNA interaction prediction approaches for di�erent interaction
pattern

Comparison of RRI approaches

RRI Pattern RRI prediction approaches

Figures RRI description No. of
blocks

H
y
b
ri
d
-o
n
ly

G
en
er
a
l

C
o
n
ca
te
n
a
ti
o
n
(n
es
te
d
)

A
cc
es
si
b
il
it
y

1.9 Full duplex structure 1 yes yes yes yes
1.13 (a) Nested joint structure with-

out pseudoknots
2 no yes yes no

1.13 (b) Stem loop interaction 1 no yes no yes
1.13 (c) Kissing hairpin loop 1 no yes no yes
1.11 Double kissing hairpin loop 2 no yes no no
1.5 Kissing stem interaction 2 no yes no no
1.15 Double kissing stem loop 2 no yes no no

Best Time complexity for
each approach O

(n
m
)

O
(n

3
m

3
)

O
(n

3
)

O
(n

2
)

The understanding of RNA structure and RNA-RNA interaction prediction approaches is
important to ensure correct result interpretation and knowing of their limitations are necessary
to avoid wrong conclusions. Here we give a concise overview of the relevant theoretical history to
the most general algorithmic approaches. We could say that the accessibility-based approach is
the best approach for single site RNA-RNA interaction. To handle two or multi crossing blocks of
interaction, we are introducing, " Multi-site accessibility based approach ". The Multi-site RRI
optimization is based on single-site IntaRNA predictions. Hence, we are going for the multisite
accessibility based approach in the next chapter.
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Chapter 2

Multi-site Accessibility Based

In this chapter, we will introduce an accessibility-based approach that can be used for multisite
RNA-RNA interaction prediction. In simple words we could say, it is Multi-site RRI optimization
based on single-site IntaRNA predictions. Accessibility-based methods for predicting interaction
between RNAs. They typically model single block of consecutive inter-molecular base pairs.
Thus, it is di�cult to anticipate interaction pattern consisting of multiple concurrently formed
blocks. We are designing and evaluating possibilities within this thesis to e�ectively predict
concurrent blocks of interaction through an accessibility-based prediction model. The method
would be based on IntaRNA, one of the state-of-the-art RNA-RNA interaction prediction model.

IntaRNA, developed by (Busch et al., 2008) and (Raden et al., 2018) at the University of
Freiburg's bioinformatics department, is a general and rapid approach to predicting RNA-RNA
interactions that integrate both the accessibility of interacting sites and the presence of user-
de�nable seed interactions. IntaRNA uses energy minimisation to �nd the best possible interac-
tion.

Many RNAs interact via multiple synchronous, non-overlapping sub-interactions (M-RRI),
e.g. OxyS-fhlA. The simultaneous prediction of both intra- and inter-molecular base pairing
allowing for multiple sites is computationally expensive. Current approaches include IRIS (Per-
vouchine, 2004), NUPACK (Dirks et al., 2007), piRNA (Chitsaz et al., 2009b), etc. There are
fast and reliable single interaction site (S-RRI) prediction tools like RNAup and IntaRNA, that
often show the additional sites within their suboptimal list, i.e., they are capable of modelling all
sites individually but not in a joint prediction. To overcome this, we use the iterative method in
this thesis for �nding the interaction between multiple blocks. Beforehand, details of the S-RRI
accessibility-based tools RNAup and IntaRNA are introduced.

2.1 RNAup - Exact Recursion for single-site

In the following, I will �rst introduce the RNAup-like exact recursions (Mückstein et al., 2006)
and then give an overview of the IntaRNA heuristic version. The total energy score of the inter-
action is measured as the sum of the free hybridization energy and the free energy required to
make the interaction sites available.
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Figure 2.1: The energy contribution of IntaRNA. The image is taken from (Gelhausen, 2018)

Thus, Scoring an interaction in IntaRNA is dependent on two energy contributions:

• Hybridization energy: energy value Ehybrid from intermolecular base pairings in the
form of stackings, bulges, or internal loops, i.e., energy is typically a negative value.

• Accessibility energy: An amount of energy ED needed to single-strand the interacting
region, i.e. not include intramolecular pairings, i.e., energy is a positive value.

The energy of an ensemble of structures is calculated using a partition function (McCaskill,
1990). Similarly, we get ED(i, k) by calculating the partition function, Zu

i,k covering the ensemble
of all structures which can be formed by a sequence S, with a single stranded region [i, k]. As
introduced in section 1.4.4. Therefore,

ED(i, k) = −RTlog(Pu
i,k)

Mückstein et al. (2006) give more detailed information on the same. The hybridization
energy is measured using the Nearest Neighbor Energy Model. This represents the minimum
free hybridization energy of two subsequences, where a base pair is generated by the left and
rightmost positions of both subsequences. For sub-sequences S1

i ...S
1
k and S2

j ...S
2
l , where S1 is

ordered from 5' to 3' and S2 in the reverse order:

H(i, j, k, l) = min B
i(B)=(i,j)
j(B)=(k,l)

(E(B))

The hybridization energy is calculated with a Zuker-like recursion.

H(i, j, k, l) =



Einit

: if (S1
i , S

2
j ) can pair and i = k, j = l,

minr,s{eSBI(i, j, r, s) +H(r, s, k, l)}
: if (S1

i , S
2
j ) and (S1

k, S
2
l ) can pair i < k and j < l,

∞
: otherwise,

(Eq. 2.1.1)

Here eSBI is the energy contribution of stack, bulge, and an internal loop. The trace back
helps us to �nd the base pairs of optimal interaction with energy H(i, j, k, l). Both the acces-
sibility and hybridization energy forms the extended hybridization energy which is the speci�c
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hybridization between S1
i ...S

1
k and S2

j ...S
2
l given by,

C(i, j, k, l) =


H(i, j, k, l) + ED1(i, k) + ED2(j, l)

: if (S1
i , S

2
j ) and (S1

k, S
2
l ) can pair i 6= k and j 6= l,

∞
: otherwise,

(Eq. 2.1.2)

We get the time and space complexity of O(n2m2) by limiting the loop size, which is still
very high. When we limit the interaction length to l, it has a complexity of O(nml2) time and
O(nml2) space. The interaction with the minimum estimated free energy (mfe) is probably the
most stable structure and thus the structure ful�ls the RNA molecule function. Therefore, we
are interested in

mfe = min
i,j,k,l

C(i, j, k, l)

2.2 IntaRNA - Heuristic recursion for single site

The exact recursions of RNAup are not suitable for larger genome wide studies due to its high
time and space complexity ie., O(n2m2) where n represents the length of query and m is the
length of the target sequence. To overcome the time and space complexity problem, IntaRNA
introduced the Heuristic recursion. This recursion is based on sparsi�cation technique. Hence,
we consider only one right end of interactions with the left end (i, j) which is single and locally
optimal, instead of all the possible interactions. This will help us to reduce the space and time
complexity to O(nm), as introduced for IntaRNA version 1 & 2. The heuristic version is de�ned
as:

C(i, j) = min



Einit + ED1(i, i) + ED2(j, j)

: in the case of new interaction

minp,q{eSBI(i, j, p, q) + C(p, q)− ED1(p,K(p, q))− ED2(q, L(p, q))

+ED1(i,K(p, q)) + ED2(j, L(p, q))}
: if (S1

i , S
2
j ) can pair ,

∞
: otherwise,

(Eq. 2.2.1)
Here K(p, q), L(p, q) are newly introduced matrices that provide the right end of the best

interaction with the left end (p, q). Since ED values are not additive, we have to subtract the
old ED values before we add the new ED value.

IntaRNA also enforces a seed region as the required constraint for the interaction of two
RNAs. Seed regions are a feature found in many RNA-RNA interactions. The seed region is an
interaction region of almost complete complementarity. For animal microRNAs the seed region
was �rst discovered (Bentwich, 2005), (Brennecke et al., 2005). Then, Tjaden et al. (2006) dis-
covered it for many bacterial sRNAs.
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RNAup does not use any seed condition. Within IntaRNA predictions, at least one seed is
needed at the interaction site. The seed length is normally assumed to be between six and eight
nucleotides. To speed up the genome-wide, methods such as RIsearch2 ((Alkan et al., 2017)
) or RIblast ((Fukunaga and Hamada, 2017) )utilize su�x-array-dependent screens to classify
seed regions that are eventually expanded in both directions utilizing a predictive method fo-
cused on usability. In IntaRNA, the length of the seed can be set by the user (Busch et al., 2008).

That is, given a set of putative seed interactions Bseed. We introduce additional matrix Cseed

that represents energies of interactions including seed interaction. The seed matrix Cseed can be
�lled in using the following recursion:

Cseed(i, j) = min



minp,q{eSBI(i, j, p, q) + Cseed(p, q)− ED1(p,K
seed(p, q))− ED2(q, L

seed(p, q))

+ED1(i,K
seed(p, q)) + ED2(j, L

seed(p, q))}
: if (S1

i , S
2
j ) can pair ,

minp,q{seed(i, j, p, q) + C(p, q)− ED1(p,K(p, q))− ED2(q, L(p, q))

+ED1(i,K(p, q)) + ED2(j, L(p, q))}
: if (S1

i , S
2
j ) can pair and are left end of the seed,

∞
: otherwise,

(Eq. 2.2.2)
The mfe of IntaRNA is,

mfe = min
i,j

Cseed(i, j)

2.3 Iterative scheme for double-site RRIs

In the following, we will introduce a new approach that uses a Single-RRI prediction tool (namely
IntaRNA) for the prediction of Multi-RRI. For simplicity, the approach is �rst introduced for
two sites B1 and B2. To this end, an iterative scheme is to be applied, which is described in the
following steps.

• Step 1: First, we have to run IntaRNA and store minimum free energy and boundaries of
respective B1.

• Step 2: Then we get the 'blocking' constraint from step 1 to rerun IntaRNA and predict the
conditional minimum free energy and site B2. Here we block B1 (Constrained IntaRNA)
both for intra- and inter- molecular base pairing and we get B2 as minimum free energy.
Then, the energy of a respective M-RRI can be computed from the two energies, ie., the
energy of the conditional call can be added.

E(B1 ∧B2) = E(B1) + E(B2|B1) .

• Step 3: Since prediction of B2 is conditional, the existence of B2 can have e�ects B1.
Thus, one starts to iterate the procedure from (2) but swaps the conditional site and
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check for convergence: is the site from two-steps before retained (B2 == B′2)? If yes:
convergence and stop iteration by printing the B1, B2. If no: repeat constraint prediction
until convergence by swapping.

Below is the �owchart representation for the same procedure.

start

B1 =
mfe; B2

= empty

B1 =
block;
B′2 =
mfe

B2

==
B′2

B2 = B1 ;
B1 = B′2

stop

run In-
taRNA

rerun
In-
taRNA

print
B1 and
B2 yes

no

Below is the proof of why the energy of the conditional call can be just added. The joint site
has energy

E(B1 ∧B2)

= Ehyb(B1 ∧B2) + ED(B1 ∧B2)

= Ehyb(B1) + Ehyb(B2)−RTlog(Pu(B1 ∧B2)) (Eq. 2.3.1)

The �rst block B1 is scored by

E(B1) = Ehyb(B1) + ED(B1)

= Ehyb(B1)−RTlog(Pu(B1)) (Eq. 2.3.2)

and the conditional prediction of B2 by

E(B2|B1) = Ehyb(B2|B1) + ED(B2|B1)

= Ehyb(B2|B1)−RTlog(Pu(B2|B1)) (Eq. 2.3.3)

Now, we add right end side values of Eqn Eq. 2.3.3 + Eq. 2.3.2, we get,

Ehyb(B1) + Ehyb(B2|B1)−RTlog(Pu(B1))−RTlog(Pu(B2|B1)) (Eq. 2.3.4)

As we know log(A)+ log(B) = log(A∗B) , we apply this condition for log values in Eq. 2.3.4

−RTlog(Pu(B1))−RTlog(Pu(B2|B1))

= −RTlog(Pu(B1) ∗ Pu(B2|B1))

23



Since P (A ∧B) = P (A) ∗ P (B|A) and Ehyb(B2|B1) is independent of B1, We get,

Ehyb(B1) + Ehyb(B2)−RTlog(Pu(B1 ∧B2)) (Eq. 2.3.5)

Now, we see the equations Eq. 2.3.5 and Eq. 2.3.1 are equal.

2.4 Generalization to multi-site RRI prediction

The generalized multi-site RRI prediction is similar to double-site RRI prediction. Here the
process takes two steps (i) Iterative Accumulation, (ii) Iterative Re�nement.

• Step 1: Iterative Accumulation: Here, we iterate the empty list of constrained prediction
and predict the minimum free energy (mfe). Every iteration returns us a list of blocks C.
Check for mfe (C) exists? then, we add a new block C = C ∪ {Bmfe(C)}. An empty list
of constraints is iterated until we don't get a new block. C ′ = {C}. In the end, we get a
list of constraints.

• Step 2: Iterative Re�nement: For every new block (ie., ∀b ∈ C : b = Bmfe(C
′) where

C ′ = C \ {b}), we need to check if it is preserved or not. If preserved, for all C, then we
stop the iteration. If not, then we need to alter the set of blocks ie.,C = C ′ ∪{Bmfe(C

′)} .

Below is the �owchart representation for the same procedure.

start C = ∅
predict
mfe (C)

mfe (C)
exists ?

C = C ∪
{Bmfe(C)}

∀b ∈ C :
b ==

Bmfe(C
′) |

C ′ =
C \ {b}

C = C ′ ∪
{Bmfe(C

′)}

stop

empty
list iterate

check
for
mfe

yes, add
new
block

no
new
block

no, b not
maintained

yes

The mfe is

mfe∗(C) =
∑
b∈C

(Ehyb(b) + Einit) + ED(C)

where ED(C) is −RTlog(Pu(C))
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Chapter 3

Results & Discussion

To evaluate the multi-site interaction, I am comparing the results of the new approach for same
RNA interactions with single-site interaction tool IntaRNA and results from the literature. De-
tails of the reported RRIs are given at the end of the section in 3.2

3.1 Setup

I have used the IntaRNA-3.1.3-windows-64bit version for my thesis. The following parameter
has been set. The �outMode=C a �exible interface to generate RNA-RNA interaction output
in CSV format (using ";" as separator). The argument -n N or �outNumber=N for query-target
pair may be used to produce up to N interactions (We have set N to 1). IntaRNA provides the
possibility to constrain the accessibility computation using the �qAccConstr and �tAccConstr
parameters. In this I have used "b" blocked to indicate the positions are occupied by some
other interaction (implies single-strandedness). It is possible to restrict the overall length of an
interaction is allowed to have. This can be done independently for the query and target sequence
using �qIntLenMax and �tIntLenMax, respectively. We can alter indexing (independently for
query and target) using the �qIdxPos0 and �tIdxPos0 parameters, respectively. Here, the overall
energy E has times of Einit.

With the above setup, we were able to test multi-site RNA-RNA interactions. The used
sequences are listed in Appendix Table.

3.2 OxyS � fhlA

The small RNA OxyS binds to a short sequence inside the fhlA mRNA coding region. This is
one of the classic examples of multi-site RRI where OxyS forms a stable kissing hairpin complex
with fhlA.
Details of the interaction are taken from the paper (Argaman and Altuvia, 2000). The pairing
mechanism between the two RNAs is dramatically in�uenced by their structure. For this pur-
pose, a full comprehension of the pairing process involves thorough knowledge of the individual
RNA structures.
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When OxyS binds fhlA mRNA it forms the kissing complex structure and results in a healthy
anti-sense-target structure. The secondary structure of the 5' end region of fhlA mRNA was pre-
dicted to include two stem loop structures. The �ndings of the study of the structure con�rm
the presence of the two structures.

When we run with IntaRNA �rst, we observed that the OxyS (98 - 104) interacts with fhlA
(-9 - -15), ie.,104:-15& 98:-9 is the block that is predicted with the energy -4.37. Then, we run
them with our tool, the total energy for both blocks is -7.99. Here the sequence length for OxyS
starts from 1 to 109 and for fhla it is from -53 to 60. We can clearly see from the Fig 3.2 where
the predicted interaction (orange) and the original (blue) interaction from the paper interacts
almost at the same place.

Figure 3.1: Interaction of OxyS - fhlA. The numbering of fhlA begins with the initiation codon
(AUG). The counting of OxyS begins at the transcription start site. The Figure is taken from
(Argaman and Altuvia, 2000).
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Figure 3.2: OxyS:fhlA interaction that is predicted using double-site tool. We can see that
predicted interaction (orange colour) is highly similar to the original interaction (blue colour).
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3.3 Spot42 � sthA

The next interesting example is Spot42 interaction with sthA. The RNA Spot42 plays a large
role in the suppression of catabolites in Escherichia coli (E.coli) by the direct suppression of
genes involved in primary and secondary metabolism.

This example is taken from (Beisel and Storz, 2011). Spot42 is interacting with its targets
via three conserved accessible regions (I � III) refer to the left side Fig 3.3 .
The mutation in region III in�uenced the repression of fusion of sthA the most (refer right side
Fig 3.4 ). Mutating sites I and III were reported to have the highest impact while Region II
mutation showed only slight e�ects. It has been shown that mainly sites I and III are important
for the interaction with the target mRNA encoded by the sthA gene. This suggests multiple
interaction possibilities of Spot42 with sthA, as discussed in Mann et al. (2017).

Figure 3.3: The left side of the �gure shows the secondary structure of Spot 42. Mutated
regions are in grey colour. Right side of the �gure shows the mutational analysis of base-pairing
interactions of Spot42 � sthA. Spot 42 base pairs directly with target genes via three separate
regions is shown. The Figure is taken from the paper (Beisel and Storz, 2011). The black bar
shows the translation product measure of sthA gene and the white one is a control molecule to
compare for the di�erent experiments (translational reference).

When we run with IntaRNA �rst, we observed that the Spot42 (34 - 55) interacts with sthA
(15 - 40), ie.,55:15&34:40 is the block that is predicted which refers to region III and the mfe is
-7.85. Then, we run them with our tool here when Spot42 interacts with sthA, we observed that
the total energy value is -13.05. The prediction provides a model for the concurrent interaction
of regions I and III. Here for Spot42, we couldn't �nd the original interaction, hence we are
comparing with the bar chart from the �gure 2 from paper (Beisel and Storz, 2011). From the
right side �gure 3.3, we can see, mutating sites I and III showed the highest e�ect while the
region II mutation showed only small e�ects. We can also say that even if the sites are far in the
sequence they are close if the structure (I and III) is formed.

As our model shows only two interacting sites, we tried manually generating the third-site
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Figure 3.4: The left side of the �gures shows the Spot42:sthA interaction that is predicted using
the double-site tool. We can see that predicted interaction (orange colour) of two blocks and
only one original interaction block(blue colour) of the original is shown as the other interaction
is not given in the literature. The right side of the �gure shows the base-pairing interactions
with Spot 42 predicted by the folding algorithm NUPACK. Mutation in Region III is shown.
The Figure is taken from the paper (Beisel and Storz, 2011)

for that we run the IntaRNA with seedbp=6 while blocking the two �rst interaction sites ( I and
III). As a result, we get the interaction with site (II) (ie., Spot42 (20 - 25) interacts with sthA
(-19 - -14)) with the mfe of -2.02. Thus the total interaction energy for all the three blocks is
-15.07. Fig 3.5 shows that all three sites can contribute to the interaction as observed within
the experiment of right side of Fig 3.3. As the interaction sites I and II are close to the start
codon, they block the RBS which are called Inhibition of translation initiation. Refer to Fig 1.4
for the sRNA translation inhibition.

5'
3'

B1

B2

B3

5'

Start codon

3'

(I)(II)
(III)

Spot42
sthA

+40

-20

Figure 3.5: Spot42 interacts with sthA at three interacting sites (grey colour). As, our model
shows only two interacting sites, we manually generated the third-site by blocking the interacting
sites I and III and got the third interacting site II. As the start codon (orange colour) is very close
to the interacting sites I and II, they block the RBS. The Figure shows all the three interaction
sites of Spot42 (black colour) with sthA (blue colour) can be formed concurrently.

Similarly, we manually generated the third site for the few other target mRNAs (gltA, srlA,
nanC, xylF) studied in the paper (Beisel and Storz, 2011). The mutation in region I a�ected
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the repression of gltA, xylF and nanC. From Figure 3.10 (except the top right one) we can also
say that mutation site I showed the highest e�ect compared to the interaction site II and III for
gltA, xylF and nanC. The mutation in region II a�ected the repression of srlA and from Figure
3.10 (top right) we can also say that mutation site II showed the highest e�ect. The mutation in
region III a�ected the repression of sthA. Below subsection gives us the interaction of Spot-42
with target mRNAs.

Target mRNAs mutation site I mutation site II mutation site III site order wrt mRNA

sthA B2 (-5.20) B3 (-2.02) B1 (-7.85) II < I < III
gltA B1 (-8.98) B3 (-0.47) B2 (-2.76) I < III < II
srlA B3 (-3.94) B1 (-7.58) B2 (-5.73) I < III < II
nanC B1 (-12.94) B3 (-1.09) B2 (-7.28) II < III < I
xylF B1(-9.92) B2 (-4.23) III < II < I

Table 3.1: Interactions between the single stranded regions of Spot 42 and some target mRNAs.
This table shows us for each Spot42 target RNA, which block covers which mutation site with
each blocks mfe, and also the order of respective mutations site interactions in the target.

3.3.1 Spot-42 - gltA

Now we manually generated the third-site for gltA by blocking the interacting sites I and III and
got the third interacting site II. We got the interaction site II (ie., Spot42 (25 - 30) interacts
with gltA (80 - 85)) with the mfe of -0.47. Thus the total interaction energy for all three blocks
of gltA is -12.21. Refer to Fig 3.6. Start codon is very close to the interacting sites III and II,
they block the RBS.

B1

5'

3'

(II)

-140
100

Start Codon
B2

gltA

Spot42

(I)

(III)

B3

Figure 3.6: Spot42 interacts with gltA at three interacting sites (grey colour). As our model
shows only two interacting sites, As the start codon (orange colour) is very close to the interacting
sites III and II, they block the RBS. The Figure shows all the three interaction sites of Spot42
(black colour) with gltA (blue colour) can be formed concurrently.
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3.3.2 Spot-42 - srlA

We manually generated the third-site for srlA by blocking the interacting sites II and III and got
the third interacting site I. We got the interaction site I (ie., Spot42 (1 - 7) interacts with srlA
(-166 - -160)) with the mfe of -3.94. Thus the total interaction energy for all three blocks of srlA
is -17.25. Refer to Fig 3.7

B3

5'

3'

(II)

-166

-1

Start Codon

B2srlA

Spot42

(I)

(III)B1

Figure 3.7: Spot42 interacts with srlA at three interacting sites (grey colour). The Figure
shows all the three interaction sites of Spot42 (black colour) with srlA (blue colour) can be
formed concurrently.

3.3.3 Spot-42 - nanC

As our model shows only two interacting sites, we manually generated the third-site for nanC by
blocking the interacting sites I and III and got the third interacting site II. We got the interaction
site II (ie., Spot42 (26 - 31) interacts with nanC (-160 - -155)) with the mfe of -1.09. Thus the
total interaction energy for all three blocks of nanC is -21.31. Refer to Fig 3.8

B1 B2

B3

Start Codon

nanC

Spot42

I

II

III
3'5'

Figure 3.8: Spot42 interacts with nanC at three interacting sites (grey colour). The Figure
shows all the three interaction sites of Spot42 (black colour) with nanC (blue colour) can be
formed concurrently.
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3.3.4 Spot-42 - xylF

xylF results were quite di�erent from other target mRNAs. When we were running this RNA in
our tool, we got the block 1 interacting in mutation site I and II, Fig 3.11 (bottom right). The
block 2 in mutation site III. Though xylF is interacting in both the mutation site I and II, it has
its highest e�ect in mutation site I compared to site II. After that when we tried running for the
third RRI manually using IntaRNA tool, we didn't get another block of interaction. Thus the
total interaction energy for two blocks of xylF is -14.15. Refer to Fig 3.9

B1 B2

Start Codon

xylF

Spot42I II III

3'5'

Figure 3.9: Spot42 interacts with xylF at three interacting sites (grey colour). In xylF, the block
1 interacts in both mutation site I and II and block 2 in site III. The Figure shows all the three
interaction sites of Spot42 (black colour) with xylF (blue colour) can be formed concurrently.

These �ndings indicate that the three single-stranded regions of Spot 42 are involved in strong
base-pair interactions with gltA, nanC, xylF, srlA and sthA mRNAs. Table 3.1 gives you the
details of each Spot42 target RNAs, which blocks covers which the mutation sites. The order
of block predictions (B1 − B3) are nicely correlated with the experimental e�ect of respective
mutations, refer to Fig 3.10 and 3.1 for the same. ie.,the �rst block B1 correlates with the
mutation of the highest impact, B3 has the lowest for gltA, xylF, nanC and srlA.
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Figure 3.10: The �gure shows the mutational analysis of base-pairing interactions of Spot42
with its target mRNAs. The black bar shows the translation product measure of each gene
and the white one is a control molecule to compare for the di�erent experiments (translational
reference). The Figure is taken from the paper (Beisel and Storz, 2011) .

Figure 3.11: The �gure shows the base-pairing interactions with Spot 42 predicted by the
folding algorithm NUPACK. It shows the mutation region sites for the target mRNAs. Here spf
is referred to as Spot42. The Figure is taken from the paper (Beisel and Storz, 2011)
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3.4 GcvB � oppA

The gene GcvB encodes two small, non-translated RNAs which regulate OppA. The structure
of the GcvB-oppA complex consists of two intermolecular helices that precede and follow the
putative terminator. This is an example where there are four concurrent blocks predicted by the
IRIS tool (Pervouchine, 2004).

oppA is the periplasmic-binding protein portion of the OppABCDF oligopeptide transport
system. The functional consequence of deleting the GcvB gene is a derepression of oppA. The
mechanism of GcvB regulation of oppA is likely to be on a translational level (Urbanowski et al.,
2000). One of the major roles of oppA is the transport of dietary peptides.

Study of the GcvB sequence identi�ed a complementarity area near the ribosome-binding sites
of oppA mRNAs. The �ndings from (Pulvermacher et al., 2008) indicate that various regions
of GcvB have speci�c functions in the control of oppA mRNA. The Shine-Dalgarno sequence in
the GcvB-oppA complex is obstructed (Pervouchine, 2004) and the complex structure is located
in the upstream region. This is very much in accordance with the assumption that the oppA
control seems to be at the translational stage.

When we run with IntaRNA �rst, we observed that the oppA (-9 - 14) interacts with GcvB
(67 - 89), ie., 14:67&-9:89 is the block that is predicted with a mfe of -14.57. Then, we run them
with our tool as, we predict the double block interaction, we have predicted the two sites of the
interaction out of four. The total interaction energy for two sides of the block is 26.38 kcal/mol.
Also, in the prediction, we get a crossing structure, which is in contrast to the model by IRIS,
Fig: 3.12. Second block not in accordance with IRIS prediction as they form a pseudoknot. So,
here the block predicted is not as same as the original.

Figure 3.12: Interaction of GcvB � oppA . The Figure is taken from the paper (Pervouchine,
2004)

34



162 3
Gcvb

prediction
original

-95 64
oppA

Figure 3.13: GcvB:oppA interaction that is predicted using double-site tool. We can see that
out of four original interaction blocks(blue colour), we predicted (orange colour) the interaction
of two blocks.
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3.5 DicF - ftsZ

This is an example of a crossing interaction. We note that the DicF-ftsZ complex admits an area
of complementarity, which gives rise to a generalized pseudo-knot.

The function of DicF was predicted based on the complementarity of DicF RNA with the
ftsZ mRNA binding region. DicF RNA is a 53-nucleotide gene formed in certain E.coli mutants.
Here, DicF RNA is an antisense regulator of ftsZ translation.

This example is taken from the paper (Pervouchine, 2004). They say that DicF RNA has
substantial complementarity with ftsZ mRNA in the area surrounding the Shine Dalgarno se-
quence, which is compatible with the �nding that DicF controls ftsZ through interaction with
the ribosome binding. DicF-ftsZ complex admits the region of complementarity which leads to
generalized pseudoknot (refer to Fig 3.14).

When we run with IntaRNA �rst, we observed that the Dicf (35 - 52) interacts with ftsZ
(53 - 75) is the block that is predicted (52:55&35:73) with mfe of -6.89. Then, we run them
with our tool. For this example we used the parameter �le and set the tIntLenMax=20 ( for
restricting the overall length an interaction ). The total interaction energy for two sides of the
block that has been predicted by the tool is -13.86. In the prediction model, the cross structure
is not formed, which says that the prediction model is di�erent from the original one.

Figure 3.14: Interaction of DicF - ftsZ which has a generalized pseudoknot structure that has
been predicted by IRIS. The Figure is taken from the paper (Pervouchine, 2004).
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Figure 3.15: DicF:ftsZ interaction that is predicted using double-site tool. We can see that the
original interaction blocks(blue colour) form a crossing structure, whereas the predicted (orange
colour) blocks don't.
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3.6 S-mRNA - EGS

In all species ribonuclease P (RNase P) was found. External guide sequences (EGSs) are RNA
molecules consisting of a sequence complementary to mRNA targeting and recruiting intracellu-
lar ribonuclease P (RNase P), a tRNA processing enzyme, for target mRNA speci�c degradation.
EGS RNAs derived from natural tRNA sequences can be good in blocking gene expression in
bacteria.

This example is taken from the paper (Zhang et al., 2013). It is possible that an improvement
in the RNase P cleavage rate could be attributed to additional tertiary interactions that theoret-
ically stabilize the mRNA-EGS complex. Variant C386 was chosen for this analysis because the
EGS RNAs derived from this version are among the most e�cient EGS's. EGS S-C386 was built
by connecting the EGS domain of C386 to targeting sequences complementary to the S mRNA.
The EGS, S-SER, originating from the normal tRNASer series, was also built. Binding a�nity
of the variant EGS (i.e. S-C386) to the RNA sequence of the target S might be greater than
that of the EGS (i.e. S-SER) derived from the normal tRNA sequence. We couldn't reproduce
the structures from literature for any of the sequence pairs.

S-C386-C and S-SER-C were derived from S-C386 and S-SER, respectively, and incorporated
simple substitutions (5'-UUC-3'- > AAG) at the three closely conserved locations in the T-loop
of these EGSs. The nucleotides are highly conserved among tRNA molecules in these three
positions and are essential for the folding and recognition of tRNA molecules by RNase P, so
mutations in these positions are involved in the EGS process. S-C386-C and S-SER-C had the
same anti-sense pattern to the target S RNA series as S-C386 and S-SER Fig: 3.16 and had
identical binding a�nities to S38 as S-C386 and S-SER, respectively. S-C386-Cand S-SER-C can
also be used as anti-sense regulation of such EGSs.

Due to its very short sequence Fig: 3.16, we took the 50nt long on the left side and right side
of UCUUCAUCCUGCUGCUAUGCCUCAUCUUC of S-mRNA. When we run with IntaRNA
�rst, we observed that the mRNA (-1 - 7) interacts with EGS S-SER & SER-C (46 - 53) ie.,-
1:53&7:46 is the block that is predicted for both mRNA:EGS S-SER and mRNA:EGS S-SER-C
with mfe of -8.41. The total energy for mRNA:EGS S-C386 is -14.14, mRNA:EGS S-C386C is
-13.24, mRNA:EGS S-SER and mRNA:EGS S-SER-C is -16.0. Here, the start of the S-mRNA
is complementary to the end of the S-SER, which led to the crossing pattern.
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Figure 3.16: An EGS resembling the structure of a tRNA. The left side of the �gure is taken
from the paper (Zhang et al., 2013). The site of cleavage by RNase P is marked with an
arrowhead, S mRNA (red color), and the EGS (blue color). The right side is the predicted
structure from the tool. Original interaction blocks(blue colour) and the predicted blocks (orange
colour). The S-SER and S-SER-C sequences identical to the T-stem and loop and tRNASer was
derived from the variable region of the tRNA molecule, while those of S-C386 and S-C386-C were
derived from the EGS variant C386. The index position is taken from the site of cleavage.
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3.7 Details of studied RRIs

Below is the table for the comparison between the di�erent interacting RNAs that are used for
the study purpose within this thesis. The �rst column gives us the query and target that is
interacting. The original column gives us the interaction detail of the query and target from
the paper. The details of the paper are given in the respective RRI sections. The prediction
column gives us the result of the interactions using our tool. For getting the 3rd block for Spot-42
interactions with its target mRNAs are done by blocking manually using IntaRNA tool. E(B1)
column gives us the minimum free energy for the single-site interaction. E(B1 + B2) column
gives us the minimum free energy for the double-site interaction, similarly E(B1 + B2 + B3)
column gives us the total mfe of all the three blocks. 1st Index gives us the index positions for
the respective query and target and the length determines the sequence length of the query and
target.

The table also clearly tells us that E(B1 + B2) the double-site energy is almost double the
single-site energy E(B1). For Spot-42-sthA interaction, the original interaction from the paper
doesn't have the target interaction details for the second block, hence they are written as "NA".
As, we know only for the Spot-42 interactions with its target mRNAs has three blocks, the re-
spective values of the minimum free energy have been �lled and for the rest of all the interactions
it is "NA". We also know from the subsection 3.3.4 the interaction between Spot-42 and xylF
has only two blocks, hence the E(B1 +B2 +B3) value is "NA".
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OxyS:fhlA 104:-15&98:-9
30:34&22:42

104:-15&98:-9
30:24&24:40

-4.37 -7.99 NA 1:-53 109:113

Spot42:sthA 55:15&48:22
7:NA&5:NA

55:15&34:40
7:-8&1:-2
25:-19&20:-14

-7.85 -13.05 -15.07 1:-75 109:150

Spot42:gltA 13:-131&4:-122 12:-130&4:-122
64:-93&31:-62
30:80&25:85

-8.98 -11.74 -12.21 1:-200 109:300

Spot42:srlA 34:-15&20:-1 34:-15&20:-1
59:-60&50:-51
7:-166&1:-160

-7.58 -13.31 -17.25 1:-200 109:300

Spot42:nanC 17:-24&1:-7 10:-25&1:-16
74:-124&49:-104
31:-160&26:-155

-12.94 -20.22 -21.31 1:-200 109:300

Spot42:xylF 33:2&1:40 33:2&1:40
53:-175&34:-148

-9.92 -14.15 NA 1:-200 109:300

oppA:GcvB -95:163&-64:151
-17:142&-11:136
-3:84&19:49
39:18&64:1

14:67&-9:89
63:152&57:158

-14.57 -26.38 NA -95:3 159:160

DicF:ftsZ 52:55&39:69
36:-12&5:25

52:55&35:73
12:82&18:76

-6.89 -13.86 NA 1:-73 70:227

mRNA:EGSS-
SER

16:7&10:13
7:46&1:52

-1:53&7:46
-9:13&-3:7

-8.41 -16.0 NA -60:1 129:156

mRNA:EGSS-
SER-C

16:7&10:13
7:46&1:52

-1:53&7:46
-9:13&-3:7

-8.41 -16.0 NA -60:1 129:156

mRNA:EGS
S-C386

1:46&7:40
10:13&16:7

47:48&63:31
10:13&16:7

-8.15 -14.14 NA -60:1 129:150

mRNA:EGS
S-C386-C

1:46&7:40
10:13&16:7

-1:47&6:41
-10:14&-3:7

-8.67 -13.24 NA -60:1 129:150

Table 3.2: Collections of multi-site RNA interaction. The query and target are the RNAs
interacting. ":" is used to di�erentiate between the query and target , "&" is used for the
di�erentiate between start and end of the blocks.
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Chapter 4

Summary

The motivation of the thesis is to e�ciently predict concurrent blocks of interaction within an
accessibility-based prediction model. Here, we use a single-site RNA-RNA interaction prediction
tool (namely IntaRNA) for the prediction of multi-site RNA-RNA interaction. Due to the time
constraint, we have implemented the double-site interaction here by using an "Iterative scheme".
In the iterative scheme, we block the interaction site and �xing the conditional site while running
the IntaRNA tool. Until we get the convergence, we iterate. The theoretical approach of the
multi-site interaction scheme has also been discussed. Future work on the multi-site interaction
can be implemented based on the theoretical approach that has been discussed above (refer to
section 2.4).

The proof and implementation of double-site interaction model have been developed within
this thesis. The theory proof of energy of a respective double-site RNA-RNA interaction can
be computed from the two energies was developed and shown in section 2.3. Then the idea has
been implemented by using python based on IntaRNA calls. The double-site interaction study
says that interaction energy for two blocks B1 and B2 together often double the minimum free
energy. The detailed study of such examples is given in a table 3.2 for the easy comparison.

We collected some sample Multi-site RNA-RNA interaction examples from literature. The
examples with the crossing interaction (pseudoknot), with two intermolecular helices, kissing
interaction,etc., are used for the study purpose. We used the python polygon plots for plotting
the blocks that are predicted. Then, we compared the outcome with extracted data from litera-
ture. Each example shows its own structure, but most of them were very well close to the original
one's that is taken from the literature. The explanation of each study has been given in chapter 3.

We also manually generated the third-site for few Spot-42 interactions with its target mRNAs
using IntaRNA tool. It tells us which mutation site has the highest e�ect and which has the
lowest e�ect along with the minimum free energy for all three blocks. We also observed that the
order of predictions of the blocks is correctly correlated with the original e�ect of the respective
mutations. Table 3.1 gives us the details of the mfe of each block corresponding to its mutation
site along with the site order with respect to the mRNA.
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Appendix A

RNA Sequences

RNA Sequence

OxyS GAAACGGAGCGGCACCTCTTTTAACCCTTGAAGTCACTGCCCGTTTCGAGAGTTTCTCAACTCGAATAACTAAAGC

CAACGTGAACTTTTGCGGATCTCCAGGATCCGC

fhlA AGTTAGTCAATGACCTTTTGCACCGCTTTGCGGTGCTTTCCTGGAAGAACAAAATGTCATATACACCGATGAGTGA

TCTCGGACAACAAGGGTTGTTCGACATCACTCGGACA

Spot42 GUAGGGUACAGAGGUAAGAUGUUCUAUCUUUCAGACCUUUUACUUCACGUAAUCGGAUUUGGCUGAAUAUUUUAGC

CGCCCCAGUCAGUAAUGACUGGGGCGUUUUUUA

sthA GGGATCAATTGGCTTACCCGCGATAAAATGTTACCATTCTGTTGCTTTTATGTATAAGAACAGGTAAGCCCTACCA

TGCCACATTCCTACGATTACGATGCCATAGTAATAGGTTCCGGCCCCGGCGGCGAAGGCGCTGCAATGGGCCTG

gltA CGGATTGCTAAGTACTTGATTCGCCATTTATTCGTCATCAATGGATCCTTTACCTGCAAGCGCCCAGAGCTCTGT

ACCCAGGTTTTCCCCTCTTTCACAGAGCGGCGAGCCAAATAAAAAACGGGTAAAGCCAGGTTGATGTGCGAAG

GCAAATTTAAGTTCCGGCAGTCTTACGCAATAAGGCGCTAAGGAGACCTTAAATGGCTGATACAAAAGCAA

AACTCACCCTCAACGGGGATACAGCTGTTGAACTGGATGTGCTGAAAGGCACGCTGGGTCAAGATGTTATT

GATATCCGTA

srlA CGCACAAGGAAGCGGTAGTCACTGCCCGATACGGACTTTACATAACTCAACTCATTCCCCTCGCTATCCTTTTA

TTCAAACTTTCAAATTAAAATATTTATCTTTCATTTTGCGATCAAAATAACACTTTTAAATCTTTCAATC

TGATTAGATTAGGTTGCCGTTTGGTAATAAAACAATAAATCCTGAAGGAGAGAACAATGATAGAAACCATTACT

CATGGTGCAGAGTGGTTTATCGGGCTGTTCCAAAAGGGCGGAGAGGTGTTTACCGGGATGGTGACCGGCATTCT

TCCGCTGT

nanC GTATTTAATCTGGATCTCTGTTTATTTAAATAATGTGAAAAGAGATTTTTCACAGGAGACCTTATACAAAAAA

ATATAAAATACAGCTACCGGTTGCCAAAGACACTATAAGCCTGGCAAAAAAATATTACACAACATAAATG

CTAATTGTTTATGCGGGCTTTGTATTGCTTTCTGTATCCTACAAATGAGTGAAATTTATGAAAAAGGCTA

AAATACTTTCTGGCGTATTATTACTGTGCTTTTCGTCCCCATTAATTTCTCAGGCTGCGACACTGGACG

TACGTGGTGGATATCGTA

xylF CGAAGAGAAAAATGCAATAAGTACAATTGCGCAACAAAAGTAAGATCTCGGTCATAAATCAAGAAATAAA

CCAAAAATCGTAATCGAAAGATAAAAATCTGTAATTGTTTTCCCCTGTTTAGTTGCTAAAAATTGGT

TACGTTTATCGCGGTGATTGTTACTTATTAAAACTGTCCTCTAACTACAGAAGGCCCTACACCATGA

AAATAAAGAACATTCTACTCACCCTTTGCACCTCACTCCTGCTTACCAACGTTGCTGCACACGCCAA

AGAAGTCAAAATAGGTATGGCGATTGATG

gcvB TTCCTGAGCCGGAACGAAAAGTTTTATCGGAATGCGTGTTCTGATGGGCTTTTGGCTTACGGTTGTGATGTTGTGT

TGTTGTGTTTGCAATTGGTCTGCGATTCAGACCACGGTAGCGAGACTACCCTTTTTCACTTCCTGTACATTTACCC

TGTCTGTC

oppA GACAGCAGAAAGUCUCCGAGCCUGUGCAGGGUCCCAAUCCGGGAUUACACAUGCUGGUUAAUACCAGUAAUUAUAA

UGAGGGAGUCCAAAAAACAAUGACCAACAUCACCAAGAGAAGUUUAGUAGCAGCUGGCGUUCUGGCUGCGCUAAUG

GCAGGGA

DicF TTTCTGGTGACGTTTGGCGGTATCAGTTTTACTCCGTGACTGCTCTGCCGCCCTTTTTAAAGTGAATTTT

ftsZ AAAAGAGTTTTAATTTTTATGAGGCCGACGATGATTACGGCCTCAGGCGACAGGCACAAATCGGAGAGAAACTATG

TTTGAACCAATGGAACTTACCAATGACGCGGTGATTAAAGTCATCGGCGTCGGCGGCGGCGGCGGTAATGCTGTTG

AACACATGGTGCGCGAGCGCATTGAAGGTGTTGAATTCTTCGCGGTAAATACCGATGCACAAGCGCTGCGTAAAA

EGS AACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTTTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATC

TTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAAT

S-SER GTTAACGATGAGGGTGCGGTCTCCGCGCGCAGGTTCAAATCCTGCTAGCAGCATTT

S-SER-C GTTAACGATGAGGGTGCGGTCTCCGCGCGCAGGAAGAAATCCTGCTAGCAGCATTT

S-C386 GTTAACGATGAGGGACCTCACCGGTCGTTCGGATTCGACTAGCAGCATTT

S-C386C GTTAACGATGAGGGACCTCACCGGTCGAAGGGATTCGACTAGCAGCATTT

Table A.1: Table of RNAs with their corresponding sequence as used in this thesis.
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