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Zusammenfassung

RNAs nehmen in Zellen an verschiedenen Prozessen teil. Man kann Energieland-

schaften benutzen um den RNA Strukturraum zu charakterisieren. Deshalb kann

man mit diesen Energielandschaften die Prozesse, bei denen die verschiedenen RNAs

beteiligt sind, besser verstehen. Es ist wichtig die Energiebarriere in RNA Land-

schaften in vielen praktischen Problemen abzuschätzen (zum Beispiel bei der kine-

tischen RNA Faltung (Geis et al., 2008) oder bei der Suche nach bistabilen RNA

Molekülen (Flamm et al., 2001)). Zu diesem Problem wurden einige Ansätze ent-

wickelt. Man sollte diese Ansätze in zwei Punkten verbessern: verringerte Zeit-

komplexität und gleichzeitig die Präzision von Abschätzungen erhöhen. Diese

Masterarbeit hat als Ziel die Untersuchung von den Lösungen zu den oben erwähnten

Problem. Wir wenden “shape abstraction” auf das Problem der Barriereabschätzung

an. In der Masterarbeit wurden einige, auf dieser Abstraktion basierende, präzisere

Algorithmen entwickelt und mit den schon existierenden Ansätzen verglichen.
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Abstract

RNAs take part in diverse processes in cells. Energy landscapes can be used to char-

acterize the structural space of an RNA and thus can help us to better understand

the processes in which RNAs are involved. The task of estimating energy barriers

in RNA landscapes is important in many practical problems such that kinetic RNA

folding (Geis et al., 2008) and search for bistable RNA molecules (Flamm et al.,

2001). A few approaches has been developed to solve this problem. They need to

be improved in two ways: improve time complexity and, at the same time, improve

the accuracy of estimations. This master thesis has a task of investigating possible

solutions to above-mentioned problem. We apply “shape abstraction” to the barrier

height estimation problem. In the master thesis a number of precise algorithms

based on this abstraction have been developed and compared to already existing

ones.

4



Acknowledgements

I would like to take the opportunity to thank the people who have supported me

through my Master experience. First of all I would like to say thanks to Prof. Dr.

Andreas Podelski and Prof. Dr. Rolf Backofen, who gave me an interesting topic

and helped me during the work on the Master thesis.

Second, I would like to thank Martin Mann for answering lots of my questions

and helping me with new ideas and algorithms.

Finally, I would like to thank my parents and my beloved girl-friend Ievgeniia.

Without your support and love this work would not be possible.

5



Contents

1 Introduction 8

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries and Fundamental Concepts 10

2.1 RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Energy Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 RNA Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Abstract Shapes of RNA . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Exact methods 19

3.1 Flooding Algorithm for Barriers . . . . . . . . . . . . . . . . . . . . . 19

3.2 Dynamic Programming Approach for Direct Paths . . . . . . . . . . . 20

4 Heuristics 21

4.1 Morgan Higgs Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Breadth First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Shape Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Shape Triples Approach . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Direct Shape Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Experimental Results 29

5.1 Methodology of Experiments . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Distance abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 subROSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Chlamydia trachomatis . . . . . . . . . . . . . . . . . . . . . . 32

5.2.3 Caenorhabditis brenneri . . . . . . . . . . . . . . . . . . . . . 35

5.3 Mountain Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Shape abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.1 Structure of optimal paths . . . . . . . . . . . . . . . . . . . . 37

5.4.2 Shapes Network . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6



Contents 7

5.4.3 Shape Triples Approach . . . . . . . . . . . . . . . . . . . . . 40

5.4.4 Direct Shape Paths . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusions and Discussion 43

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

List of Figures 45

List of Algorithms 47

Bibliography 48



Chapter 1

Introduction

1.1 Motivation

Over the last 10 years it became evident that RNA plays a central role within living

cells and actively performs a lot of tasks in many different biological contexts. These

functions are often related to the three-dimentional structure of the molecules. But

the basic properties of the energy landscape of an RNA molecule can be characterized

using RNA secondary structures (Flamm et al., 2000). RNA energy landscapes can

help us to understand the folding mechanisms of RNAs.

In (Geis et al., 2008) a heuristic approach to kinetic RNA folding that constructs

secondary structures by stepwise combination of building blocks is presented. These

blocks correspond to sub-sequences and their thermodynamically optimal structures.

Optimal structures are calculated using dynamic programming approach. Morgan-

Higgs heuristic and a barrier tree based heuristic are used to model folding trajec-

tories. In the paper it is emphasized that the performance of the whole approach

crucially depends on approximating saddle heights and therefore further improve-

ments to the Morgan-Higgs heuristic as well as alternative approaches should be

investigated.

It is known that non-native conformations can have energies comparable to the

ground state and they can be separated from the native state by very high energy

barriers. Because of that it is needed a lot of energy to reach the native state. The

RNA folding process can be slowed down when the structure is misfolded. Alterna-

tive conformations of the same RNA can determine completely different functions

(Baumstark et al., 1997). Molecular switches that regulate and control a number

of biological processes are based on the capability of RNA molecules to form mul-

tiple (meta)-stable conformations with different functions (Perrotta & Been, 1998;

Zamora et al., 1995).

Flamm et al. (2001) have shown that bistable, and more generally, multistable

RNA molecules with a variety of additional properties can be found rather easily.

A computational method that allows the design of RNA sequences that fold into
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Chapter 1. Introduction 9

prescribed alternative conformations is presented. It is crucial for this method to

efficiently and precise approximate energy barriers. This follows from the fact that

the energy barriers separating local minima are the most important factor influencing

the folding kinetics of an RNA (Flamm et al., 2000). Thus we can see that finding

approximations for barriers heights is an important task in many areas of research.

1.2 Contribution

In the master thesis new algorithms which use shape abstraction for estimating

barrier heights have been developed. These algorithms have been experimentally

compared to already existing approaches to the problem. Using the developed algo-

rithms one get more precise estimations and nevertheless the algorithms are feasible

for long RNA sequences.

1.3 Related work

Uejima & Hagiya (2004) improve Morgan-Higgs Heuristic (Morgan & Higgs, 1998)

by using base pair incompatibility graph and introducing ordering of base pairs under

consideration. An improved version of Morgan-Higgs Heuristic was also developed

by Geis et al. (2008). One has added two parameters that affect the frequency of

building and the treatment of conflict groups. First parameter defines the maxi-

mum length of partial paths under consideration and second parameter determines

whether to recalculate the conflict group after certain number of base pairs have

been added to the current structure. Geis et al. (2008) also proposes two further

modifications to the heuristic that the user can choose. The first allows the fold-

ing of partial trajectories in the case that the entire trajectory between structures

crosses an energy barrier that is too high. Furthermore, one may make base pair

transitions more realistic by only allowing one stack of less than 3 base pairs at a

time. Finally, Flamm et al. (2001) uses breadth-first-search to find approximations

of barriers. On each step of BFS several best structures are saved. We iterate until

we reach the target structure. This method is considered in more detail in chapter

4.2.

1.4 Overview

In Chapter 2 some preliminaries and definitions are given. Chapter 3 presents exact

methods for calculating barriers. In Chapter 4 some known and new heuristic meth-

ods are considered. In Chapter 5 the experimental results are discussed. Finally in

Chapter 6 the results are summarized and the outlook of possible further research

in this area is given.



Chapter 2

Preliminaries and Fundamental

Concepts

2.1 RNA

RNA is a single-stranded molecule, which is made from monomers that are called

nucleotides. Each nucleotide consists of a sugar (ribose) with an attached phosphate

group and a nitrogen-containing sidegroup: a base. The base may be either adenine

(A), cytosine (C), guanine (G) or uracil (U). The sugars are linked to each other

by phosphodiester bonds. The resulting polymer chain is formed by the sugar-

phosphate backbone and the bases which protude from it.

Since the RNA is single-stranded, its backbone is flexible which allows the poly-

mer chain to bend back and to form hydrogen bonds with another part of the same

strand. The base A can pair with its complementary base U, and C can pair with G.

Apart from these standard, or Watson-Crick base pairs, other non-standard types

like G pairing with U can be found occasionally. RNA chains can fold up in a variety

of different shapes. The complementary base-pairings cause that the folding of an

RNA molecule is determined by its nucleotide sequence. The resulting structures of

the folded RNA molecules can give rise to their biological functions.

Definition 2.1.1 (RNA Structure). Let s ∈ {A,C,G, U}∗ be a sequence. Then, an

RNA structure over s is a set P of pairs

P = {(i, j) | i < j∧si, sj form a Watson-Crick or a non-standard base pair (G-U)}.

Any two base pairs (i, j) ∈ P and (k, l) ∈ P have to satisfy the following prop-

erties:

• i = k ⇔ j = l because each base can pair with at most one other base and

• j < k, l < i, i < k < l < j or k < i < j < l must be satisfied.

10
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A structure with the second property is called non-crossing and does not con-

tain pseudo-knots. Pseudo-knots play an important role in many natural RNAs

(Ten Dam et al., 1992). Since we can efficiently compute energy only of pseudo-

knot free structures (Zuker & Stiegler, 1981), we will consider only pseudo-knot free

structures in the remainder of the thesis. In Figure 2.1 (the picture is taken from

(Kochniss, 2008)) a detailed picture of the RNA sequence AGUC is presented.

Figure 2.1: Picture of the RNA sequence AGUC

In order to define abstract shapes of RNA in Section 2.4 we will need the following

definitions.

Definition 2.1.2 (RNA Structural Elements). Let S be a fixed sequence. Further,

let P be an RNA structure for S.

• a base pair (i, j) ∈ P closes a hairpin loop if ∀i < i′ ≤ j′ < j : (i′, j′) /∈ P .

• a base pair (i, j) ∈ P closes a stacking if (i+ 1, j − 1) ∈ P .

• two base pairs (i, j) ∈ P and (i′, j′) ∈ P form an internal loop (i, j, i′, j′) if

– i < i′ < j′ < j

– (i′ − i) + (j − j′) > 2 (no stack)

– there is no base pair (k, l) between (i, j) and (i′, j′).

• An internal loop is called left (respectively right) bulge, if j = j′ + 1 (respec-

tively i′ = i+ 1).

• A k-multiloop consists of multiple base pairs (i1, j1), . . . , (ik, jk) ∈ P with a

closing base pair (j0, ik+1) ∈ P with the property that

– ∀0 ≤ l ≤ k : (jl < il+1)
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Figure 2.2: RNA secondary structure plot Figure 2.3: RNA dot-bracket representation

– ∀0 ≤ l, l′ ≤ k is true that there is no basepair (i′, j′) ∈ P with i′ ∈
[jl, . . . , il+1] and j′ ∈ [jl′ , . . . , il′+1].

• (i1, j1), . . . , (ik, jk) close the helices of the multiloop.

Definition 2.1.3 (Dot-bracket representation of RNA secondary structure (Viennot

& De Chaumont, 1983)). For Σ = {(, ), .} and w ∈ Σ∗ let |w|x for x ∈ Σ denote

the number of occurrences of symbol x in w. Then a word w ∈ Σn is a secondary

structure of size n if w satisfies the three following conditions:

1. For every factorization w = u · v, |u|( ≥ |u|).

2. |w|( = |w|).

3. w has no factor ().

In Figures 2.2 and 2.3 (the pictures are taken from (Kochniss, 2008)) a RNA

secondary structure plot and RNA dot-plot representation respectively are shown.

2.2 Energy Landscape

In order to characterize the space of possible RNA structures will use the notion

of energy landscape. Energy landscape is the particular case of fitness landscape

which was introduced in (Wright, 1932). The idea of fitness landscape can be used

in different areas, e.g. in combinatorial optimization problems.

Definition 2.2.1 (Energy landscape). An energy landscape can be described for-

mally by the following three parts:

1. A set X of structures

2. an operator N : X → P(X), which defines the neighborhood of a conformation

x ∈ X, and
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3. an energy function E : X → R.

Definition 2.2.2 (Structural space). The structural space X is formed by the

structural set X in combination with the neighborhood operator N . It can be

distinguished between discrete landscapes, which have a finite structural space, and

continious landscapes (e.g. off-lattice protein models (Stillinger & Head-Gordon,

1995)). In the following we will discuss only discrete landscapes. We also will use

RNA conformation and structure as synonyms.

Definition 2.2.3 (Move set). The organization of the conformation space X can

be described by a move set. It defines how one conformation can be converted into

a neighbored one (Stadler, 2002). The move sets we use here assign to each confor-

mation x ∈ X a set N(x) of accessible neighboors. N(x) denotes the neighborhood

of x. Each move should have a reverse counterpart and the move set should be con-

structed such that y ∈ N(x)⇔ x ∈ N(y). The move set then results in a symmetric

neighborhood relation N : X ×X, where (x, y) ∈ N ⇔ y ∈ N(x). In the following

we will consider the single move set which allows deletion or addition of one bond.

Definition 2.2.4 (Structure energy). The energy of an RNA structure is assumed

to be equal to the sum of contributions of all structural elements

E(P ) =
∑

(i,j)∈P

EP
i,j,

where EP
i,j is the energy contribution of the structural element defined by the base

pair (i, j) (see Definition 2.1.2).

Definition 2.2.5 (Local minimum). A conformation x̂ is called a local minimum,

if

∀y ∈ N(x̂) : E(x̂) ≤ E(y).

We write “≤” in the definition because some structures can have in general the same

energy (We call energy landscape where structures with the same energy are allowed

degenerate energy landscapes. In this work we will only consider degenerate energy

landscapes).

Definition 2.2.6 (Global minimum). A conformation x̂ is called a global minimum,

if

∀y ∈ X : E(x̂) ≤ E(y).

Obviously each global minimum is also a local minimum.
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Definition 2.2.7 (Walk). A walk between the conformations x and y is the list of

conformations

x = x1, . . . , xk = y with ∀1 ≤ i ≤ k : xi ∈ X and ∀1 ≤ i < k : (xi, xi+1) ∈ N.

Definition 2.2.8 (Random walk). Random walk denotes an arbitrary, randomly

chosen walk between two conformations.

Definition 2.2.9 (Adaptive walk). A walk is called an adaptive walk, if for the list

of the conformations x1, . . . , xk the following condition holds:

∀1 ≤ i < k : E(xi+1) ≤ E(xi)∧ 6 ∃y ∈ N(xk) : E(y) ≤ E(xk).

Definition 2.2.10 (Gradient walk). A walk is called a gradient walk, if for the list

of the conformations x1, . . . , xk the following condition holds:

∀1 ≤ i < k : E(xi+1) ≤ E(xi)∧xi+1 = arg min
x∈N(xi)

E(x)∧ 6 ∃y ∈ N(xk) : E(y) ≤ E(xk).

That is, in each step of the gradient walk, the neighbour with the minimal energy

has to be chosen.

Definition 2.2.11 (Length of walk). Length of a walk w is the number of moves

in the walk w (denoted as L(w)).

Definition 2.2.12 (Direct walk). A direct walk is the shortest path in energy

landscape, i.e. a walk ŵ between x̂ and ŷ is called direct if

L(ŵ) = min{L(w) | w : walk between x̂ and ŷ}.

Definition 2.2.13 (Direct walk in case of RNA). In the case of RNAs, a walk

between two conformations S1 and S2 is called direct, if it only considers direct

routes, that is walks that only change base pairs in the symmetric difference S1 M S2

of S1 and S2.

Definition 2.2.14 (Mutually accessible conformations). Two conformations x and

y in X are called mutually accessible at the level η, written

x " η # y,

if there is a walk w in X from x to y, such that ∀z ∈ w : E(z) ≤ η (Flamm et al.,

2002).

Definition 2.2.15 (Barrier height). The barrier height E[x̂, ŷ] between x̂ and ŷ is

the minimum height which makes them accessible from each other, that is

E[x̂, ŷ] = min{max[E(s) | s ∈ w] | w : walk from x̂ to ŷ} = min{η | x̂ " η # ŷ}
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A point s ∈ X satisfying this condition is called a barrier between x̂ and ŷ.

The local minima and the barriers between them can be represented in a hierar-

chical structure. This hierarchical structure is called the barrier tree of the energy

landscape. Formally barrier tree is defined below.

Definition 2.2.16 (Barrier tree). The barrier tree is a rooted graph G(V,E). The

vertex set V contains the local minima of the landscape and the barriers connecting

them. Each vertex has an associated energy value, which is the energy of the local

minimum and the barrier, respectively. The leaves of the tree are the local minima,

and the internal nodes represent the barriers.

In Figure 2.4 a barrier tree for the sequence subROSE is presented.
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2.3 RNA Metrics

In some applications we need to get estimations of likelihood of RNA structures. To

do this we can use different metrics. The simplest example is the structural distance

metric.

Definition 2.3.1 (Structural distance metric). Let BS, where S is a RNA structure,

be a set of base pairs of S. Then the structural distance between two RNA structures

S1 and S2 equals the symmetric difference size of BS1 and BS2 .

dS(S1, S2) = |(BS1 ∪BS2) \ (BS1 ∩BS2)|

An example of a more accurate metric is mountain metric (Hogeweg & Hes-

per, 1984; Moulton et al., 2000) which allow to capture more secondary structure

information.

Definition 2.3.2 (Mountain metric). For each RNA structure S of the length n

we define a vector fS of the size n as follows: fS(i) equals the number of “(”

brackets minus the number of “)” brackets found when looking through the bracket

notation from the first position up to, and including, the i-th position so that fS =

(fS(1), fS(2), . . . , fS(n)). Furthermore let

wS(k) =


1

l−k
if (k, l) ∈ BS

−1
k−l

if (l, k) ∈ BS

0 otherwise

and f ′S(i) =
∑i

k=1wS(k) and dM(S1, S2) = ||f ′S1
− f ′S2

||1 =
∑n

i=1 |f ′S1
(i)− f ′S2

(i)|.

2.4 Abstract Shapes of RNA

Unfortunately the size of the state space of the energy landscape grows exponentially

in the size of RNA sequence. Thus one of the important questions is to find the

appropriate abstraction of the landscape. One of the approaches is discussed in

(Giegerich et al., 2004; Steffen et al., 2006; Reeder & Giegerich, 2005).

According to Steffen et al. (2008) five different level of ab-

stractions are defined. The difference between types of ab-

straction is illustrated with the following example structure:

(((((((.((((.((......)).((.((.......)).)).)))).((((.......)))).))))).))..

• Type 1 (Most accurate): all loops and all unpaired regions are represented.

All structural components contribute to shape representation, only the length

of loops and unpaired regions is abstracted.

[[ [ [] [ [] ] ] [] ] ]
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• Type 2: nesting pattern for all loop types and unpaired regions in external

loop and multiloop.

[[[[][ [] ]][]] ]

• Type 3: nesting pattern for all loop types but no unpaired regions. This shape

representation completely abstracts from single-stranded regions.

[[[[][[]]][]]]

• Type 4: helix nesting pattern and unpaired regions in external loop and mul-

tiloop. In this type helices are combined and thus we additionally abstract

from nesting and adjacency of helices.

[[[][[]]][]]

• Type 5 (Most abstract): helix nesting pattern and no unpaired regions.

[[[][]][]]

Now we will formally define level of abstraction 5. We will call π a mapping

from the tree-like domain of concrete structures to the tree-like domain of abstract

structures. The representative structure p̂ for shape class p is the element that has

minimal free energy among all structures in the class (we will call such a structure

a shrep). Due to Zucker energy model RNA structure consists of the following

components (see Definition 2.1.2): single-stranded regions (SS), hairpin loops (HL),

stacking regions (SR), bulges on the 5’ or on the 3’ side (BL and BR), internal loops

(IL) and multiloops. Furthermore we could have a list of adjacent structures (AD)

and empty list of adjacent structures (E). We also need to introduce the notion for

shape domain. We will do it as follows: OP - open structure, CL - closed structure,

FK (’fork’) - branching. Now we can formally define π:

π(SS(l)) = OP

π(HL(a, l, b) = CL

π(SR(a, x, b)) = π(x)

π(BL(a, l, x, b)) = π(x)

π(BR(a, x, l, b)) = π(x)

π(IL(a, l, x, l′, b)) = π(x)

π(ML(a, c, b) = FK(π(c))

π(AD(SS(l), c)) = π(c)

π(AD(x, c)) = AD(π(x), π(c)) for x 6= SS(l)

π(E) = E

This abstraction function retains hairpins and multiloops, but abstracts from

stack lengths, bulges, internal loops and single-stranded regions (except in the case

of the completely unpaired structure). In this manner one can formally define other
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levels of abstraction. For more information see Giegerich et al. (2004). In this work

will consider shapes of RNA structures without lonely base pairs (i.e., pairs that

are not stacked on another pair). But to be able to work with RNA structures

with lonely base pairs we will use the following transformation: we delete all lonely-

standing base pairs and then associate the shape of the structure we got with the

original RNA structure.

Till now we have only defined tree based representations for abstract and concrete

domains. For convenience we will introduce string based representations of both

abstract and concrete domains.

We define a notation for shapes, using mapping νP as follows: . . .k means k dots,

|l| is the length of string l and ε denotes the empty string.

νP (OP ) =

νP (CL) = []

νP (FK(c)) = [νP (c)]

νP (AD(x, c)) = νP (x)νP (c)

νP (E) = ε

The notation for the concrete domain is similar to dot-bracket representation

(see Definition 2.1.3), here defined as νS:

νS(SS(l)) = . . .l

νS(HL(a, l, b)) = (. . .l)

νS(SR(a, x, b)) = (νS(x))

νS(BL(a, l, x, b)) = (. . .|l| νS(x))

νS(BR(a, l, x, b)) = (νS(x) . . .|l|)

νS(IL(a, l, x, l′, b)) = (. . .|l|)νS(x) . . .|l|)

νS(ML(a, x, b)) = (νS(x))

νS(AD(x, c)) = νS(x)νS(c)

νS(E) = ε



Chapter 3

Exact methods

3.1 Flooding Algorithm for Barriers

In (Kubota & Hagiya, 2005) a general approach for finding barriers between struc-

tures is proposed. This algorithm is an implementation of the idea of flooding algo-

rithm. In the algorithm the energy landscape is represented as a graph G = (V,E),

where V is a conformation space and the set of edges E is defined using move set.

Pseudocode for flooding algorithm for barriers is presented in Algorithm 1.

Algorithm 1 Flooding Algorithm for Barriers

Ss . initial structure
St . target structure
B . set of reachable, low energy vertices
N . set of vertices neighboring a vertex in B
M . set of vertices which were added on the current interation
N ← ∅
B ← {Ss}
M ← {Ss}
while St 6∈ M do
N ← N ∪ {neighbours of v | v ∈M} \ (B ∪N )
M← {x̂ ∈ N | E(x̂) = min{E(x) | x ∈ N}}
B ← B ∪M

end while

The structure with the maximum energy in B is a true energy barrier between

initial and target structures. Unfortunately, in the worst case we need to enumerate

the whole structure space, i.e. we need exponential time in the length of the input

RNA sequence.
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3.2 Dynamic Programming Approach for Direct

Paths

In order to decrease the number of structures under consideration we will abstract

the landscape as follows: we will group structures depending on the structural dis-

tance from initial and target structures. We will use structural distance metric. We

should mention that only direct paths from initial to target structure are consid-

ered in the following approach. In Algorithm 2 the pseudocode of DP approach is

presented.

Algorithm 2 Dynamic programming approach

Ss . initial structure
St . target structure
Ci . Ci = {s|dS(s, Ss) = i ∧ dS(s, St) = dist− i}

. i.e., the set of structures which are in the distance of i to the initial state
. and dist− i to the target state

Bi . Barriers for the path which ends in class Ci. Bi(struct) represents
. a barrier for the path ending in structure struct in class Ci

path . path between initial and target structures
Barrier ← Infinity
dist← dS(Ss, St)
Initialization of C1 and B1

for i = 2 . . . dist do
for all curr ∈ Ci do

for all prev ∈ Ci−1 do
Barrier ← max(Bi−1(prev), Energy(curr))
Bi(curr)← min(Barrier, Bi(curr))

end for
end for

end for
Output Bdist(target state) . Barrier between initial and target structures
path← BackTrack(Bdist(target state)) . We get the path between Ss and St

. using backtracking



Chapter 4

Heuristics

The algorithms which were considered in Chapter 3 give the exact results but are

not applicable to long sequences. To overcome this obstacle several heuristics have

been developed. This chapter gives overview of already existing heuristic approaches

and present some new algorithms.

4.1 Morgan Higgs Heuristic

One of the most important and common heuristics to find barriers in the landscape

is Morgan-Higgs heuristic (Morgan & Higgs, 1998). Now we will briefly describe the

underlying algorithm. Algorithm 3 presents pseudocode for Morgan-Higgs heuristic.

The Morgan-Higgs heuristic aims at determining the barrier between two con-

formations A and B. It only considers direct walks between A and B. To introduce

Morgan-Higgs heuristic we need one more definition.

Definition 4.1.1 (Conflicting base pairs). Let S be an RNA sequence and P1 and

P2 be two structures of S. Then p ∈ BP1 is in conflict with q ∈ BP2 \BP1 if in order

to add q to P1 one should first delete p from P1.

Algorithm 3 Morgan Higgs Heuristic

Aadd ← B\A . the base pairs to add to get from A to B
Aremove ← A\B . the base pairs to remove to get from A to B
Sort Aadd by ascending number of conflicting base pairs with Aremove

for all basepair p ∈ Aadd do
Remove from the structure the base pairs from Aremove which are in conflict
with p
Add all elements in Aadd without conflicts to the structure
Record the the structure with the maximum energy over all structures we got
after deleting some conflict base pairs and adding new base pairs in
the previous two steps

end for

We also need to take the following remarks into consideration:
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1. The Morgan-Higgs heuristic returns the energy barrier of the lowest traversed

path. There is no guarantee that the choice of routes includes the lowest direct

route.

2. When there are several base pairs with an equal number of conflicts, paths for

each possible ordering may be calculated in order to get better results.

4.2 Breadth First Search

In Section 3.2 we considered a method to exactly calculate the barrier when we

take only direct paths into consideration. The disadvantage of this method is in

its complexity. To overcome this obstacle we consider the following method. This

approach works as follows:

1. We start in the initial structure. We generate all neighbored structures of

the initial structure which are in the next distance class (in this case class

(1, dist− 1)). Thus we will get partial paths of the length 2.

2. We calculate barriers for each of these paths. We save MaxKeep best struc-

tures.

3. We generate all neighbor structures for the set of structures we got in the

previous step. We proceed in the same manner as in steps 1 and 2 until we

reach the final structure.

Algorithm 4 presents pseudocode for the breadth first search.This approach was

first introduced in Flamm et al. (2001).

Algorithm 4 Breadth first search

Ss . initial structure
St . target structure
S . the set of structures under consideration

. each element also contains information about
. previous state on the partial path and the current values of barrier

next . the set of neighbor structures
MaxKeep . number of structures to keep on each step
path . path between initial and target structures
S ← {Ss}
dist← structural distance between initial and target states
for i = 1 . . . dist− 1 do . for all distance classes

next← Neighbors(S, i) . all neighbors in the next distance class
S ← KeepBest(next,MaxKeep)

end for
Output min(S) . Barrier between initial and target structures
path← BackTrack(argmin(S))

Remarks:
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1. Ci = {s|dS(s, Ss) = i ∧ dS(s, St) = dist − i} – the set of structures which are

in the distance of i to the initial state and dist− i to the target state.

2. Neighbors(S, i) – is a function which returns a set {s′|s′ ∈ Ci ∧ ∃s ∈ S :

dS(s, s′) = 1}, i.e. the structures which lie in the next distance class and are

neighbored to some structure in S.

3. KeepBest(next,MaxKeep) – is a function which returns MaxKeep structures

with minimal energy from the set next.

4. BackTrack(argmin(S)) – is a function which prints out the path with minimal

maximal energy between Ss and St using backtracking.

In order to improve performance of BFS we consider a modification of BFS

method. We will order the structures in the distance classes in specific way us-

ing mountain metric and partial barrier values. To do it we need to modify the

KeepBest(next,MaxKeep) function. Let struct ∈ Ci. We present the following

weighting function:

score(struct) = wB · scorebarrier(struct) + wM · scoremountain(struct),

where

wB and wM – weights of mountain metric and partial barrier respectively,

wB + wM = 1, wB ≥ 0, wM ≥ 0,

scorebarrier(struct) =
barrier(struct)−minbarrier(struct)

maxbarrier(struct)−minbarrier(struct)
,

scoremountain(struct) =
dM(struct, St)−minmount

maxmount(struct)−minmount(struct)
,

barrier(struct) – partial barrier till struct,

minbarrier(struct) – minimal partial barrier in the distance class Ci,

maxbarrier(struct) – maximal partial barrier in the distance class Ci,

minmount(struct) – minimal mountain metric value in the distance class Ci,

maxmount(struct) – maximal mountain metric value in the distance class Ci.

We will sort the structures in the set next using this scoring function and after that

take MaxKeep best.
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4.3 Shape Network

The main disadvantage of a distance abstraction is the large similarity of neighbored

distance classes. Furthermore when using a distance classes approach we cover only

a small part of the state space. We will try to overcome this obstacles by using

shapes abstraction. We have already defined shape abstraction in chapter 2.4. The

Shape Network algorithm works as follows:

1. Using RNAshapes (Steffen et al., 2008) we can compute a list of all possible

shapes; each shape except initial and target RNA structures is represented by

a shrep (see Section 2.4); shape to which initial RNA structure belongs to (we

call such shape initial shape) is represented by an initial RNA structure; the

same for target RNA structure (we call such shape target shape).

2. Using BFS (or MH) we can compute barriers between all pairs of shapes. We

save this data in the matrix (we call this barrier matrix). Thus we get a graph

where a vertex represents a shape and the weight of an edge is equal to the

barrier height between vertices of the edge.

3. Using modification of Floyd-Warshall algorithm (Floyd, 1962) we calculate

barrier between initial and target shapes.

The pseudocode of the modified Floyd-Warshall algorithm is presented in Algo-

rithm 5.

The algorithm can also be modified in the following way:

1. initial and target shapes are represented by their shreps.

2. same as before.

3. same as before.

4. using BFS (or MH) we calculate barrier between initial structure and the shrep

of the initial shape; the same for target structure.

5. we get final barrier using matrix calculated in 3 and barriers from 4.

Using this modified algorithm we can effectively get approximations of barriers

for all pairs of structures and do not need to recalculate the barrier matrix. Thus

this algorithm becomes applicable to problems where we need to calculate multiple

times barriers between different pairs of structures in the same landscape (the same

RNA sequence). As an example of such a problem we can mention the problem of

computating a barrier tree (Richter, 2007).
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Algorithm 5 Modified Floyd algorithm for calculating barriers

i, j, k
dist . matrix of barriers along direct paths between shreps
back . data for backtracking
N . number of shapes in shape network
init shape . initial shape
target shape . target shape
path . path between initial and target structures
for k = 1 . . . N do

for i = 1 . . . N do
for j = 1 . . . N do

curr barr ← dist(i, j)
new barr ← max(dist(i, k), dist(k, j))
if new barr < curr barr then

dist(i, j)← new barr
back(i, j)← k

end if
end for

end for
end for
Output dist(init shape, target shape) . Barrier between initial and target

. structures
path← BackTrack(init shape, target shape)

4.4 Shape Triples Approach

In this section a method to decrease time complexity of Shape Network Method is

presented. To do this we consider only the paths of the form:

initial structure - shrep - target structure.

Our hypothesis is that to get good results we do not need to consider the paths with

the complex structure. In this approach we will consider the paths which consists of

two parts and each of them is a direct path as well as direct path between initial and

target structure. As before the shape to which the initial RNA structure belongs to

is represented by an initial RNA structure (target shape is represented by the target

RNA structure). Algorithm 6 presents pseudocode of the Shape Triples Approach.

Remarks:

1. CalcPath(structA, structB) – calculates barrier height between structA and

structB. We can use either BFS or MH.

One can also consider a modification of Shape Triples approach in which we

consider not a single shrep for each shape but a set of structures with the minimal

energy from the shape. We will call this method Shape Triples with Sets.
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Algorithm 6 Shape Tripples Approach
i
shreps . array of shreps
best i . best shrep
best barrier . best barrier
current barrier . current barrier
N . number of shapes in shape network
init shape . initial shape
target shape . target shape
path . path between initial and target structures
best i← −1 . in the case when we do not have any intermediate shapes
best barrier ← CalcPath(init shape, target shape) . as CalcPath we can use

. either BFS or MH
for i = 1 . . . N do

dist init← CalcPath(init shrep, i) . Calculate barrier between initial
. structure and i-th shrep

dist target← CalcPath(i, target shrep) . Calculate barrier between i-th
. shrep and target structure

current barrier ← max(dist init, dist target)
if current barrier < best barrier then

best barrier ← current barrier
best i← i

end if
end for
Output best barrier . Barrier between initial and target

. structures
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4.5 Direct Shape Paths

In the previous approaches in which we used shape abstraction we had to run through

the whole list of shapes. In the Direct Shape Paths approach we want to consider

only the shapes which are relevant to the path between given initial and target RNA

structures. We will proceed as follows:

1. We calculate abstract shapes of the initial and target structure. We call the

shape which includes initial structure initial shape. We call the shape which

includes target structure target shape.

2. We find out the path in the abstract space between initial and target shapes.

Neighborhood relation is defined as insertion or deletion of one bracket pair.

We associate with each shape class except initial and target shapes its shrep.

The energy of initial structure is associated with the initial shape. The energy

of target structure is associated with the target shape. Finally we calculate

the abstract path using modification of BFS. As element of the abstract path

we understand a set of shape classes which have the same distances to initial

and target shapes.

3. The path between structures will be small even for long concrete sequences.

4. We start considering initial shape. We generate shreps in the next shape class

on the path. We could have a set of shreps because as mentioned above each

element of the abstract path is a set of shapes which have the same distances

to initial and target shapes.

5. We calculate the barrier between initial shape and each of concrete structures.

We can do it using either BFS or MH.

6. Now we can calculate partial paths and partial barriers for these concrete

structures.

7. We iterate through steps 5-6 until we reach the target shape.

Algorithm 7 presents pseudocode for the Direct Shape Paths approach.

Remarks:

1. Shape(struct) – returns the shape of the structure struct.

2. CalcPath(init shape, target shape) – returns a path between init shape and

target shape in the space of shapes.

3. GenRepr(abstract class) – returns a set of shreps of the shape classes

abstract class.
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4. CalcPartialBarriers(prev class, curr class) – calculates partial barriers for

the paths ending in curr class using information from prev class and saves

this information in curr class.

5. BackTrack(argmin(curr class)) – returns the concrete path using backtrack-

ing.

Algorithm 7 Direct Shape Paths Approach

Ss . initial structure
St . target structure
init shape . initial shape
target shape . target shape
curr class . current class on the path
prev class . previous class on the path
abstract path . abstract path between initial and final shapes
concrete path . path between initial and target structures
init shape← Shape(Ss)
target shape← Shape(St)
abstract path← CalcPath(init shape, target shape)
prev class← {Ss}
for all abstract class ∈ abstract path[2, . . .] do. all classes except the initial one

curr class← GenRepr(abstract class) . we generate shreps
CalcPartialBarriers(prev class, curr class) . calculate partial barriers and

. save results in curr class
prev class← curr class

end for
Output min(curr class) . Barrier between initial and target structures
path← BackTrack(argmin(curr class))
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Experimental Results

In the Chapters 3 and 4 several methods for finding barriers were described. In this

Chapter we will evaluate and compare the described methods.

5.1 Methodology of Experiments

The following three RNA sequences have been considered in the experimental part:

1. subROSE – GUACCCAUCUUGCUCCUUGGAGGAUUUGGCUAU

This is a subsequence of ROSE Element (Chowdhury et al., 2006).

2. tRNA of Caenorhabditis brenneri – Caenorhabditis brenneri chrUn.trna825-

AlaAGC1 (187465963-187465891)

GGGGGTATAGCTCAGTGGTAGAGCGCTCCCTTAGCATGGGAGAGGGCTGGGGTTCAATTCC-

CCCATACCTCCA

3. tRNA of Chlamydia trachomatis – Chlamydia trachomatis A HAR-

13 chr.trna21-AlaGGC2 (728227-728155)

GGGGTATTAGCTCAGTTGGTAGAGCGCAACAATGGCATTGTTGAGGTCAGCGGTTCGATCCCG-

CTATGCTCCA

For each sequence RNAsubopt program from Vienna RNA Package3 version 1.8.2

(Flamm et al., 2002; Wolfinger et al., 2004; Wuchty et al., 1999) was executed. The

program was run with the following parameters:

• subROSE – RNAsubopt -e 20 -d2 -s (-d2 means that dangling energies will

be added for the bases adjacent to a helix on both sides and -e 20 means that

suboptimal structures withing 20 kcal/mol of the minimum free energy (mfe)

structure will be calculated, -s means that the structures will be sorted in the

increasing order according to their energy).

1The sequence was taken from http://gtrnadb.ucsc.edu/Cbren/
2The sequence was taken from http://gtrnadb.ucsc.edu/GtRNAdb/Chla trac A HAR-13/
3Vienna RNA Package can be downloaded for free from http://www.tbi.univie.ac.at/RNA/
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• Caenorhabditis brenneri – RNAsubopt -e 22.2 -d2 -s

• Chlamydia trachomatis – RNAsubopt -e 25 -d2 -s

After that the results were forwarded to barriers program4 version 1.5.2 with

the following parameters: barriers -G RNA -M noShift (-G RNA means that we

consider RNA structures, -M noShift means that we use single move set (see Section

2.2)).

The output contained a list of pairs of local minima and exact barriers between

them. This list of pairs of local minima was used as an input of heuristics which are

experimentally considered in this chapter.

To produce plots we used R5 (R. D. C. Team, 2004). The kcal/mol is used as a

measure unit in plots which present barriers’ estimations between structures or the

difference between approximated and exact barriers.

The considered heuristics were implemented in C++ using the Energy Landscape

Library6 (Mann et al., 2007).

5.2 Distance abstraction

5.2.1 subROSE

In this section we will consider the sequence subROSE of the length 33.

On Figure 5.1 we can see the difference between approximated and exact barriers

for subROSE sequence. We consider the following algorithms: dynamic program-

ming approach (Algorithm 2, in Figure 5.1 referenced as DP), breadth first search

approach (Algorithm 4; MaxKeep = 5, i.e. we keep 5 structures at each step; in Fig-

ure 5.1 this algorithm is referenced as BFS) and Morgan-Higgs heuristic (Algorithm

3, in Figure 5.1 referenced as MH). From this figure we can conclude that we can

get the best results using dynamic programming algorithm (which is unfortunately

infeasible in practice because of the exponential blow up of number of structures in

structural distance classes). Morgan-Higgs heuristic gives us the worst results.

Figure 5.2 represents the distribution of differences between approximated and

exact barriers according to structural distance between initial and target structures.

We can see that we get worse approximations when we consider the structures with

large structural distance for all considered methods. We would like to emphasize

that the results of MH heuristic crucially depend on the structural distance. In the

case of large structural distance we get very over-approximated results.

From Figure 5.1 we can see that deviation of DP algorithm is very small (in

particularly in comparison with MH heuristic) but still non-zero. Thus a question

4barriers program can be downloaded for free from http://www.tbi.univie.ac.at/ ivo/RNA/Barriers/
5R can be downloaded for free from http://www.tbi.univie.ac.at/RNA/
6ELL can be downloaded for free from http://www.bioinf.uni- freiburg.de/SW/ELL/

http://www.tbi.univie.ac.at/~ivo/RNA/Barriers/
http://www.R-project.org
http://www.bioinf.uni- freiburg.de/SW/ELL/
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Figure 5.1: Difference between approximated and exact barriers for subROSE se-
quence. The results are represented using box-and-whisker plot. The following data
is visualized: smallest non-outlier observation (tick in the left part), lower quartile
(left border of the box), median (line dividing the box), upper quartile (right border
of the box), largest non-outlier observation (tick in the right part), outliers (dots)

appears weather it is sufficient to consider only direct paths between initial and

target structures. To investigate this question we conducted two more tests. We

calculated optimal paths between structures and then researched the structure of

optimal paths.

Figure 5.3 shows us the structure of optimal paths for pairs of initial and target

structures with structural distance equal 10. We can see that there are a lot of

optimal paths which go through classes on the direct path. But nevertheless we have

a lot of paths which have classes far from direct path as their part. The situation

is illustrated formally in Figure 5.5. It shows us the distribution of optimal paths

according to paths’ length between structure with structural distance equals 10. We

can see that 23% of optimal paths are direct. Furthermore, optimal paths with the

length less or equal 16 constitute 68% of all optimal paths with structural distance

10.

Figure 5.4 describes the structure of optimal paths for pairs of initial and target

structures with structural distance equal 16. Using this figure we can get more
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Figure 5.2: subROSE - Distribution of differences between approximated and ex-
act barriers over structural distances. Blue triangles correspond to DP, yellow stars
correspond to BFS and finally green circles represent results of MH.

insight in the structure of optimal paths. We can conclude that when we have larger

structural distance that it is more probable to have a path far away from the direct

one. Figure 5.6 gives us the numerical presentation of optimal path distribution

with structural distance 16. In this case 23% of paths are direct and 46% of optimal

paths has the length less or equal to 20.

5.2.2 Chlamydia trachomatis

It would be interesting to consider the behavior of the algorithms on larger sequences.

In this chapter we will consider the sequence Chlamydia trachomatis of the length

73.

Figure 5.7 represents the difference between approximated and exact barriers for

sequence Chlamydia trachomatis. The following algorithms are considered: dynamic

programming approach, breadth first search approach and Morgan-Higgs heuristic.

We can see that the approximation we got is worse then for subROSE sequence.

Thus we can conclude that we get worse approximation for the longer sequences.
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Figure 5.3: subROSE - Structure of optimal
paths (Distance = 10)

Figure 5.4: subROSE - Structure of optimal
paths (Distance = 16)
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Figure 5.5: subROSE - Distribution of optimal
paths according to paths’ length
(Structural distance = 10)
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Figure 5.6: subROSE - Distribution of optimal
paths according to paths’ length
(Structural distance = 16)
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Figure 5.7: Difference between approximated and exact barriers for Chlamydia
trachomatis
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Figure 5.8: Chlamydia trachomatis - Distribution of differences between approxi-
mated and exact barriers over structural distances

Figure 5.8 represents the distribution of differences between approximated and

exact barriers according to structural distance between initial and target structures.

We can see that the results of all algorithms becomes worse when we consider the

structures which are far away from each other.

From Figure 5.7 we can see that deviation of DP algorithm is larger then for

subROSE sequence. Thus we can conclude that for very long sequences even DP

will not be sufficient.

Finally, Figure 5.9 shows us that the optimal paths can have a much more com-
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Figure 5.9: Chlamydia trachomatis –
Structure of optimal paths (Distance = 13)
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Figure 5.10: Chlamydia trachomatis – Distribution of
optimal paths according to paths’ length
(Structural distance = 13)

plex structure in comparison with Figure 5.3. From Figure 5.10 we can find out

that only 28% of optimal paths are direct and 64% of paths have the length less or

equal to 17. It is the reason why it is not enough considering only direct paths for

the sequence Chlamydia trachomatis.

5.2.3 Caenorhabditis brenneri

One more sequence which we consider is the sequence Caenorhabditis brenneri of

the length 73.

0 5 10 15 20 25 30 35
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0 5 10 15 20 25 30 35

BFS

0 5 10 15 20 25 30 35

MH

Figure 5.11: Difference between approximated and exact barriers for Caenorhabditis
brenneri sequence
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Figure 5.11 presents the difference between approximated and exact barriers

for Caenorhabditis brenneri sequence. The following algorithms are considered:

dynamic programming approach, breadth first search approach and Morgan-Higgs

heuristic.The results of DP and BFS are quite similar to those for Chlamydia tra-

chomatis. But MH approximates barriers of Caenorhabditis brenneri worse then

barriers of Chlamydia trachomatis.
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Figure 5.12: Caenorhabditis brenneri - Distribution of differences between approx-
imated and exact barriers over structural distances

Figure 5.12 represents the distribution of differences between approximated and

exact barriers according to structural distance between initial and target structures.

Finally, Figure 5.13 describes the structure of optimal paths with structural

distance 13 and Figure 5.14 shows distribution of optimal paths with structural

distance 13 over the length of paths. In the case of Caenorhabditis brenneri 55% of

optimal paths are direct and 74% have the length less or equal to 19.

5.3 Mountain Metric

In Section 2.3 we introduced Mountain Metric. Furthermore, in Section 4.2 we

described a modification of BFS which uses Mountain Metric to reorder structures

in the class. Now we will evaluate this approach. In Figure 5.15 the results of

applying BFS with mountain metric and the size of distance classes equal to 5 are

presented. The following combinations of weights are considered:

1. Barrier weight = 1, Mountain weight = 0

2. Barrier weight = 3/4, Mountain weight = 1/4
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Figure 5.13: Caenorhabditis brenneri –
Structure of optimal paths (Distance = 13)
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Figure 5.14: Caenorhabditis brenneri - Distribution of
optimal paths according to paths’ length
(Structural distance = 13)

3. Barrier weight = 1/2, Mountain weight = 1/2

4. Barrier weight = 1/4, Mountain weight = 3/4

5. Barrier weight = 0, Mountain weight = 1

From this plot we can conclude that the more weight the mountain metric has

the worse results we get. Thus mountain metric is not appropriate for estimating

structure similarity in the case of barrier heights.

5.4 Shape abstraction

From Section 5.2 we can conclude that a lot of optimal paths are not direct. Thus

it worth considering another distribution of structures in classes. In this section

we will evaluate several algorithms based on abstract shapes of RNA, which was

introduced in Section 2.4. As inputs we will use the data set, which we got using

steps in Section 5.1.

5.4.1 Structure of optimal paths

In Figures 5.16 and 5.17 the distribution of optimal paths into shape classes for the

paths with shape distance 4 and abstraction level 2 and 3 respectively is presented.

We can see that the most of optimal paths fall onto direct shape paths. Furthermore

when we consider coarser level of abstraction (in our case level 3 in comparison to

level 2) we note the more structures are on the direct shapes paths. Thus we can
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Figure 5.15: subROSE -Mountain metric (BFS, MaxKeep=5)

conclude that a shape abstraction gives us a good approximation of path space

between initial and target structures.

5.4.2 Shapes Network

In Figure 5.18 the results of applying Shapes Network approach (see Section 4.3)

in combination with MH heuristics onto subROSE sequence are presented. Figure

5.20 presents the results of applying Shapes Network approach in combination with

BFS (MaxKeep = 5) onto subROSE sequence. One can point out that we get

better results using Shapes Network approach then in the case of both BFS and

MH. We want to notice the following fact from Figure 5.18: we get better results

using shape abstraction level 4 in comparison to the level 5, but we get worse results

using abstraction level 3 in comparison with abstraction level 4. This fact follows

from the non-monotonicity of shape abstraction.
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Figure 5.16: subROSE - Structure of optimal
paths (Shape Distance = 4, Level = 2)

Figure 5.17: subROSE - Structure of optimal
paths (Shape Distance = 4, Level = 3)
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Figure 5.18: subROSE - Shape Network
Approach (MH)
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Figure 5.19: subROSE - Shape Tripples
Approach (MH)
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Figure 5.20: subROSE - Shape Network
Approach (BFS, MaxKeep=5)
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Figure 5.21: subROSE - Shape Tripples
Approach (BFS, MaxKeep=5)

5.4.3 Shape Triples Approach

In Shape Network approach we consider all possible paths over shreps. But when we

have a look at the result paths we can notice that the many of them have only one

intermediate shrep. Thus it is interesting to consider whether using only one inter-

mediate shrep how much precision we will lose. In Figure 5.19 the results of applying

Shapes Triples approach (see Section 4.4) in combination with MH heuristics onto

subROSE sequence are considered. Figure 5.21 shows the results of applying Shapes

Triples approach in combination with BFS (Maxkeep=5) onto subROSE sequence.

The results are very similar to the those of Shapes Network approach. Thus we can

always use Shape Triples Approach instead of Shapes Network approach.

Next we consider a modification of Shape Tripples approach in which we take

into account not only the shrep but a set of shape representatives.

In Figure 5.22 the results of applying Shapes Triples approach with sets (Size=5)

in combination with MH heuristics onto subROSE sequence are presented. Sec-

ond, Figure 5.23 presents the results of applying Shapes Triples approach with sets

(Size=5) in combination with BFS (MaxKeep = 5) onto subROSE sequence. From

these plots we can conclude that we do not gain more precision considering sets of

representative structures for each shape (compare Figure 5.22 with Figure 5.19 and

Figure 5.23 with Figure 5.21). We can explain this with the fact that the structures

in the shape have similar structure (in particular several structures with the smallest

energy). Thus it worth considering only the best representative.
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Figure 5.22: subROSE - Shape Tripples
Approach (MH) with sets (Size=5)
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Figure 5.23: subROSE - Shape Tripples Approach
(BFS, Maxkeep=5) with sets (Size=5)

5.4.4 Direct Shape Paths

The disadvantage of the previous approach is the need to look through the whole

list of shapes. To tackle this problem we consider the next method: Direct Shape

Paths approach. In Figure 5.24 the results of applying Direct Shape Paths approach

in combination with MH heuristics onto subROSE sequence are presented. Figure

5.25 presents the results of applying Direct Shape Paths approach in combination

with BFS (MaxKeep = 5) onto subROSE sequence. The structures of longer RNA

sequences will have larger shape distance. Thus we can expect that we will get

better results for Caenorhabditis brenneri. Figures 5.26 and 5.27 present results of

Direct Shape Paths approach in combination with MH and BFS respectively. These

figures agree with the above mentioned suggestion. We also can see that we get

worse results then using Shape Triple Approach. This can be explained due to the

fact that in some cases to get smaller barrier we need to consider a shape which

is not on direct shape path. As in Shapes Network approach the results of Direct

Shape Path with finer level of abstraction are not in general better then in case of

coarser level of abstraction (as stated previously because of the non-monotonicity of

shape abstraction).
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Figure 5.24: subROSE - Direct Shape Paths
Approach (MH)
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Figure 5.25: subROSE - Direct Shape Paths
Approach (BFS, MaxKeep=5)
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Figure 5.26: Caenorhabditis brenneri - Direct
Shape Paths Approach (MH)
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Figure 5.27: Caenorhabditis brenneri - Direct Shape
Paths Approach (BFS, MaxKeep=5)



Chapter 6

Conclusions and Discussion

6.1 Conclusions

In this master thesis different methods for estimating barriers between RNA struc-

tures have been developed and compared to already existing ones. The approach of

considering all possible direct paths is quite accurate but very time-consuming. In

real world applications there are two algorithms which are mainly used: Morgan-

Higgs heuristic and Breadth First Search. Both the methods distribute structures

into classes and afterwards conduct search in the space of structures on the direct

path. In order to get better results one can

1. introduce another ordering of structures in the class,

2. systematically consider paths which go somehow out of the direct path,

3. consider another distribution into classes.

First, we considered the first possibility. To introduce another ordering of struc-

tures in the class we used mountain metric (see Section 2.3). We have found out that

we get the best results when we take into consideration the partial barrier and do

not consider any information about mountain distance to the target structure (see

Section 5.3). This shows us that unfortunately the mountain metric is inappropriate

for the purpose of finding barriers.

Afterwards we analyzed the structure of optimal paths (see Section 5.2) . We

found out that there are a lot of paths which are far from direct path. In order

to tackle this problem we considered the shape abstraction (see Section 2.4). Two

methods which use shape abstraction were first developed: shape network (see Sec-

tion 4.3) and shape triples approach (see Section 4.4). Both methods have shown

good results and scalability (see Section 5.4). We considered the question whether

optimal paths are on direct shape paths (see Section 5.4.1) and found out that it is

worth considering direct shape paths. This lets us make the search space smaller.

A method called direct shape approach (see Section 4.5) was developed which uses

43
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this idea and conducts the search in the space of direct shape path. To summarize,

the underlying idea of all the methods is the search for good intermediate points

on the path which alloys us to consider not only direct paths and thus improve the

quality of results. Second, the use of intermediate points let us apply MH and BFS

on shorter distances and thus we can expect to get better intermediate results.

We showed that all the methods based on shape abstraction give better results

then BFS and MH.

6.2 Future Work

We would like to point out tree directions of further research:

1. As we have seen both the direct shape approach and shape network approach

crucially depend on the choice of good intermediate structures. In the future

we would like to consider other abstractions which can lead to better results.

2. It would be useful to develop a criterion for choosing good intermediate point

in shape triples approach.

3. All the presented algorithms need to be optimized in the future. In this way

we can get both precise and efficient algorithms.
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