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Abstract

Computational prediction of RNA-RNA interactions has become a fast growing topic
over the last few years. Many different RNA-RNA interaction prediction tools have
been developed, which all use vastly varying methods, ranging from alignment methods
over minimum free energy methods to machine learning approaches. None of these
tools seem to consider the steric 3D constraints of RNA molecules. These constraints
could implicate that short intermolecular helices are more likely due to the restricted
unpaired regions in stem loops.
This thesis introduces constraints on the intermolecular helix lengths for the prediction
tool IntaRNA to improve the overall prediction quality. To understand the composition
of RNA structures, more than 3,000 known RNA secondary structures, of any type
and organism, were analysed in this thesis. From this analysis, the distribution of
helix lengths were learnt, in order to find good starting parameters for the helix length
constraints.
In order to evaluate the performance of the developed constraints, I created the In-
taRNA benchmark, which is used to compare to the original IntaRNA predictors.
The experiments showed that the new constraint helped to improve the prediction
quality of IntaRNA, while reducing the runtime. Further, the results suggest that
restricting helices too much has negative effects on the performance.
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Zusammenfassung

Die computer-gestützte Vorhersage von RNA-RNA Interaktionen ist, in den letzten
Jahren, zu einer stark wachsenden Thematik geworden. Daher werden immer mehr
RNA-RNA Interaktionsvorhersage-Tools entwickelt. Diese Tools verwenden unterschie-
dliche Methoden um Interaktionen vorherzusagen. Darunter alignment Methoden, mi-
nimum free energy Methoden und neuerdings auch machine learning Ansätze.
Keines dieser Tools scheint jedoch die sterischen 3D-Beschränkungen von RNA-Molekü-
len zu berücksichtigen. Genau diese Beschränkungen könnten allerdings bedeuten, dass
kurze intermolekulare Helizes wahrscheinlicher sind, da ungepaarte Regionen in soge-
nannten stem loops aufgrund ihrer dreidimensionalen Verdrehung längenbeschränkt
sind.
In dieser Arbeit stelle ich neue Methoden zur Einschränkung der intermolekularen
Helixlängen für IntaRNA vor. Um die Zusammensetzung von RNA-Strukturen zu ver-
stehen, habe ich über 3000 bekannte RNA-Sekundärstrukturen unterschiedlicher Typen
und Organismus analysiert. Dies gab mir eine Intuition zur Verteilung der Helixlängen.
Dadurch konnte ich gute Startparameter für die Helixlängen-Beschränkung ermitteln.
Um die Qualität der neuen prediction modi zu bewerten, habe ich die IntaRNA-
Benchmark erstellt. Diese erlaubt mir Vergleiche zwischen neuen und alten Modi zu
ziehen.
Die Experimente haben gezeigt dass die neuen Methoden zur Einschränkung der inter-
molekularen Helixlängen die Vorhersagequalität von IntaRNA verbessern. Dabei wird
gleichzeitig auch die Laufzeit reduziert. Außerdem zeigten die Resultate dass zu kleine
Helizes einen negativen Effekt auf die Leistung von IntaRNA haben.
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Chapter 1

Introduction

As a result of newly developed methods, a large amount of new RNA-based regulators
have been experimentally discovered over the last few years. Even though it is possible
to retrieve regulatory targets for these regulators experimentally in a wet lab, it is a
tedious work. Due to the ever increasing amount of discovered RNA-based regulators,
computer-driven RNA-RNA interaction prediction algorithms have been developed to
support researchers. One such tool is IntaRNA (Busch et al., 2008; Richter, 2012),
which was developed by Prof. Backofens bioinformatics group at the University of
Freiburg. IntaRNA is an efficient RNA-RNA interaction prediction tool that incorpor-
ates both the accessibility of interaction sites and a user-definable seed region.

Currently, the team around Prof. Backofen is working on a reimplementation of
IntaRNA. This new implementation, IntaRNAv2 (Mann et al., 2017), is faster and
easier to extend. This allows the introduction and development of new constraints and
prediction-modi to further enhance the prediction quality. For the rest of this work,
IntaRNA refers to the new version.

In this thesis, I will introduce a new constraint on the length of intermolecular helices
of RNA-RNA interactions. This might sound counter-intuitive at first, as stackings are
the most stable and therefore energetically most favourable structural elements. The
idea is that the steric constraints of the tertiary structure of RNA molecules hinder the
formation of long intermolecular helices. This leads me to believe that many of such
long helices are artefacts of RNA-RNA interaction prediction tools. As a result, I want
to determine whether a constraint on the helix lengths helps to improve the results of
RNA-RNA prediction tools such as IntaRNA.

To this end, I will first analyse RNAStrand, the RNA Structure and statistical Analysis
Database (Andronescu et al., 2008), to get an overview of the distribution of helices in
known RNA structures. Therefore, I will determine the distribution of helix lengths,
i.e. the number of consecutive base pairs forming the helix, in all structures, including
pseudo-knotted structures. Additionally I will analyse unpaired substructures. Built
on the insights of this analysis, I will then introduce a new prediction method that
incorporates constraints on intermolecular helix lengths.

I differentiate between two different approaches of incorporating the constraints. First,
I consider only tightly stacked helices, allowing no bulges or interior loops. Second, I
allow limited bulge and -interior loops inside the helices. For both methods, original

Page 1



Ch. 1 Introduction

IntaRNA-like seed constraints are integrated.

Finally, I introduce the IntaRNA benchmark, which I created to evaluate the newly
created predictors and compare them to the original IntaRNA recursions. The new
benchmark runs user-definable configurations of IntaRNA on a large set of sRNA quer-
ies and mRNA targets, in order to determine how well a series of experimentally proven
interactions is predicted.

1.1 Structure of the thesis

In the first chapter, the biological background and the underlying algorithmic details
of IntaRNA are introduced. The second chapter details the analysis of RNAStrand
and the introduction of the new limited helices constraints. Chapter three contains
the results and the comparison against the original IntaRNA recursion. Chapter four
lists related work. Chapter five gives an outlook on future work. The conclusion of the
thesis is given in the final chapter.

1.2 Biological background

In this thesis, I will focus on Ribonucleic acids (RNA) which are transcribed from
Deoxyribonucleic acid (DNA).

The RNA molecules are represented as a sequence S ∈ {A,C,G,U}∗, where A,C,G,U
are the respective bases of the nucleotide chain, adenine (A), cytosine (C), guanine (G)
and uracil (U).

There are two main classes of RNA, the coding RNA (cRNA) and the non-coding RNA
(ncRNA). The cRNAs are involved in the translation process, where the RNA encodes
for proteins. The composition of an RNA sequence is especially important for cRNAs.

Whereas, the ncRNAs perform different functions, like the regulation of gene expres-
sions and are (typically) not involved in the translation into proteins.

An example for ncRNAs are bacterial small RNAs (sRNA). These are highly structured
small-chained non-coding RNAs. They can have many different functions, such as the
modification of the function of proteins or the regulation of gene creation by binding to
messenger RNA (mRNA). IntaRNA was designed to predict the interaction between
sRNA queries and mRNA targets, but can also be applied to other RNA types.

RNA sequences fold into structures that determine the function of an RNA molecule,
which is especially important for ncRNAs. These structures are created when bases
form base pairs via hydrogen bonds. Due to their high binding strength, the Watson-
Crick base pairs G−C and A−U as well as the wobble base pair G−U are considered.
Two interacting bases that belong to the same RNA molecule form intramolecular
structures, as seen in Figure 1.1. On the other hand, if the two paired bases belong to
different RNA molecules, they form intermolecular structures. RNA-RNA interaction
prediction aims at predicting these intermolecular structures between two RNA mo-
lecules, which is an extremely important step in understanding the function of ncRNAs.
Nevertheless, Intra- and intermolecular structures are not mutually exclusive. A model
interaction is shown in Figure 1.2.

Page 2



Ch. 1 Introduction

Figure 1.1: Secondary structure for the RNase P RNA molecule of Methanococcus
marapaludis from the RNase P Database (Brown et al., 1994); Red boxes mark struc-
tural features, such as stackings (stem), bulges, hairpin-loops, interior-loops, multi-
loops and pseudo-knotted structures. This Figure was taken from the RNAStrand
webpage. (Andronescu et al., 2008)

+

Figure 1.2: Model interaction between an sRNA query and an mRNA target. Inspired
by a figure from Vazquez-Anderson and Contreras (2013).
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Ch. 1 Introduction

Explicit intramolecular structures are not considered by IntaRNA. IntaRNA instead
applies an accessibility measure to improve its results, which will be described in more
detail in the IntaRNA section.
Formally, an RNA secondary structure P of S is a set of base pairs:

P ⊆ {(i, j) | 1 ≤ i < j ≤ n, Si and Sj complementary},

where n = | S | and for all (i, j), (i′, j′) ∈ P :

(i = i′ ⇔ j = j′) and i 6= j′.

In reality, an RNA molecule has a 3-dimensional structure. Due to the high complex-
ity of predicting these tertiary structures, only secondary structures are considered in
this thesis. Further, different types of RNA secondary structures exist, namely nested
and crossing structures. Crossing structures contain pseudo-knots, where two structure
parts overlap, as shown in Figure 1.3. Pseudo-knots are no real knots when consid-
ering tertiary structure, but resemble knot-like shapes when depicting the secondary
structure. The algorithmic complexity of the structure prediction increases with the
complexity of the allowed pseudo-knot types (Condon et al., 2004). Therefore, pseudo-
knots are not considered in IntaRNA.

Nested Crossing

Figure 1.3: Linear Feynman Diagrams of a nested and a
crossing structure. The arcs represent base pairs.

Typically, there is a distinction between multiple structural elements, based on the
relation of base pairs and unpaired bases. These elements are hairpin-loops, stackings,
internal/bulge loops and multi-loops. Secondary structures can be decomposed into
these structural elements. Examples for intramolecular structure are shown in Figure
1.1. A common way to visualise structures is the so called dot bracket notation, where
each base pair is represented by an opening and closing bracket, and unpaired bases
are represented with a point.

Figure 1.4: Model of several special interaction cases. (a) kissing hairpin loops,
(b) interaction with the unpaired region of a hairpin loop and (c) interaction with the
unpaired region of an interior loop.

It is important to note that even though secondary structures are used to reduce
the complexity of the problem, the aim is to find biologically correct interactions.
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Ch. 1 Introduction

Therefore, the folding into tertiary structures has to be taken into account. Figure 1.4
shows interactions, especially the kissing complex of hairpin loops, that are attributed
to the tertiary structure folding. These interactions are subject to steric 3D constraints
(Tinoco and Bustamante, 1999), which limit the size of their according binding regions.
This means that the unpaired regions of hairpin loops, and likely internal loops, do not
become arbitrarily large. Consequently, I assume that constrained intermolecular helix
lengths better reproduce the biological conditions, leading to an increase in prediction
quality.

Before further analysing this new constraint, I will first give an introduction to In-
taRNA, which I use in the following to implement and test my helix length constraint.
As IntaRNA uses energy minimisation to find the optimal RNA-RNA interactions,
I begin with the energy model, followed by an introduction to structure probability
computation, which are used by IntaRNA.

1.3 Energy computation and Nearest Neighbor Model

The energy minimised by IntaRNA is the free energy. The free energy can be seen as
the amount of energy stored in an RNA structure. A positive term provides energy
(e.g in the form of heat), whereas a negative energy term describes the amount of
energy that is needed to dissolve all base pairs of the RNA structure. This means that
the lower the free energy, the more energy has to be applied to disrupt the system.
Therefore, a structure is more stable, the lower the free energy. The stablest structure
is, consequently, the minimum free energy (mfe) structure. As the free energy is hard
to calculate, the usage of energy differences is customary. The free energy is calculated
with respect to the unstructured open chain, i.e. the structure containing no base
pairs.

For IntaRNA, the underlying energy model to estimate the free energy of a given RNA
secondary structure is the Nearest Neighbor Model (Borer et al., 1974). DeVoe and
Tinoco (1962) discovered that vertical stackings of bases contribute the most to RNA
helix stability. Therefore, directly neighboured bases have to be taken into account
when estimating the energy contribution of a base pair. This leads to the introduction
of the Nearest Neighbor Model.

The Nearest Neighbor Model uses a loop-based structure decomposition, e.g. the struc-
tural elements introduced earlier (Figure 1.1), to create an energy estimate. It focuses
on the energy contributions of base pair neighbours. Thereby, only stackings to the
enclosed base pairs are considered in order to avoid duplication of energy contributions
for stackings. Further, only the unpaired bases adjacent to base pairs are taken into
account, as stackings of unpaired bases are less predictable and stable.

The terminal mismatch pairs describe the first unpaired bases that follow a stacking,
e.g. in a hairpin loop. They contribute to the energy of the system. A similar energy
contribution exists for unpaired bases in bulge or internal loops.

Energy contributions for external base pairs, that are not enclosed by any other base
pairs, are called dangling end contributions.

The energy E(P ) of a nested secondary structure P can be estimated by the sum of
all loop contributions, for a given loop decomposition (see Figure 1.5).
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Ch. 1 Introduction

E(P ) =
∑

(i,j)∈P


eH(i, j) : if hairpin loop

eSBI(i, j, k, l) : if stack, bulge, or internal loop

eM (i, j, x, x′) : if multi-loop

,

where eH , eSBI and eM provide the context-sensitive energy contributions of hairpin,
stack, bulge, internal loops and multi-loops, respectively. (k, l) describes the enclosed
base pair for eSBI . x and x′ represent the number of unpaired bases and the number
of enclosed helices for eM , respectively.

eSBI is defined as:

eSBI =


eS(i, j, i + 1, j − 1) : if stack

eB(i, j, i + 1, j′) or eB(i, j, i′, j − 1) : if bulge

eI(i, j, i′, j′) : if internal loop

,

where an internal loop (i, j, i′, j′) has to fulfil the following conditions:

� i < i′ < j′ < j,
� (i′ − i) + (j − j′) > 2,
� there is no base pair enclosed between (i, j) and (i′, j′),

and the bulge case is a special one-sided internal loop.

The exponential number of possible multi-loop combinations demand the usage of an
energy estimate using the following formula

eM (i, j, x, x′) = eMa + eMb x + eMc x′,

where eMa is a pseudo-energy parameter scoring the multi-loop closing base pair (i, j),
eMb is the penalty for the enclosed unpaired bases x and eMc scores the number of
enclosed helices x′. These parameters are derived from experimental data.

Figure 1.5: The energy contributions for different structural elements. This Figure
was taken from (Andronescu et al., 2010)
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There are multiple sets of these energy contributions available for use. Among the
most used energy parameters are the Turner parameters (Mathews et al., 1999), also
applied for IntaRNA. They can be found in the Nearest Neighbor Data Base (NNDB)
(Turner and Mathews, 2010).
All energy terms in the Nearest Neighbor Model are dependant on temperature and
ionic conditions.
As mentioned before, the stablest structure is the structure with the lowest energy, i.e
the mfe structure. The stablest structure is, in general, considered to be the functional
fold, i.e the structure that fulfils the function of an RNA molecule, which is the an-
ticipated result. Prediction tools for intramolecular structures include among others,
UNAfold (Markham and Zuker, 2008) and the Vienna Package (Lorenz et al., 2011).

1.4 Probabilities and McCaskill algorithm

The free energy is used to calculate, among others, structure probabilities, i.e. how
likely it is for a certain structure to be formed. In order to determine these probabilities,
an according probability distribution is required.
The Boltzmann distribution is, according to the principal of maximum entropy (Jaynes,
1957), the best probability distribution for the calculation of structure or base pair
probabilities. It gives us a huge information gain, with a low information content.
Therefore, probabilities are calculated according to their Boltzmann weights.

w(P ) = exp

(
−E(P )

RT

)
,

where E is a specific energy of a structure P , R is the gas constant used to calculate
the energy for a single molecule and T is the temperature.
Using these Boltzmann weights, the partition function Z can be calculated. Z is the
sum over all Boltzmann weights for all structures of a given set P, where the latter is
also referred to as structural ensemble.

Z =
∑
P∈P

w(P )

Z is required in the calculation of structure and base pair probabilities. These prob-
abilities are calculated for the thermodynamic equilibrium. This means that there are
no observable changes on a macroscopic level.
The probability of a structure P , within a given structural ensemble P, can be com-
puted by

Pr[P |P] =
w(P )

Z
,

As the underlying energy model is an estimation and simplification of the truth, the
structure with the highest probability is not necessarily the functional structure, i.e.
the biologically correct one. However, it is safe to assume that the functional structure
is among the most probable structures.
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It is also possible to calculate the probability that a specific base pair appears.

Pr[(i, j)|P] =
∑
P∈P

P3(i,j)

w(P )

Z

where Pr[(i, j)|P] is the probability that base pair (i, j) occurs, given P. These base
pair probabilities can be represented in a dot plot and give a good overview what the
most probable structure could look like, since the most probable base pairs are likely
contained in the most probable structures.
Furthermore, the probability that a given region, from position i to j, of a structure is
unpaired can be determined by

Pru[i, j] =
Zu
i,j

Z
,

where Zu
i,j is the partition function of all structures with subsequence [i, j] unpaired,

i.e.

Zu
i,j =

∑
P⊂Pu

i,j

w(P ) = Z(Pu
i,j),

where Pu
i,j is the ensemble of all structures that are unpaired between i and j, i.e.

Pu
i,j = {P | @(k, l) ∈ P : i ≤ k ≤ j or i ≤ l ≤ j} ⊆ Pall,

where Pall is the ensemble of all structures that can be formed from a sequence.
The unpaired probability is very important, as it allows the calculation of the access-
ibility of single stranded regions (Mückstein et al., 2006), which is one of the main
features of IntaRNA.
In the following section, I will thoroughly explain how the different probabilities are
calculated using the McCaskill algorithm.

1.4.1 McCaskill

Preliminaries

The McCaskill algorithm (McCaskill, 1990) is used to calculate the partition function
Z for a given sequence S, which can be used to compute probabilities. The Figures and
recursions in this section were inspired by the lecture material of RNA bioinformatics
lecture (Raden and Backofen, 2018).
The basic idea is to use an algorithm, similar to the Zuker algorithm (Zuker and
Stiegler, 1981), to sum up the Boltzmann weights for all possible structures. The
important part is to count every structure only once, which requires the creation of a
special multi-loop handling.
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There are four matrices required in the algorithm:

Qi,j = ZPi,j Qm
i,j = Zm

P1bd
i,j

Qb
i,j = Zb

Pi,j
Qm1

i,j = Zm
{P∈P 1bd

i,j |only one exterior base pair in P}

Qi,j contains the summed Boltzmann weights for all structures which only contain
bonds in range [i, j]. Qb

i,j has the additional property that (i, j) forms a base pair. Qm
i,j

requires at least one base pair in range [i, j]. Qm1
i,j enforces exactly one exterior base

pair within (i, j), i.e a base pair that is not enclosed by any other base pair. The final
result Z = ZPall

is contained in Q1,|N |.

Matrices

The energy contributions used in this section were introduced in section 1.3.
The calculation of the Qij matrix (see Equation 1.1 below) is sketched in Figure 1.6.

i j i j-1 j i k-1k j

=

Figure 1.6: Sketch of the Qij matrix computation.

Qi,j = Qi,j−1 +
∑

i≤k<j

Qi,k−1 ·Qb
k,j , (1.1)

where Qb
ij is defined in Equation 1.2 and sketched in Figure 1.7.

i j i j i' j' ji k ji i+1 j-1

=

Hairpin-Loop ISB-Loop Multiloop

Figure 1.7: Sketch of the Qb
ij matrix calculation.

Qb
ij =

∑


exp
(
−eH(i,j)

RT

)
∑

i<i′<j′<j

(
Qb

i′,j′ · exp
(
−eSBI(i,j,i′,j′)

RT

))
∑

i<k<j

(
Qm

i+1,k−1 ·Qm1
k,j−1 · exp

(
−eMa
RT

)) , (1.2)

where the energy contributions for the different possible structure elements are added
up. If i and j do not form a base pair, then Qb

ij = 0. The computation of the Qm
ij (1.3)

and Qm1
ij (1.4) matrices are sketched in Figure 1.8 and 1.9, respectively.
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Ch. 1 Introduction

i j k ji

=

k ji

Figure 1.8: Sketch of the Qm
ij matrix calculation.

Qm
i,j =

∑
i≤k<j

(
Qm

i,k−1 + exp

(
−(k − i)eMc

RT

))
·Qm1

kj (1.3)

i j k ji

=

Figure 1.9: Sketch of the Qm1
ij matrix calculation.

Qm1
ij =

∑
i<k≤j

Qb
i,k · exp

(
−eMb
RT

)
· exp

(
−(j − k)eMc

RT

)
(1.4)

The matrices Qb
i,j , Q

m
i,j and Qm1

i,j are initialized with 0. For the single-stranded sequence
there is no base, therefore, there will not be an entry in these matrices. Qi,j is initialized
with 1 as it covers the single-stranded sequence.

Base pair probabilities:

The probabilities for single base pairs can be calculated using the McCaskill recursions.
There are three possible locations for a base pair (k, l). The calculations are shown in
Equation 1.5, 1.6 and 1.10 below.

1. (k, l) is an external base pair, as shown in Figure 1.10:

1 k-1 k l l+1 N

Figure 1.10: Sketch of the external base pair case, with (k, l)
being the external base pair.

pEkl =
Q1,k−1 ·Qb

k,l ·Ql+1,n

Q1,n
(1.5)
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2. (k, l) is the inner base pair of a stacking, bulge- or interior loop closed by base
pair (i, j), where i < k < l < j, as sketched in Figure 1.11.

k li j k li j k li j

Figure 1.11: Sketch of a base pair limiting a stacking, bulge
or an interior loop.

pSBI
kl (i, j) = pij

exp
(
−eSBI(i,j,k,l)

RT

)
Qb

k,l

Qb
i,j

(1.6)

The probability pi,j that base pair (i, j) is formed is computed in an outside
recursion, before the computation of pSBI

kl . pi,j is then corrected by taking the
additional constraint that the loop i, j, k, l is formed. The numerator of the
fraction is the partition function of all structures containing base pair (k, l). It is
corrected by the denominator Qb

i,j which is the partition function of all structures
containing base pair (i, j).

3. (k, l) closes an inner helix of a multi-loop closed by base pair (i, j), where i <
k < l < j.

pMkl (i, j) = pij · Pr[Multiloop with inner base pair (k, l) closed by (i, j) | (i, j)]
There are again three locations for (k, l) inside the multi-loop:

(a) (k, l) is the leftmost base pair, as shown in Figure 1.12:

i k l l+1 j-1 j

Figure 1.12: Sketch of the multi-loop case where (k, l) is the
leftmost base pair.

Qb
k,l ·Qm

l+1,j−1 · exp

(
−(eMa +eMb +(k−i−1)eMc )

RT

)
Qb

i,j

(1.7)
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(b) (k, l) is the middle base pair, as shown in Figure 1.13:

i k l jk-1i+1 l+1 j-1

Figure 1.13: Sketch of the multi-loop case where (k, l) is the
middle base pair.

Qm
i+1,k−1 ·Qb

k,l ·Qm
l+1,j−1 · exp

(
−(eMa +eMb )

RT

)
Qb

i,j

(1.8)

(c) (k, l) is the rightmost base pair:

i k l jk-1i+1

Figure 1.14: Sketch of the multi-loop case where (k, l) is the
rightmost base pair.

Qm
i+1,k−1 ·Qb

k,l · exp
(
−(eMa +eMb +(j−l−1)eMc )

RT

)
Qb

i,j

(1.9)

The probability for the multi-loop case is then formed by combining the previous
three equations (Eq.1.7, Eq. 1.8 and Eq. 1.9)

pMkl (i, j) =
pij

Qb
i,j

·

(
Qb

k,l ·Qm
l+1,j−1 · exp

(
−(eMa + eMb + (k − i− 1)eMc )

RT

)
+ Qm

i+1,k−1 ·Qb
k,l ·Qm

l+1,j−1 · exp

(
−(eMa + eMb )

RT

)
+ Qm

i+1,k−1 ·Qb
k,l · exp

(
−(eMa + eMb + (j − l − 1)eMc )

RT

))
(1.10)

The overall probability for a base pair (k, l) is denoted:

Pr[(i, j)|P] = pEkl +
∑

i<k,l<j

pSBI
kl (i, j) +

∑
i<k,l<j

pMkl (i, j)
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Probabilities of unpaired regions:

A very important concept for RNA-RNA interaction prediction is the calculation of
the probability of unpaired regions, which are possible targets for interactions.
These probabilities Pru[i, j] can again be calculated using a variant of the McCaskill
recursions (McCaskill, 1990), as introduced in (Mückstein et al., 2006).

Pru[i, j] =
ZPu

i,j

ZPall

The probability that region [i, j] is unpaired, where Pu
i,j is the set of structures where

region [i, j] is unpaired and Pall the set of all structures for a given sequence.
There are two different locations for an unpaired region. It is either exterior or enclosed
by a base pair. An exterior region is enclosed by no base pairs. The enclosed region is
either enclosed by a hairpin, an interior/bulge loop or a multi-loop. Using a disjoint
decomposition of Pu

i,j , the different cases can be viewed independently.

Case I [i, j] is exterior:

1 Ni-1 i j j+1

Pru[i, j | exterior] =
Q1,i−1 · 1 ·Qj+1,N

Q1,N
(1.11)

where N is the length of the sequence and 1 is the Boltzmann weight of the
unpaired region. The multiplication is justified as this is an independent decom-
position of the sequence.

Case II [i, j] is enclosed by base pair (p, q):

Pru[i, j | enclosed] =
∑

p<i,j<q

Pr[(p, q)|P]

Qb
p,q

·Qpq
i,j (1.12)

where Pr[(p, q)|P] is the probability that (p, q) forms a base pair. Qb
p,q is the

partition function of all structures enclosed by (p, q) and Qpq
i,j is the partition

function of all structures that are unpaired in region [i, j] enclosed by a base pair
(p, q).
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Qpq
i,j is computed by summing over the different cases of structural elements.

1. The Hairpin Loop case, as sketched in Figure 1.15:

p qi j

Figure 1.15: Sketch of the hairpin loop case.

VH = exp

(
−eH(p, q)

RT

)
(1.13)

2. The Stacking, Internal- and Bulge Loop cases, as sketched in Figure 1.16:

p qi j k l p qi jk l

Figure 1.16: Sketch of the stacking, bulge and interior loop
case.

VSBI =
∑

p<i≤j<k
or

l<i≤j<q

exp

(
−eSBI(p, q, k, l)

RT

)
·Qb

k,l (1.14)

3. The Multi-loop case, as sketched in Figure 1.17:

p qi jp qi j p qi j

Figure 1.17: Sketch of the multi loop cases.

VM =
∑

p<i≤j<q

Qm2
p+1,i−1 · exp

(
−(q − i)eMc

RT

)

+ Qm
p+1,i−1 · exp

(
−(j − i + 1)eMc

RT

)
·Qm

j+1,q−1

+ exp

(
−(j − p)eMc

RT

)
·Qm2

j+1,q−1

with Qm2
i,j =

∑
p<k<q

Qm
p,q ·Qm1

k+1,q

(1.15)

where Qm2 ensures at least two helices.
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Qpq
i,j is then computed by combining Equation 1.13, 1.14 and 1.15:

Qpq
i,j = VH + VSBI + VM

The probability Pru[i, j], that [i, j] is unpaired, is calculated by combining both
cases (see Eq. 1.11 and Eq. 1.12):

Pru[i, j] = Pru[i, j | exterior] + Pru[i, j | enclosed]

=
Q1,i−1 · 1 ·Qj+1,N

Q1,N
+

∑
p<i,j<q

Pr[(p, q)|P]

Qb
p,q

·Qpq
i,j
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1.5 IntaRNA

IntaRNA is an RNA-RNA interaction prediction tool developed for the prediction of
mRNA target sites for bacterial small regulatory RNAs. IntaRNA uses energy minim-
isation in order to find the optimal interaction. The energy minimised is composed of
an accessibility and a hybridisation energy.

The main IntaRNA recursion is limiting the loop sizes in the interaction to 16 nucle-
otides and it allows no intramolecular base pairs in the interacting sub-sequences.

Figure 1.18 shows an example interaction for IntaRNA. It shows the main structural
elements that are considered in IntaRNA, stackings, bulge and interior loops. Multi-
loops are not considered as they are introducing intramolecular structure into the
interaction site. In addition, it gives an overview over the energy contributions of
each structural element when using the nearest neighbor model with the parameters
provided by Mathews et al. (1999). This includes the contributions for dangling ends,
terminal mismatches as well as the intermolecular initiation energy, further called Einit.

Figure 1.18: Example of an interaction formed by two short
RNA sequences, taken from (Richter, 2012). The table shows
the energy contributions for each of the presented structural
elements of the interaction site. The nearest neighbor model

using the energy parameters by Mathews et al. (1999) is taken
for calculating the energy values. These parameters were

taken from the Nearest Neighbor Database (NNDB) (Turner
and Mathews, 2010).

In the following, I will first introduce the RNAup-like exact recursions (Mückstein
et al., 2006) and then give an overview over the two main contributions of IntaRNA,
the incorporation of a seed region and an heuristic version that greatly improves the
runtime and memory consumption.

Page 16



Ch. 1 Introduction

1.5.1 Exact Recursions

There are two major components in IntaRNA that determine the quality of RNA-
RNA interactions between two sub-sequences of sequences S1 and S2, the hybridisation
energy H(i, j, k, l) and the accessibility of the interaction sites.
The hybridisation energy is calculated using the Nearest Neighbor Energy Model. It
represents the hybridisation minimum free energy of two sub-sequences, where the
leftmost positions of both sub-sequences form a base pair.
For simplification purposes, Edangle

3′ , Edangle
5′ and Eterm

mm will not be considered in the
following recursions. Further, I will refer to the following recursions as the original
IntaRNA recursions for the rest of my thesis.
For sub-sequences S1

i ...S
1
k and S2

j ...S
2
l , where S1 is ordered from 5′ to 3′ and S2 in the

reverse order:

H(i, j, k, l) = min{E(P ) | (i, j) ∈ P ∧ (k, l) ∈ P}

The hybridization energy is calculated with a Zuker-like recursion.

H(i, j, k, l) = min



Einit

: if (S1
i , S

2
j ) can pair, i = k and j = l,

min
r,s
{eSBI(i, j, r, s) + H(r, s, k, l)}

: if (S1
i , S

2
j ) and (S1

k , S
2
l ) can pair, i 6= k and j 6= l,

∞
: otherwise.

where eSBI is the energy contribution for a stack, bulge or internal loop introduced in
section 1.3.

i

j

k

l

Figure 1.19: The energy contributions needed in the
IntaRNA recursions.

The accessibility represents the energy required to make the interaction site single-
stranded. It is calculated as the energy difference between the energy of the ensemble
of all structures P that can be formed by S and the energy of the ensemble of all
structures Pu, where the interaction site is single-stranded.
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This energy difference ED(i, j) is computed using a partition function approach as
introduced by (McCaskill, 1990).

The free energy of the ensemble P is:

Eens(P) = −RT · ln(ZP),

It follows that ED(i, k) is:

ED(i, k) = Eens(Pu
i,k)− Eens(P), (1.16)

Both the accessibility and the hybridisation energy are combined to form the extended
hybridisation energy. All needed energy contributions are sketched in Figure 1.19. The
extended hybridisation energy of a specific hybridisation between S1

i ...S
1
k and S2

j ...S
2
l

is defined by:

C(i, j, k, l) =


H(i, j, k, l) + ED1(i, k) + ED2(j, l)

: if (S1
i , S

2
j ) and (S1

k , S
2
l ) can pair, i 6= k and j 6= l,

∞
: otherwise.

(1.17)

1.5.2 seed interactions

A feature observed in certain RNA-RNA interactions are seed regions. A seed region is
an interaction region with near perfect complementarity. Seed regions were discovered
first for animal microRNAs (Isaac, 2005; Brennecke et al., 2005; Doench and Sharp,
2004). Later, it was discovered that this also applies to many bacterial sRNAs (Tjaden
et al., 2006; Bouvier et al., 2008).

The incorporation of seed regions is the first improvement of IntaRNA over the exact
RNAup recursions. A special constraint is added for the predicted interactions. Thus,
at least one seed is required in an interaction site.

In order to implement seed regions into IntaRNA, Busch et al. (2008) introduced the
following seed features that can be controlled by the user:

� B: the number of perfectly paired bases in the seed region,
� bmax, bmax

m , bmax
s : the maximal number of unpaired bases in the seed region in

both sequences, in the mRNA

An additional seed matrix is introduced to incorporate seed regions into IntaRNA.
The minimal free energy of a hybridisation between sub-sequences S1

i ...S
1
k and S2

j ...S
2
l

that include B′ base pairs is expressed by seed(i, j, k, l;B′). Thus, the number of
unpaired bases for the mRNA and the sRNA are determined by k − i + 1 − B′ and
l−j+1−B′, respectively, and have to follow the according maximal values from above,
i.e. bmax, bmax

m and bmax
s .
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The seed matrix is defined as:

Eseed(i, j, k, l;B′) =



min
p,q with

k−p+1≥B′−1
l−q+1≥B′−1

(
eSBI(i, j, p, q)

+seed(p, q, k, l;B′ − 1)

)

: if (S1
i , S

2
j ) and (S1

k , S
1
l ) can pair and 2 < B′ ≤ B,

eSBI(i, j, k, l)

: if (S1
i , S

2
j ) and (S1

k , S
1
l ) can pair and B′ = 2,

∞
: otherwise.

(1.18)
with k − p + 1 ≥ B′ − 1 and l− q + 1 ≥ B′ − 1 ensuring that B′ − 1 base pairs can be
formed between both sub-sequences S1

p ...S
1
k and S2

q ...S
1
l , respectively. Let lm = k−i+1

and ls = l − j + 1 be the lengths of intervals [i, k] and [j, l]. Then, seed(i, j, k, l;B) is
only valid if lm −B ≤ bmax

m , ls −B ≤ bmax
s and lm + ls − 2B ≤ bmax, ensuring the seed

features listed above.

Figure 1.20: The relation between matrix Cseed(i, j, k, l),
seed(i, j, p, q, 5) and C(p, q, k, l). seed(i, j, p, q, 5) contains the
minimal hybridisation energy of a seed region with five base

pairs that is enclosed by base pairs (i, j) and (p, q).
C(p, q, k, l) contains the minimal extended hybridisation

energy of sub-sequences S1
p ...S

1
k and S2

q ...S
2
l . Inspired by a

figure from (Richter, 2012).

Page 19



Ch. 1 Introduction

In order to find the optimal mfe interaction containing at least one seed, an additional
matrix Cseed(i, j, k, l), containing the energy scores of interactions with a seed region
is introduced. It is sketched in Figure 1.20. The matrix is defined as:

Cseed(i, j, k, l) =



min



min
p,q

eSBI(i, j, p, q) + Cseed(p, q, k, l)

−ED(p, k)− ED(q, l)

+ED(i, k) + ED(j, l)


min

p,q with
lm≤bmax

m +B
ls≤bmax

s +B
lm+ls≤bmax+2B

seed(i, j, p, q;B) + C(p, q, k, l)

−ED(p, k)− ED(q, l)

+ED(i, k) + ED(j, l)


: if (S1

i , S
2
j ) and (S1

k , S
2
l ) can pair, i 6= k and j 6= l

∞
: otherwise.

where the first part covers the case in which a seed region was already found right
of (p, q). The second part represents the case, where no seed region was found right
of (p, q). Instead a seed region is found between (i, j) and (p, q). When considering
the example in Figure 1.20, the seed(i, j, k, l; 5) contains no accessibility contributions,
whereas the C(i, j, k, l) matrix contains the accessibility contribution. In order to
ensure that the contributions are correct for the Cseed matrix, the ED values for the
intervals [p, k] and [q, l] have to be replaced by the ED values for the entire region formed
by the intervals [i, k] and [j, l]. The accessibility values are not additive, therefore they
have to be replaced.

The underlying implementation of IntaRNA uses a dynamic programming (DP) ap-
proach in order to realise the presented recursions. First, DP matrices are filled with
the energy values resulting from the recursions. Then, a traceback technique is used
in order to create the optimal interaction output.

1.5.3 Heuristic recursion

The exact recursions lead to a time and space complexity of O(n2m2), when restricting
the considered intermolecular interior loop length, with n and m being the lengths
of the query and target sequence, respectively. Therefore, they are not applicable for
genome-wide screens. IntaRNA introduces a heuristic to reduce both time and space
complexity. This heuristic is based on the sparsification technique, which means that
for matrix C(i, j, k, l) many entries contain the same values. These values are often not
used in following recursion steps. Therefore, the idea is to consider, for each interaction
start i, j, only the optimal right interaction with boundaries k, l instead of all possible
interaction ranges. This reduces the space complexity to O(nm) as only the best value
is stored for each (i, j) start. This reduction also applies to the time complexity, as not
all possible ranges have to be considered any more.
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The heuristic version of C(i, j, k, l), C(i, j) is defined as:

C(i, j) =


min
p,q

(
eSBI(i, j, p, q) + C(p, q)

)
: if (S1

i , S
2
j ) can pair,

∞
: otherwise.

Similar simplifications can be applied to the recursions that incorporate a seed region,
effectively reducing their overall time and space complexity to O(nm).
In the next chapter, I will introduce my own recursions. As the exact recursions are
easier to understand and visualise, I formulated the exact RNAup-like recursions of
my constraints. The same heuristic can be applied to my recursions. I implemented
the heuristic versions in order to allow benchmarking on a large dataset. This will be
discussed in more detail in the next chapter.
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Chapter 2

Limited Stacking

In this thesis, I aim at extending IntaRNA by new prediction modi, which enforce a
limit on the helix lengths, for intermolecular helices in the interaction region, to further
improve the prediction quality. In order to find decent values for the helix length limit,
I analysed known RNA structures.

To this end, the RNA secondary STRucture and statistical ANalysis Database (RNAS-
trand) (Andronescu et al., 2008) was used. At the time of this thesis, RNAStrand
contained 4666 RNA secondary structures of various types and organisms. The data,
used in this thesis, was downloaded in November 2017. The data in the RNAStrand
database was assembled from other databases (Westbrook et al. (2003); Cannone et al.
(2002); Andersen et al. (2006); Sprinzl and Vassilenko (2005); Brown (1999); Griffiths-
Jones et al. (2005); Berman et al. (1992)). It is well suited to get an overview of
the distribution of helix lengths and other useful statistics, such as the distribution of
unpaired regions. RNAStrand offers dot bracket notations for the structure of every
molecule in the database. These are single-molecule structures, i.e. intramolecular
structures. The analysis of the structures was split into two parts, the analysis of
helices and that of unpaired regions.

In the first part, the analysis of helices, two cases are distinguished, helices in all
structures and helices in pseudo-knotted structures, called pseudo-knot helices in the
following. The reasoning for the analysis of pseudo-knot helices, is related to an obser-
vation described by Thirumalai (1998). RNA molecules fold in two separate phases.
Simply put, the nested RNA secondary structure forms first, followed by the folding of
crossing secondary structure elements into the tertiary structure. The second step ba-
sically represents the formation of pseudo-knotted structures, called pseudo-knots. As
pseudo-knots form after the creation of the nested secondary structure, they are subject
to similar constraints as intermolecular stems, as the existing secondary structure im-
pairs the size of possible interaction regions. Therefore, the pseudo-knot helices might
give valuable information about intermolecular helices. The analysis of all structures
provides the opportunity to compare them to the pseudo-knotted structures.

The second part, the analysis of unpaired regions, reveals regions that are free and can
potentially interact with other RNA molecules. This analysis could provide information
about possible seed regions, as explained in the IntaRNA section of the introduction.

Unfortunately, there are also several downsides to RNAStrand. The database is very
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diverse, but several RNA types are overrepresented, therefore the statistics are biased,
e.g. there are 726 transfer messenger RNAs compared to only 41 cis regulatory ele-
ments. This problem can be solved by normalising the data, as done in RNAStrands
analysis tool. As the main purpose of my analysis is to get an overview of the distribu-
tions of helices in known RNA, I am not interested in specific values. My hope is that
the general observations will remain roughly the same even when not normalising the
data. Further, there are many sequences that contain special characters, other than
the AGCU bases. To avoid any problems with faulty structures, I chose to omit these
sequences and their respective structure in a preprocessing step. One exception is the
“~” character. It only appears on unpaired positions, due to which the affected bases
were removed rather than the whole structure. Moreover, two sequences in the data-
base did not have the same length as their according dot-bracket notations and were
removed as well. After both preprocessing steps, 3,313 of the initial 4,666 molecules
were used for further analysis.
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RNA Strand: Distribution of molecule lengths

Figure 2.1: The distribution of lengths in RNAStrand e.g. the number of
occurrences of each molecule length within the database. The x-axis represents the

different molecule lengths. The y-axis shows the number of occurrences.

Figure 2.1 provides an overview of the distribution of molecule/structure lengths for
all molecules in RNAStrand. Most structures are of short length, but there are also
several long structures. This allows for a more general analysis of the helix lengths. For
example, it allows to analyse whether helix lengths are dependent on sequence lengths.

Page 23



Ch. 2 Limited Stacking

2.1 Distribution of helices in known RNA structures

As already mentioned, the distribution of helices in known RNA structures will provide
the necessary constraint parameters. Further, it might give an intuition whether the
idea of limiting helix lengths is justified, i.e. there is a clear trend towards a certain
helix length. First, the distribution of helix lengths in RNAStrand will be analysed,
which should give an overview of the range of possible helix lengths. Then, both the
number of helices and the maximum helix length are investigated for a more detailed
understanding of the problem. During every step of this analysis, the according dis-
tributions for pseudo-knot helices will be considered in order to determine differences
and similarities.
To start, I evaluated the distribution of helix lengths within the database. In order to
do this, I created a script that reads all structures inside RNAStrand and returns for
every molecule the different helix lengths it contains. Here, I defined a helix as follows.
Let S be a fixed sequence. Let P be an RNA structure for S.
A base pair, (i, j) ∈ P is part of a helix if there exists a base pair (i′, j′) ∈ P such that:

� i < i′ < j′ < j

� i′ − i− 1 ≤ b

� j − j′ − 1 ≤ b

where b represents a user-defined, maximally allowed bulge-size. This is a generalisa-
tion, as it also allows short interior loop-like structures inside of a helix.
The pseudo-knot helices were collected using the same method. The only difference is
that helices formed by “()” base pairs in the dot bracket notation were ignored. All
other types of bracket notations describe different pseudo-knots.
Figure 2.2, shows the distribution of helix lengths in RNAStrand for different bulge-
sizes. It was created by counting the occurrences of all helix lengths for all 3,313
molecules. It uses a logarithmic scale for the y-axis to give a more detailed overview.
The results shown in the plots are as expected. Short helices are dominant, whereas
long ones are very infrequent in comparison. The idea of limiting stack sizes looks
promising, when regarding the large difference between the occurrence of long and
short helices. Allowing different maximal bulge-sizes increases the diversity of admit-
ted helices. Therefore, the distribution shifts slightly towards the longer helices, as
anticipated.
The nature of my helix definition causes an even larger shift for increasing bulge-sizes,
as interior-loops are also acceptable. Nevertheless, the overall trend remains the same.
There is an increasing number of long helices, but the very short helices still dominate
by far.
Figure 2.3 shows the occurrences of different helix lengths for pseudo-knot helices.
When comparing them to overall helix lengths, one can see that pseudo-knot helices
are very limited in size. As a single base pair is not regarded a helix, they range from
2 to 9 base pairs, where short helices are again more common than longer ones.
Observing both Figure 2.2 and Figure 2.3, the idea of limiting helix lengths seems
viable, as the small helices dominate substantially. However, there are two properties
that are not observable in these plots. First of all, structures have variable amounts of
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Helix Lengths for RNAStrand:
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Figure 2.2: The distribution of helix lengths in RNAStrand. The
x-axis represents the different occurring helix lengths. The y-axis

represents the number of occurrences for each helix length on a log
scale.
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Helix Lengths of pseudo-knotted structures for RNAStrand:
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Figure 2.3: The distribution of helix lengths belonging to
pseudo-knots in RNAStrand for different bulge-sizes. The x-axis

represents the different occurring helix lengths. The y-axis represents
the number of occurrences for each helix length.

helices, longer sequences likely allow more helices than short ones. Secondly, structures
are not composed of a single helix length, they consist of many short helices and a few
longer ones. Figure 2.4 gives an overview of the number of helices that occur in the
database and how often each of them appears. Most structures contain only a small
amount of helices and increasing bulge-sizes further reinforce this. The more bases in
a bulge are allowed, the longer the helix lengths become and the fewer helices will fit
into the structure.

Figure 2.5 shows the number of occurring helices for each molecule length in the data-
base. As multiple lengths appear more than once, the arithmetic mean was taken.
This Figure confirms what might seem obvious, the longer a structure, the more indi-
vidual helices occur. This just represents the general trend, there are obviously longer
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Number of Helices per molecule:
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Figure 2.4: The distribution of the number of helices for each
molecule in RNAStrand for different bulge-sizes. The x-axis
represents the number of helices. The y-axis represents the

number of occurrences for each number of helices.
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Average number of Helices in RNAStrand:
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Figure 2.5: The average number of helices per molecule length
in RNAStrand for different bulge-sizes. The x-axis represents
the different molecule lengths contained in the database. The

y-axis represents the average number of helices contained in the
structure of each molecule.
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structures with longer and fewer helices, containing long unpaired regions. Considering
RNAStrand, molecules with a small amount of up to about 20 helices are dominant.
Figure 2.6 and 2.7 show that most structures that contain pseudo-knots only contain
a small number of them. Further, longer structures are more likely to have more
pseudo-knotted structures.

Number of Helices per molecule
for pseudo-knotted structures:
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Figure 2.6: The distribution of the number of helices for each
molecule in RNAStrand for different bulge-sizes and for

pseudo-knot helices. The x-axis represents the number of helices.
The y-axis represents the number of occurrences for each

number of helices.

The more valuable information, regarding helix length constraints, is the maximum
helix length. If the average helix length is low, there could still be single large helices
in each structure. Limiting helix lengths too much would lead to mistakes in those
cases.
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Number of Helices for RNAStrand:
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Figure 2.7: The distribution of the number of helices for each
molecule in RNAStrand for different bulge-sizes, where the

helices belong to pseudo-knots. The x-axis represents the number
of helices. The y-axis represents the number of occurrences for

each number of helices.

Figure 2.8 shows how often certain maximum helix lengths occur in RNAStrand. In
order to create this plot, the maximum helix length was determined for each molecule
in the database. Most structures seem to contain a helix length of around 6 to 12
base pairs. Raising bulge-sizes cause a notable increase in helix lengths. The number
of maximum helix lengths in the range of 6 to 12 have already roughly halved for a
bulge-size of 2. This has to be taken into consideration when allowing large bulge-sizes,
but it could also be caused by the fact that I allow interior loops as well.

To see how the length of a molecule influences the maximum helix length, Figure 2.9
shows the maximum helix lengths for each molecule length. When multiple molecules
have the same length, the overall maximum was considered. Despite many outliers,
longer structures tend to have slightly larger maximum helix lengths. The red line
represents the average helix length, which was calculated by adding up all helix lengths
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of structures with the same length and dividing by the number of all helices in said
structures.

It shows that on average the helix lengths lie between 5 and 6. This gives a notion of
how far the maximum stack length strays from the average.
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Figure 2.8: The maximum helix length per molecule allowing
different bulge-sizes. The x-axis represents the maximum helix

lengths appearing in RNAStrand. The y-axis represents the
number of occurrence of each of the maximum helix lengths.

Due to the short pseudo-knot helix lengths, the maximum helix lengths are also short.
As can be seen in Figure 2.10, the maximum helix lengths are distributed over the
entire range of helix lengths, with a slight tendency towards the longer helices when
increasing the bulge-size.

By analysing the general helix distribution, the overall helix sizes in combination with
the maximum helix lengths suggest that the idea of limiting helix sizes is not unreason-
able. The maximum helix lengths seem to lie around 10 base pairs for low bulge-sizes.
Nevertheless, there are many structures with substantially higher helix lengths.

In contrast, the pseudo-knot helices consist of maximum 9 base pairs, independent of
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Maximum Helix Length per Molecule Length
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Figure 2.9: The maximum helix length for each molecule
length in RNAStrand allowing different bulge-sizes. The x-axis
represents the molecule lengths occurring in RNAStrand. The

y-axis represents the maximum helix length.
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Maximum Helix Length per Molecule
for pseudo-knotted structures:
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Figure 2.10: The maximum helix length per molecule for
different bulge-sizes, where the helices belong to pseudo-knots.
The x-axis represents the maximum helix lengths appearing in

RNAStrand. The y-axis represents the number of occurrence of
each of the maximum helix lengths.
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the sequence length. Assuming that pseudo-knot helices underlie similar constraints
than those imposed on intermolecular interactions, this would confirm that limiting
helix sizes could actually be biologically correct. However, as mentioned before, the
data is biased, and during the preprocessing more than 1,500 structures were filtered
out. Therefore, the representations are not exact. Nonetheless, they provide sufficient
information suggesting that a maximum helix length of 9-10 base pairs is a good starting
choice for testing the new prediction modi.

2.2 Distribution of unpaired regions in known RNA struc-
tures

RNAStrand: Length of unpaired regions:
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Figure 2.11: Distribution of unpaired region lengths, classified
into 3 categories, external, internal and hairpin. The x-axis

represents the different lengths of unpaired regions. The y-axis
represents the occurrences of each unpaired region length.

After having analysed the distribution of helices in known RNA structures, another
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approach is to analyse unpaired regions. In order to do this, I created another method,
which reads the 3,313 valid RNA structures from RNAStrand and outputs the lengths of
unpaired regions, classified into three different categories. First, the external unpaired
bases, which belong to no structural elements. Secondly, the hairpin category, which
contains all unpaired regions that are part of a hairpin loop. And lastly, the internal
category, which comprises all other unpaired regions, i.e those belonging to interior
loops, bulges and multi-loops.
Furthermore, single base pairs are regarded as part of an unpaired region, as they are
quite unstable. Only unpaired regions with more than 2 bases are considered. Figure
2.11 shows the distribution of unpaired region lengths for the different categories. The
majority of unpaired regions range from 3 to 75 bases. The external unpaired regions
are the least represented, followed by internal regions. Most of the longer regions seem
to be part of hairpin loops.
The analysis of the unpaired regions suggests that there is a large range of different
unpaired region lengths. This shows the potential for many seed regions, as most of
the unpaired regions are short.

2.3 Prediction of interactions with limited helix length

After the analysis of RNAStrand, the next step is to apply what I have learned to
IntaRNA by creating new prediction methods.
In the following, I will differentiate between tightly stacked helices that allow no
bulge/interior-loops and those that allow them. In both cases, a seed-based variant
will be introduced that incorporates user-definable seed regions into the recursion, as
seen before with the original IntaRNA recursions. In order to implement the different
methods without having to alter the main recursion every time, I introduce a helix
function, similar to the seed function (Equation 1.18) used by IntaRNA.
The basic idea of the helix function is to pre-compute all possible combinations of
forming a helix beforehand and store the corresponding energies in a matrix. These
helix energies are then used by the predictor to find the optimal interaction with limited
helix lengths.
The helix method Ehelix(i, j, k, l;nI , nB) returns for fixed intervals [i, k] and [j, l] the
best interaction energy, using the following user-definable constraints:

� nI : the maximal number of unpaired bases allowed for each interior loop between
each base pair of a helix.

� nB: the maximal number of base pairs allowed in a helix. By definition, a helix
has at least two base pairs.

The energy contributions for dangling ends as well as the ED-values introduced in
Equation 1.16 are usually added in the following recursions. They are omitted in order
to keep the recursions readable.
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2.3.1 no bulge/interior loop

I will start with the simple version, allowing no unpaired bases in the helix. In other
words, nI is set to 0.
Figure 2.12 shows a sketch of the helix function Ehelix.

Figure 2.12: Sketch of the Ehelix function, denoted as helix
and S representing a stacking of two base pairs.

As there are no bulges or interior loops allowed in the helix function Ehelix, it can be
expressed as a sum of stacks:

Ehelix(i, j, k, l; 0, nB) =



∑
i<s≤(k−i)

(
eS(i + s− 1, j + s− 1, i + s, j + s)

)
: if k − i = l − j < nB,

∞
: otherwise.

In order to find the optimal interaction, all valid intervals have to be analysed, this is
done in the predictor function, sketched in Figure 2.13.

Figure 2.13: Sketch of the predictor method. helix being the
helix function, H the predictor method and IL an interior loop

The predictor is defined as:

H(i, j, k, l) = min


Ehelix(i, j, k, l, 0, nB) + Einit

min
p,q
r,s

(
Ehelix(i, j, p, q, 0, nB)

+eSBI(p, q, r, s) + H(r, s, k, l)

)
, (2.1)

where the first part describes the case of having a single helix and adds the according
initial energy. The second part captures the expansion case when having multiple
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helices separated by interior loops. To avoid connecting multiple helices into one long
helix, the interior loop case does not allow stacks in the predictor. The predictor
returns the mfe interaction with limited helix length.

seed variant

The seed variant incorporates seed regions into the helix computation. This is done by
combining the Ehelix and Eseed functions, sketched in Figure 2.14.

Figure 2.14: Depiction of the decomposition strategy for the
Eseed

helix computation.

The helix function with seeds Eseed
helix is defined as:

Eseed
helix(i, j, k, l; 0, nB) = min

p,q
r,s

 Ehelix(i, j, p, q)
+Eseed(p, q, r, s)
+Ehelix(r, s, k, l)

 (2.2)

where k− i+1 ≤ nB and l− j+1 ≤ nB in order to ensure that the maximum base pair
constraint is fulfilled. The Eseed

helix function is just a screen over all possible combinations
of embedding a seed into a helix. For simplicity, the parameters of the E functions
were omitted. They are dependent on one-another and when combined cannot exceed
nB.
Due to the independence of the seed and helix constraints, it is possible to allow un-
paired bases in the seed, even when not allowing unpaired bases in the helix constraints.
Therefore, it is not possible, without further constraints, to avoid unpaired bases for
the Eseed

helix function.
This returns the minimum free energy of a helix with seed for two fixed intervals [i, k]
and [j, l]. Consequently, all valid intervals have to be analysed in a predictor method,
in order to find the optimal interaction, the predictor is sketched in Figure 2.15.
The predictor is defined as:

HS(i, j, k, l) = min



Eseed
helix(i, j, k, l) + Einit

min
p,q
r,s

(
Eseed

helix(i, j, p, q)

+eSBI(p, q, r, s) + H(r, s, k, l)

)

min
p,q
r,s

(
Ehelix(i, j, p, q)

+eSBI(p, q, r, s) + HS(r, s, k, l)

)
The first part describes the initial case of having the helix with seed and the according
initial energy. The second part handles the case of having a helix with seed followed
by helices without seed, separated by an interior loop. The last part describes the case
of having helices without seed before a helix with seed region.
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Figure 2.15: Sketch of the predictor method when allowing a
helix with seed region, where HS denotes the predictor with

seed, H the predictor without seed, helix the Ehelix function,
helixseed the Eseed

helix function and IL the interior loop.

When using the new HS matrix within the C computation in Equation 1.17, one can
identify the mfe interaction with limited helix length and incorporated seed region,
including accessibility penalties.

2.3.2 limited bulge/interior loop

A different approach is to allow (very) small bulges and internal loops within a helix.
This is achieved by ensuring that nI > 0. nI encodes the number of unpaired bases
that are allowed between each pair of base pairs in a helix, i.e. the individual interior
loop or bulge size. Therefore, the maximum number of possible unpaired bases is:

(nB − 1) ∗ nI

The helix function is defined as:
Ehelix(i, j, k, l;nI , nB) =

min
2≤B≤nB



min
p,q with

k−p+1≥B′−1
l−q+1≥B′−1

(
eSBI(i, j, p, q)

+Ehelix(p, q, k, l;nI , B
′ − 1)

)
2 < B′ ≤ B,

eSBI(i, j, k, l) B = 2,

∞ otherwise.

with B being the current number of base pairs in the helix. The helix method returns
the minimum free energy of a helix for two fixed intervals [i, k] and [j, l]. As unpaired
bases are allowed in this case, p− i + 1 = 2 + n′I and q − j + 1 = 2 + n′′I need to hold,
as well as k − i + 1 = 2 + n′I and l − j + 1 = 2 + n′′I when B = 2, where n′I + n′′I ≤ nI .
The conditions k− p+ 1 ≥ B′− 1 and l− q + 1 ≥ B′− 1 ensure that B′− 1 base pairs
are possible in [p, k] and [q, l], as well as unpaired bases.

To find the optimal helix, all allowed small interior/bulge loop combinations have to
be considered. This leads to an exponential growth of the complexity. This is treated
further in the following complexity section.
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Like before all intervals have to be considered to find the optimal interaction with
limited helix length. This is done by using the same predictor as before (Equation
2.1). As unpaired bases are now allowed inside a helix, a minimum interior loop size
is introduced, which is nI + 1. This ensures that the interior/bulge loop that connects
two helices is larger than any loop allowed within a single helix, otherwise the two
helices would be merged into a (too large) single one. All helix function variants are
implemented to be easily exchangeable.

seed variant

The helix function that allows both seed regions and small interior/bulge loops is the
same as that used when unpaired bases are prohibited. Like with the predictor method,
only the helix function has to be changed to the newly introduced one.

To find the optimal interaction, the predictor, introduced in Equation 2.3.1, is used by
simply replacing the according helix functions with the new one.

2.3.3 Complexity analysis

The complexity of the newly introduced exact RNAup-like (Mückstein et al., 2006)
recursions does not allow genome-wide searches in reasonable time. Let the length of

Figure 2.16: Representation of the recursion part that adds
the most to the complexity of the method.

the input sequences S1 and S2 be n and m, respectively, and I assume that we have to
screen over the entire lengths for interval [i, k] and [j, l] as shown in Figure 2.16. As the
energies are always calculated for given intervals [i, k] and [j, l], the space complexity is
O(n2m2). Furthermore, the starting and endpoints of the interior loop, (p, q) and (r, s)
respectively, have to be determined. This would lead to an overall time complexity of
O(n4m4). However, I limit the maximum helix length nB to [2, 15]. This ensures that
only a constant part of the sequence has to be screened. Consequently the overall time
complexity is O(n3m3).

In order to get a feasible runtime, I applied several simplification techniques and heur-
istics, that were introduced by (Busch et al., 2008) to improve the original IntaRNA
recursions. Figure 2.17 provides an overview over the space and time complexity, given
these improvements.

First of all, a maximum interior loop size of 16 nucleotides is introduced. Therefore,
r− p+ 1 ≤ 16 and s− q+ 1 ≤ 16 hold and the time complexity is reduced to O(n2m2),
as r and s are not dependent on the size of the input any more.
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Then, a heuristic is applied. To this end, instead of considering all interaction ranges,
for each interaction start (i, j), only the optimal right boundary (k, l) is considered.
This reduces the space and time complexity to O(nm). The heuristic is based on the
idea that the matrix H(i, j, k, l) is sparse and only a small part is used in subsequent
recursion steps, which ensures that the found interactions will still be the mfe or near-
mfe interactions.
In the helix functions the best energy for each interaction start (i, j) are stored together
with the according length of the helix for both sequences. Knowing the length for a
helix in both sequences exchanges the screen over the limited (p, q) end with a con-
stant lookup, which enables a slight runtime improvement. The asymptotic complexity
remains at O(n2m2).
The presented techniques do also apply to the seed variants of the new predictors, as
the seed size is also restricted. The variants that allow unpaired bases in the helix need
further restrictions on the number of allowed unpaired bases between each stacked base
pair nI . For my purposes nI is limited to a maximum of 2, as the number of possible
combinations grows exponentially with the size of nI and the number of allowed base
pairs nB. Further, I only store the best unpaired combination for each interaction start
(i, j) to ensure that the time and space complexity does only increase by a constant
factor.

bounded lengths heuristic space time

O(n2m2) O(n3m3)

X O(n2m2) O(n2m2)

X O(nm) O(n2m2)

X X O(nm) O(nm)

Figure 2.17: Overview of the space and time complexity
given certain improvement techniques, under the assumption

that the unpaired bases are restricted.
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Results

In order to evaluate the performance of the newly created predictors for IntaRNA,
I will run them on a large dataset. In multiple experiments, I will compare with
the original IntaRNA recursions, which will be run on the same dataset, for varying
parametrisations of my predictors. For that reason, I created the IntaRNA-benchmark,
which I will describe in the following section.

3.1 Benchmark

The IntaRNA-benchmark is equivalent to the CopraRNA-benchmark (Wright, 2016)
from a theoretical point of view, but I have changed much on a technical level. The
aim was to automatise as many steps of the benchmarking process as possible, but at
the same time make it fully customisable.

3.1.1 Theoretical background

The IntaRNA benchmark contains bacterial sRNA queries and mRNA targets. We
focus on these RNA types, as IntaRNA is especially successful on the prediction of
bacterial regulatory sRNA. IntaRNA outperformed competing programs by determin-
ing the exact target sites with higher accuracy.

The genome sequences were originally taken from the GenBank database of the Na-
tional Centre for Biotechnology Information (NCBI) (Benson et al., 2008). This data-
set comprises 4,319 target regions from the E.coli genome (GenBank accession number
NC 000913) and 4,552 target regions from the Salmonella typhimurium genome (Gen-
bank accession number NC 003197).

The targets are genomic subregions around the start codon of the respective mRNA
including 200 nucleotides upstream and 100 nucleotides downstream. For one, because
most sRNAs bind their target gene in a region around the start codon. Further,
genomic subregions are easily extractable from the GenBank.

Further, I have 15 sRNAs for E.coli and 15 sRNAs for Salmonella. Most of these
sRNA act as post-transcriptional regulators by base-pairing to a target messenger
RNA (mRNA). Further, IntaRNA incorporates the accessibility of target sites and the

Page 41



Ch. 3 Results

existence of seed regions into the prediction, which is especially interesting for bacterial
sRNA.

Therefore, these sRNA-mRNA interactions are ideal for evaluating the performance of
new IntaRNA constraints.

To evaluate the performance, I use experimentally verified sRNA targets. The set com-
prises 149 verified sRNA target. For these verified sRNA targets, only the information
that they are regulated is known. The according informations about the location and
structure of the interaction is unknown.

The evaluation method is similar to a method used by (Tjaden et al., 2006). In this
method the 149 verified sRNA targets are considered as true interactions. Each of the
15 sRNAs in E.coli may interact with any of the 4,319 target regions. The same is
applicable to the 4,552 target regions for each sRNA in Salmonella. As a result, there
are 133,065 potential interactions, of which only 149 are considered true interactions,
leaving 132,916 unsupported interactions. What is tested is whether the verified targets
have, in relation to the other possible mRNAs, better overall energy values, i.e lower
energy compared to the unsupported interactions. In other words, I check how well
the verified target performs, when taking the predictions of all potential interactions
as my background distribution.

In this benchmark, a result file is computed for each sRNA query per call. These result
files contain a list of target candidates and are sorted according to their computed
energy scores. Like this, the results are ordered from the most favourable, the one with
the lowest energy, to the most unfavourable interaction. Then, a rank is calculated for
each entry among the verified interactions (true interactions). The rank describes how
favourable the interaction is, e.g. in what row of the result file of the IntaRNA call it
appears. With this in mind, it is preferable to have as many low-ranking interactions
as possible. In other words, the more low ranks are obtained, the more often IntaRNA
predicted the experimentally verified interactions among its best results.

To visualise the performance of an IntaRNA prediction mode, I use receiver operating
characteristic (ROC) curves. The X-axis describes the number of target predictions
per query RNA, while the Y-axis represents the number of true positives. In other
words, for each X, the number of ranks that are smaller or equal to X are counted and
represented on the Y-axis. Like this, multiple prediction modes can be plotted into the
same graph to compare their performance. As ROC curves can be hard to interpret,
especially when overloaded with many curves, I also provide the option to use violin
plots. The user can provide a reference prediction, the difference between the reference
curve and each prediction mode is visualised in a violin plot. This makes it easier to
view the increase or decrease of performance compared to a given curve.

3.1.2 Technical background

In contrast to the CopraRNA-benchmark, the IntaRNA-benchmark can also record
time and maximum memory consumption of each IntaRNA call. It can be downloaded
from https://github.com/BackofenLab/IntaRNA-benchmark.

The time and maximum memory consumption is collected using the os.wait4 command
by tapping the resource.getrusage. The time is extracted from the ru utime field,
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while the maximum consumption is read from ru maxrss field. The ru maxrss field
contains the maximum resident set size, i.e. the maximum amount of memory that
was attributed to a given process currently handled by os.wait4.
Further, I introduced a system using callIDs to allow running different parametrisations
of IntaRNA simultaneously, in order to compare the performance of each individual
call. The IntaRNA-benchmarking scripts are written in python3 and allow multiple
command-line arguments for customisation.
The benchmarking begins with the calls script. The script calls IntaRNA, with user-
defined parameters, for each sRNA query, mRNA target combination and thus creates
a result file for each sRNA. For newer versions of IntaRNA and ViennaRNA (Lorenz
et al., 2011), it also allows the pre-computation of target ED-values and subsequent
re-usage of these values in order to fasten up the benchmarking process substantially.
Then, the benchmarking script is called, which uses the verified interactions file to
generate the rank for each interaction. Lastly, the plot performance script can be used
to create an ROC or violin plot. Further, it allows the visualisation of memory and
time consumption.
The mergeBenchmark and the clearAll scripts are not vital to the benchmarking pro-
cess but can be used to easily merge the results of multiple calls of the benchmark
script to visualise them in one plot or remove certain callIDs respectively.

3.2 Hardware specifications

All experiments were run on a machine equipped with an Intel Core i5-62000U 2.3GHz
processor and 8GB available RAM. This highlights that IntaRNA has a low memory
requirement which makes it applicable on normal work stations. In order to fasten up
the benchmarking process, all experiments were run using multi-processing on 3 cores.
This reduces the runtime while roughly increasing the maximum memory consumption
by a factor of 3, which also influences the times and maximum memory data mentioned
in the experiments section. Further, the accessibility energies (ED-values) for the
targets were calculated in advance and read from file, to avoid re-computation.

3.3 Experiments

In order to test whether limited helix lengths improve the prediction quality of In-
taRNA, I experimented with different parametrisations of the two new prediction
methods. The heuristic version of all predictors was used to run the experiments,
as the runtime complexity of the exact versions makes them impractical for genome-
wide screens. Nevertheless, the runtime of the heuristic version did not allow me to
test all possible parametrisations I intended, as there is a large amount of different
parametrisation combinations that could potentially yield interesting results.
The original predictors were run with their default values and are used as a reference
for comparison.
In the following, I will refer to the predictor that allows no unpaired bases as stackin-
gOnly. When unpaired bases are allowed, it is called unpaired. The suffix seed refers
to the seed variant of a predictor.
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3.3.1 Overview

To get an overview over the performance of the different new prediction modi, I compare
them to the original IntaRNA recursions. Therefore, the default values for all predictors
were used. The maximum size of the helices nB is thereby limited to 10. The number
of unpaired bases nI is set to 2, for variants of the predictors. The number of seed base
pairs is 7 by default and no unpaired bases are allowed in the seed region.
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Figure 3.1: Overview over the different predictors using their default values up to 200
target predictions. nB is set to 10, nI is set to 2 and the number of seed base pairs is
set to 7. stackingOnly references the Ehelix method without unpaired bases, whereas
unpaired represents the ones allowing unpaired bases. The suffix seed denotes the
seed variants of the functions. The left figure shows the performance of the different
predictors using ROC curves. The right figure shows the difference between the different
predictors and the original predictor with seed (red). In the violin plots, the dashed line
represents the median and the straight line the mean.

The left plot in Figure 3.1 shows the performance of all prediction modi, using ROC
curves. The original seed curve shows the results for the original predictor with incor-
porated seed regions. It is the best performing predictor in IntaRNA so far, therefore
I use it as a reference to evaluate the performance of the newly developed methods. It
is coloured in red in every plot.

In order to give a clearer overview over the performance of each predictor, I calculated
for each method their difference to the reference predictor. This means that for each
number of target predictions plotted, the difference of the true positive values between
the reference and the new predictor is taken. When the difference is positive the new
predictor performed better than the original one, for the according number of target
predictions. The difference measure is visualised in the right figure using violin plots.

It is important to note that while this measure allows for an easier comparison and
gives a better intuition than the ROC curves, it can be misleading when not considering
both plots. Generally speaking, the measure only quantifies how often the curve of the
new predictor is above or below the reference curve. The problem is that the more
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target predictions are allowed, the less important the results. With this in mind, both
curves have to be taken into account when rating the performance of a predictor.

The ROC plot shows that the original predictor has, for the current default values, still
the best starting values, i.e. the best values for a very low number of target predictions.
The predictor that allows no unpaired bases and no seed, here stackingOnly, has worse
starting values but overtakes the original predictor at around 25 target predictions. The
seed variant of the stackingOnly predictor slightly improves the starting values. It only
has a performance boost at around 125 allowed target predictions, which is not very
impactful. The same behaviour is observable for the predictors allowing unpaired bases.
The seed-less variant of the unpaired predictor has the worst performance among all
predictors, given the default parameters. Whereas, the unpaired seed predictor shows
very promising results. It does not perform as well as the stackingOnly seed predictor
up to around 40 target predictions. On the other hand, it outperforms the other
predictors by a large margin on the range [50, 115]. Given the starting values of the
unpaired seed predictor, it is hard to say which one is better. What is clear is that the
seed helps increasing the prediction quality in both methods.
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Figure 3.2: Overview over the time (left) and maximum memory consumption
(right) for the predictors in the overview shown in Figure 3.1.

Figure 3.2 shows the runtime and maximum memory consumption for the different
predictors from the overview shown in Figure 3.1. These are the runtime and max-
imum memory values for the heuristic version using multiprocessing on 3 cores for each
predictor. It is clearly visible, that the introduction of a maximum helix length does
not only show potential for improving the performance of IntaRNA. The runtime is
greatly decreased, while the maximum memory consumption stays roughly the same.
My focus lies in creating the wanted functionality of a maximum helix length, as a
proof of concept. Therefore, not everything is optimised to the point it could be. Nev-
ertheless, the maximum helix length reduces the range that has to be considered in
every step, leading to a greatly reduced runtime. The upper bounds of the violin plots
are caused by the sRNA queries GcvB and SgrS, as they are more than double the
length of the other sRNA used in the benchmark.
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The reason for the overhead of the seed variants is easy to see when looking at Equation
2.2 or the corresponding sketch in Figure 2.14. The seed variants need three matrices
in total. The Ehelix and the Eseed matrices are required to calculate the Eseed

helix matrix.
The much higher gap for the unpaired predictor is explained by its more complex
structure, e.g. when a helix of 5 base pairs is not possible for the predictor allowing
no unpaired bases it makes no sense to test 6 or more base pairs, for a given starting
position. This is not the case for the unpaired seed predictor as a small bulge or
internal loop could potentially allow longer helices. Therefore, all combinations have
to be taken into account for the unpaired seed predictor, while the stackingOnly seed
predictor has more efficient break conditions.

The overview showed that, given the default values, all new predictors outperform
the currently best predictor at some point. Apart from the unpaired predictor, who is
especially bad in the beginning. Nevertheless, even though the stackingOnly predictors
come very close to the starting values of the original predictors, none manages to
outperform them.

In order to see whether different parametrisation might lead to even better performance,
I will analyse each method in more detail. I want to see how different numbers for
maximum helix length and minimum helix length, as well as different maximum energy
values influence the performance of each predictor.

3.3.2 no bulge/internal loop

In order to get all the results in time, I used the setup described in the hardware spe-
cification, but used an AMD Ryzen 1700X Eight-Core processor instead. That allowed
me to queue 4 IntaRNA calls using 3-threads each via hyper-threading. Therefore, the
relative difference in runtime remains the same, but the overall runtime reduces.
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Figure 3.3: The influence of different maximum helix lengths for the stackingOnly
predictor without seed. For the description of the plot order, see Figure 3.1.
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simple variant

The default value for the maximally allowed helix length is just an assumption based
on the results from the analysis of RNAStrand (Andronescu et al., 2008). Therefore, I
tested different nB ranging from 7, the default seed size, to 15, in order to determine
whether the overall quality of the prediction improves or not.
I started with the stackingOnly predictor that allows no seed. Figure 3.3 describes
how different maximum helix lengths influence the result of the predictor. It clearly
shows that very small nB have a negative effect on the prediction quality. In contrast,
nB = 11 and nB = 13 show really good performance increases when comparing to the
default value nB = 10. Especially, nB = 13 shows very promising results, as it starts
to overtake the original predictor at around 15 target predictions.
In the next step, I tried to improve the results of the predictor using both the minimum
helix length and the maximum energy parameter. To do this, I used the overall best
performing maximum helix length nB = 13.
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Figure 3.4: The influence of different minimum helix lengths for the stackingOnly
predictor without seed. For the description of the plot order, see Figure 3.1.

In Figure 3.4 the impact of different minimum helix lengths on the overall prediction
quality is shown. minBP=7 represents the default case that is also represented in
Figure 3.3 as maxBP=13. The minimum helix length has in fact a very negative effect
on the prediction quality of the stackingOnly predictor. In some cases, it slightly
improves the starting values but it causes a noticeable performance drop for the rest
of the plot.
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Figure 3.5: The influence of different maximum energy values for the
stackingOnly predictor without seed. For the description of the plot order, see

Figure 3.1.

Figure 3.5 shows different maximum energy values for the stackingOnly predictor. It
becomes clear that, even though the performance decrease is not as strong as for the
minimum helix length parameter, the prediction quality drops when using lower energy
values.

In order to see whether the seed variant behaves differently, I continued by performing
the same experiments for the stackingOnly seed predictor.

seed variant
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Figure 3.6: The influence of different maximum helix lengths for the
stackingOnly seed predictor. For the description of the plot order, see Figure 3.1.

I started again by evaluating different maximum helix lengths, as shown in Figure
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3.6. In contrast to the predictor without seed, nB = 11 performs better than nB =
13. Nevertheless, all values nB ∈ [11, 15] are relatively good for stackingOnly seed.
Consequently, I will continue my analysis using nB = 11 as the value for comparison.
As before, I continue testing different minimum helix lengths and maximum energy
values in order to see whether there is a difference to the stackingOnly predictor.
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Figure 3.7: The influence of different minimum helix lengths for the
stackingOnly seed predictor. For the description of the plot order, see Figure 3.1.

In Figure 3.7, the influence of different minimum helix lengths is highlighted. For the
stackingOnly seed predictor, the minimum helix lengths show no real improvement.
But the prediction quality in not reduced as badly as for the predictor without seed.
All in all, the minimum helix length does not help increase the prediction quality for
this predictor.
Figure 3.8 describes the influence of different maximum energy values on the prediction
quality. This means that only helices that have an energy lower than the given maxE
are accepted. As a consequence, for values of maxE that are too low, near to no
interactions are valid any more. This leads to a bad performance. A maxE of 0 is the
default value. The values −2.5, −5 and −7.5 are better than the reference predictor.
Especially, for a maxE of −7.5, the predictor has better results from around 2 target
predictions to the end of the plot, with improvements of up to around 18 true positive
values.
As mentioned before, the idea behind maximum energy values is similar to that of a
minimum helix length. This is true in general, but the maximum energy allows more
flexibility. Where the minimum helix length is fixed, different length combinations are
still possible for the given maximum energy, e.g. a helix formed solely by G-C base
pairs is allowed to be shorter as it has a lower energy than a helix formed only by A-U
base pairs. When testing different maxE values close to −7.5 like −7 and −8, they
showed similar improvements, but −7.5 remained the overall best value.
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Figure 3.8: The influence of different maximum energy values for the
stackingOnly seed predictor. For the description of the plot order, see Figure 3.1.

Figure 3.9 shows that both the minimum helix length and the maximum energy values
can help to reduce the runtime, while the maximum memory remains the same.
When comparing the influence of the maximum energy parameter for both prediction
variants, it becomes clear that the seed seems to help further increase the prediction
quality. The reason for this is most likely the implementation of the seed variants. As
the Ehelix matrix is required to create the seed, I set the maximum energy value for
Ehelix, i.e. stackingOnly, to 999. This means that all energy values are accepted for the
Ehelix matrix. The reason for this is easily explained when considering the recursion
for Eseed

helix (see Equation 2.2). When not allowing all values for Ehelix the overall best
combination of introducing a seed might not be found. Therefore, the seed variant still
allows smaller helices in the final interaction, while enforcing one strong seed. This
seems to have a very positive effect on the overall prediction quality. Nevertheless, it
might be favourable to make the seed variant independent from the seed-less variant in
the future. This allows customising both variants, without affecting each other directly.
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Figure 3.9: Overview over the time (left) and maximum memory consumption
(right) for different minimum helix lengths (a) and maximum energy values (b) for

nI = 0, nB = 11 and seedBP = 7.

3.3.3 limited bulge/internal loop

I will now apply the same parametrisation techniques to the unpaired predictors. Due
to complications during the experimentation phase, I was only able to generate the
results for nI = 2. Previous tests showed that the predictor behaves in the same way
for both nI = 1 and nI = 2, while nI = 1 leads to slightly better results and a reduced
runtime. Nevertheless, the overall behaviour of different parametrisation remains the
same.
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simple variant

Figure 3.10 shows the behaviour of the unpaired predictor, given different numbers of
maximum helix lengths. The general idea remains the same as for the stackingOnly
predictors. Small maximum helix lengths, like 7 and 8, return very bad results. The
best performance is achieved for 13 allowed base pairs, while it is hard to say for this
predictor, as it performs badly for all values.
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Figure 3.10: The influence of different maximum helix lengths for the unpaired
predictor without seed. nI is set to 2. For the description of the plot order, see

Figure 3.1.

Due to the overall bad results of the unpaired predictor and the lessons learnt from the
stackingOnly predictor without seed, I did not conduct further experiments with the
minimum helix length and maximum energy value parameters. Instead, I continued
with a detailed analysis of the unpaired seed predictor.
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seed variant

As the unpaired seed predictor already showed promising results in the overview, I also
tested different minimum and maximum helix lengths as well as different maximum
energy values with this predictor, in an attempt to improve the results.
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Figure 3.11: The influence of different maximum helix lengths for the
unpaired seed predictor. nI is set to 2 and seedBP = 7. For the description of the

plot order, see Figure 3.1.

Figure 3.11 highlights the influence of different maximum helix lengths for the un-
paired seed predictor, with nI = 2 and seedBP = 7.
It is hard to assess which maximum helix length value returns the best results for the
unpaired seed predictor. Though it seems as if the best value is among the values from
10 to 15. Among these values, nB = 13 and nB = 15 perform best for low numbers
of target predictions. In the range between 25 and 50 target predictions, nB = 15
performs better. Further, nB = 10 and nB = 11 have better values in the range
[50, 125]. Nevertheless, I would say that 13 performs best given the whole range of
target predictions, due to the good starting values and the high mean and median
value. Therefore, I will use nB = 13 to continue testing the minimum helix length and
maximum energy parameters.
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Figure 3.12: The influence of different minimum helix lengths for the
unpaired seed predictor. nI is set to 2, nB to 13 and seedBP = 7. For the

description of the plot order, see Figure 3.1.

Figure 3.12 shows how different minimum helix lengths affect the performance of the
unpaired seed predictor. minBP=7 represents the performance of the unpaired seed for
nB = 13, shown in Figure 3.11. For this predictor, the minimum helix length has no
great effect on the prediction quality. It seems to slightly improve for minBP=8 but
apart from that it reduces.
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Figure 3.13: The influence of different maximum energy values for the
unpaired seed predictor. nI is set to 2, nB to 13 and seedBP = 7. For the

description of the plot order, see Figure 3.1.

Figure 3.13 shows the influence of different maximum energy values given nI = 2,
nB = 13 and seedBP=7. maxE=0 represents the performance of the unpaired seed
predictor, shown in Figure 3.11. Similar to the stackingOnly seed predictor, the dif-
ferent maximum energy values have a positive effect on the prediction quality. This
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suggests, that favouring longer helices while at the same time introducing a maximum
helix length improves the results. But when comparing the results to those of the
minimum helix length in Figure 3.12, the results seem to confirm the suspicion that
the flexibility of a maximum energy is better than a static minimum helix length. As
before, a value of maxE=−7.5 returns the overall best results. maxE=−10 has good
starting values, but due to the very low energy requirement many interactions are not
viable any more, explaining the large performance drop. Test with maxE=−15 showed
that of the potential 133,065 interactions, only around 60 passed the energy threshold,
among which 3 were verified interactions. The maximum energy parameter, like the
minimum helix length parameter, can further reduce the runtime of the predictor, as
shown in Figure 3.14.
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Figure 3.14: Overview over the time (left) and maximum memory consumption
(right) for different minimum helix lengths (a) and maximum energy values (b) for

nI = 2, nB = 13 and seedBP = 7.
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3.3.4 Summary

In this chapter, I showed the results of each method for different parametrisations.
This was done using the newly created IntaRNA-benchmark.
The results revealed that the maximum helix length constraint helps improving the
results of IntaRNA, while at the same time reducing the runtime. For all predictors,
low values of nB showed bad results, while high helix lengths showed good results in
general. Nonetheless, the best results were determined for nB ∈ [10, 13]. Further, I
analysed the behaviour of the minimum helix length and maximum energy parameters.
It showed that, while both tend to improve the overall prediction quality and runtime,
the maximum helix energy achieves the overall best results. As mentioned before,
this is most likely due to the fact that the maximum energy value is more flexible.
This means that it allows different helix lengths, depending on the composition of the
bases involved in the interaction. Whereas, the minimum helix length only allows fix
lengths. This makes me think, that a minimum energy value could potentially lead to
even better predictions than a maximum helix length.
Moreover, the large gap between the performance of the unpaired and unpaired seed
predictors could suggest that, either the heuristic of storing only the best combination
of unpaired bases in each step or the whole unpaired bases handling is too unrestricted.
With the latter, I mean that the current method allows structures that contain internal
loops between each pair of base pairs, leading to unreasonable structures. The intro-
duction of a seed that contains no unpaired bases consequently increases the prediction
quality, as only a small part of the helix remains that can contain unpaired bases. A
solution to both of these problems would be the introduction of additional restrictions
on the unpaired predictor. This is discussed in more detail in the Future Work chapter
of this thesis.
Finally, I summarised the best performing parametrisation of each prediction method
in Figure 3.15.
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Figure 3.15: An overview over the best performing parametrisations of each
predictor. The Figure shows the stackingOnly predictor for nB = 13, the

stackingOnly seed predictor for nB = 11, seedBP = 7 and maxE = −7.5. The
unpaired predictor is represented using nB = 13 and the unpaired seed predictor for

nB = 13, seedBP = 7 and maxE = −7.5.
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Chapter 4

Related Work

When discussing related work, there are two aspects that can be covered. For one,
I present a constraint for IntaRNA, which is therefore used in mfe-based RNA-RNA
interaction prediction. On the other hand, the general concept of reducing the inter-
molecular helix lengths could be applicable in other methods and fields. For the latter,
I was unable to find anything related to the idea of introducing a maximum helix
length in order to better incorporate the steric 3D constraints of RNA molecules into
the RNA-RNA interaction prediction. To the best of my knowledge no such constraint
was tested before.

As this technique aims at improving RNA-RNA interaction prediction, there are many
related approaches. Umu and Gardner (2017) created a benchmark of RNA-RNA
interaction prediction tools, that compares different approaches of accomplishing this
task as well as the performance of each of the most prominent tools using these methods.

They describe three main groups of RNA-RNA interaction prediction methods, align-
ment-like methods, mfe methods and comparative (homology) methods. There is a
large amount of tools that use these different methods. Umu and Gardner (2017) give
a detailed description of these tools and indicate special methods only used for certain
RNA types. They also describe some under-represented methods like machine learning
approaches and probabilistic methods.

IntaRNA belongs to the mfe methods. These are further split into three sub-methods,
those that consider intra-molecular structure, those that ignore intra-molecular struc-
ture and those that incorporate the accessibility of the target regions. IntaRNA belongs
to the last group.

It is important to note that each of these tools specialises in certain RNA types,
therefore they do not perform as well on large datasets that contain many different
RNA types. Some approaches showed to perform quiet well on a large variety of RNA
types, but it is unlikely that a method exists, that performs well on every RNA type.

I want to give an overview over three of the more recently developed tools. Access-
fold (DiChiacchio et al., 2016), RIsearch2 (Alkan et al., 2017) and RIblast (Fukunaga
and Hamada, 2017) are RNA-RNA interaction prediction tools, but they use different
approaches than IntaRNA.

The idea behind Accessfold is to better integrate the competition between uni- and
bimolecular structure, i.e. the intra- and intermolecular structure, into the prediction
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process. Therefore, DiChiacchio et al. (2016) introduced two new algorithms, Density-
Min and Accessfold, that used two new approaches for accessibility evaluation, free en-
ergy density minimisation and pseudo-energy minimisation. DensityMin was based on
the hypothesis that density minimisation leads to shorter, more stable helices between
strands, which were thought to outperform potential intramolecular binding partners.
Accessfold showed better results than DensityMin, it uses energy minimisation. The
energy minimised is composed of a folding free energy change and a pseudo-energy that
accounts for the accessibility. This pseudo-energy penalty is added to the folding free
energy for each nucleotide forming a base pair. It accounts for accessibility but treats
each nucleotide independently. A similar approach of position-wise accessibility terms
was already employed in RNAplex (Tafer and Hofacker, 2008). Biophysically, it would
be more accurate to add the accessibility energy once for each interaction site. Non-
etheless, they showed, for their tested data set, that this pseudo-energy minimisation
was able to outperform the mean sensitivity of RNAup (Mückstein et al., 2006), while
the difference in average PPV was statistically non- significant.

RIsearch2 introduces a new concept to predict RNA-RNA interactions. Contrary to
its predecessor RIsearch (Wenzel et al., 2012), which used a dynamic programming
approach based on the Waterman-Gotoh algorithm (Gotoh, 1982), RIsearch2 uses a
seed-and-extend approach. This newly developed method is divided into two main
steps. In a first step, indices of query and target sequences are built using suffix
arrays in order to locate seed regions. This is done by going through the query and
target suffix arrays in parallel and finding suffixes with perfect complementarity. In a
second step, these seeds are then extended and the hybridisation energy is computed
using a simplified energy model introduced in the original RIsearch. It uses a dynamic
programming (DP) approach, calculating DP matrices that can be tracebacked to find
the resulting interactions. RIsearch2 includes several user-definable parameters, like
an hybridisation energy threshold and seed constraints. RIsearch2 is very good at
predicting small interfering RNA (siRNA) but can also be applied to general RNA-
RNA interactions. Alkan et al. (2017) suggest that RIsearch2 has great potential as a
filter in general RNA-RNA interaction screens.

RIblast was developed for computational prediction of lncRNA-RNA interactions. Ex-
isting prediction tools are computationally too expensive for extensive screens of large
scale lncRNA datasets. Fukunaga and Hamada (2017) introduced two major steps,
a database construction and an RNA interaction search, while the latter uses the
seed-and-extension approach first introduced in RIsearch2. During the database con-
struction, RIblast calculates approximate accessibility energies of each segment in the
target RNA dataset. Then the target RNA sequences are reversed and concatenated.
Suffix arrays are created from these concatenated sequences. Finally, search results of
short strings are pre-calculated. The approximate accessibility energies, the concaten-
ated sequences, suffix arrays and pre-calculated search results are then stored in the
database. During the RNA interaction search step, the approximate accessibility ener-
gies and a suffix array for a query sequence are computed. Then, RIblast locates seed
regions with hybridisation energies that fulfil a certain threshold. This is done based
on two suffix arrays of the query and the database. Then, the interaction energies are
calculated by summing up the hybridisation and accessibility energies. Following this,
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interactions from gap-less seed regions are extended and interactions that fully overlap
others are removed. Lastly, the same is done for interactions from seed regions with
gap. Fukunaga and Hamada (2017) show that RIblast performs extremely well when
using the Andronescu energy parameters (Andronescu et al., 2010), both on an sRNA
and a fungal snoRNA dataset as well as for the lncRNA for which it was developed.
The main accomplishment is the huge runtime improvement of this method, where
other methods need more than half of a month, RIblast only needs several hours.
RIsearch2 and RIblast are too recent to be featured in the benchmark of Umu and
Gardner (2017), therefore it is hard to say how they compare to the other tools bench-
marked by them. In their benchmark, Umu and Gardner (2017) concluded that the mfe
methods were still the best performing methods, among which RNAup and IntaRNA
are featured as the best methods, closely followed by RNAplex (Tafer and Hofacker,
2008). These three tools belong to the same subgroup of mfe methods that use access-
ibility energies. On their benchmark, the original RIsearch was by far the fastest tool,
but did not perform well. Accessfold was the slowest algorithm and showed average
results. They also determined that long target RNAs reduced the overall prediction
quality, except for RNAplex which was able to effectively detect correct interaction
sites for long RNA targets. Comparative methods are a controversial topic, as some
research indicates that they could increase prediction accuracy, whereas other results
indicate the opposite.
All in all, most authors agree upon the point that a lack of experimentally proven RNA-
RNA interactions slows down the creation of general RNA-RNA interaction prediction
tools.
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Future Work

The analysis of RNAStrand was conducted to give a fast and general overview over the
different aspects of the problem. Therefore, not every aspect was analysed in detail.
During the creation of this thesis, I learned many things trough the evaluation of
results and doing additional research. Consequently, it would be interesting to further
investigate some of these points.
During the analysis of RNAStrand, I investigated pseudo-knotted structures in order
to draw conclusions about intermolecular structure. I did this in a very general way,
treating all pseudo-knotted structures the same way. This ignores the fact that some
pseudo-knots are formed by pairing with hairpin loops, others by pairing with unpaired
regions. Due to the steric constraints of tertiary structures presented in the introduc-
tion, the hairpin loops allow for less flexibility than the unpaired regions. Therefore,
it would be favourable to do a more concrete analysis of these types of pseudo-knotted
structures.
In the analysis section, I only investigated the general distribution of unpaired region
lengths in the entire dataset. I never analysed how the unpaired regions were dis-
tributed in stackings. This lead to the unpaired predictor that allows unpaired bases
between every pair of base pairs. Unfortunately, this predictor did not perform as good
as the predictor allowing no unpaired bases. The seed implementation in IntaRNA also
allows unpaired bases, but it features a parameter restricting the overall number of un-
paired bases in a seed. Currently, a heuristic is used for the unpaired case where only
the best combination is saved in each step. When introducing an overall maximum,
this heuristic can be removed without having a drastic increase of runtime and memory
consumption, when restricting the range of the maximum.
Following this idea, I tested a helix function with a maximum unpaired bases restriction
on the entire helix. Figure 5.1 shows the performance of this restricted method when
setting the overall maximum to 2. It also shows the currently implemented unpaired
predictor for nB = 10 and nI = 2 as well as the predictor allowing no unpaired
bases and the original recursion. This new method outperforms the current unpaired
predictor and it shows great potential. Unfortunately, there was no time to thoroughly
test and analyse this new method. Therefore, it would be nice to further analyse this
method in the future by testing different parametrisations as for the other predictors.
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Figure 5.1: A comparison between the current unpaired variant and potential new
variant that restricts the maximum number of unpaired bases in the whole helix. All
predictors, beside the original, were run for nB = 10 and seedBP = 7. unpaired seed
was calculated with nI = 2 and the restricted case, limited the maximum allowed number
of unpaired bases to 2.

Further, there are still many parameters that can be explored in order to see how they
affect the helix constraints. For example, it would be interesting to see how different
seedBP will affect the overall prediction quality.
The difference between a minimum helix length and a maximum energy value, explained
in the results chapter, could imply that a minimum energy value is better suited than
a fixed maximum helix length. It would be interesting to explore this in the future.
Due to a lack of experimentally proven intermolecular structures, I evaluated a database
containing intramolecular structures. It would be favourable to have a large database
of intermolecular structures to analyse. This would provide more valuable information
and allow improvements on RNA-RNA interaction prediction tools. At the same time,
the existing benchmarks could be improved.
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Chapter 6

Conclusion

In this thesis, I introduced a new maximum helix length constraint to IntaRNA. It
is based on the idea that intermolecular helices cannot become arbitrarily long due
to steric constraints of the tertiary structure. I showed empirically that my claims
are not unjustified by analysing the helix length distributions of the RNA structures
from the RNAStrand database. I introduced new prediction modi to IntaRNAv2 and
thoroughly tested them on a newly created benchmark. Nevertheless, I was not able
to try all parametrisations I intended as the computation times were still too high for
the hardware I used.
I have shown that the predictor that allows no unpaired bases in the helices had the
overall best performance for all parametrisations tested. The unpaired predictor was
likely too generalised and I assume that the restricted version of this predictor, as
suggested in the future work chapter, will greatly improve the prediction quality.
Moreover, the length limitation improved the overall runtime of IntaRNA, while keep-
ing the memory consumption roughly the same.
Furthermore, I have demonstrated that limiting the maximum helix length too much,
reduces the overall prediction quality. On the other hand, a higher minimum helix
length, simulated by a maximum energy parameter clearly increased the prediction
quality, while further reducing the runtime.
The main limitation of this work, is the lack of a database containing intermolecular
structures to analyse. The RNAStrand database allowed a general overview due to
a certain likeness between intra- and intermolecular structures, but it does not allow
concrete observations.
All in all, I can say that the introduction of a maximum helix length shows great
promise and needs to be further investigated.
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