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Abstract

In recent years, many studies have shown that the three-dimensional conformation of genomes
is a key factor for understanding several important mechanisms on the molecular biological
level. However, the Hi-C experiments typically conducted to measure this 3D-structure are
still expensive, so that computational methods for predicting the spatial chromatin organization
from existing data have recently become subject to research.

In this thesis, two machine learning approaches are investigated with regard to their usability
for predicting chromosome conformation in form of Hi-C contact matrices from ChIP-seq data.
Here, the first method adapts and extends an existing dense neural network architecture for
Hi-C matrix predictions, while the novel second method, Hi-cGAN, leverages techniques from
image synthesis, especially conditional generative adversarial networks (cGANs).

While the dense neural network approach can neither produce satisfactory predictions for the
Hi-C matrices of human cell lines GM12878 and K562, nor for Drosophila Melanogaster embry-
onic cells in the chosen setting, Hi-cGAN yields encouraging outcomes in all three cases.

Zusammenfassung

In den letzten Jahren wurde in mehreren Studien gezeigt, dass die dreidimensionale Struktur
von Genomen ein wichtiger Schlüssel für das Verständnis zahlreicher wichtiger Vorgänge auf
molekularbiologischer Ebene ist. Das Hi-C Verfahren, welches zum Erfassen dieser 3D-Struktur
typischerweise angewandt wird, ist derzeit jedoch noch recht teuer, sodass computergestützte
Verfahren zur Vorhersage der räumlichen Struktur aus existierenden Daten Gegenstand der
Forschung geworden sind.

In dieser Masterarbeit werden zwei auf Techniken des maschinellen Lernens beruhende Metho-
den im Hinblick auf ihre Eignung zur Vorhersage von Hi-C Kontaktmatrizen aus sogenannten
ChIP-seq Daten untersucht. Während die erste Methode auf einem existierenden, voll ver-
bundenen neuronalen Netzwerk für die Vorhersage von Hi-C Matrizen aufbaut, handelt es sich
bei der zweiten Methode, Hi-cGAN, um einen neuartigen Ansatz, der sich Techniken aus der
maschinellen Bild-Synthese zu Nutzen macht, insbesondere sogenannte “conditional generative
adversarial” Netzwerke (cGANs).

Während das voll verbundene neuronale Netz im gewählten Aufbau weder für die menschlichen
Zell-Linien GM12878 und K562, noch für embryonale Zellen der Fruchtfliege Drosophila
Melanogaster zuriedenstellende Vorhersagen der jeweiligen Hi-C Kontaktmatrizen treffen kann,
führt Hi-cGAN in allen drei Fällen zu viel versprechenden Resultaten.
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1 Introduction

In recent years, the three-dimensional organization of DNA has been shown to be a key factor for
important processes in molecular biology. However, even with the most advanced experimental
methods, it remains comparatively expensive to determine the spatial folding of DNA directly.
In the last five years, several methods have been proposed to improve on this situation by
determining DNA-DNA interactions in-silico. All of these are using certain types of experimental
data which is easier to obtain than spatial data, but correlates with 3D chromatin structure in
certain ways. However, most current in-silico approaches have disadvantages and shortcomings,
and the current thesis attempts to improve on these.

1.1 Spatial structure of DNA

In 1953, Watson and Crick discovered the now well-known double helix structure of DNA
molecules [1]. However, this is not the only relevant spatial structure of chromatin. At larger
scales, DNA molecules can be wound around certain proteins, so-called histones, forming DNA-
protein complexes named nucleosomes. Several of these can further be compacted into fibers,
which in turn can be “supercoiled” into the also well-known chromosomes, fig. 1.

2 nm

11 nm

30 nm

1400 nm

double helix

nucleosomes

30 nm fiber

chromosome

not to scale

Figure 1: spatial chromatin structures (simplified, cf. [2])

While the spatial structure of chromatin outlined above brings along compaction, e. g. to make
chromosomes fit into eukaryotic cell nuclei (fig. 1 from left to right), it also has other functional
implications. One well-known example is the regulation of gene transcription by establishing or
releasing contacts between certain DNA-regions, the so-called gene enhancers and promoters [3,
4]. Since enhancers can be up to a million basepairs away from the corresponding promoters,
the two can usually only interact by means of spatial DNA structure. Further effects of spatial
structure are still under investigation; two recent studies have for example found dependencies
between chromatin conformation and cell differentiation in Drosophila Melanogaster [5] and
investigated spatial structure dynamics during phase transitions in murine cells [6].

While the driving mechanisms behind the formation of spatial chromatin structures are partially
still under research, too, certain proteins like CTCF or modified histones are already well-known
to mediate or prevent DNA-DNA contacts in human- and other mammalian cell lines [7, 8,
9]. This relationship can partially be exploited to predict 3D DNA conformation from the
(1D-)binding sites of such proteins, as will be shown below.
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1 Introduction

In the last two decades, DNA-sequencing-based techniques have increasingly been utilized to
capture the spatial structure of DNA experimentally. The method of choice within this thesis
is called Hi-C and shall be explained in the following section.

1.2 The Hi-C process for determining spatial DNA structure

In: Crosslinked DNA

1. Digest DNA

2. Fill & Mark ends

4. Purify & Shear

3. Ligate

5. Pull down biotin

6. Paired-end sequencing
...ACGA

CGTA...

a b

a b

ba

a
b

a
b

a

b

a
b

disca
rd

Figure 2: Hi-C lab process

The Hi-C process is an elaborate biochemical procedure for in-
vestigating the spatial structure of DNA by detecting DNA-DNA
interactions within and across chromosomes. The original Hi-C
workflow has been developed by Lieberman-Aiden et al. in 2009
[10] and is depicted in simplified form in fig. 2.

The typical input (In) to Hi-C consists of several millions of cells,
which are treated chemically to fix spatially close DNA regions,
commonly using formaldehyde, before they are lysed. Next, the
DNA is extracted and cut into fragments by certain restriction
enzymes (1), usually HindIII or DpnII, and the cut ends are re-
paired with nucleotides, some of which are marked by biotin (2).
The free ends are then joined (3) under conditions which pre-
fer ligations among open ends over ligations between different
fragments. Originally, such conditions were achieved by high di-
lution of the fragments in solvents, but especially this part of
the protocol has been replaced by more efficient methods in later
works [11, 12]. The ligated fragments are then purified and cut
into shorter sequences, some of which contain biotinylated nu-
cleotides and some not (4). The fragments of interest – the ones
containing biotinylated nucleotides – are then selected by pulling
down biotin (5), for example using magnetic tags, and subjected
to paired-end DNA-sequencing (6). In the end, the output of
the Hi-C lab process is a large number of short genomic “reads”,
which are subsequently processed in the bioinformatics part of
the Hi-C protocol outlined in the following paragraphs.

On the software side of the protocol, the reads first need to be
mapped to the corresponding reference genome. Here, only reads
are kept where the “left” sequence (6)(a) uniquely maps to a
different region of the reference genome than the “right” sequence
(6)(b). These so-called chimeric reads are subjected to quality
control, and those passing are counted as an interaction between
the two genomic positions (a) and (b) to which the two ends
belong. To this end, it is common to split the reference genome
into equally sized bins (or regions), and the reads are counted for
those bins where they belong. Often used bin sizes are 1, 5, 10, 25, 50, 100 and 1000 kbp.

The final outcome of a Hi-C experiment is then a (sparse) square matrix M , henceforth referred
to as “Hi-C matrix”, which records the interaction count for all possible pairs of regions in the
reference genome. The individual elementsmi,j of the matrices are counts of interactions between
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1.3 The ChIP-seq process for determining protein binding sites

the bins with indices i, j ∈ {0, 1, ...}, where each bin index i and j uniquely maps to a genomic
region with defined start- and end position. For example, if region index i = 1 corresponded
to “chr1:25000-49999 bp” and index j = 10 corresponded to “chr1:250000-274999 bp”, then a
matrix entry m1,10 = 22 would mean that 22 interactions have experimentally been measured
between the two mentioned genomic positions. Because interactions do not have a “direction”,
Hi-C matrices are always symmetric and it thus holds that mi,j = mj,i.

In the bioinformatics part of the Hi-C protocol, often only a small fraction of all reads fulfill
the selection criteria outlined above, for example due to reads not being chimeric or uniquely
mappable. This makes Hi-C a comparatively inefficient, slow and thus expensive process. For
example, the well-known dataset by Rao et al. [11] with matrix bin sizes down to 1 kbp, required
several billions of reads being made.

In: Fixed DNA

1. Lyse & Shear

3. Immunoprecipitation

2. Add antibodies

4. Purification

5. Sequencing
ACGA... TGGT...
CGTA... CCTG...

proteins

Figure 3: ChIP-seq
lab process

Parts of fig. 2 and the process description above have been
adapted from the preceding study project [13].

1.3 The ChIP-seq process for determining
protein binding sites

The ChIP-seq process is a combination of Chromatin-Immuno-
precipitation (ChIP) and DNA-sequencing, designed for investi-
gating DNA-protein interactions [14, 15]. As with Hi-C, the input
consists of a sufficient number of cells, which are first treated with
formaldehyde to fix present proteins to DNA, fig. 3 (In). The cells
are then lysed and the DNA-protein structure is extracted and
cut into fragments, usually by sonication (1). Next, specific an-
tibodies are added, designed to bind only to a certain protein
of interest (2). These antibodies are additionally equipped with
a tag, for example a magnetic one, so that the DNA-protein-
antibody structures can be precipitated, while fragments without
antibodies are discarded (3). The proteins and antibodies are
then removed (4), the DNA is purified and finally sequenced (5).
Typically, a control experiment is performed together with the
ChIP-seq process, which comprises all steps described above, ex-
cept the immunoprecipitation (2),(3).

The outcome of the ChIP-seq lab process is again a bunch of short
genomic sequences, which are then fed into the bioinformatics
part of the pipeline.

On the software side of the process, the reads are filtered for
quality and mapped to an appropriate reference genome. The
number of mapped reads per genomic position can then simply
be counted. It is common to process reads from the control ex-
periment in the same way as reads from the ChIP-seq experiment
and then use special software to call “peaks”, i. e. protein binding sites, at those genomic posi-
tions where the read count from ChIP-seq is statistically significant compared to the read count
from the control experiments.
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1 Introduction

For the thesis at hand, the read counts from the ChIP-seq experiment have been used directly
without calling peaks, because peak data was found to be too sparse for the machine learning
approach used in the study project [13].

Parts of fig. 3 and the process description above have been adapted from the study project
[13].

1.4 Motivation and goal of the thesis

cell line T
F
C
hI
P-

se
q

H
ist

on
e
C
hI
P-

se
q

D
na

se
-s
eq

H
i-C

K562 680 20 10 1
HepG2 668 15 3 1
A549 251 87 14 6
HEK293 231 6
GM12878 211 15 3 7
MCF-7 155 18 8
H1 88 55 3
HeLa-S3 77 15 4 1
SK-N-SH 62 21 2
IMR-90 16 34 2 2
HCT116 27 17 1 8
H9 35 7
GM23338 15 13 1
Ishikawa 25 4
HEK293T 17 1
GM23248 2 13 1 1

Table 1: availability of selected
assays in ENCODE
(extract)

Due to the major effort, Hi-C experiments have been pub-
lished for comparatively few organisms and cell lines so far.
For example, as of January 2021, Hi-C assays were available
for only 26 of more than 150 human cell lines listed in the en-
cyclopedia of DNA elements (ENCODE) [16, 17], and these
have been produced by only five university labs.

However, investigations and experiments with the available
Hi-C data have shown correlations between the spatial DNA
structure and the binding sites of certain transcription fac-
tors and histone modifications [11, 18]. Since these binding
sites can be detected with the less costly ChIP-seq method, a
computational method able to predict contact matrices from
DNA-protein bindings in silico would be very helpful.

Thus, the goal of this master thesis is to predict missing Hi-C
data from existing ChIP-seq data, making use of the known
correlations between the binding sites of transcription fac-
tors and histone modifications on the one hand and Hi-C
interaction counts on the other hand. Here, the present work
will focus on machine learning techniques, which have proven
a good choice for exploiting complex patterns and relation-
ships, especially when it comes to the synthesis of 2D data
from various kinds of input data [19]. More specifically, the
goal of this thesis is to develop an easy-to-use machine learning approach for predicting Hi-C
interaction matrices from ChIP-seq data, using standard in- and output formats with minimal
pre- and post-processing.

To underscore the usefulness of such an approach, Table 1 to the side shows the first 16 human
cell lines in ENCODE, sorted by total number of selected assays available, where TF stands
for transcription factor. Although not necessarily all publicly known experiments to date are
included in ENCODE – for example, the experiments by Dixon et al. [9] for H1 stem cells
are not listed – it is obvious that the public availability of ChIP-seq data is commonly much
better than the one of Hi-C data, even for otherwise well investigated cell lines like HEK293 and
MCF-7.
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2 Related work

In the last five years, several approaches have been presented to determine DNA-DNA inter-
actions in silico, using existing data from various experiments. Section 2.1 gives an overview
about these methods. Furthermore, some methods originally developed for image synthesis and
similar tasks in computer vision might also be useful in the field of Hi-C matrix generation and
are therefore summarized in subsection 2.2. Finally, section 2 is concluded by a short discussion
of the existing methods with respect to the goals of this thesis.

2.1 Methods for predicting DNA-DNA interactions and contact matrices

As of 2020, there is quite a body of existing work in the field of predicting DNA-DNA interac-
tions, using various approaches and different types of input data.

Two conceptually similar methods have been proposed by Brackley et al. in 2016 [20] and
MacPherson et al. in 2018 [21]. In both approaches, DNA is modeled as a “beads-on-a-string”
polymer, and simulation techniques are employed to find energy-optimal spatial structures of
these polymers. Apart from constraints derived from the molecule’s DNA sequence itself, the
models also consider spatial contact constraints derived from ChIP-seq experiments of chromatin
factors which are known to mediate such DNA-DNA contacts. The interaction matrices derived
from the simulations look interesting, but the paper from Brackley et al. [20] is unfortunately
lacking a comparison with “true” experimentally measured Hi-C matrices, and the results from
MacPherson et al. [21] seem inferior to most other ones presented in this section.

Two other simulation-based methods have been developed by Di Pierro et al. in 2017 [22] and
by Qi and Zhang in 2019 [23]. In both cases, chromatin states are derived from 11 chromatin
factors, and the estimated states are then taken as constraints for beads-on-a-string models.
The differences between [22] and [23] lie mainly in the way how the states are derived from
the chromatin features, in the number of states considered and the simulation methods applied.
Additionally, Qi and Zhang consider DNase as a 12th feature for state estimation [23]. The
results are mathematically convincing in both publications.

A further approach using chromatin states is due to Farré and Emberly [24]. Here, the condi-
tional probability of two genomic regions being in contact, given their distance and the chromatin
state around them, is estimated using Bayes’ rule. In this case, the chromatin state – reduced
to active or inactive – is derived from DNA adenine methyltransferase identification (DamID)
signals of 53 chromatin factors using probabilistic methods [25]. The conditional probabilities on
the right side of Bayes’ rule are either computed from training data or estimated with different
probabilistic approaches, too. While the predicted contact matrices do not look like real Hi-C
matrices, highly interacting regions are still often well identifiable with this approach.

Three further approaches in the field make use of machine learning in form of random forests.
3DEpiLoop by Bkhetan and Plewczynski and Lollipop by Kai et al., both from 2018, use a random
forest classifier to predict DNA loops, but differ in input data and preprocessing [26, 27]. While
3DEpiLoop is using only ChIP-seq data of histone modifications and transcription factors [26],
Lollipop additionally takes ChIA-PET-, RNA-seq- and DNase-seq-data, CTCF motif orientation
and loop length as inputs [27]. Both approaches show good coincidence of predicted loops with
experimental data, but their output is binary and rather sparse. Contrary to these two, the

11



2 Related work

third random-forest-based approach, HiC-Reg by Zhang et al. from 2019, allows predicting real-
valued Hi-C interaction matrices directly [28]. To this end, it employs random forest regression
to predict interactions between all pairs of genomic regions within a certain distance. For each
pair of regions and the genomic window enclosing them, ChIP-seq- and DNase-seq data of 14
chromatin features are taken as decision criteria for the random forest, along with genomic
distance of the pair. The published results for five human cell lines look visually good in terms
of Hi-C matrix plots, while the reported correlations between predicted and true matrices are
modest.

Another method from 2020 which investigated decision-tree-based algorithms is due to Martens
et al. [29]. Here, gradient boosted decision trees, logistic regression and neural networks were
used to predict highly interacting chromatin regions and TAD domain boundaries from histone
modifications and CTCF ChIP-seq data. In this setup, the neural network approach yielded the
best, overall acceptable results of the three approaches, but again in form of a binary classifi-
cation. A neural-network approach with comparable input data, but without the restriction to
binary classifications has been presented by Farré et al. in 2018 [30]. Here, a one-dimensional
convolutional filter is used to convert ChIP-seq data of 50 chromatin factors from a certain
region of the genome into a one-dimensional chromatin vector, which is then processed by a
dense neural network (DNN) to predict Hi-C submatrices. Using a sliding window approach,
the method by Farré et al. allows predicting complete, real-valued Hi-C interaction matrices,
which resemble the general structure of experimentally derived matrices quite well.

While the approaches discussed so far have either modeled DNA as a “beads-on-a-string” poly-
mer or not used the actual DNA sequence explicitly at all, there are also several machine-learning
approaches which directly consider DNA sequence without a need for polymer modeling. In 2019,
Singh et al. presented SPEID [31], an approach to predict promoter-enhancer interactions from
DNA sequence, using a combination of CNNs, a recurrent network (LSTM) and a DNN. The
results match well with experimental data, but are limited to promoter and enhancer loci by
design, disallowing predictions of complete Hi-C contact matrices. Other researchers have tried
to design similar methods without such limitations. The work by Peng from 2017 [32] is an
extension of SPEID, based on a 2016 preprint [33], additionally taking into account a “middle
sequence” between enhancer- and promoter sequences, CTCF motif counts within the sequences
and genomic distance between two sequence snippets. However, the network lacks generaliza-
tion, i. e. the results are only good in training regions [32, figs. 4, 5]. A conceptually similar
method to the one by Peng [32], but with a different neural network design has been presented
by Schreiber et al., also in 2017, named Rambutan [34]. It accepts DNA sequence, DNase-seq
data and distance between two genomic loci as inputs and then uses a combination of CNNs
and a DNN to predict whether the given two loci interact or not. Unfortunately, it is difficult to
decide whether the results of Schreiber et al. are useful for the task at hand, since the evaluation
is done only by statistical means and no actual Hi-C matrices have been published. The origi-
nal paper [34] also contains a known error and seems not to have appeared in a peer-reviewed
journal in improved form yet. A probably more promising method working on DNA sequence,
Akita, has been published by Fudenberg et al. in 2020 [35]. It is based on two rather involved
convolutional neural networks. While the first one, “trunk”, processes one-dimensional, one-hot
encoded DNA sequence input through convolutional filters, the second one, “head”, converts
one-dimensional representations to 2D, further processes the data with convolutional filters and
enforces symmetry. Although Fudenberg et al. initially seemed to focus on determining the in-
fluence of DNA modifications on spatial structure [36], predicting complete Hi-C matrices is an
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2.2 Image synthesis techniques from computer vision

integral part of their work, and a large number of images of Hi-C matrices from the test set has
been published alongside the article. The predicted matrices often hardly look like experimental
Hi-C matrices, but mostly still indicate highly interacting regions quite well.

A further method by Schwessinger et al. [37] also makes use of DNA sequence and additional
epigenetic data for its predictions, but is conceptually different from the ones presented so far.
Here, ChIP-seq tracks are initially used to train a CNN on the relationship between sequence
and the corresponding chromatin factors. The weights of this first network are then re-used
to seed another convolutional neural network, which is responsible for predicting DNA-DNA
interactions from DNA sequence. The results are blurry, but generally in good accordance with
experimental Hi-C data.

Yet another machine-learning concept based on sequence data, Samarth, has been proposed
by Nikumbh and Pfeifer in 2017 [38]. Here, a support vector machine is trained on 5C data,
using a specific representation for DNA sequence called oligomer distance histograms. The
results showed acceptable correlations with experimental Hi-C data and allowed some interesting
conclusions about the importance of certain k-mers for DNA folding. However, the applicability
for the task at hand is hard to assess, because none of the matrices used for statistical evaluation
have been published alongside the paper.

2.2 Image synthesis techniques from computer vision

With the advent of deep learning, both the number of opportunities and the demand for using
machine learning techniques in image synthesis tasks have risen, as recently summarized by
Tsirikoglou et al. [19]. Since Hi-C contact matrices can be seen as square grayscale images, such
techniques can also be relevant for this thesis.

Probably one of the first applications of computer vision methods for Hi-C matrices was pre-
sented by Liu and Wang in 2019 [39]. Here, established image super-resolution networks –
mostly deep convolutional neural networks – have been modified to enhance low-resolution Hi-C
matrices.

Another technique from computer vision that has been transferred to Hi-C matrices are condi-
tional generative adversarial networks (cGANs), invented by Goodfellow, Mirza and colleagues
in 2014 [40, 41]. Again, several works have employed this comparatively new and involved
method to increase the resolution of given Hi-C matrices, including the ones by Liu and col-
leagues [42], Hong et al. [43] and Dimmick et al. [44]. In general, all three works feature the
typical cGAN setup with two competitive networks – a generator, which is trained to produce
realistic high-resolution Hi-C matrices from random noise and the low-resolution matrices (as
conditional input), and a discriminator, which tries to distinguish real Hi-C matrices from gen-
erated ones. In this setting, the discriminator serves as a “critique”, an additional loss function,
for the generator, which has been shown empirically to be beneficial in many applications. While
the convolutional building blocks for the discriminators and the residual building blocks for the
generators are conceptually similar in all cases, the three works differ in the number of building
blocks and the activation functions applied within the blocks. Furthermore, Dimmick et al.
and Hong et al. include additional loss functions beyond standard generator- and discriminator
losses. The method by Dimmick et al. outperformed the others for most test cases, but it is
also the most elaborated.
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2 Related work

2.3 Discussion of existing work

Independent of chosen techniques, several of the methods shown above only allow predictions
restricted to certain loci (e. g. promoters and enhancers) or yield binary predictions in the sense
of “interaction” or “no interaction” between certain loci [26, 27, 29, 31]. Thus, these methods
are not directly suitable for the task at hand, but would require further development.

The chromatin-modeling based approaches [20, 21, 22, 23] allow indirect derivation of Hi-C
matrices by performing sufficient numbers of simulation passes and estimating contact counts
from the resulting model ensembles. Depending on the chromatin model choice – which seems
not straightforward [45, 46] – and the number of constraints involved, the required computations
can be expensive. However, the results still seem slightly inferior compared to other methods
mentioned in section 2.1 – maybe because only modeled constraints can be considered, but not
all constraints for chromatin conformation are known or can be modeled yet.

Three of the DNA-sequence based methods mentioned above also allow direct prediction of
Hi-C matrices [34, 35, 37]. At first look, it is surprising that learning spatial structure from
DNA-sequence actually works, because 3D conformation can vary considerably for different cell
lines of the same organism, which all share the same DNA sequence. On the other hand, the
chosen artificial networks might be able to figure out binding sites of relevant proteins from
DNA sequence, which do have a correlation with spatial structure. This is especially true for
the method by Schwessinger [37], where the network is seeded by training on exactly such
binding sites. While the methods by Schreiber [34] and Schwessinger [37] use secondary inputs
and therefore can – at least partially – adapt to cell lines sharing the same DNA, the method
by Fudenberg [35] focuses on DNA and is thus expected to produce the same outputs for all
cell lines of a given organism. All three methods feature comparatively deep networks which
are expensive to train. The fourth sequence-based method by Nikumbh et al. [38] is using a
support vector machine, which is generally easier to train, but the adaptability to different cell
lines is expected to remain problematic due to the chosen concept.

The random-forest-based method by Zhang et al. [28] is directly targeted at the goal of this
thesis, since it predicts Hi-C matrices, is not limited to certain loci and can adapt to different
cell lines using corresponding ChIP-seq data. This approach has extensively been investigated
in two previous study projects [13, 47].

The dense neural network approach by Farré et al. [30] is also compatible with the goals of this
thesis. The published results are visually and statistically convincing, and both the presented
network and the training process offer opportunities for amendments, which will be explored in
section 3.1.

Since all of the image synthesis methods presented above in section 2.2 require existing Hi-C
matrices for training and prediction, none of them is directly suitable for the task at hand.
However, some of the concepts can still be used to develop novel approaches, which will be
discussed in section 3.2.
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3 Advancing predictions of Hi-C interaction matrices

In the following subsections, two conceptually different approaches towards the goal of the thesis,
predicting Hi-C matrices from ChIP-seq data, will be explored. While the first approach is a
dense neural network based on work by Farré et al. [30], the second is a novel method based on
conditional generative adversarial networks (cGANs).

3.1 Dense neural network approach

In their 2018 paper [30], Pau Farré, Alexandre Heurteau, Olivier Cuvier and Eldon Emberly
proposed a combination of a 1D convolutional filter with a four-layer dense neural network
which already fulfills most goals of this thesis, with minor exceptions regarding data formats
and preprocessing, cf. section 2.1 and 2.3. This thesis attempts to build on the success of their
method by extending the comparatively simple neural network in various ways, changing the
learning process and the loss functions in use. As a start, the basic network has been rebuilt
and used on well-known data from human cell lines GM12878 and K562, cf. section 4.1.

3.1.1 Basic network setup

The basic network setup taken over from Farré et al. [30] is shown in simplified form in fig. 4
and will be explained in the following paragraphs. For technical details, see section 4.4.3.

1D convolution

sliding window

left flanking region matrix region right flanking region

Hi-C (sub-)matrix

dense layer 1

dense layer 2

dense layer 3

dense layer 4
output layer

sliding window

matrix diagonal

chromatin
features

e.g. ChIP-seq

Figure 4: Principle of basic dense neural network
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3 Advancing predictions of Hi-C interaction matrices

Since most organisms feature only a small number of chromosomes, it is generally infeasible
to learn Hi-C matrices for full chromosomes at once due to a lack of training data. Instead,
the method by Farré et al. employs a sliding window approach and learns from submatrices
of a certain size, which allows for a reasonable number of training samples. Therefore, target
matrices are taken as submatrices of size (w,w) with fixed window size w, centered at the
diagonal of the original Hi-C matrices, fig. 4, black triangle at the top. The ChIP-seq data of n
chromatin features is taken as (3w, n)-subarray of the ChIP-seq data for the full chromosome,
fig. 4, red rectangles at bottom. Here, the middle w bins are aligned with the position of the
submatrix, the first w bins correspond to the left flanking region and the last w bins correspond
to the right flanking region of the current submatrix region, fig. 4 bottom to top, following the
red lines. Overlapping training samples are then obtained from the input data by sliding the
input windows along the diagonal of the target Hi-C matrix with step size one. For predictions,
overlapping test samples can be re-assembled into non-overlapping matrices by taking the mean
prediction for each genomic position, whereby the first and last (w,w) regions remain empty, i. e.
zero, due to the left- and right flanking regions, fig. 4 bottom left and right. Further technical
details of the sample generation process are given in section 4.4.1.

Within the network, a one-dimensional convolutional filter compresses the (3w, n)-shaped input
arrays to 1D vectors of length 3w, and four dense layers further process the compressed input,
fig. 4 middle. The number of neurons in the last dense layer corresponds to the number of bins
in the upper triangular part of the target submatrix, i. e. it consists of (w · (w + 1))/2 neurons,
fig. 4 top, exploiting the symmetry of Hi-C matrices. For implementation details, please refer
to section 4.4.3.

Training of the network is performed by minimizing the mean squared error between the
predicted- and the target Hi-C submatrices using stochastic gradient descent, cf. section 4.4.3.

Farré et al. propose a window size of w = 80 at bin sizes bfeat = bmat = 10 kbp, which comes
close to the maximum bin distance available in the Hi-C data by Schuettengruber et al. [48]
used in their publication [30]. However, larger bin sizes of bfeat = bmat = 25 kbp were found
beneficial for most of the (human) data used throughout this master thesis. Additionally, larger
bin sizes allow for a higher coverage of the target matrix at the same window size, because the
window size is specified in bins, and obviously 10w < 25w. Prediction results from the initial
network for window size w = 80 and both bin size 10 and 25 kbp are shown in section 5.1.1.

The network layout shown above is quite simple, and immediately offers some opportunities for
expansion, partially already proposed in the original paper [30]. These will be explored below.

3.1.2 Modifying the convolutional part of the network

One starting point for modifying the neural network is its convolutional part.

With only a single 1D convolutional filter in one layer, the network was expected to have
difficulties capturing complex relationships between Hi-C interaction counts and more than one
of the chromatin features. For this reason, an extended “longer” network was created, comprising
three 1D convolutional filter layers with 16, 8 and 4 filters, respectively, replacing the single 1D-
convolution in fig. 4, lower left, cf. section 4.4.4. This is still a low number of layers and
filters compared to networks that operate directly on DNA sequence [35], but the choice seemed
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3.1 Dense neural network approach

justified in order to avoid overfitting to the low-dimensional input, cf. [29, fig. S9]. The results
are shown in section 5.1.2, especially figs. 25 and 26.

Next, a “wider” network was created, featuring the same setup as the basic network except the
width of the filter kernel, which was set to 4 instead of 1. The idea here was to allow the network
to capture correlations between Hi-C interaction counts and chromatin features which span more
than one bin. The actual number has been kept low, since at bin size b = 25 kbp, 4 bins already
correspond to 100 kbp. However, the results were not as expected, cf. section 5.1.2, especially
figs. 27 and 28. Of course, increasing filter width and using more filters can also be combined,
hopefully allowing the “wider-longer” network to capture both correlations spanning more than
one bin and more than one chromatin feature. The results for this combined approach are shown
in section 5.1.2, especially figs. 29 and 30, and were again not convincing.

Another approach to potentially improve the predictions that goes somewhat into the direction
of the “wider” network has been proposed, but not implemented by Farré et al. in their paper
[30]. Read counts from ChIP-seq experiments can usually be binned at smaller bin sizes than
Hi-C data due to the nature of the processes. This can be exploited to capture finer details
in the ChIP-seq data without a need for finer (training-)matrix resolutions. To this end, the
initial network can be generalized by binning the ChIP-seq data at k times the bin size of the
matrices, whereby k ∈ N≥1, cf. section 4.4.2 for the technical details. This yields an input data
size of (k ·3w, n), which is then again compressed to a vector of length 3w by a 1D convolutional
filter with kernel size (k, n) and strides k. To match given matrix bin sizes, k = 5 was chosen
for the thesis at hand, and the results for bin sizes bmat = 25 kbp, bfeat = 5 kbp are shown in
section 5.1.2, especially figs. 31 and 32.

Since hardly any improvements were recorded for the modifications of the convolutional network
part described above, see section 5.1.2, advanced loss functions were investigated next.

3.1.3 Using a combination of MSE-, TV- and perceptual loss

In image regression tasks, optimizing for mean squared error (MSE) is known to produce blurry
images, because MSE is treating each image pixel individually, ignoring spatial proximity and
structures in images [49, 50]. And indeed, both the predictions from the initial and the extended
network according to sections 3.1.1 and 3.1.2 suffered from blurriness. To improve on this,
modified loss functions were investigated.

It has been shown that loss functions based on the (multiscale-) structural similarity index
measure (SSIM) [51] can outperform mean squared error (L2) and mean absolute error (L1) in
image regression tasks. While Zhao et al. used a combination of L1- and multiscale SSIM loss
[52], Lu proposed a custom level-weighted SSIM loss [50]. The results were better than with L1-
or L2-loss alone, but sometimes not much – depending on the machine learning model in use.
Owing to difficulties in finding suitable parameters, SSIM-based losses were not considered for
the thesis.

Another type of loss function used to produce sharp images is the so-called perceptual- or
perception loss. Here, the idea is to use a pre-trained perception network to determine structures
in images and then compute for example L1- or L2-loss on these structures instead of images,
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3 Advancing predictions of Hi-C interaction matrices

which has led to visually better predictions in some applications. The process is shown in more
detail in fig. 5.

network to be trained pre-trained loss networktraining
sample

true/target matrix

L1 / L2 / ...
loss function

perceptual loss

fixed weights

generated
perception

true
perception

generated
matrix

Figure 5: Perceptual loss

As usual, training samples are fed into the network to be trained, and an output – here, the
predicted Hi-C submatrix – is generated, fig. 5, orange path. However, the loss function is then
not computed on the predicted versus the true matrix. Instead, the activations of a selected
layer in the perception network are determined for both the predicted Hi-C submatrix (orange
path) and the true Hi-C submatrix (gray path), and the loss function is computed on these
activations (or perceptions). The optimization of the target network’s trainable weights can
then be performed as usual, for example with stochastic gradient descent and backpropagation,
simply keeping the weights of the perception network constant while optimizing the trainable
weights for minimum perceptual loss.

Often, complex image classification networks like VGG-16 [53] are taken as loss network, e. g.
in the well-known style-transfer network by Johnson et al. [54], because certain layers in these
networks are known to have a correspondence with relevant structures in images. It is possible
to use multiple perceptions in a joint loss function [54] and combine perceptual losses with other
losses, as shown below.

To check whether the given learning task benefits from using a perceptual loss, a custom com-
bined loss function was generated, consisting of mean squared error LMSE between true- and
predicted matrices, perceptual loss LVGG based on the VGG-16 network and total variation
loss LTV on predicted matrices to reduce noise in the output while preserving edges [55]. This
choice was inspired by the custom loss function used by Hong et al. in their successful Hi-C
super-resolution network DeepHiC [43], which is otherwise not similar to the network used here.
In short, the combined loss function Lcombined is shown in eq. (1). Here, the λ are individual
loss weights, see section 4.4.5 for details.

Lcombined = λMSE LMSE + λVGG LVGG + λTV LTV (1)

Unfortunately, there is no straightforward way for determining the optimal parameters λ, and
an exhaustive parameter search was infeasible due to the computation time requirements of
about 4:30minutes per epoch. Therefore, only few runs were conducted with different sets of
parameters, and the results for λMSE = 0.8999, λVGG = 0.1, λTV = 0.0001, which should not be
considered optimal, are shown in section 5.1.3, especially figs. 33 and 34.
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3.1 Dense neural network approach

3.1.4 Using a TAD-based loss function

Looking at the results obtained from the networks discussed in the previous sections, see e. g.
fig. 22, it seemed that highly interacting regions, especially topologically associating domains
(TADs), were not well predicted and either absent in the matrix plots or blurred. Assuming
availability of a TAD scoring function tad(zpred), where zpred is a predicted submatrix, this might
be improved by directly optimizing a loss function as shown in eq. (2).

Lcombined = λMSE LMSE + λTAD (tad(ztrue)− tad(zpred))2 (2)

However, this approach suffers from several restrictions. First and foremost, there is no consensus
on the exact definition of TADs, and no less than 22 algorithms for TAD detection existed as
of 2018 [56, 57]. Additionally, many of these algorithms have several tuning parameters, are
notoriously parameter-dependent and may not even yield any results if parametrized in an
unfavorable way [57]. A further restriction results from the context – since the loss function
needs to be optimized, one needs to be able to compute gradients of it with respect to the
network’s weights. This is generally very difficult to implement in a computationally efficient
way for most known TAD calling algorithms due to their complexity.

To overcome the restrictions, a novel loss function based on TAD scores [58] was developed.
Figure 6 exemplarily shows its basic idea for a (16, 16)-shaped submatrix with window size 4.
First, the mean is taken from diamond-shaped (or rhombus-shaped) matrix cutouts along the
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Figure 6: Score vector generation for TAD-based loss

A: first “diamond” of size 2

B: first 4 diagonals of a 16 by 16
Hi-C matrix, rotated 45 deg
counterclockwise

C: sliding direction for score
generation

D: score vector (mean values
within diamonds)

E: line plot of score vector

F: possible TAD boundaries

diagonal in a sliding window fashion, fig. 6 (A, C), and stored in a score vector, fig. 6 (D / E).
The size of the diamonds, ds = 2 in the figure, is configurable, but a reasonable balance with
the submatrix size, i. e. the window size w of the submatrices, and the expected size of TADs in
the submatrices must be maintained. Loss can then be computed by taking the mean squared
error between the score vectors of the “real” submatrices and the “predicted” submatrices as
already shown in eq. (2).

The idea behind the score-based approach is visualized in fig. 6 (E). Local minima, i. e. dents
in the line plot of the score values, fig. 6 (F), often correspond with boundaries of interacting
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3 Advancing predictions of Hi-C interaction matrices

regions in the matrix, since the mean of diamonds from inside TADs is normally significantly
higher than the mean of diamonds outside TADs. Indeed, some TAD calling algorithms like
TopDom [59] and hicFindTADs [60, W12f.] do compute so-called insulation scores in a similar
way as shown above – usually for more than one diamond size – and then use diverse techniques
to detect meaningful local minima in the score values. However, finding meaningful local minima
in the given context is computationally involved, so it was left to the network to make sense out
of the score vectors themselves. This way, the loss function and its gradients with respect to
weights were well defined and efficiently computable with the chosen deep learning framework.

For the thesis at hand, window size w = 80 and diamond size ds = 12 were used at bin sizes of
25 kbp. Further technical details are to be found in section 4.4.6.

3.1.5 Modifying bin size and window size

In the results presented so far, larger structures were often absent. In order to improve on this,
two approaches were investigated.

First, predictions were made at bin sizes bfeat = bmat = 50 kbp, keeping the window size at 80
bins, which then corresponded to 4 Mbp. The idea here was to capture predominantly larger
structures further away from the diagonal and then investigate various methods to combine
predictions at smaller and larger bin sizes. However, such a merging process was never actually
developed, since the predictions at 50 kbp alone were not good enough, section 5.1.5.

Unfortunately, doubling the (matrix-)bin sizes from 25 to 50 kbp directly leads to a reduction
in the number of available training samples by a factor of about two, if the window sizes are
kept constant at 80 bins, see table 3. This might also be one of the causes why predictions at
50 kbp proved useless. For this reason, a second approach was made – using training samples
at bfeat = bmat = 25 kbp, w = 80 and bfeat = bmat = 50 kbp, w = 80 at the same time. This
is easily possible, since the neural network topology only depends on the window size in bins
and the relation k = bmat/bfeat between the bin sizes of matrices and features. This approach
obviously increases the number of training samples, with the idea of allowing the network itself
to figure out how to combine predictions at smaller and larger bin sizes. Unfortunately, this did
not work well, as shown in section 5.1.5.

3.2 Hi-cGAN approach

Because none of the results from the dense neural network approach presented in section 5.1
were overly convincing, a second, widely unrelated approach was made.

Since their invention by Goodfellow, Mirza and colleagues [40, 41], generative adversarial net-
works (GANs) have become increasingly popular for image processing tasks of many kinds, and
especially for image synthesis [61]. Among their strengths is image synthesis from textual de-
scriptions [62, 63, 64, 65] – and from an abstract point of view, this task is not very different
from the goal of the thesis at hand. Considering the chromatin features on the input side as
a “description” of how the target Hi-C (sub-)matrices should look like, formulating the goal of
the thesis as a cGAN-problem should be possible. In the following sections, such an approach
will be explored, henceforth referred to as Hi-cGAN.
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3.2 Hi-cGAN approach

3.2.1 General setup for Hi-cGAN

Although numerous variants exist, conditional GANs generally comprise at least two neural
networks – a generator G(x, z), which tries to generate realistic outputs from its inputs x and
random noise z, and a discriminator D, which tries to discern true inputs y, e. g. experimentally
derived Hi-C matrices, from generated inputs G(x, z). The optimal weights for the networks
can then be found by searching an equilibrium in a two-player minimax game: The generator
tries to fool the discriminator, while the discriminator tries to detect the generator’s fakes, see
equations 3 and 4 [49], where E is the expected value for each “player”.

LcGAN (G,D) = Ex,y[logD(x,y)] + Ex,z[log(1−D(x, G(x, z)))] (3)
G∗ = arg minGmaxD LcGAN (G,D) (4)

Many different layouts and training processes for the generator and discriminator networks have
been proposed. For the thesis at hand, the well-known pix2pix proposal by Isola et al. from
2017 was followed [49], amended by two kinds of embedding networks for the chromatin features,
which serve as the conditional input x here. The overall setup is shown in fig. 7 and will be
explained in more detail below.
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Figure 7: cGAN approach

The generator architecture is based the well known U-Net architecture developed by Ron-
neberger, Fischer and Brox [66], while the discriminator is implemented as a patchGAN-
discriminator developed by Isola et al. especially for pix2pix [49]. This type of discriminator
splits the images into patches and tries to decide which of them are real and which are fake,
using convolutions. Note that pix2pix does not explicitly add noise z, but by design only relies
on dropout layers in the generator for that purpose, fig. 7 upper left.

For the thesis at hand, few modifications were made to the actual pix2pix network. Since Hi-C
matrices are symmetric by definition, symmetry of the outputs was enforced by adding additional
layers to the network in the appropriate places, see section 4.5.2 for details. Furthermore, some
layers in the generator and discriminator were made optional to allow processing smaller images
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3 Advancing predictions of Hi-C interaction matrices

of sizes 64× 64 and 128× 128 aside the 256× 256-images of the original implementation, again
refer to section 4.5.2 for details.

For sample generation, the same sliding window method as for the dense neural network de-
scribed above was employed, yet with a few minor adaptations, see section 4.5.1. However, since
pix2pix operates on images, as its name already implies, a method to add the essentially one-
dimensional chromatin feature data as conditional input “images” into the network was needed.
Unfortunately, this task seems to be without examples in literature, so two different embed-
ding approaches were made, which will be discussed below in sections 3.2.2 and 3.2.3. Both
approaches are distantly related to the text-encoders used by text-to-image synthesis networks
[67, 68], but much less sophisticated. Since the chromatin features – in contrast to textual image
captions – are already in a format that can be processed directly by neural networks, a complex
encoding is not needed here; a (trainable) 2D-embedding should suffice.

Many ways for training a cGAN exist, and establishing a stable, convergent training process can
be tricky. For the thesis at hand, the generator loss function proposed by Isola et al. [49] was
used, amended by a TV loss function for noise reduction, eq. (5).

LG(x,y, z) = λMAELMAE(G(x, z),y ) + λadv Ld( 1, D(x, G(x, z)) ) + λTVLTV (G(x, z))

(5)

Ld(r, s) = 1
bs

bs−1∑
i=0

1
n2

n−1∑
j,k=0

(− log(sigmoid(s)) · r − log(1− sigmoid(s)) · (1− r) ) (6)

sigmoid(si,j,k,1) = esi,j,k,1

1 + esi,j,k,1
for i ∈ (0, 1, . . . , bs− 1) and j, k ∈ (0, 1, . . . , n− 1) (7)

Here, LMAE is the mean absolute error (L1 error) between artificially generated output G(x, z)
and true Hi-C submatrices y (as grayscale images), Ld is the “binary cross entropy” discriminator
loss according to eq. (6), in this case with respect to artificially generated matrices, and lTV is a
total variation loss as in eq. (1) and eq. (12), see page 33. Since the discriminator is a patchGAN
discriminator, it is working on batches which contain bs image patches of shape (n, n), i. e. on
tensors of shape (bs, n, n, 1), and 1 is also a tensor of shape (bs, n, n, 1), populated with ones.
To obtain a scalar loss value, the mean was taken first across patches and then across batches,
eq. (6). To this end, the sigmoid function was computed individually for all elements si,j,k,1 in
the (bs, n, n, 1)-shaped tensors as shown in eq. (7), transforming them into value range [0...1].
Finally, individual scalar factors λ were used to balance the influence of the individual loss
portions on the joint loss function, cf. section 4.5.2.

As already indicated in fig. 7, the discriminator was trained as proposed by Isola et al., meaning
that the binary cross entropy loss was optimized with respect to true- and fake samples, eq. (8).

LD(x,y, z) = λD · [Ld(1, D(x,y)) + Ld(0, D(x, G(x, z))] (8)

In eq. (8), Ld is again the PatchGAN loss defined above in eq. (6), y are true Hi-C submatrices,
G(x, z) are Hi-C submatrices artificially generated by the generator G from chromatin feature
data x and random noise z, and 1,0 are tensors of the appropriate shape populated with all
ones and all zeros, respectively. λD is a scalar factor proposed by Isola et al. to slow down the
learning process of the discriminator compared to the generator.
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3.2 Hi-cGAN approach

The original idea behind combining mean absolute error LMAE and PatchGAN adversarial
loss Ld is that optimizing MAE mainly minimizes low-frequency errors, while optimizing the
PatchGAN-loss with its small patches helps reducing high-frequency errors [49]. The TV loss
has been added for edge-aware noise removal, in line with other works in the field [43], cf. sec-
tion 3.1.3.

Both the generator- and discriminator loss functions were optimized with the Adam optimizer,
alternately training discriminator and generator, see section 4.5.2 for details.

Compared to other cGAN architectures, pix2pix is rather simple, but well studied for different
applications like label-to-image transfer, sketch-to-image transfer, grayscale-to-color transfor-
mations or image infill tasks [49]. Since the problem at hand has likely not been tackled by a
tailor-made cGAN yet, choosing a “general-purpose” cGAN as a starting point seemed reason-
able. Another advantage of pix2pix, and U-Net architectures in general, is that they can achieve
good performance even with comparatively few training samples [49, 66].

3.2.2 Using a DNN for feature embedding

The embedding network required for processing the conditional inputs has one obvious manda-
tory property: it must be capable of embedding the input of shape (3w, n) into a grayscale image
of shape (w,w, 1), which can then be processed by a pix2pix-like network. Naturally, this can be
achieved by using the dense neural network explored above in section 3.1, simply reshaping its
“upper triangular” output vector back into a symmetric “image”-tensor of the required shape.

The rationale here was to first use the DNN to get a coarse estimate of the predicted matrix, and
then the cGAN to refine the results, somewhat similar to the two-stage approach by Zhang et al.
[63], albeit much less sophisticated. Obviously, it is possible to pre-train the dense (embedding)
network as discussed above in section 3.1, this time for window size w = 64, and then use
transfer learning to provide better starting values for the weights of the embedding network,
potentially improving both stability and convergence speed of the cGAN network.

A disadvantage of the dense network approach is that the number of neurons in its output layer
quadratically depends on the window size w, cf. section 3.1.1 and 4.4.3. Taken together with
the three fully connected layers underneath, this leads to a superlinear increase in the number
of parameters along with w, further aggravated by the fact that the cGAN requires w to be
powers of two, cf. section 4.5.2 and 4.5.3 (table 5, p. 38). Therefore the DNN embedding has
only been explored for w = 64, both with and without pre-trained weights. The results are to
be found in section 5.2.1 and some more technical details are given in section 4.5.3. Predictions
from the pre-trained embedding network alone are shown in section 7.4.2.

3.2.3 Using a CNN for feature embedding

Since the results from the cGAN with DNN embedding were interesting, but not really con-
vincing, another embedding network was designed, based on convolutional layers. Here, the
idea was to have a trainable embedding that keeps the localization information contained in
the chromatin feature data, has less parameters than a dense embedding and can efficiently be
trained along with the rest of the network even at window sizes up to 256 bins.
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3 Advancing predictions of Hi-C interaction matrices

Since no example for such an embedding was found in literature, a first attempt was made
with a simple convolutional neural network (CNN). This network essentially featured 8 building
blocks, each consisting of a 1D convolution layer, a batch normalization layer to avoid overfitting
and leaky ReLU activation [69] to avoid the so-called “dying ReLU” problem. A final 9th
convolution layer was added to ensure the required output shape. The complete setup is shown
in section 4.5.4 (fig. 18, p. 43). Compared to the dense approach, the number of trainable
parameters in the CNN embedding is widely independent of the window size and stays within
4.24...4.29 million parameters for the investigated window sizes 64, 128 and 256, cf. table 5
(p. 38).

The results of the cGAN with CNN embedding are shown in section 5.2.2 and were indeed better
than all other results obtained within this thesis.

3.2.4 Using mixed DNN- and CNN-embedding for feature embedding

Besides using a DNN- or CNN embedding for both generator and discriminator, it is obviously
also possible to use different embedding network types. To investigate the influences of the
embedding network on the general performance, a “mixed” embedding, i. e. a DNN embedding
for the generator and a CNN embedding for the discriminator was tested, using the same DNN
and CNN as above. However, the results were not convincing, see section 5.2.3.
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4 Methods

In the following sections, the technical details for the methods used within the thesis will be
discussed. First, input data and data preprocessing will be described, followed by an explanation
of the quality metrics used to assess the predictions of Hi-C matrices made throughout the thesis.
Next, sections 4.4 and 4.5 will give details with regard to the two different approaches made
in this thesis to advance the state of the art in predicting Hi-C matrices. Finally, some special
methods were employed to compare the results of this thesis to other approaches in the field,
which will be described in section 4.6.

4.1 Input data

For the thesis at hand, data from human cell lines GM12878 and K562 was used. The exact
data sources and data preprocessing for the Hi-C matrices and ChIP-seq data will be outlined
below.

Hi-C data generated by Rao et al. [11] was downloaded in hic file format from Gene Expression
Omnibus under accession key GSE63525. Here, the quality-filtered “combined_30” matrices
were chosen, which contain only high-quality reads from both replicates.

Next, matrices at 5 kbp bin size were extracted and converted to cooler format using hic2cool
and subsequently coarsened to resolutions of 10, 25 and 50 kbp using cooler coarsen, see
listing 1 (p. 100). Contrary to the work by Farré et al. [30], which is using ICE- plus distance-
based normalization, and many others in the field which are using ICE- or KR-normalization,
these matrices have not been normalized for the thesis at hand because no benefit of doing so
was found during the study project [13].

Within this thesis, ChIP-seq data for 13 chromatin features plus DNaseI-seq data was used, cf.
table 2. To this end, read alignments for replicates 1 and 2 were downloaded in bam format
either via the ENCODE project [16, 17] or directly from the file server of the University of
California (UCSC) in their most recent versions (if applicable). The UCSC- (wgEncode...) or
GEO- (GSM...) identifiers are given in table 2. For convenience, the pdf version of this document
also provides download links for all 28 files in section 7.1. After downloading, the bam files were
converted to bigwig format, which was found more convenient to handle, and the replicates were
merged into one bigwig file by taking the mean, as in the study project [13]. Pseudocode for the
full conversion process is given in listing 2 (p. 100).

The choice of chromatin features is widely in line with the work by Zhang et al. [28]; besides
structural proteins like CTCF and Cohesin subcomponents RAD21 and SMC3, active/passive
markers are used as well.

4.2 Quality metrics for predicted Hi-C matrices

Assessing the quality of synthetically generated images is a long-standing problem, which has not
yet been solved, see e g. [61, p. 19]. Within this thesis, distance-stratified Pearson correlations
were computed between predicted and real matrices to measure the quality of the predictions.
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4 Methods

feature name cell line
GM12878 K562

CTCF GSM733752 GSM733719
DNaseI wgEncodeEH000534 wgEncodeEH000530
H3k27ac GSM733771 GSM733656
H3k27me3 GSM733758 GSM733658
H3k36me3 GSM733679 GSM733714
H3k4me1 GSM733772 GSM733692
H3k4me2 GSM733769 GSM733651
H3k4me3 GSM733708 GSM733680
H3k79me2 GSM733736 GSM733653
H3k9ac GSM733677 GSM733778
H3k9me3 GSM733664 GSM733776
H4k20me1 GSM733642 GSM733675
Rad21 wgEncodeEH000749 wgEncodeEH000649
Smc3 wgEncodeEH001833 wgEncodeEH001845

Table 2: Chromatin features used for the thesis

While the suitability of suchlike correlations as a quality metric for Hi-C matrices seems debat-
able in general [70], distance stratified Pearson correlation is quite common in the field of Hi-C
matrices and thus useful at least for comparisons with other approaches.

To compute the correlations, the w bins at the left and right boundaries of the investigated
matrices were first removed, because these never contain valid values due to the chosen sample
generation approach, cf. section 4.4.1, fig. 9. Next, the remaining values were grouped into
vectors according to their genomic distance d, up to the maximum distance w, and then Pearson
correlations ρ were computed separately for each vector as usual, eq. (9). Here, true|d and pred|d
are the true and predicted values restricted to bin distance d, while σ(true|d) and σ(pred|d) are
the respective standard deviations and cov(·, ·) is the covariance.

ρ(true|d, pred|d) = cov(true|d, pred|d)
σ(true|d) σ(pred|d)

(9)

Since a numerically stable and efficient implementation for computing Pearson correlation is
non-trivial, the corresponding function from pandas was used for actual calculations [71]. An
obvious disadvantage of distance-stratified Pearson correlations is that they are undefined if the
matrices have the same value, and thus zero standard deviation, e. g. σ(pred|d∗) = 0 for a certain
distance d∗.

In addition to the correlations themselves, the area under the correlation curve (AUC) was
computed for all curves in each plot to obtain a single-valued, albeit very abstract quality
metric. In line with Zhang et al. [28], trapeze integration method was used for numerical area
computations and the values were divided by the maximum distance dmax = w to normalize them
to value range [-1...1], allowing for comparisons across experiments. Furthermore, most Pearson
correlation plots show the correlation between the “true” training matrix and the corresponding
target matrix as a baseline, i. e. the Pearson correlation that is obtained when simply using the
training matrix as a “prediction” for a given target matrix.
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4.3 Matrix plots

In computer graphics, other similarity metrics like the structural similarity index measure
(SSIM), peak signal-to-noise ratio (PSNR) or, especially for images generated by GANs, Fréchet
inception distance (FID) seem more common than Pearson correlation [61, p. 19 ff.]. However,
their suitability for plots of Hi-C matrices seems not to have been investigated so far. Unlike
Pearson correlation, SSIM and PSNR both depend on absolute values in the matrices M to be
compared, so that in general for example PSNR(M) 6= PSNR(k ·M) for k ∈ R>1. This is likely
not optimal for a use case where structures are more interesting than actual values. Computing
FID would require reshaping outputs into images of shape (299, 299, 3) to meet Inception v3
specifications [72]. This is a non-trivial task for the given matrix plots, where the longer edge
– defined by chromsize/binsize – is usually much longer and the shorter edge – defined by the
window size w – is usually shorter than 299 bins, or pixels, respectively. While computing the
FID for individual (w,w)-submatrices would be possible, generalizing such results to the whole
matrix seems without example in literature so far.

Since relying on one metric alone seemed problematic, selected areas of the test set were plotted
against the true Hi-C matrices in these areas, see section 4.3 below. Note that visual comparison
of predicted Hi-C matrices and true Hi-C matrices may be affected by the value range of the
matrices (and the color map used to visualize them), while the Pearson correlation is generally
not affected by different value ranges.

4.3 Matrix plots

To allow for a visual comparison, selected areas of the predicted matrices were plotted against
their true counterparts using pygenometracks [73]. Since it was impossible to plot the full test
set every time due to the amount of figures needed, three exemplary regions (a) to (c) were
selected: (a) chr21:30-40 Mbp; (b) chr19:30-40 Mbp and (c) chr3:30-40 Mbp. These regions were
chosen because they feature both small and large TADs as well as nested TADs and subregions
with very little chromatin feature signal values.

In general, most matrix plots additionally feature the sign of the first eigenvector in a purple
track, named “binarized PCA” (values +1 or -1) and the summarized value of all 14 chromatin
features in a green track, named “feature sum”, see e.g. fig. 22. Feature sum was computed by
binning all chromatin features at 25 kbp and summing up the values across all features for each
bin. Eigenvectors were computed using hicPCA [60] and then the sign for each 25 kbp bin was
extracted using a simple python script. Finally, eigenvectors and feature sum were written out
in bedgraph format, which pygenometracks can plot natively.

All tracks were plotted with an original resolution of 200 dpi and a diagram width of 150 mm
and then scaled to match the text width. For the interaction counts in the Hi-C matrix plots,
“log1p” transformation was applied and the true matrices were inverted, i. e. reflected at the
diagonal. Within this thesis, true (target) matrices are thus always shown at the bottom, while
predicted matrices are always shown at the top of each matrix plot (where applicable). Except
for comparisons with the approach by Farré et al., see section 4.6, no minimum or maximum
values were set for plotting, but note that predicted matrices were scaled to value range 0...1000
before they were stored, cf. section 4.4.1.
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4.4 Dense neural network approach

In the following sections, the Dense Neural network approach inspired by Farré et al. [30] will
be discussed in detail. First, the sample generation process will be explained in sections 4.4.1
and 4.4.2, followed by the basic network setup and its subsequent modifications in sections 4.4.3
to 4.4.6.

4.4.1 Sample generation process for the dense neural network

With regard to sample generation, this thesis widely follows the sliding window approach pro-
posed by Farré et al. [30], yet with an important difference, as will be outlined in the following
paragraphs.

First, all chromatin features were binned to bin size bfeat by splitting each chromosome of size
cs into lfeat =

⌈
cs
bfeat

⌉
non-overlapping bins of size bfeat and taking the mean feature signal value

within the genomic region belonging to each bin. All n chromatin factors were processed in this
way and then stacked into a (lfeat , n)-shaped array. Last, all n columns were indivdually scaled
to value range 0...1. The number of chromatin features was constant for all investigations within
this thesis, n = 14 (cf. section 4.1), except for the comparisons with the method by Farré et al.,
where 49 chromatin features from D. Melanogaster were used, cf. section 4.6.

It should be noted that the way of feature binning described in the paragraph above constitutes
a major difference to the proposal by Farré et al. [30, p. 9]. In their work, values are assigned to
each bin according to the percentage of basepairs in the respective bin covered by statistically
significant enrichments of the respective feature, where a value of one means 100% coverage and
a value of zero means the feature is not present in the respective bin at all.

Separate Hi-C matrices for each chromosome were derived from the cooler format as (lmat , lmat)-
shaped matrices, lmat =

⌈
cs
bmat

⌉
being the number of bins in the given chromosome. Initially,

bfeat = bmat was used, which leads to lfeat = lmat , because cs is a constant for a given chromosome.
While this is also a different process compared to the method used by Farré et al. [30, p. 8 f.], it
should lead to the same outcome – apart from the fact that non-normalized matrices have been
used here, cf. section 4.1.

The same sliding window approach as proposed by Farré et al. [30] was then applied to generate
training samples from the chromatin feature array and the Hi-C matrices for usage with the
neural networks G described below. Here, subarrays of size (3w, n) were cut out from the
feature array such that the i-th training sample corresponded to the subarray containing the
rows i, i+1, i+2, . . . , i+3w of the full array. Sliding the window along the array with step size
one obviously yields N = l − 3w + 1 training samples. The corresponding Hi-C matrices were
then cut out along the diagonal of the original matrix as submatrices with corner indices [j, j],
[j, j+w], [j+w, j+w], [j+w, j] in clockwise order, where j = i+w. The idea here is that the
first 0, 1, . . . , w rows of each feature sample form the left flanking region of the training matrix,
the next w+1, w+2, . . . , 2w correspond to the matrix’ region and the last 2w+1, 2w+2, . . . , 3w
rows form the right flanking region. Since Hi-C matrices are symmetric by definition, only the
upper triangular part of the submatrices was used, flattened into a w · (w + 1)/2 vector.
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4.4 Dense neural network approach

Figure 8 exemplarily shows the sample generation process for a matrix of shape (16,16) with
w = 4 and n = 3 chromatin features. In this case, five training samples would be generated –
the one encircled in green and four more to the right, as the window is sliding from left to right
until the right flanking region hits the feature array boundary.

0 1 2 13 14 15... ...... ... ... ... ... ... ... ...
E

F

A B C

D

G

Figure 8: Sample generation process

A: left flanking region

B: matrix region

C: right flanking region

D: chromatin feature array

E: sliding direction for sample
generation windows

F: first 4 diagonals of a (16, 16)
Hi-C matrix, rotated 45 deg
counterclockwise

G: first (4, 4) training matrix,
corresponding to feature
window A-B-C

The sample generation process for predicting (unknown) matrices was the same as for training,
except that no matrix window was generated. Due to the sliding window approach, the output
of the network is a set of overlapping submatrices along the main diagonal of the actual target
Hi-C matrix. To generate the final submatrix, all submatrices were added up in a position-aware
fashion and finally all values were divided by the number of overlaps for their respective position.
Figure 9 exemplarily shows the prediction process for N = 5 samples with window size w = 4
for a matrix of shape (16,16). Note that the first and last w bins in each row (matrix diagonal)
always remain empty due to the flanking regions, as do all bins outside the main diagonal and the
first w − 1 side diagonals. To improve visualization, all predicted matrices were scaled to value
range 0...1000 after re-assembly and stored in cooler format for further processing. Conveniently,
cooler also supports storing only the upper triangular part of symmetric matrices, minimizing
conversion effort for the data at hand.

Generally, training samples were drawn from chromosomes 1, 2, 4, 7, 9, 11, 13, 14, 16, 17, 18,
20 and 22 of cell line GM12878, validation samples from chromosomes 6, 8, 12 and 15 of cell
line GM12878 and test samples from chromosomes 3, 5, 10, 19 and 21 of cell line K562. This
approximately implements a 60:20:20 train:validation:test split, see table 3 for details. Reversing
training/validation and test cell lines, which differ strongly in sequencing depth within the Hi-C
experiments, was not tested for the DNN, but briefly for the cGAN approach and seemed to
work, see section 7.4.3. For comparability reasons, a DNN and a cGAN were also trained and
tested on data from Drosophila Melanogaster embryonic cells, refer to section 4.6 for details.

Note that window size w = 80 is likely not suitable for resolutions beyond 50 kbp, because the
number of training samples becomes too small to train a network with more than seven million
parameters, cf. table 3 and section 4.4.3.
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4 Methods

chrom. length/bp samples at w = 80 and bin size...
5k 10k 25k 50k 250k 500k

1 249250621 49612 24687 9732 4747 759 260
2 243199373 48401 24081 9489 4625 734 248
4 191154276 37992 18877 7408 3585 526 144
7 159138663 31589 15675 6127 2944 398 80
9 141213431 28004 13883 5410 2586 326 44
11 135006516 26763 13262 5162 2462 302 32
13 115169878 22795 11278 4368 2065 222
14 107349540 21231 10496 4055 1908 191
16 90354753 17832 8797 3376 1569 123
17 81195210 16001 7881 3009 1385 86
18 78077248 15377 7569 2885 1323 74
20 63025520 12367 6064 2283 1022 14
22 51304566 10022 4892 1814 788∑

train samples 337986 167442 65118 31009 3755 808

6 171115067 33985 16873 6606 3184 446 104
8 146364022 29034 14398 5616 2689 347 54
12 133851895 26532 13147 5116 2439 297 29
15 102531392 20268 10015 3863 1812 172∑

valid. samples 109819 54433 21201 10124 1262 187

3 198022430 39366 19564 7682 3722 554 158
5 180915260 35945 17853 6998 3380 485 123
10 135534747 26868 13315 5183 2472 304 33
19 59128983 11587 5674 2127 944
21 48129895 9387 4574 1687 724∑

test samples 123153 60980 23677 11242 1343 314

∑
total samples 570958 282855 109996 52375 6360 1309

Table 3: Training, validation and test samples for sliding window approach
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4.4 Dense neural network approach
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Figure 9: Prediction process

A: left flanking region

B: matrix region

C: right flanking region

D: chromatin feature array

E: sliding direction for predicted
submatrices

F: first 4 diagonals of a predicted
(16, 16) Hi-C matrix, rotated
45 deg counterclockwise

G: first predicted (4, 4) matrix

gray background colors symbolize
number of overlapping predictions at
that position (bright = 1, dark = 4)

4.4.2 Generalization of feature binning

Most of the binning- and sample generation procedures described above also work for bin size
relations k = bmat

bfeat
∈ N>1.

To this end, the training matrices remained unchanged, i. e. (l, l)-shaped arrays, from which
training submatrices of size (wmat , wmat) were extracted. With k ∈ N>1, one bin on the matrix
diagonal corresponded to k bins of the feature array, so the feature window size needed to be
k times the submatrix window size, wfeat = k · wmat . Since the first layer of all dense neural
networks used in this thesis was a 1D convolution, cf. section 4.4.3 (fig. 11), this was achieved
by setting the filter width and strides parameters of the (first) convolutional layer to k, leaving
the rest of the network unchanged, cf. section 4.4.4. However, the number of bins along the
matrix diagonal is generally not k times the number of bins in the feature array, see eq. (10).

lfeat =
⌈
cs

bfeat

⌉
=
⌈

cs

k · bmat

⌉
6= k ·

⌈
cs

bmat

⌉
= k · lmat for most bfeat, bmat, cs ∈ N (10)

For the training process, this discrepancy was resolved by simply dropping the last training
sample, if the feature window belonging to it had missing bins. For the prediction process, the
feature array was padded with zeros on its end. This procedure ensured that no errors were
introduced into the training process by imputing values, but kept the size of the predicted matrix
consistent with the actual chromosome size.

Figure 10 shows the generalized training process with a (16, 16)-training matrix and k = 2. If
15 · bmat + 1 ≤ cs < 15 · bmat + bfeat holds for the chromosome size cs, as in the example, then
the number of bins on the matrix diagonal would be lmat = 16, while the number of chromatin
feature bins would be lfeat = 31 6= 2 · lmat . In this case, the 5th sample would be dropped for
training, while a column with zero bins – symbolized by pink crosses in fig. 10 – would be added
to the feature array for prediction so that the resulting matrix would still have the desired size
of (16, 16).
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Figure 10: Generalized sample generation process f. k = 2

A: left flanking region

B: matrix region

C: right flanking region

D: chromatin features array (k = 2)

E: sliding direction for sample
generation windows

F: first 4 diagonals of a (16, 16)
Hi-C matrix, rotated 45 deg
counterclockwise

G: last (4, 4) training matrix,
corresponding to feature window
A-B-C; to be dropped/padded

4.4.3 Basic setup

The basic setup for the dense neural network approach closely follows the proposal by Farré et
al. [30], so a window size of w = 80 and bfeat = bmat = 10 kbp was initially used. With these
parameters, the network has a total of 7 486 436 trainable weights in five trainable layers; one
convolutional layer and four densely connected layers, fig. 11. For brevity, the sigmoid activation
after the 1D convolution and the ReLU activations after the Dense layers are not shown. The
dense layers all use a “L2” kernel regularizer and all dropout layers have a dropout probability
of 10%.

The training goal for the neural network G is to find weights ω∗ for its five trainable layers
such that the mean squared error L2 between the predicted submatrices Ms = Gs(ω) and the
training submatrices Ts becomes minimal for all N training samples s ∈ (1, 2, . . . , N). Here,
Ms is given by the activations of the last dense layer, which are to be interpreted as the upper
triangular part of a symmetric (w,w)-shaped Hi-C matrix. Formally, one needs to optimize

ω∗ = arg minωL2(ω) = arg minω

1
N

N∑
s=1

(Ms −Ts)2 (11)

For the thesis at hand, stochastic gradient descent (SGD) with learning rate 10−5 was used to find
ω∗, except for some of the comparisons with other approaches described in section 4.6. Initial
values ωinit were drawn from a Xavier initializer, a uniform distribution with limits depending
on the in- and output shapes. Following [30], optimization was performed on minibatches of 30
samples, assembled randomly from the N training samples to prevent location-dependent effects
and improve generalization. For training, the last batch was dropped, if N/30 6∈ N.

The network and its learning algorithm were implemented in python using tensorflow deep
learning framework, partially with keras frontend [74, 75]. All code is available under an open
source license, see github repository [76]. All computations were performed on virtual machines
with different properties, partially with GPU assistance; see section 7.3 for details.
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4.4 Dense neural network approach

4.4.4 Modifying kernel size, number of filter layers and filters

For the “wider” variant, the kernel size of the of the 1D convolutional layer was increased to 4k
with strides k, fig. 11, where k = bmat/bfeat is the relation between matrix- and feature bin size.
Mirror-type padding was used to maintain the output dimensions of the basic network, which
had 7 486 478 trainable weights for k = 1.

For the “longer” variant, three 1D-convolutional layers with 4, 8 and 16 filters were used in place
of the basic network’s single convolutional layer, cf. fig. 12. This replacement was also made for
the “wider-longer”-variant, additionally increasing the respective kernel sizes to 4k (with strides
k), 4 and 4, cf. fig. 12 (right). In both cases, the dropout rate was increased to 20%. The
“longer” variant had 9 142 665 trainable weights and the “wider-longer” variant had 9 143 313
for k = 1.

For the variant with generalized binning, features were binned at bfeat = 5 kbp while keeping
the matrix bin size bmat = 25 kbp, so the factor for the relation between the two bin sizes was
k = 25/5 = 5. This yields input feature arrays of size (3w · k, n) = (3 · 80 · 5, 14) = (1200, 14).
Replacing the first convolutional layer of the basic network by a 1D-convolutional filter with
kernel size 5 and strides 5 without padding, this input was again compressed to a (3w, 1) =
(240, 1)-shaped tensor and fed into the flatten layer, cf fig. 11. The rest of the network remained
the same so that the number of trainable parameters increased only slightly to 7 486 492.

4.4.5 Combination of mean squared error, perception loss and TV loss

For computing the combined MSE, perception- and TV-loss, input features were first passed
through the network as normal, and mean squared error was computed between the predicted
“upper triangular” vectors and the real vectors. Next, both the output- and target vectors were
converted to symmetric grayscale images by reshaping them into (w,w, 1)-shaped tensors, where
w is again the window size.

For a grayscale pixel-image y, total variation can be defined as the sum of the absolute differences
for neighboring pixel-values, eq. (12) [55, 77].

tv(y) =
∑
i,j

√
|yi+1,j,1 − yi,j,1|2 + |yi,j+1,1 − yi,j,1|2 (12)

For efficiency, the tensorflow implementation from tf.image.total_variation was used, taking the
sum across batches as loss value, as recommended in the tensorflow documentation [78].

For perception loss, the predicted images and the true images were first fed through the pre-
trained VGG-16 network [53]. Here, the network was truncated after the third convolution layer
in the fourth block (“block4_conv3”), which is the last layer also used by the influential work
of Johnson et al. [54]. The perception loss was then computed as mean squared error between
the “predicted” and “true” output activations of the truncated VGG-16 network.

Let Ms = Gs(ω) again be the output of the neural network G described above, and Ts the
true matrices for training samples s in vector form, and let M′

s and T′s be their grayscale image
counterparts as described above. Furthermore, let tv(y) be the total variation of image y and
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vgg(y) the output of the perception loss network for image y. The optimization problem for the
modified network was then formulated by means of eq. (13) to find weights ω∗ such that

ω∗ = arg minω(λMSE
1
N

N∑
s=1

(Ms −Ts)2 + λTV

N∑
s=1

tv(M′
s) + λVGG

1
N

N∑
s=1

(vgg(M′
s)− vgg(T′s))2)

(13)
where N is again the number of samples.

Weight initialization for networkG and minibatching were done as described in section 4.4.3. The
VGG-16 network and the corresponding weights were taken from the keras [75] implementation
pre-trained on ImageNet [79]. As a side effect, the usage of VGG-16 imposes the restriction
w ≥ 32 on the window size w, which is not problematic, since again w = 80 was chosen for all
experiments.

The network G(ω) could in principle be any of the variants described above in section 4.4.4, but
for the thesis at hand, only the initial network from section 4.4.3 was used.

4.4.6 Combination of mean squared error and TAD-score-based loss

To optimize both for mean-squared error and a TAD-score-derived loss, the following optimiza-
tion task was defined to find weights ω∗ such that

ω∗ = arg minω(λMSE
1
N

N∑
s=1

(Ms −Ts)2 + λscore
1
N

N∑
s=1

(score(M′
s, ds)− score(T′s, ds))2 (14)

where Ms is again the Hi-C submatrix predicted by the network G(ω) for sample s, Ts is the
corresponding true Hi-C submatrix and N is the number of samples.

To compute the TAD-score-based loss score(·, ·), the predictions and true Hi-C matrices M
and T in vector form (upper triangular part) were first converted back to complete, symmetric
Hi-C matrices M′, T′. Next, in a custom network layer, all diamonds with size ds inside the
submatrices of size w were cut out using tensor slicing and the values inside the diamonds were
reduced to their respective mean. This yields score vectors – more exactly, tensors with shape
(w − 2 ds, 1). After computing the latter for both predicted- and real Hi-C submatrices, the
mean squared error between them was computed as usual and weighted with a user-selected loss
weight λscore, see eq. (14).

While it would also have been possible, and probably faster, to slice the outputs of the networks
directly in vector form, this is rather counterintuitive and was therefore not implemented for
the thesis.
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4.5 Hi-cGAN approach

In the following subsection, the setup and training process of the cGAN network developed
for this thesis – Hi-cGAN – and the respective embeddings for the conditional input – the
chromatin features – will be described in more detail. First, the sample generation process and
the basic network setup based on the well-known pix2pix cGAN architecture [49] are explained in
sections 4.5.1 and 4.5.2, then the respective embedding networks are discussed in sections 4.5.3
to 4.5.5.

4.5.1 Sample generation process for Hi-cGAN

The samples for Hi-cGAN were generated the same way as the samples for the dense neural
network described in section 4.4.1, with two exceptions. First, Hi-C (sub-)matrices were not
entered as vectors corresponding to their upper triangular part, but were instead taken as
(w,w, 1)-shaped grayscale images with value range [0...1] in 32-bit floating point format. Second,
for the cGAN approach, the input matrices need not only be square, but their sizes also need to
be powers of two. This requirement is due to the connected up- and downsampling operations
in the generator, which essentially are 2D-convolutions and transposed 2D-convolutions with
strides two, see below. Within the thesis, window sizes of w = {64, 128, 256} were used, see
section 5.2. Training, validation and test chromosomes were generally the same as for the DNN
approach. For comparability with HiC-Reg, two cGANs were additionally trained on single
chromosomes 14 and 17 of cell line GM12878, cf. section 4.6.

4.5.2 Modified pix2pix network

Several implementations of the original pix2pix network [49] are publicly available, usually for
the original image size of 256× 256. For the thesis at hand, implementation concepts from two
tutorials [80, 81] were combined and the code was adapted to the given requirements.

Within the generator, two of the down- and upsampling layers inside the U-Net portion were
made optional to allow processing smaller images of sizes 64×64 and 128×128, see fig. 13. Note
that the generator (still) only supports square images with edge lengths that are powers of two
and at least 26 = 64. Furthermore, symmetry of the output images was enforced by adding their
transpose and multiplying by 0.5, cf. [35]. The down- and upsampling layers shown in fig. 13
are custom blocks detailed in figs. 15 and 16. All 2D-convolutions and 2D-deconvolutions had
kernel size (4, 4) and were initialized with values drawn from a normal distribution with mean
µ = 0 and standard deviation σ = 0.02. Finally, the output layer of the generator was changed
from tanh- to sigmoid activation. This empirically showed better results, probably because the
training- and test matrices were scaled to 0...1, which is also the value range of the sigmoid
function, cf. section 4.5.1 and eq. (7) on page 22.

Compared to the original pix2pix setup, one downsampling layer was omitted in the discriminator
for window size w ∈ {128, 256, . . . } and another one for w = 64. This made the discriminator
patches larger, especially for the smaller window sizes, cf. fig. 14, and was empirically found
to improve the results slightly in the given application. After each convolution, symmetry was
enforced in the same way as for the generator, see above. Kernel sizes and initializations for all
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2D convolutions also were the same as for the generator, and leaky ReLU-activations were used
with parameter α = 0.2, as in all downsampling layers.

Both the discriminator and the generator featured their own, trainable embedding network to
convert the conditional input, i. e. the chromatin feature data of shape (3w, n), into grayscale
images of shape (w,w, 1). These networks will be discussed below in sections 4.5.3 and 4.5.4.
Table 4 shows the number of trainable parameters for the generator and discriminator without
considering the embedding networks.

window size trainable weights
Generator Discriminator

64 29 237 889 3 164 673
128 41 822 849 2 765 057
256 54 407 809 2 765 057

Table 4: Trainable weights for Generator and Discriminator w/o embedding network

The loss functions for the generator and discriminator were implemented as shown in equations
(5) to (8) with parameters λadv = 1.0, λMAE = 100.0, λTV = 10−12 and λD = 0.5. Optimization
was performed on minibatches of size 32, 8 and 2 for window sizes 64, 128 and 256, respectively,
using Adam optimizers with learning rate 2 · 10−5 for the generator, 10−6 for the discriminator
and β1 = 0.5 for both generator and discriminator. The choice of batch sizes was partially
dictated by memory limitations of the available GPUs, cf. section 7.3.

4.5.3 Using a DNN for feature embedding

In order to use the DNN described in section 4.4.3 as an embedding network for the cGAN, only
small amendments were required to adjust the input shapes, i. e. to provide symmetric Hi-C
matrices as grayscale images instead of the upper-triangular-vector representation native to the
DNN, see fig. 17.

The triu-reshape layer in fig. 17 was a custom tensorflow network layer which generates an
output tensor of appropriate shape (w,w) and sets its upper triangular part to the values given
by the input vector. Symmetrization was then performed by adding this tensor to its transpose
and subtracting the values on the diagonal once, because the diagonal was contained both in
the upper triangular part of the matrix and its transpose. Finally, the required third axis was
added to get the shape of a grayscale image. The number of trainable parameters for the DNN
embedding is shown in table 5, rightmost column. Note that all trainable parameters stem from
the DNN here; the reshaping layers do not have any trainable parameters.

window size trainable weights
CNN DNN

64 4 243 968 5 502 796
128 4 260 416 16 034 732
256 4 293 312 57 877 612

Table 5: Trainable weights for embedding networks
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For this thesis, the DNN embedding was used in two ways. First, it was trained together with
the rest of the cGAN with weight initialization as described in sections 4.4.3 and 4.5.2. Second,
a DNN was pre-trained as described in section 4.4.3 with window size w = 64 and the learned
weights were transferred to the cGAN once before the start of the training process, which was
then continued as described in section 4.5.2. The results of the pre-training are visualized in
section 7.4.2 (fig. 62, p. 108); the state after 250 epochs was the one transferred to the cGAN.

DNN embeddings were only used with window size w = 64 due to the large number of parameters
to be trained at window sizes 128, 256 and higher.

4.5.4 Using a CNN for feature embedding

The convolutional embedding network consisted of 8 convolutional blocks and a final 1D convo-
lution layer, as shown in fig. 18. Each of the convolution blocks started with a 1D convolution
with kernel size 4, strides 1, padding “same” and “L2” kernel regularization with parameter
l = 0.02, followed by batch normalization and leaky ReLU activation with parameter α = 0.2.
The last 1D convolution consisted of w filters with kernel size 4, strides 3 and padding “same”,
followed by sigmoid activation; this last convolution layer was not using kernel regularization.
All kernel weights of the 1D convolutions in the embedding network were initialized by a Xavier
initializer.

In the CNN embedding, the number of trainable parameters was constant for all layers, except for
the last convolutional layer, where the number of convolutional filters was equal to the window
size, cf. fig. 18. For the three window sizes w = {64, 128, 256} used within this thesis, the
CNN-embedding network contained about 4.2 to 4.3 million trainable weights, see left column
of table 5 for details.

4.5.5 Mixed embedding for generator and discriminator

In the mixed setting, the dense neural network described above in section 4.5.3 was used as
embedding network for the generator and the CNN described in section 4.5.4 was used as em-
bedding network for the discriminator. The mixed setting was used both without and with
weight transfer for its DNN embedding. In the latter case, again the weights of the DNN were
replaced by the ones of the same pre-trained DNN as in section 4.5.3 before the training process
started.
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Figure 13: Adapted generator model from pix2pix
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Figure 14: Adapted discriminator model from pix2pix
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4.6 Comparison with other approaches

The results of this thesis were compared to the ones from HiC-Reg by Zhang et al. [28], who
used pretty much the same Hi-C and chromatin feature data as described above in section 4.1,
and to results by Farré et al. [30], who used data from Drosophila Melanogaster embryonic
cells.

Comparison with HiC-Reg
For comparison with HiC-Reg, stored predictions for cell line K562, chromosomes 14 and 17
were downloaded from Zenodo [82, 83]. Here, results from the “WINDOW” and “MULTI-
CELL” approaches were selected, whereby the “WINDOW” method was using training data
from GM12878, chromosome 14 or 17, while the MULTICELL approach was using chromatin
feature data from cell lines GM12878, HMEC, HUVEC, K562(!) and NHEK with training
matrices from GM12878, chromosome 14 or 17. These results were deemed to offer the best
comparability to the cGAN- and DNN approaches of this thesis. The downloaded data is in
text format and was first converted into cooler format, whereby a surprising sparsity of the data
was noted. For chromosome 14, only 42.4 % and for chromosome 17, only 59.9 % of all possible
interacting pairs for the chosen window size w = 200 at bin size 5 kbp were contained in the
datasets, and no interacting pairs with predicted interaction counts below 0.01 were found in
the data. Instead, the value range was between 0.36 and 5.10 across all four datasets, with
similar values for each dataset alone. The missing pairs were found to be distributed all across
the chromosome and all distance ranges, except for distance zero, i. e. the Hi-C matrix diagonal,
which was not contained in the datasets at all. For the conversion to cooler format, the missing
values were assumed to be zero. Next, the cooler matrices were coarsened to bin size 25 kbp to
allow comparisons with the cGAN- and DNN results, using cooler coarsen.

For the comparison between HiC-Reg and Hi-cGAN, two additional cGAN models with CNN
embedding were trained on chromosome 14 and 17, respectively, using (arbitrarily selected)
chromosome 10 for validation. Due to the small number of training samples in this setting,
window size was set to w = 64 and batch size to bs = 2. The rest of the training process
remained the same, cf. section 4.5.2. Additionally, HiC-Reg was compared to a cGAN model
with window size w = 256 and CNN embedding, trained on the typical training data set, which
includes chromosomes 14 and 17 besides others, cf. sections 4.4.1, 4.5.1 and 4.5.2.

When computing the distance-stratified Pearson correlations only from the available (non-zero)
predicted values in the datasets [82, 83], the results for chromosome 17 showed very good
accordance with the data published in the paper [28, fig. 10], fig. 19, allowing the conclusion that
the correlation computations according to eq. (9) should in principle be comparable between this
thesis and the paper by Zhang et al.

For reference, training and prediction were re-done for the WINDOW approach and cell lines
GM12878 → K562, chromosome 17. With regard to chromatin features, the same bam files
were taken as in section 4.1, except for SMC3, which was replaced by TBP, in line with the
publication by Zhang et al. [28]. The bam files were then converted to text files using custom
bash scripts and the aggregateSignal application provided by HiC-Reg, cf. listings 3 and 4.
For simplicity, only replicate 1 was used in all cases. With regard to matrix data, cooler files
were first prepared as described in section 4.1. Next, square root vanilla coverage correction
was applied, the matrices were dumped into text files and a custom python script was used to
convert the text inputs to meet HiC-Reg’s requirements, cf. listings 5 and 6. For the rest of the
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Figure 19: Pearson correlations reconstructed from [28, 82, 83]

training- and prediction process, the instructions in HiC-Reg’s github repository were followed
[28]. The resulting text files were converted back to cooler using another custom python script,
see listing 7. The sparsity in the results was 59.6 %, confirming that filtering occurs during
the sample generation- or training process of HiC-Reg, although it is not explicitly mentioned
in the paper. In terms of Pearson correlations – here, including zero-values – the recomputed
results from replicate 1 were slightly better, but overall very similar to the ones restored from
the published datasets [82, 83].

It is surprising that zero-values have not been considered by Zhang et al. when computing
the correlations for their publication [28]. Correctly predicted zero-values strongly increase the
quality of the output matrices and should thus be included in the correlation computations.
Pearson correlations for the predictions in section 5.3 were thus computed for full chromosomes,
including zero-values.

Comparison with dense network by Farré et al.
Unfortunately, Farré et al. have not published any data from which (predicted) Hi-C matrices
and Pearson correlations could have been reconstructed, but Pau Farré provided some of the
non-public source code used for the paper [30] following private communication. After some
minor bug fixes and adaptions to make the code work with python version 3, it was usable to
recompute the published results.

To this end, Hi-C data from 16-18 hours old Drosophila Melanogaster embryonic cells by Schuet-
tengruber et al. [48] was downloaded in text format from the gene expression omnibus, accession
GSE61471, for bin size 10 kbp.

Next, 49 chromatin features from modEncode ChIP-seq experiments with 14-16 hours old
Drosophila Melanogaster embryonic cells [84] were obtained from GEO in the gff3 file format
required by the provided python application, see table 6 (p. 46). Note that while Farré et al.
state they have used 50 features, in fact only 49 unique features are specified in their paper,
H3k4me1 being listed twice [30, p. 9]. This explains why table 6 contains 49 instead of the ex-
pected 50 entries. Looking at the alphabetical sorting in the table, it is assumed that H3k4me2
is the 50th feature missing in the paper. Note that in contrast to the bigwig files used for the
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DNN and Hi-cGAN so far, the gff3 files contain locations of statistically significant enrichments,
and not mean read counts for the chromatin features at hand.

accession accession
feature reads peaks feature reads peaks
BEAF SRR1164521 GSE51986 H3K9me1 SRR869989 GSE47240
Chro Chriz WR SRR869929 GSE47263 H3K9me2 SRR869864 GSE47247
CP190-HB SRR869732 GSE47234 H3K9me3 SRR869860 GSE47246
CTCF SRR869933 GSE47264 H4 SRR870049 GSE47291
dMi SRR869937 GSE47265 H4K16acM SRR869856 GSE47245
dRING SRR869941 GSE47266 H4K20me1 SRR870057 GSE47293
GAF SRR869740 GSE47236 HP1 SRR869718 GSE47231
H1 SRR870123 GSE47309 HP1b SRR870061 GSE47294
H2AV SRR869950 GSE47268 HP1c SRR870183 GSE47323
H2B-ubiq SRR869956 GSE47269 HP2 SRR870138 GSE47312
H3 SRR869965 GSE47271 HP4 SRR869880 GSE47251
H3K18ac SRR869977 GSE47274 JHDM1 SRR870069 GSE47296
H3K23ac SRR869981 GSE47275 LSD1 SRR870073 GSE47297
H3K27ac SRR869744 GSE47237 MBD-R2 SRR870077 GSE47298
H3K27me2 SRR869993 GSE47277 MOF SRR870081 GSE47299
H3K27me3 SRR869712 GSE47230 NURF301 SRR870085 GSE47300
H3K36me1 SRR869839 GSE47241 Pc SRR869724 GSE47232
H3K36me2 SRR870231 GSE47335 POF SRR870089 GSE47301
H3K36me3 SRR869900 GSE47256 Psc SRR869736 GSE47235
H3K4me1 SRR870009 GSE47281 RNA Pol II SRR870093 GSE47302
H3K4me3 SRR870025 GSE47285 RPD3 SRR870105 GSE47305
H3K79me1 SRR869748 GSE47239 SU(HW)-HB SRR869728 GSE47233
H3K79me2 SRR869884 GSE47252 Su(var)3 SRR869876 GSE47250
H3K79me3 SRR870191 GSE47325 ZW5 SRR870117 GSE47308
H3K9acS10P SRR870033 GSE47287

Table 6: Chromatin features from D. Melanogaster used for the comparison
DNN / cGAN / Farré et al. [30]

Originally, Farré et al. have been using chromosomes 2L, 2R, 3L and the first half of 3R for
training, but after another simple modification to the source code provided, the training set
was reduced to samples from chromosomes 2L, 2R and 3L, which is easier to match with the
implementations of DNN and Hi-cGAN, see below. This change did not visually impair the
results compared to the published results. Validation samples were generated by a 80:20 split
of the training/validation set, leaving Pau Farré’s implementation unchanged in this respect. In
disagreement with [30], the provided implementation is not using the SGD optimizer with batch
size 30, but instead the RMSprop optimizer with batch size 100.

For the DNN and Hi-cGAN, the Hi-C matrix text files were converted to cooler format using a
custom python script [76, scripts/schuettengruberToCooler.py].

Since the gff3 file format is not useful for the DNN and Hi-cGAN, reads from the modEncode
ChIP-seq experiments [84] were obtained from sequence read archive (SRA) for 49 features in
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fastqsanger format, using the accession keys given in table 6. After downloading, the reads
were mapped to the Drosophila Melanogaster reference genome BDGP5/dm3 using bowtie2 [85]
mostly with default parameters, see listing 8 for details. The resulting bam alignment files
were then converted to bigwig format as described in section 4.1 and listing 2. While most
experiments feature 2 to 4 replicates, only replicate 2 was considered for each chromatin feature
to limit disk space usage and processing time. The bigwig files were then used as inputs for the
DNN and cGAN as described above in sections 4.4, 4.4.1, 4.5 and 4.5.1.

For the comparisons, the DNN was used with window size w = 80, but a larger batch size of
100. Additionally, sample flipping was used as described in [30] and implemented in the provided
code. Furthermore, the SGD optimizer used so far was replaced by the RMSprop optimizer with
standard parameters, namely a learning rate of 0.001; training matrices were ICE-normalized
and predicted matrices were not scaled. All changes were made following a comparison with
the source code supposedly used for the paper [30], see above. Training was performed on
samples from chromosome 2L, 2R and 3L, and chromosome X was used for validation. All other
parameters and settings of the DNN were left unchanged, cf. section 4.4.

Hi-cGAN was used with a window size w = 64, which is the largest power of two smaller than the
maximum window size of wmax = 80 imposed by the given Hi-C data from Schuettengruber et al.
[48]. Here, batch size was set to 2, and training was performed on samples from chromosomes 2L
and 2R, using chromosome 3L(!) for validation and 3R and X for testing. All other parameters
and settings were left unchanged, cf. section 4.5. For Hi-cGAN, the training matrices were
not ICE-normalized, but the predicted matrices were ICE-normalized according to listing 9 for
better comparability (fig. 74).

The predicted matrices from Pau Farré’s python program for chromosome 3R were written out
as numpy arrays by adding a simple one-liner to the provided code. These arrays were then
converted to cooler and Pearson correlations per distance were computed from them as usual.
Since Farré et al. have reported Pearson correlations per position, an additional custom python
script was written to compute such correlations [76, scripts/corr_per_pos.py].

In terms of matrix plots, it was attempted to use the same cutout as in the paper [30]. However,
the paper seems to contain an error, since the plotted excerpt does not coincide with Hi-C data
from chromosome 3R:15-20 Mbp, as stated in the caption [30, fig. 2], but most likely stems
from chromosome 3R:16.75-21.75 Mbp, which was subsequently used for the thesis at hand. For
comparability reasons, all matrix cutouts were plotted twice, once with the standard color map
of this thesis (“RdYlBu_r”, fig. 60) and once with the blue and red color maps used in the
publication [30] (fig. 73). Additionally, the track file for pygenometracks was setup to obey
the minimum and maximum values in the given cutout, because the automatic value range
adjustment did not work well in this case.

The results for the comparison between the DNN, Hi-cGAN and Farré et al. are shown at the
end of section 5.3.
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5 Results

In the following two sections, the results of the DNN- and cGAN-based approaches for predicting
Hi-C contact matrices will be presented. While the various modifications of the dense neural
network described in section 3.1 did not really help improve the status quo, the novel conditional
generative adversarial network laid out in section 3.2 showed interesting properties. Finally, in
section 5.3, the results from DNN and Hi-cGAN are compared to two known Hi-C matrix
prediction approaches in the field, namely HiC-Reg by Zhang et al. [28] and the dense neural
network approach by Farré et al. [30], on which the DNN-approach of this thesis is based.

5.1 Dense Neural Network approaches

In the following subsections, the resulting predictions for modifications of the dense neural
network originally conceived by Farré, Heurteau, Cuvier and Emberly [30] will be shown. This
includes variations of the convolutional layer(s), custom loss functions with the intent of reducing
blurriness in the predictions and tuning window- and bin size, cf. section 3.1. As a start, however,
the results of the initial network without any modifications will be shown for comparison. Note
that the thesis at hand is generally using data from human cell lines, cf. section 4.1, while the
work by Farré et al. is using data from Drosophila Melanogaster embryonic cells. For a direct
comparison, see section 5.3.

5.1.1 Initial DNN results for comparison

The basic dense neural network was setup and trained as explained in section 4.4.3. Here, the
validation error (MSE) reached its minimum of about 150 000 after approximately 500 epochs
for bin size 25 kbp and around 24 000 after 400 epochs for bin size 10 kbp, figs. 20f and 21f.
Beyond that, the learning curve indicated overfitting, but the resulting test matrices often did
not change much with increasing number of epochs, compare e. g. the matrix plots after 500
and 1000 epochs in figs. 22 and 23.

Figures 20 and 21 show the distance-stratified Pearson correlations (cf. section 4.2) alongside
area under the correlation curve (AUC) for the five test chromosomes 3, 5, 10, 19 and 21 at bin
sizes 25 and 10 kbp, respectively. The red curves in each correlation plot show the correlation
between the target Hi-C data from K562 (target chromosome) and the corresponding training
Hi-C data from GM12878 (training chromosome). It is obvious that all predicted test matrices
had a strictly positive Pearson correlation with respect to the target matrices, but were worse
than simply taking data from the training cell line as prediction for the target cell line.

The plots of the predicted matrices also looked modest. While the DNN generally produced high
interaction counts in regions with many true interactions and low interaction counts in regions
with few true interactions, (TAD-)boundaries between different interacting domains were mostly
not discernible, figs. 22 and 23. This finding is in line with the clearly positive, but medium-
valued Pearson correlations. Exceptions with more distinct boundaries existed in all of the five
test chromosomes, for example chr19:34-35 Mbp (fig. 22b), but were rare. Interestingly, medium-
sized interacting structures, for example chr21:31-32.5 Mbp or chr19:31.2-32.7 Mbp often seemed
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to be missing altogether – while structures larger than the window size, for example chr3:34-
36.7 Mbp and chr3:36.7-39.5 Mbp sometimes were at least indicated, fig. 22.

Reducing the bin size to bfeat = bmat = 10 kbp as in the paper by Farré et al. [30] led to
somewhat different results. Compared to 25 kbp, the area under the correlation curves was
approximately the same for test chromosomes 3 and 5, slightly higher for chromosome 10, but
lower for chromosomes 19 and 21, cf. figs. 20 and 21. However, the ability to predict larger
structures was lost, and thus the matrix plots did not look better than before, fig. 24. The
comparatively bad result for test chromosome 21 might result from the low chromatin feature
coverage of this particular chromosome.

No obvious correlation between comparatively “good” and “bad” predictions with open and
closed states of the chromatin was observed. However, formally computing such a correlation is
challenging, because no adequate objective measure for “good” and “bad” is known, especially
considering the rather blurry results obtained so far. Furthermore, even if suchlike correlations
existed, exploiting them for improving predictions would still be, at best, not straightforward.
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Figure 20: Results /metrics, basic DNN, 25 kbp, test chromosomes
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Figure 21: Results /metrics, basic DNN, 10 kbp, test chromosomes
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Figure 22: Example predictions GM12878 → K562, basic DNN, 25 kbp, 500 epochs
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Figure 23: Example predictions GM12878 → K562, basic DNN, 25 kbp, 1000 epochs
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Figure 24: Example predictions GM12878 → K562, basic DNN 10 kbp, 1000 epochs
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5.1.2 Results for variations of the convolutional part

The predictions from the “longer” variant with three convolutional filter layers instead of a single
one, cf. sections 3.1.2 and 4.4.4, were better than the initial predictions in terms of Pearson
correlations for test chromosomes 10, 19 and 21, but worse for test chromosomes 3 and 5, fig. 25.
Interestingly, correlations for some of the larger distances could not be computed after 250 and
500 epochs, which generally means that the same values were predicted for these distances,
cf. section 4.2. The reason for this behavior is not fully understood yet, but comparatively
few neurons in the outermost layer are responsible for predictions at longer distances due to
the chosen network setup, cf. section 4.4.1 and fig. 9. Since the longer network variant has a
considerably larger number of trainable parameters, it is assumed that 500 epochs might not
have been enough to activate some of the outer neurons. Slow training can occur when ReLU
activations are used (as in the given case) and the gradients are close to zero [69]. Apart from
that, the learning process for the “longer” variant in general looked more smooth and reached
a lower validation error than before, fig. 25f, but the matrix plots did not show any obvious
improvement over the initial ones, fig. 26.

The results for the “wider” network, which featured a wider convolutional filter in the first
network layer, cf. sections 3.1.2 and 4.4.4, were generally similar to the initial results, both in
terms of Pearson correlations and in terms of matrix plots, figs. 27 and 28. Given the small
increase in the number of trainable parameters and overall similar network topology, this is not
surprising. Overfitting was less obvious than with the initial setup and the training process
looked more smooth, but the remaining validation error was slightly higher than for the initial
approach, fig. 27f.

Combining the “longer” and “wider” variants in the “wider-longer” setup with more convo-
lutional layers and wider filter kernels, cf. sections 3.1.2 and 4.4.4, also did not perform as
expected. While improvements in the Pearson correlations could again be seen for 3 of 5 test
chromosomes compared to the initial network, fig. 29, the observed correlations were worse than
the ones from the highly similar “longer”-variant alone. Like with the similar “longer”-approach,
predictions at longer distances were partially missing. Compared to the other variants, the val-
idation error was generally higher and stopped decreasing after very few epochs, fig. 29f, while
the training loss continued decreasing for at least 1000 epochs. This generally indicates lack of
generalization and overfitting to the training data. In terms of matrix plots, the predictions
surprisingly were still quite similar to the initial ones, but seemed a bit more blurry, fig. 30.

Predictions and metrics from the generalized DNN-approach with feature bin size 5 kbp and
matrix bin size 25 kbp according to sections 3.1.2, 4.4.2 and 4.4.4 are shown in figs. 31 and 32.
Unfortunately, the results did again not improve compared to the initial predictions. While the
learning curve was smooth and showed signs of slight overfitting beyond 300 epochs, fig. 31f,
the matrix plots seemed worse than the initial ones, fig. 32. For example, the large struc-
ture at chr3:34-36.7 Mbp, which had been detected by the previous approaches, was completely
missing.
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Figure 25: Results /metrics, “longer” variant of DNN, test chromosomes
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Figure 26: Example predictions GM12878 → K562, “longer” variant of DNN,
bin size 25 kbp, 1000 epochs
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Figure 27: Pearson correlations, “wider” variant of DNN, test chromosomes
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Figure 28: Example predictions GM12878 → K562, “wider” variant of DNN,
bin size 25 kbp, 1000 epochs
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Figure 29: Results /metrics, “wider-longer” variant of DNN, test chromosomes
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Figure 30: Example predictions GM12878 → K562, “wider-longer” variant of DNN, 25 kbp,
1000 epochs
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Figure 31: Results /metrics, “5k – 25k” variant of DNN with bfeat = 5 kbp and bmat = 25 kbp,
test chromosomes
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Figure 32: Example predictions GM12878 → K562, “5k – 25k” variant of DNN, 1000 epochs
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5.1.3 Results for combined loss function

Exchanging the mean squared error for a combined loss function consisting of MSE, TV loss
and perceptual loss did not improve the results in the chosen setting according to sections 3.1.3
and 4.4.5 (eq. (13)). The results are shown in figs. 33 and 34.

For all test chromosomes, the correlations were highly similar to the initial network’s, fig. 33,
and the matrix plots also looked similar, chromosome 21 probably being the most different,
fig. 34. The results shown here are the best ones obtained by manual tuning of the multiplicative
parameters λ in eq. (13). Guided parameter tuning was unfortunately infeasible within the thesis
at hand due to the training times required for optimizing the combined loss function. Other
options which where not explored for the same reason include truncating the VGG-16 network
at a different layer, using a loss function based on more than one of the intermediate VGG-16
layers [54] or taking another loss network. However, the results obtained thus far were also not
encouraging towards such investigations.

While manually searching for better parameters λ was not successful, it was found that the TV
loss weight λTV needed to be much smaller than the two other weights in eq. (13). Otherwise,
many true interactions off the matrix diagonals were considered as noise and optimized away
early in the training process, cf. fig. 61 (p. 107).

5.1.4 Results for score-based loss function

Exchanging the MSE loss by a combination between score-based- and MSE loss allowed for a
smooth learning process and a slightly lower validation error compared to the initial approach.
However, at around 7 min per epoch on a GPU, the training process also was about seven times
slower than the initial approach on CPU. Unfortunately, the higher effort did not lead to obvious
improvements.

The Pearson correlations for a score-based loss function according to eq. (14) with parameters
λMSE = 1.0, λscore = 100, ds = 12 are shown in fig. 35. While a slight improvement was
achieved for test chromosome 21, the correlations of the others remained widely unchanged.
The matrix plots also looked fairly similar to the initial ones, fig. 36, chromosome 21 again
being the most different compared to the initial predictions.

In fig. 36, the true- and predicted scores are shown the second track, replacing the PCA track.
Indeed, the score curve computed from the true matrices showed local minima at putative TAD
boundaries, as set forth in section 3.1.4, so score computation with the chosen diamond size
seemed sound. However, despite the optimization term in the loss function, the score curve
of the predicted matrices compared to the true curve somewhat like the predicted matrices
compared to the true ones: The predicted score was generally high, when the true score was
high, and low when the true score was also low, but high peaks (local maxima) and steep valleys
(local minima) in the plots were usually smoothed out.

Long training times forbade a targeted parameter tuning by grid- or tree-search, so the results
presented in this section should not be interpreted as the optimal ones achievable by a score-
based loss function.
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Figure 33: Results /metrics, DNN with combined loss function (MSE, TV, VGG-16), test
chromosomes
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Figure 34: Example predictions GM12878 → K562, DNN with combined loss function (MSE,
TV, VGG-16), 500 epochs
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Figure 35: Results /metrics, DNN with score-based loss function, test chromosomes
(λMSE = 1.0, λscore = 100, ds = 12)
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Figure 36: Example predictions GM12878 → K562, DNN with score-based loss function,
500 epochs
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5.1.5 Results for different bin sizes and window sizes

To assess predictions at larger bin sizes, five different approaches were compared, cf. sec-
tion 3.1.5:

a) “50k direct”:
directly training a network at bin size 50 kbp and predicting at that same bin size

b) “initial 25k coarsened”:
coarsening the results of the initial network discussed above (section 5.1.1) by summarizing
bins via cooler coarsen

c) “initial 25k→50k”:
using the initial network trained at 25 kbp (cf. section 5.1.1) to predict at 50 kbp

d) “25k+50k→50k”:
predicting at 50 kbp from a network simultaneously trained with bin sizes 25 and 50 kbp

e) “25k+50k→25k”:
predicting at 25 kbp from a network simultaneously trained with bin sizes 25 and 50 kbp

The best Pearson correlations at bin size 50 kbp were generally obtained either by coarsening
the initial results to 50 kbp (method b) or by taking the network trained at 25 kbp for predicting
at 50 kbp (method c), fig. 37. Compared to coarsening, the latter approach had the advantage
of doubling the window size (in base pairs) and it worked better for test chromosome 21.

Looking at the corresponding matrix plots, the desired effect of making larger structures more
prominent by increasing the bin size was only partially achieved, fig. 39. While all larger
structures in the example cutout of test chromosome 3 indeed looked more prominent, fig. 39c,
no obvious improvement was observed for the medium-sized structures in the example regions
of chromosome 19 and 21, figs. 39a and 39b.

Direct predictions at bin size 50 kbp (method a) were worse than indirect methods derived from
networks trained at 25 kbp. Both the Pearson correlations and the matrix plots seemed better
for method b) and c), figs. 37 to 39, but on a generally low level. It is not known why the
direct predictions turned out worse. Potential reasons include the reduced number of samples
(cf. table 3, p. 30) and the binning process, or a combination of both. To this end, first
investigations showed that binning the proteins using the maximum instead of the mean across
the 50 kbp-bins, cf. section 4.4.1, did not improve the results.

Notably, the training process for the direct prediction at bin size 50 kbp (method a) diverged after
about 420 epochs. One possible reason for this could be too high a learning rate, which could
have been avoided by decreasing the learning rate over time. However, no further investigations
were made into the case, because the divergence occurred only after overfitting, fig. 37f, and was
thus not seen as too problematic here. The minimum validation error was reached after about
150 epochs, about 100 epochs earlier than in the initial setup at 25 kbp. This is not surprising,
since there are only about half as many training samples at 50 kbp compared to 25 kbp, cf.
table 3 (p. 30).

Simultaneously training a network with matrix- and feature bin sizes of 25 kbp and 50 kbp
(methods d, e) turned out unproblematic with regard to convergence, fig. 40f, but the Pear-
son correlations when predicting at both 25 kbp and 50 kbp were – often significantly – worse
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than the initial predictions at the respective bin size, fig. 37 (“25k+50k→50k”) and fig. 40
(“25k+50k→25k”). Looking into the matrix plots shown in fig. 41, all predictions also seemed
much worse than the results obtained by the other approaches investigated thus far. It could not
be clarified what caused the improvement in Pearson correlations for chromosome 21 compared
to the initial predictions at 25 kbp, fig. 40e, but it is interesting that even predictions with such
a high degree of blurriness as in fig. 41a can reach an AUC of around 0.65.
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Figure 37: Results /metrics, various DNNs at 50 kbp
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Figure 38: Example predictions GM12878 → K562, DNN at 50 kbp direct, 250 epochs
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Figure 39: Example predictions GM12878 → K562, DNN trained at 25 kbp predicting at
50 kbp, 500 epochs
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Figure 40: Results /metrics, DNN trained at 25 kbp and 50 kbp simultaneously
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Figure 41: Example predictions GM12878 → K562, DNN trained at 25 kbp and 50 kbp simul-
taneously, 25 kbp, 500 epochs
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5.2 Hi-cGAN approaches

In the following three subsections, the results from the conditional generative adversarial net-
works will be presented. Here, at least one of the three cGAN-variants under investigation
showed good performance.

5.2.1 Hi-cGAN with DNN embedding

Hi-cGAN with DNN embedding according to sections 3.2.2 and 4.5.3 showed interesting results.
All in all, the training process was smooth and converged after around 60 epochs, mostly using
the parameters suggested by Isola et al. [49], cf. sections 4.5.2 and 4.5.3. Although pix2pix
has shown fast convergence in other applications, it was surprising that this still held after the
changes made to the original network, especially adding the embedding network. While the
Pearson correlations were mostly worse than the ones of the DNN, compare e. g. figs. 42 and 62
(p. 108), the matrices mostly looked visually better, showing slightly more distinct boundaries
between interacting and non-interacting regions, compare figs. 43 and 63.

Using weight transfer from a pre-trained DNN for the embedding networks further stabilized the
training process and made the discriminator reach a stable value of around 0.693 (≈ − log 0.5) on
epoch average after only 2 epochs, while the generator validation loss reached a stable minimum
value after about 15 epochs, fig. 44f. However, the resulting predictions did not really improve.
While the Pearson correlations showed showed slightly better values for the pre-trained DNN
embedding compared to the non-pre-trained, fig. 44, the matrices were visually clearly worse
than without pre-training, and also worse than the results from the DNN alone, fig. 45.

5.2.2 Hi-cGAN with CNN embedding

The CNN embedding according to sections 3.2.3 and 4.5.3 also allowed for a stable training
of Hi-cGAN, whereby the discriminator loss reached stable epoch-average values after 20 to 30
epochs, depending on window size, figs. 46f, 48f and 50f. For window size w = 64, the Pearson
correlations showed worse values than the DNN-approach or Hi-cGAN with DNN embedding,
fig. 46. Nevertheless, the predicted matrices looked visually better, at least for the given test
cutouts shown in fig. 47. For window sizes w ∈ {128, 256}, the Pearson correlations often reached
and partially exceeded the baseline (“transfer GM12878 to K562”), and the matrix plots were
visually often in good accordance with the targets, fig. 48 to fig. 51.

Predictions with swapped training- and test cell line, i. e. with data from K562 for training and
data from GM12878 for prediction were investigated only for window size w = 256, which seemed
most promising. Even though the training process was not as stable as for other investigations
on cGANs in this thesis, fig. 64f, the predictions indeed showed Pearson correlations largely
above the baseline (“transfer K562 to GM12878”) and matrix plots were in good accordance
with their respective targets, cf. figs. 64 and 65.

Average training times per epoch were around 110 min for window size w = 256, 28 min for
window size w = 128 and 14 min for w = 64 at bin size 25 kbp. Here, training was performed
on machine 1 for window sizes w = {64, 128} and on machine 2 for window size w = 256, due
to memory limitations on machine 1, cf. section 7.3.
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Figure 42: Results /metrics, cGAN, DNN embedding, no pre-training, w = 64, test chromo-
somes
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Figure 43: Example predictions GM12878 → K562, cGAN, DNN embedding, no pre-training,
w = 64, 60 epochs
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Figure 44: Results /metrics, cGAN, DNN embedding, pre-trained, w = 64, test chromosomes
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Figure 45: Example predictions GM12878 → K562, cGAN, DNN embedding, pre-trained, w =
64, 100 epochs
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Figure 46: Results /metrics, cGAN, CNN embedding, w = 64, test chromosomes
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Figure 47: Example predictions GM12878 → K562, cGAN, CNN embedding, w = 64,
80 epochs
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Figure 48: Results /metrics, cGAN, CNN embedding, w = 128, test chromosomes
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Figure 49: Example predictions GM12878 → K562, cGAN, CNN embedding, w = 128,
90 epochs
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Figure 50: Results /metrics, cGAN, CNN embedding, w = 256, test chromosomes
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Figure 51: Example predictions GM12878 → K562, cGAN, CNN embedding, w = 256,
100 epochs
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Figure 51: Example predictions GM12878 → K562, cGAN, CNN embedding, w = 256,
100 epochs

5.2.3 Hi-cGAN with mixed DNN / CNN embedding

Using Hi-cGAN with mixed embedding, i. e. DNN embedding for the generator and CNN
embedding for the discriminator according to sections 3.2.4 and 4.5.5 did not make for a stable
training process, fig. 52f. Despite Pearson correlations mostly between 0.4 and 0.5, fig. 52, the
predicted matrices were very blurry, fig. 53. First investigations indicated that Hi-cGAN may
have learned to partially ignore the feature input and is thus predicting submatrices that look
similar to real Hi-C submatrices, but do not have sufficient correlation with the feature data.
When averaging the overlapping submatrices, this might cause blurry results as observed in
fig. 53.

Interestingly, pre-training the DNN improved the situation in this mixed DNN/CNN embedding
setup. While the training process still seemed unstable, fig. 54f, the predicted matrices looked
much better, similar to the ones from the Hi-cGAN with DNN embedding (non-pre-trained),
compare figs. 43 and 55. However, the results were still not better than the ones from Hi-cGAN
with CNN embedding alone, cf. section 5.2.2.
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Figure 52: Results /metrics, cGAN, mixed embedding, no pre-training, w = 64, test chromo-
somes
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Figure 53: Example predictions GM12878 → K562, cGAN, mixed embedding, no pre-training,
w = 64, 20 epochs
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Figure 54: Results /metrics, cGAN, mixed embedding, DNN pre-trained, w = 64, test chromo-
somes
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Figure 55: Example predictions GM12878 → K562, cGAN, mixed embedding, DNN pre-
trained, w = 64, 40 epochs
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5 Results

5.3 Comparison with other approaches

To conclude the investigations on the DNN-approach and Hi-cGAN, the best of the respective
variants were compared to the methods by Zhang et al. [28] and Farré et al. [30], using the
same input data as in the respective papers. To this end, the initial DNN and Hi-cGAN with
CNN embedding were fed with the corresponding input data, cf. section 4.6.

Comparison DNN / Hi-cGAN / Random Forest by Zhang et al.
When comparing the random-forest-based method by Zhang et al., HiC-Reg [28], to Hi-cGAN
trained on the typical training chromosome set, cf. section 4.4.1, the cGAN approach seemed
superior for distances up to about 200 kbp, while both HiC-Reg-MULTICELL and -WINDOW
outperformed Hi-cGAN for distances between 200 kbp and 1 Mbp, fig. 56. This was also reflected
in the matrix plots, fig. 57. Hi-cGAN often predicted smaller structures up to about 400 kbp
very well and offered distinct boundaries even among nested structures, but HiC-Reg showed
better performance for interactions in the upper half of the window size, see e. g. chr17:30-
34.5 Mbp. The Pearson correlations for the DNN were better than HiC-Reg’s and close to the
ones of Hi-cGAN below distances of approximately 100 kbp, but considerably worse for larger
distances. The matrix plots from the DNN were generally worse than the ones from Hi-cGAN
and HiC-Reg. Note that the comparisons have not been entirely fair so far, because Hi-cGAN
and DNN had in this setting been trained on the typical set of training chromosomes, including
the two target chromosomes 14 and 17, while HiC-Reg had been trained only on data from the
target chromosomes 14 or 17, cf. section 4.6.

For better comparability with the HiC-Reg WINDOW approach, Hi-cGAN, too, was trained
on data from chromosome 14 or 17 only in a second setting. Surprisingly, despite the low
amount of training samples, the training process converged with good Pearson correlations for
the (training-)chromosomes and produced visually good matrices, fig. 56e/56f and 57c/57f. In
general, the observations from above were also valid here: Hi-cGAN was outperforming HiC-
Reg-WINDOW – and even -MULTICELL, which considers data from additional cell lines – when
predicting smaller structures, but HiC-Reg performed better for larger structures. However, in
this second setting, structures sized approximately 500 to 1000 kbp appeared more clearly in Hi-
cGAN ’s predictions and the intersection point in the Pearson correlation graphs moved further to
the right, i. e. the distance range for which Hi-cGAN performed better than HiC-Reg was slightly
shifted towards larger distances. Interestingly, in this single-train-chrom-setup, interacting pairs
at distances beyond approximately 1.3 kbp were all predicted zero by Hi-cGAN, likely due to
the small number of samples in this setting, maybe in combination with an insufficient number
of training epochs. The effect was more pronounced for chromosome 17, which is indeed shorter
than chromosome 14 and thus yields less training samples.
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Figure 56: Pearson correlation comparison
Hi-cGAN / DNN / HiC-Reg MULTICELL and WINDOW [28]
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Figure 57: Comparison HiC-Reg [28] and Hi-cGAN (CNN embedding)
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5.3 Comparison with other approaches

Comparison DNN / Hi-cGAN / Neural network approach by Farré et al.
Next, the DNN and Hi-cGAN were trained on data from Drosophila Melanogaster embryonic
cells to allow for a comparison with the results from Farré et al. [30], cf. section 4.6.

In the Pearson correlation plots for test chromosome 3R, the similarity between the DNN-
approach and the method by Farré et al. was obvious, both when plotting correlation over
distance and position, figs. 58 and 59. Given the similarity of the two methods, which share
the network topology but use a different sample generation process, this is not very surpris-
ing. Interestingly, the method by Farré et al. showed better values when plotting Pearson
correlations over positions, while the DNN-approach showed better values when plotting over
distances. However, the values generally remained on a comparatively low level. Note that the
– comparatively good – values reported in the paper [30, fig. 3] for Pearson correlations over
positions could not be reproduced; they may have been computed in a different way.

In terms of predicted matrices, the results published in the paper [30] could widely be reproduced
using the slightly modified code provided by Pau Farré, cf. section 4.6. The matrix plots are
shown in figs. 60 and 73; for a comparison with the published results see especially fig. 73c vs.
fig. 73d. Although some structures were well predicted, and despite the better distance-stratified
Pearson correlations, the matrix plots from the DNN approach looked clearly worse than the
ones by Farré et al., fig. 60. Since the dense neural network is sharing the network architecture
with the approach from Farré et al., this can only mean that the chosen way of data preparation
laid out in section 4.4.1 works worse than the approach chosen by Farré et al. for this type of
network and/or input data.

For Hi-cGAN, on the other hand, the chosen way of data preparation seemed to work well
again. Here, reasonable results for the test chromosomes 3R and X were obtained, generally
outperforming the DNN-approach and the method by Farré et al., both in terms of Pearson
correlations and matrix plots. fig. 58 to 60, figs. 71 and 72 (p. 118 f.).
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6 Discussion and Outlook

In this thesis, two methods for predicting Hi-C interaction matrices have been investigated.
Here, the first one was based on a dense neural network proposed by Farré et al. [30] and the
second one, Hi-cGAN, was based on a conditional generative adversarial network inspired by
pix2pix [49], an image transformation network.

Despite all amendments to the original network setup, the results of the dense neural network
approach remained modest. Improvements, if at all visible, could only be achieved for small
parts or regions of the test set. However, the comparison with the results from Farré et al.
[30] (section 5.3) – who have used the same network with different kinds of input data – shows
that the failure of the DNN might be due to the chosen way of sample preparation and not
necessarily be founded in an unsuitability of the network setup itself. Retrospectively, it would
have been better to test the DNN in its original setup first and reproduce the results from Farré
et al. [30] before moving on to different organisms with different cell lines and chromatin folding
principles.

Independent from the DNN, the newly developed conditional generative adversarial network
method, Hi-cGAN, seemed promising. Especially the variant with CNN embedding showed
widely satisfying results for genomic distances up to about 5 Mbp and partially outperformed
existing methods like HiC-Reg [28] for data from human cell lines and Farré et al. [30] for data
from Drosophila Melanogaster. While HiC-Reg was superior for distances in the range 200 to
1000 kbp, Hi-cGAN often performed better for regions close to the matrix diagonal and with
regard to predicting nested interacting regions. Furthermore, it showed acceptable predictions
for distances beyond 1 Mbp, where HiC-Reg has no data. Interestingly, Hi-cGAN worked not
only for human cell lines like GM12878 and K562, where comparatively many training samples
are available, but also for Drosophila Melanogaster embryonic cells, where much fewer samples
can be extracted from the relatively short genome. Here, Hi-cGAN showed better results with
fewer training data compared to the method by Farré et al. [30]. In this case, the results were
superior across all available distances.

However, there is still room for improvement – for example, even the best predictions for human
cell lines were not or not much better than simply taking data from the training cell line as a
“prediction” for the target cell line. Throughout the thesis, a few starting points for further
improving Hi-cGAN ’s predictions were identified.

In the current implementation, the discriminator is trained on two kinds of inputs: it is supposed
to classify pairs of true chromatin feature arrays and true Hi-C submatrices as real, and pairs of
true chromatin feature arrays and artificial Hi-C submatrices produced by the generator as fake,
cf. eq. (8). For text-to-image synthesis tasks, a third kind of input has been introduced; here the
discriminator is additionally trained to classify pairs of true output and mismatching input data
as fake [62]. Training the discriminator on such samples might help the cGAN avoid situations
where the generator produces matrices which “look real”, but have insufficient correlations with
the chromatin feature input data. It is unclear how strong the effect of this change would be
in the given application, where the adversarial loss is only one part of the combined generator
loss, but certainly worth a try.

As noted in section 4.5.2, better results were obtained by replacing the tanh activation in the
generator of the original pix2pix network by sigmoid activation. Retrospectively, however, it
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might have been better to leave the tanh activation in the generator untouched and instead
scale the training matrices – and maybe the chromatin features, too – to value range -1...1.
This would allow for a broader input value range to the sigmoid function contained in the
discriminator loss, potentially improving numerical gradient computations.

Another starting point is for sure the network architecture in itself. While good reasons backed
the decision for choosing pix2pix as a starting point, especially its wide range of applications and
demonstrated convergence even when only few training samples are at hand [49] (cf. section 3.2),
it remains a network designed for converting input images to output images. However, the task
at hand essentially requires transforming one-dimensional input data into very special symmetric
output images. Although surprisingly good results were obtained, it is difficult to imagine that
pix2pix – amended by the simplistic and rather ad-hoc CNN embedding network described in
section 3.2.3 and 4.5.4 – is the optimal cGAN for suchlike 1D→ 2D conversions. For example, in
the current implementation, the CNN-embedding network of the discriminator has more weights
than the discriminator itself, cf. table 4 and 5, which is likely not optimal.

Nevertheless, the cGAN approach developed within this thesis can hopefully serve as a helpful
starting point and baseline for further development of improved Hi-C contact matrix prediction
methods. To this end, all source code is provided under an open source license [86, 76].
This document itself is provided under the Creative Commons
Attribution-ShareAlike 4.0 International Public License.
https://creativecommons.org/licenses/by-sa/4.0/legalcode
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7 Appendix

7.1 Chromatin feature download details

The basic download paths for all chromatin feature files in bam format are
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/
for CTCF/Histones, DNase, RAD21/SMC3, respectively. The actual files for replicates 1 and 2 can then
easily be found by searching for “CELL_FEATURE”, where CELL is the Cell line (e. g. GM12878) and
FEATURE is the chromatin feature of interest, e. g. CTCF, H3K27ac and so on. For convenience, the
pdf version of this document contains clickable links below.
GM12878
replicate 1
CTCF
H3k27ac
H3k27me3
H3k36me3
H3k4me1
H3k4me2
H3k4me3
H3k79me2
H3k9ac
H3k9me3
H4k20me1
DNase
Rad21
SMC3

GM12878
replicate 2
CTCF
H3k27ac
H3k27me3
H3k36me3
H3k4me1
H3k4me2
H3k4me3
H3k79me2
H3k9ac
H3k9me3
H4k20me1
DNase
Rad21
SMC3

K562
replicate 1
CTCF
H3k27ac
H3k27me3
H3k36me3
H3k4me1
H3k4me2
H3k4me3
H3k79me2
H3k9ac
H3k9me3
H4k20me1
DNase
Rad21
SMC3

K562
replicate 2
CTCF
H3k27ac
H3k27me3
H3k36me3
H3k4me1
H3k4me2
H3k4me3
H3k79me2
H3k9ac
H3k9me3
H4k20me1
DNase
Rad21
SMC3
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https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneGm12878H3k9me3StdAlnRep1.bam
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https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/wgEncodeSydhTfbsGm12878Rad21IggrabAlnRep1.bam
https://www.encodeproject.org/files/ENCFF415OZI/@@download/ENCFF415OZI.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneGm12878CtcfStdAlnRep2.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneGm12878H3k27acStdAlnRep2.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneGm12878H3k27me3StdAlnRep2.bam
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https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneGm12878H3k9acStdAlnRep2.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneGm12878H3k9me3StdAlnRep2.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneGm12878H4k20me1StdAlnRep2.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/wgEncodeOpenChromDnaseGm12878AlnRep2.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/wgEncodeSydhTfbsGm12878Rad21IggrabAlnRep2.bam
https://www.encodeproject.org/files/ENCFF797XWM/@@download/ENCFF797XWM.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneK562CtcfStdAlnRep1.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k27acStdAlnRep1.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k27me3StdAlnRep1.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k36me3StdAlnRep1.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k4me1StdAlnRep1.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k4me2StdAlnRep1.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k4me3StdAlnRep1.bam
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k79me2StdAlnRep1.bam
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7.2 Listings

1 #bash -style code
2 # convert from hic to cooler , single resolution
3 # MATRIXHIC is a matrix in .hic format
4 hic2cool convert -r 5000 $MATRIXHIC matrix_5k .cool
5 # coarsen the matrix from 5k to 25k, for example
6 cooler coarsen -k 5 matrix_5k .cool -o matrix_25k .cool
7 # versions used for thesis
8 # hic2cool 0.8.3 , cooler 0.8.10

Listing 1: Hic to cooler

1 #bash -style code
2 # indexing a bam file
3 samtools index ${ BAMFILE } ${ BAMFILE %bam }. bai
4 # creating a bigwig file from the bam file above
5 OUTFILE ="${ BAMFILE %bam} bigwig "
6 hg19SIZE =" 2685511504 "
7 COMMAND ="-- numberOfProcessors 10 --bam ${ BAMFILE }"
8 COMMAND ="${ COMMAND } --outFileName ${ OUTFILE }"
9 COMMAND ="${ COMMAND } --outFileFormat bigwig "

10 COMMAND ="${ COMMAND } --binSize 5000 --normalizeUsing RPGC"
11 COMMAND ="${ COMMAND } -- effectiveGenomeSize ${ hg19SIZE }"
12 COMMAND ="${ COMMAND } --scaleFactor 1.0 --extendReads 200"
13 COMMAND ="${ COMMAND } -- minMappingQuality 30"
14 bamCoverage ${ COMMAND }
15 # computing mean from replicate 1 and 2 bigwig files
16 REPLICATE1 ="${ FOLDER1 }${ PROTEIN }. bigwig "
17 REPLICATE2 ="${ FOLDER2 }${ PROTEIN }. bigwig "
18 OUTFILE ="${ OUTFOLDER }${ PROTEIN }. bigwig "
19 COMMAND ="-b1 ${ REPLICATE1 } -b2 ${ REPLICATE2 }"
20 COMMAND ="${ COMMAND } -o ${ OUTFILE } -of bigwig "
21 COMMAND ="${ COMMAND } --operation mean -bs 5000"
22 COMMAND ="${ COMMAND } -p 10 -v"
23 bigwigCompare ${ COMMAND }
24 # versions used for thesis
25 # samtools 1.9, bamCoverage 3.5.0 , bigwigCompare 3.5.0

Listing 2: Bam to bigwig

1 chromosome ="${2}"
2 bamfolder ="${1}"
3

4 shopt -s nullglob
5 for i in ${1}*. bam
6 do
7 echo " converting : ${i} - chrom ${2}"
8 tmpfile ="${i}. tmp"
9 countfile ="${i%. bam}_${ chromosome }. count"

10 samtools view -b ${i} ${ chromosome } > ${ tmpfile }
11 cmd="-ibam ${ tmpfile } -bg"
12 bedtools genomecov ${cmd} > ${ countfile }
13 rm ${ tmpfile }
14 done

Listing 3: Bam to bedgraph
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1 inputfolder ="${1}"
2 # following example files are provided in HiC -Reg github
3 region ="HiC -Reg/ Scripts / aggregateSignalInRegion / hg19_5kbp_chr17 .txt"
4 sizesfile ="HiC -Reg/ Scripts / aggregateSignalInRegion /hg19.fa.fai"
5

6 shopt -s nullglob
7 for i in ${1}*. count
8 do
9 echo " converting : ${i}"

10 outfile ="${i%. count }. txt"
11 cmd="${ region } ${ sizesfile } ${i} ${ outfile }"
12 ./ aggregateSignal_v1 ${cmd} # provided by HiC -Reg
13 done

Listing 4: Bedgraph to HiC-Reg input format

1 #" combined_30 " GM12878 or K562 matrix from Rao et al. at 5kb resolution
2 inMatrix =${1}
3 # filename for cooler matrix (*. cool) with VC_SQRT correction
4 outMatrix =${2}
5 chrom=${3}
6

7 cmd="-m ${ inMatrix }"
8 cmd="${cmd} -o ${ outMatrix }"
9 cmd="${cmd} --inputFormat cool --outputFormat cool"

10 cmd="${cmd} -- correction_name VC_SQRT -- store_applied_correction "
11 cmd="${cmd} -- correction_division "
12 cmd="${cmd} --chromosome ${chrom}"
13 hicConvertFormat ${cmd}
14

15 cooler dump ${ outMatrix } --join -o ${ outMatrix %. cool }. txt
16 params ="--infile ${ outMatrix %. cool }. txt"
17 params ="${ params } --outfile ${ outMatrix %. cool} _converted .txt"
18 python matrix_conversion .py ${ params } #see below for details

Listing 5: Cooler matrices to HiC-Reg input format

1 import click
2 import pandas as pd
3

4 @click . option ("--infile ", required =True , type=click.Path( exists =True ,
readable =True , dir_okay =False), help="text file created by cooler dump

with --join")
5 @click . option ("--outfile ", required =False , type=click.Path( writable =True ,

dir_okay =False))
6 @click . command ()
7 def convert (infile , outfile ):
8 if outfile is None:
9 outfile = infile

10 try:
11 df = pd. read_csv (infile , header =None , sep="\t", index_col =False)
12 except Exception as e:
13 msg = str(e)
14 msg += "\ ncould not read csv file , wrong format ?"
15 raise SystemExit (msg)
16 if df.shape [1] != 7:
17 msg = "Read file with wrong format , number of columns should be 7 but

is {:d}"
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18 msg = msg. format (df.shape [1])
19 raise SystemExit (msg)
20 #check if the matrix contains nans
21 if df. isnull (). values .any ():
22 msg = " WARNING : there are nans in the dataframe "
23 print(msg)
24 # create the text - encoded matrix format for HiC -Reg
25 df["start"] = "chr" + df.loc [: ,0]. astype (str) + "_" + df.loc [: ,1].

astype (str) + "_" + df.loc [: ,2]. astype (str)
26 df["end"] = "chr" + df.loc [: ,3]. astype (str) + "_" + df.loc [: ,4]. astype (

str) + "_" + df.loc [: ,5]. astype (str)
27 df["count"] = df.loc [: ,6]. astype (" float32 ")
28 df.drop( columns =[0 ,1 ,2 ,3 ,4 ,5 ,6] , inplace =True)
29 df["count"]. fillna (value =0.0 , inplace =True)
30 # remove matrix diagonal since it is missing in the HiC -Reg examples ,

too
31 diagFilter = df["start"] == df["end"]
32 df = df.loc [~ diagFilter ]
33

34 df. to_csv (outfile , sep="\t", columns =["start","end","count"], header =
False , index=False , float_format ="%.4f")

35 print("first few lines of matrix txt file :\n", df.head ())
36

37 if __name__ == " __main__ ":
38 convert ()

Listing 6: Custom text file conversion for HiC-Reg’s matrix input

1 import click
2 import pandas as pd
3 import cooler
4 import os
5 import numpy as np
6

7 @click . option ("--filenames ", "-f", required =True ,
8 type=click.Path( exists =True , readable =True , dir_okay =False),
9 multiple =True ,

10 help=" testset_error file(s) from HiC -Reg")
11 @click . option ("--chromsize ", "-cs", required =False ,
12 type=click. IntRange (min =1) ,
13 help="Size of chromosome . Will be derived from data , if not

specified ")
14 @click . option ("--outfolder ", "-o", required =True ,
15 type=click.Path( writable =True , file_okay =False , exists =True),
16 help=" Folder where the coolers will be placed ")
17 @click . option ("--exponentiate ", "-e", required =False , type=bool , default =

False , show_default =True , help=" exponentiate count values ")
18 @click . command ()
19 def reconstruct (filenames , chromsize , outfolder , exponentiate ):
20 #read the the text files from HiC -Reg
21 #skip the first row , since it contains the incomplete header with

missing " Distance "
22 try:
23 dataframes = [pd. read_csv (filename , names =["Pair", " TrueValue ", "

PredictedValue ", " SquaredErr ", " Distance "],
24 sep="\t",
25 dtype ={"Pair": str , " TrueValue ": float , " PredictedValue

": float , " SquaredErr ": float , " Distance ": int},
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26 skiprows =[0]) for filename in filenames ]
27 except Exception as e:
28 msg = str(e) + "\ nCould not read one of the files , wrong format ?"
29 raise SystemExit (msg)
30

31 #print number of pairs in each file
32 for i, df in enumerate ( dataframes ):
33 print("file {:d} - {:d} pairs ({:s})". format (i, df.shape [0],

filenames [i]))
34

35 for df in dataframes :
36 # extract the start - and end positions of all pairs and the chromosome
37 df["Pair"] = df["Pair"]. str. replace (pat="-", repl="_")
38 splitDf = df["Pair"]. str.split(pat="_", expand =True)
39 df["chrom"] = splitDf .iloc [: ,0]
40 df[" start_L "] = splitDf .iloc [: ,1]. astype ("int32")
41 df["end_L"] = splitDf .iloc [: ,2]. astype ("int32")
42 #df[" chr_R "] = splitDf .iloc [: ,3] #not needed here , always the same as

chr_L
43 df[" start_R "] = splitDf .iloc [: ,4]. astype ("int32")
44 df["end_R"] = splitDf .iloc [: ,5]. astype ("int32")
45 # compute binsizes
46 df[" binsizes "] = df["end_L"] - df[" start_L "]
47 # compute the bin ids
48 binsize = df[" binsizes "]. iloc [0]
49 df[" bin1_id "] = df[" start_L "] // binsize
50 df[" bin2_id "] = df[" start_R "] // binsize
51 #if desired , take the values to the power of e to get counts from log

-scale values
52 if exponentiate == True:
53 df[" TrueValue "] = np.exp(df[" TrueValue "])
54 df[" PredictedValue "] = np.exp(df[" PredictedValue "])
55 #drop unnecessary columns
56 df.drop( columns =["Pair", " Distance ", " SquaredErr ", "end_L", "end_R",

" start_L ", " start_R "], inplace =True)
57

58 #check if the binsizes are equal in the single dataframes before
merging the dataframes

59 binsizes = [df[" binsizes "]. iloc [0] for df in dataframes ]
60 binsizes = list(set( binsizes ))
61 if len( binsizes ) != 1:
62 msg = " Binsizes not equal: {:s}". format (", ".join ([ str(b) for b in

binsizes ]))
63 raise SystemExit (msg)
64 else:
65 print(" detected binsize : {:d}". format ( binsizes [0]))
66

67 # concat the dataframes from the files
68 joinDf = pd. concat (dataframes , ignore_index =True)
69 joinDf .drop( columns =[" binsizes "], inplace =True)
70

71 #When using train_i and test_i , there should be no duplicate pairs.
72 #Otherwise , e.g. in x- validation settings , take the mean
73 chrom = joinDf ["chrom"]. iloc [0]
74 elem_number_before = joinDf .shape [0]
75 joinDf = joinDf . groupby ([" bin1_id ", " bin2_id "])[[" TrueValue ", "

PredictedValue "]]. mean (). reset_index ()
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76 elem_number_after = joinDf .shape [0]
77 if elem_number_after != elem_number_before :
78 msg = " Aggregated {:d} duplicates by taking the mean". format (

elem_number_before - elem_number_after )
79 print(msg)
80

81 print("first few elems of joint dataset :\n", joinDf .head ())
82 print(" dataset contains {:d} pairs". format ( joinDf .shape [0]))
83

84 #if no data given , set chromsize to max(bin id) * bin size + bin size
85 maxbin = joinDf [[" bin1_id "," bin2_id "]]. max ().max ()
86 if chromsize is None:
87 chromsize = maxbin * binsizes [0] + binsizes [0]
88

89 # prepare the bins for cooler
90 bins = pd. DataFrame ( columns =[’chrom ’,’start ’,’end ’])
91 binStartList = list(range (0, chromsize , binsizes [0]))
92 binEndList = list(range( binsizes [0], chromsize , binsizes [0])) + [

chromsize ]
93 bins[’start ’] = np. uint32 ( binStartList )
94 bins[’end ’] = np. uint32 ( binEndList )
95 bins["chrom"] = str(chrom)
96

97 # prepare the pixels for cooler
98 joinDf . sort_values (by=[" bin1_id ", " bin2_id "], inplace =True)
99 pixels = joinDf [[" bin1_id "," bin2_id "]]. copy ()

100 pixels ["count"] = joinDf [" PredictedValue "]
101 outfilename = os.path.join(outfolder , " predValues_ {:s}. cool". format (str

(chrom)))
102 #build the coolers
103 cooler . create_cooler ( outfilename ,
104 bins=bins ,
105 pixels =pixels ,
106 dtypes ={’count ’: np. float64 },
107 ordered =True ,
108 metadata ={" fromFilenames ": filenames })
109 pixels ["count"] = joinDf [" TrueValue "]
110 outfilename = os.path.join(outfolder , " trueValues_ {:s}. cool". format (str

(chrom)))
111 cooler . create_cooler ( outfilename ,
112 bins=bins ,
113 pixels =pixels ,
114 dtypes ={’count ’: np. float64 },
115 ordered =True ,
116 metadata ={" fromFilenames ": filenames })
117 #check and report sparsity
118 max_bin_dist = ( pixels [" bin2_id "] - pixels [" bin1_id "]).max ()
119 full_nr_elements = (( bins.shape [0]) **2 + bins.shape [0]) //2
120 cut_nr = bins.shape [0] - max_bin_dist
121 cut_nr_elements = ( cut_nr **2 + cut_nr )//2
122 exp_nr_elements = full_nr_elements - cut_nr_elements
123 sparsity_percent = ( pixels .shape [0] / exp_nr_elements )*100
124 print(" number of bins: {:d}". format (bins.shape [0]))
125 print(" maxdist : {:d}". format ( max_bin_dist * binsizes [0]))
126 print(" expected interacting pairs: {:d}, available interacting pairs:

{:d}". format ( exp_nr_elements , pixels .shape [0]))
127 print(" sparsity : {:.2f}%". format ( sparsity_percent ))
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128

129 if __name__ == " __main__ ":
130 reconstruct ()

Listing 7: Custom script to convert HiC-Reg’s text output to cooler format

1 fqdir=${1} # directory with fastq files
2 procs="8" # number of threads
3 indexdir ="./ BDGP5/BDGP5" # bowtie2 index for BDGP5/dm3
4

5 shopt -s nullglob
6 for fqfile in ${fqdir }*. fastq; do
7 samfile ="${ fqfile %fastq}sam"
8 bamfile ="${ fqfile %fastq}bam"
9 echo " processing ${ fqfile } => ${ samfile } => ${ bamfile }"

10 bowtie2 -x ${ indexdir } -U ${ fqfile } -S ${ samfile } --no -unal -p ${procs}
11 samtools view -S -b ${ samfile } > ${ bamfile }
12 rm ${ samfile }
13 gzip ${ fqfile }
14 samtools sort ${ bamfile } -o ${ bamfile }
15 samtools index ${ bamfile }
16 done

Listing 8: Mapping ChIP-seq reads to D. melanogaster ref. genome

1 # matrix from Hi -cGAN w. predictions for chr3L , 3R, X; 100 ep
2 matrix =" predMatrix00100_chr3L -3R-X.cool"
3 hicNormalize -m ${ matrix } -o ${ matrix %. cool} _normalized .cool -n smallest
4 hicCorrectMatrix correct -m ${ matrix %. cool} _normalized .cool -o ${ matrix

%. cool}_ICE.cool -- correctionMethod ICE -- filterThreshold -3.0 3.0

Listing 9: ICE-normalization of predicted D. Melanogaster Hi-C matrix from Hi-cGAN
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7.4 Further figures

7.4 Further figures

7.4.1 Combined loss function

The figure below shows the effect of choosing relatively large loss weights for the TV loss
in combined loss functions according to section 4.4.5.
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Figure 61: Combined loss with parameters λMSE = 10−5, λVGG = 0.0, λTV = 1.0
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7.4.2 Results of pre-training the DNN embedding
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Genomic distance / Mbp

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar
so
n
co
rr
el
at
io
n

Pearson correlation vs. genomic distance
GM12878, 1,2,4,7,9,11,13,14,16,17,18,20,22 on K562, 5

200ep / AUC: 0.566
250ep / AUC: 0.564
500ep / AUC: 0.566
transfer GM12878 / AUC: 0.745

(b) chr5
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Figure 62: Results /metrics, DNN, w = 64, test chromosomes
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Figure 63: Example predictions GM12878 → K562, DNN, w = 64, 250 epochs

109



7 Appendix

7.4.3 cGAN trained on K562, predicting GM12878
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Figure 64: Results /metrics, cGAN, CNN embedding, w = 256, test chromosomes

110



7.4 Further figures

1.0
2.0
5.0
10.0
20.0
50.0
100.0
200.0

10.0
20.0
50.0
100.0
200.0
500.0
1000.0
2000.0

32.0 34.0 36.0 38.0 Mbp 40.0chr2130.0

prediction, 60ep

Rao et al. [11]

(a) Example region 1

1.0
2.0
5.0
10.0
20.0
50.0
100.0
200.0

5.0
10.0
20.0
50.0
100.0
200.0
500.0
1000.0
2000.0

30.0 32.0 34.0 36.0 38.0 Mbp 40.0

prediction, 60ep

Rao et al. [11]

chr19

(b) Example region 2

Figure 65: Example predictions K562 → GM12878, cGAN, CNN embedding, w = 256,
60 epochs
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Figure 65: Example predictions K562 → GM12878, cGAN, CNN embedding, w = 256,
60 epochs
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7.4 Further figures

7.4.4 cGAN trained on single chromosomes predicting usual test chromosomes
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Figure 66: Results /metrics, cGAN, w = 64, trained on GM12878 chr14 only; prediction on
K562, typical test chromosomes
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Figure 66: Results /metrics, cGAN, w = 64, trained on GM12878 chr14 only; prediction on
K562, typical test chromosomes
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Figure 67: Example predictions, cGAN, w = 64, trained on GM12878 chr14 only; prediction
on K562, 100 epochs
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Figure 68: Results /metrics, cGAN, w = 64, trained on GM12878 chr17 only; prediction on
K562, typical test chromosomes
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predicted matrices on top, true matrices at bottom
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Figure 69: Example predictions, cGAN, w = 64, trained on GM12878 chr17 only; prediction
on K562, 160 epochs
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7.4.5 Further results for D. Melanogaster
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Figure 70: Results /metrics, DNN, w = 80, trained on D. Melanogaster chr2L, 2R, 3L
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Figure 71: Results /metrics, cGAN, w = 64, trained on D. Melanogaster chr2L and 2R
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Figure 72: Further matrix plots, cGAN with DNN embedding, Drosophila Melanogaster

118



7.4 Further figures

2.0
20.0
100.0
500.0

2.0
10.0
50.0200.0

1000.0

17.0 18.0 19.0 20.0 21.0 Mbpchr3R

(a) Matrix from Hi-cGAN, 100 epochs

fig. 73b, 73a: predicted matrices on top, true matrices from Schuettengruber et al. [48] on bottom

1.1
1.3
1.5
1.9

2.0
20.0
100.0
500.0

17.0 18.0 19.0 20.0 21.0 Mbpchr3R

(b) Matrix from DNN, 40 epochs

1.0
2.0
3.0

2.0
20.0
100.0
500.0

17.0 18.0 19.0 20.0 21.0 Mbpchr3R

(c) Reproduced matrix from Farré et al. [30], approx. 70 epochs

Image courtesy Farré, Heurteau, Cuvier, Emberly [30], licensed under Creative Commons Attribution 4.0 License [87].
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Figure 73: Comparison between matrix plots from DNN / Hi-cGAN / Farré et al. [30]
using red/blue color maps
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predicted and ICE-normalized matrix on top, ICE-normalized matrix derived from Schuettengruber et al. [48] on bottom;
predicted matrix normalized according to listing 9
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predicted and ICE-normalized matrix on top, ICE-normalized matrix derived from Schuettengruber et al. [48] on bottom;
predicted matrix normalized according to listing 9
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Figure 74: Example cutout, D. Melanogaster,
predicted matrix from Hi-cGAN after ICE-normalization
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Acronyms

Acronyms

AUC area under the correlation curve.

cGAN conditional generative adversarial network.

ChIA-PET chromatin interaction analysis by paired-end tag sequencing.

ChIP-seq chromatin immunoprecipitation followed by sequencing.

CNN convolutional neural network.

DamID DNA adenine methyltransferase identification.

DNN dense neural network.

ENCODE encyclopedia of DNA elements.

FID Fréchet inception distance.

GAN generative adversarial network.

LSTM long-short-term memory.

MAE mean absolute error.

MSE mean squared error.

PCA principal component analysis.

PSNR peak signal-to-noise ratio.

ReLU rectified linear unit.

SGD stochastic gradient descent.

SSIM structural similarity index measure.

TAD topologically associating domain.

TF transcription factor.

TV total variation.
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