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Zusammenfassung

Virtuelle Screeningtechniken (VS) sind zu einem unentbehrlichen Instrument der

Arzneimittelforschung- und entwicklung geworden. Vorhersage von Bioaktivität ist

eine der wichtigsten Felder der VS. Viele Modelle wurden für dieses Ziel entwickelt.

Jedoch sind die verfügbaren Modelle meist abhängig von der Beziehung zwischen

Struktur und Aktivität (Ähnlichkeitsprinzip). Es ist bewiesen, dass dieses Prinzip

Fehlfunktionen aufweist und somit in vielen Fällen nicht korrekt ist. Aus diesem

Grund wurde das Aktivitäts-Aktivitäts Prinzip eingeführt. Aufgrund des Mangels

an experimentellen Daten sind viele Moleküle nicht oder nur unzureichend reprä-

sentiert.

In dieser Arbeit werden die virtuellen Aktivitätsprofile als eine neue Form der Re-

präsentation von Molekülen vorgestellt, die eine Alternative zu experimentellen Ak-

tivitätsprofilen bieten. Darüber hinaus verbessern wir die Aktivitätsprofile, indem

wir die Zahl der beitragenden Assays erhöhen. Dies wird erreicht, indem semi-

überwachte Algorithmen eingesetzt werden. Sie werden verwendet, um neue Mo-

leküle zu Assays hinzuzufügen, die über eine zu geringe Anzahl an experimentell

verifizierten Molekülen verfügen. Dadurch verfügen diese Assays über genug Molekü-

le, um gute Modelle zu erhalten. Wir erstellten die gesamte benötigte Infrastruktur,

sowohl Hardware als auch Software. Wir verwendeten Daten aus dem öffentlichen

Repository PubChem. Die resultierenden Modelle der virtuellen Aktivitätsprofile
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zeigten eine vergleichbare Qualität zu den strukturellen Profilen. Deshalb kombi-

nierten wir beide. Die neuen Modelle waren leicht, jedoch nicht signifikant besser

als die strukturellen. Vielversprechende Ergebnisse ergaben sich aus einigen Expe-

rimenten, nachdem der semi-überwachte Algorithmus miteinbezogen wurde. Jedoch

ist weitere Forschung nötig, um die Richtigkeit dieser Ergebnisse zu überprüfen. Als

Ergebnis der vorgelegten Arbeit lässt sich festhalten, dass eine gute Repräsentation

für fast alle Komponenten des Aktivitätsraumes gefunden werden kann. Es wird

erwartet, dass dies uns zu vielfältigen neuen Vorhersageergebnissen in Bezug auf

Aktivität führen wird.
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Abstract

Virtual screening techniques (VS) have become an essential part of drug discov-

ery research. Biological activity prediction is one of the most important fields of

VS. Many models has been generated for this goal. However, usually, the avail-

able models depend on the structure-activity relationship (similarity principle). It is

proven that this principle has malfunctions and is not correct in many cases. There-

fore, the activity-activity principle has been introduced. This requires molecular

representation in the activity space. Many molecules are without representation or

with no sufficient representation because of the lack in the experimental data.

Here, we introduce virtual activity profiles as a new representation of the molecules

which are alternatives to the experimental activity profiles. Moreover, we improve

the activity profiles by increasing the number of contributing assays. This is done

by employing a semi supervised algorithm to add new molecules to the assays of

too small number of molecules which are experimentally verified. In this way these

assays have sufficient number of molecules to get good models. We prepared the

required infrastructure (hardware and software). Our data were brought from the

public repository PubChem. The resulting models of the virtual activity profiles

have shown worse quality than the structural ones, but the difference is not consid-

erably significant. Therefore, we combined both of them. The new models are shown

to be slightly, but still not significantly better than the structural ones. Promising
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results have been shown by few experiments after incorporating the semi supervised

algorithm. However, further research is needed to investigate the correctness of these

results. As a result of the presented work, we can come up with a good representa-

tion for almost every compound in the activity space. This is expected to lead us

to diverse new activity prediction results.
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Chapter 1

Introduction

Motivation Despite the large amount of work and effort expended in the process

of drug discovery and development, this process is still not efficient. It is too costly

in money and in time. The overall costs of developing one new drug is about 1.8

billion US$ [40]. In about 16 years one molecule out of 9000 to 10,1000 reaches the

market [12]. Figure 1.1 shows a diagram of the very general stages of the process

and the average time required for each stage. Many in vitro and in silico methods

have been developed for this goal. This work belongs to the in silico methods or

what is called virtual screening (VS) methods. These methods reduce the number

of drug candidates at different stages of the process. For a specific target, many

molecules can be excluded because they do not show the expected activity. This

process is very important, since it reduces the time and the costs required by High

Throughput Screening.

QSAR methods are one of the most important methods in VS. In QSAR, available

experimental data are used to train models. The resulting models are then used to

predict new data (not experimented yet). An essential issue of this method is how to

get good models. The quality of the models depends on several factors. Two of them

are very important. The first one is the way in which the molecules are represented,
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Chapter 1 Introduction

Discovery (2-3 years,

5,000-10,000 compounds )

Preclinical (3-6 years,

400 compounds)

Clinical trials (6-7

years, 6 compounds)

Review, Manifactur-

ing and approval (0.5-

2 years, 1 compound)

Figure 1.1.: The general process of drug discovery and development with the approximate

time required to finish each step.

and the second one is the number of molecules used to train the models. This is of

course without forgetting the importance of the learning algorithm by which we get

the models.

Previous related work QSAR methods depend on the similarity hypothesis: struc-

turally similar compounds are likely to have similar activity [18]. However, it is

known that in some cases a small change on the structure of an active compound

changes the activity of the compound to be even inactive [26]. This problem and

others raised the need for a new solution. Therefore, in the few past years new

approaches have introduced to circumvent this problem. One of them is replacing

the structural descriptors by bioactivity ones. In early work at the institute NCI
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Introduction

(1991), activity fingerprints of 60 bits (60 cancer cell lines) have been generated and

then used to discover the similarity of compounds. It was shown that similarity in

activity patterns often indicates similarity in mechanism of action, mode of resis-

tance, and molecular structure [55]. The tool HTS-FB in [41] uses fingerprints of

195 bits (Novartis assay panel) for ∼ 1.5 million compounds to study the relation-

ship between the molecules (and other applications). Using this tool, new bioactive

compounds were detected starting from dissimilar compounds in structure. In [52] a

chemical similarity searching exploits the tool HTS-FB to include the not yet tested

molecules in the existing set of molecules. This is done by finding a similar reference

compound, and then replacing it by the compound under study and then continuing

with HTS-FB.

Contribution The main obstacles of this type of methods is that they don not work

when we have a small amount of experimented data. To tackle this problem, we sug-

gest two approaches. First, we replace biological activity profiles by virtual activity

profiles. Second, computationally, we increase the number of molecules contributing

to one assay. The first approach gives every molecule a representation in the activity

space and the second approach extends the activity profile by new predicted activity

values which assumingly increases the power of the descriptors.

Method overview For this we prepared the required infrastructure. A database

of required tables are created. Data are collected from the public repository Pub-

Chem [5] and stored in the database. Models are generated by the machine learning

technique SVM which is integrated with the kernel NSPDK [7]. The validation of

the models are done by the 10 cross validation method. Different models are then

compared by measuring their performance. The mean value of APR and ROC mea-

surements are used for comparison. The significance of the results are measured by

standard deviation.
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Chapter 1 Introduction

Thesis structure overview Chapter 2 introduces basic conceptual terms and an

overview of the drug discovery field. Chapter 3 contains terms and concepts required

to understand the methodology of the work. Chapter 4 explains all the data and

material and methods used in the project. Chapter 5 shows the results of the exper-

iments and the evaluation of the results. In chapter 6 we conclude the results and

propose possible extension of the work as a future work.
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Chapter 2

Fundamentals

This chapter provides all definitions and concepts necessary to understand this

work. Section 2.1 contains basic definitions of chemistry, biochemistry and phar-

macology which helps to build a good knowledge base required for understanding

the rest of the sections. Section 2.2 explains in more detail the drug and related

concepts such as the concept of the drug activity, which is an essential element

in this work. Section 2.3 contains an overview about drug discovery and the most

important methods in this field in addition to other relevant issues.

2.1. Basic definitions

A molecule [8,30] is a specific set of atoms connected in a specific way by attractive

forces. The terms biological molecule or biomolecule are used to refer to molecules

inside a living organism such as proteins, nucleic acids and small molecules. A com-

pound [8] is a molecule such that it has at least two different atoms. Hint: In this

thesis I will use the terms molecule, compound, chemical to refer to the same entity.

This entity itself is not our concern in this work. We use the entity as an input
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Chapter 2 Fundamentals

to achieve the main goal of improving the predicted models. A small molecule is

a molecule with a molecular weight of less than 800 Daltons such as metabolites,

see [50]. An assay is a very accurate method for measuring properties of a system

or object and for interpreting this measurement, see [58]. A bioassay is defined as

an assay that measures biological activity by measuring the response of a biological

test system to a test substance, see [58]. Biological activity or bioactivity is the effect

of a substance on a biological test system, see [58]. A receptor is a molecule on the

surface of a cell that binds to other molecules receiving chemical signals that effect

the cell [13]. A ligand is the molecule that binds to receptors [13]. A ligand may fit

or may not fit to a receptor as shown in figure 2.1.

Figure 2.1.: Ligand and receptor [49]. On the left hand side, the ligand can not bind to

the receptor. On the right hand side, the ligand can bind to the receptor.

2.2. The concept of drug

In pharmacology, a drug is any chemical substance which can react with a body

and causes a physiological effect on it [34]. Generally, a drug may not provide a

therapeutic effect [47]. A drug is called medicine if it causes a therapeutic effect. Two

main types of drugs can be distinguished according to the type of their action:
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2.2 The concept of drug

• An agonist: A chemical compound which binds to a receptor and provoke

some response in the corresponding cell [38].

• An antagonist: A chemical compound which inhibits a response when it binds

to a cell’s receptor [38].

Small molecules are easier to be absorbed by the cell membrane than the large ones.

Therefore, most of available drugs are small molecules. The molecules in this work

are small ones.

Drug target In pharmacology, a biological target is a biological molecule whose

function can be affected by an external stimulus [43]. Drug targets are in general

proteins (like G-protein-coupled receptors (or GPCRs) and protein kinases), ion

channels (like ligand-gated ion channels and voltage-gated ion channels) and nu-

cleic acids [22, 38]. Target-based methods in drug discovery are the most common

ones. For this aim, several databases were established like TTD (Therapeutic Tar-

gets Database). This work is not a target-based method. However, what we need to

know about the target is just the bioactivity value (IC50 see below) resulted from

the reaction between targets and molecules.

Drug activity Several properties refer to the activity of a drug: Potency: A measure

of the amount of a drug required to produce a desired response [39]. Efficacy or

intrinsic activity: A measure refers to the potential maximum therapeutic response

that a drug can produce [46]. Affinity: A measure of the strength of the bind

between a drug and a receptor. The higher the affinity, the lower the side effects

[42]. Moreover, these properties are related to each other. For example, the higher

the potency, the higher the affinity.
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Chapter 2 Fundamentals

Measurement of drug activity A quantitative measurement of these properties

can be IC50 and EC50. The half maximal inhibitory concentration (IC50) measures

the concentration of a drug to inhibit a biological process [16]. IC50 is used in

PubChem [5], which is the source of our data. IC50 measures the potency of an

antagonist.

The half maximal effective concentration (EC50) measures the concentration of a

drug to trigger a biological process [16]. EC50 is used to measure the potency of an

agonist.

2.3. Drug discovery

A more detailed view of the process of drug discovery is necessary to understand

what this work is about. The field of drug discovery is related to several other fields,

medicine, pharmacology, biology, chemistry, biotechnology and others. The process

is too long, too costly and tedious despite the big progress in the field [3]. Throughout

the history, the principle of developing a new drug candidate has changed. Currently,

the work in this field is a collaboration between the dry lab efforts and the wet lab

efforts. The methods in the wet lab are called real screening whereas the methods in

the dry lab (computational machines) are called the virtual screening (VS). In the

following sections I explain these methods in summary.

2.3.1. High-Throughput Screening

HTS (biological screening or real screening) is the process in which a large number of

chemical compounds are (in vitro) tested against a target for the purpose of finding

hits. More than 100,000 compounds can be screened per day [51]. HTS has several

advantages such as rapidness, simplicity and automation. Additionally, HTS could
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2.3 Drug discovery

reduce the costs of drug development in several types of assays [10]. However, HTS is

still not efficient. Therefore it was necessary to make use of the computational power

in software and hardware. This led to the emergence of virtual screening methods.

2.3.2. Virtual Screening

VS is screening by computational machines. The increasing availability of 1) very

powerful computational machines and 2) chemical compounds, has increased the

importance of VS. VS does not substitute HTS, rather than VS integrates HTS [12].

There are two types of virtual screening, the ligand-based techniques and the target-

-based techniques [29]. In the ligand-based techniques, active compounds (ligands)

and their targets are available. Using these compounds, new compounds of similar

activity are searched. The new compounds should be of different structure [4]. In

target-based techniques (structure-based techniques), accurate 3D descriptors of the

studied targets should be available [12]. Docking algorithms are used to find the well

binding ligands [25] and then scoring functions are employed to estimate the strength

of the bind. The two techniques can be combined to increase the probability to detect

new hits [20].

2.3.2.1. Molecular descriptors

Molecule properties Molecule comparison is essential in ligand-based VS. This re-

quires a way to computationally represent the molecules using their properties. This

is the reason why molecular descriptors were made [12]. Properties of molecules are

characterized as numerical values to form the so-called molecular descriptors [23]. Gen-

erally, the properties used in descriptors are classified to molecular structure, physio-

chemical properties and pharmacophore ones. There are thousands of different molec-

ular descriptors [48]. The diversity of descriptors is due to the diversity of objectives
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Chapter 2 Fundamentals

for which these descriptors are made [59].

However, two general important parameters distinguish descriptors from another. The

first parameter is the computational efficiency in calculating and using them. The

second parameter is the amount of information they encode. Moreover, There is a

relation between these two parameters. The more efficient in computation the de-

scriptors are, the less content of information they have.

The simplest descriptors are those which depend on a small number of features such

as molecular weight, hydrogen bonds donors and others. These descriptors are not

sufficient in isolating molecules from each other. Therefore, usually they are merged

with other descriptors.

Dimensionality Several principles are considered when classifying descriptors. Usu-

ally, descriptors are classified according to their dimensionality, 1D, 2D and 3D.

1D descriptors are the simplest ones and the most efficient in computation, however,

they do not hold a lot of information. Therefore, usually they are combined with

other descriptors.

2D descriptors have the advantage of being a trade-off between efficiency and infor-

mation content. Examples of 2D descriptors are those which exploit physio-chemical

properties like the ones used in fragment-based methods. These methods break the

molecule into fragments and give each fragment a value. The most common and

used type of physio-chemical methods are 2D fingerprints. A fingerprint is a boolean

array or a sequence of bits such that (1) means the presence and (0) means the

absence of a particular fragment of the molecule [12]. 2D fingerprints are good at

molecular similarity searching [23]. There exist two types of 2D fingerprints, the

dictionary-based fingerprints and the hashed fingerprints. The first type has the ad-

vantage of that each bit represents one substructure which helps in interpreting the

results. The second type has the advantage that it does not need a already defined

dictionary. This feature lets this type of fingerprints applicable to any molecular

structure [24].
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2.3 Drug discovery

3D descriptors are the richest ones. They represent more properties of molecules

such as the electronic properties of the molecules. However, they are computation-

ally expensive. Examples of them are 3D fragment screens and pharmacophore keys.

Selecting the descriptor which fits the goal of a study is not a simple task. For this,

automated selection tools were created like in [14].

SMILES The simplified molecular-input line-entry system (SMILES) is a linear

ASCII string for representing the structure of chemical molecules. This string is a

computer readable format. It can be converted into 2D and 3D descriptors. SMILES

allows users to annotate any chemical structure [2, 53,54].

The main advantage of SMILES that it is easy and efficient to be processed by

computers. This notation was invented by Arthur Weininger and David Weininger in

1987. Each structure has a unique SMILE. There are several rules to write the syntax

of a SMILE and several various algorithms to generate the SMILE. This work is not

the right place for these rules and algorithms. However, we can mention basics to give

a general idea of what these rules are and how the algorithms work. For example, a

five-rules system is used to generate the syntax of a SMILE of a two-dimensional

structure of a chemical. These rules consider the following basic chemical structures:

atoms and bonds, simple chains, branches, rings, and charged Atoms. Figure 2.2

shows a SMILE and a general algorithm to generate it.

Chemical (Molecular) Graph ”The graph with differently labeled (colored) ver-

tices (chromatic graph) which represent different kinds of atoms and differently

labeled (colored) edges related to different types of bonds. Within the topological

electron distribution theory, a complete network of the bond paths for a given nu-

clear configuration” [32].

In this way, a molecules becomes a mathematical element ready to be theoreti-

cally studied using all available methods. Molecular graphs can be generated from
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Chapter 2 Fundamentals

Figure 2.2.: A chemical structure and its SMILE. Generation of SMILES: Break cycles,

then write as branches off a main backbone [57].

SMILES.

2.3.2.2. Molecular Similarity

Similarity principle Similarity methods depend on the similarity principle which

states that similar molecules in structure have similar properties [18]. Being merely

an assumption means that the principle is not always correct [21]. However, this

concept has been widely applied in chemoinformatics [18,27,35] and VS (similarity-

based VS techniques [44]) and has showed positive results [28].

In similarity searching methods a database is searched for structurally similar com-

pounds of a query compound of known activity [23]. The goal of studying the simi-

larity is to explore properties of new molecules. Figure 2.3 shows examples of some

similar compounds. To decide the similarity of molecules we need two requirements:

1) A suitable representation of molecules and 2) An efficient comparison method.
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2.3 Drug discovery

Figure 2.3.: 2 examples of similar compounds [23]. Similarity relationships that were de-

tected using similarity methods: (a) endothelin A antagonists, (b) aromatase inhibitors.

Similarity metrics Table 2.1 shows a list of the most frequently used similarity

metrics. For example, the Tanimoto similarity which enumerates the number of

common fragments between two molecules.

Metric name Formula

Tanimoto coeficient T c = nij/(ni + nj − nij)

Dice coeficient Dc = nij/(ni + nj)/2

Cosine coeffiecient Cc = nij/(ninj)1/2

Hamming distance HDij = (ni + nj − 2nij)

Euclidean distance EDij = (ni + nj − 2nij)1/2

Table 2.1.: The most common similarity metrics [12].

2.3.2.3. QSAR

Quantitative structure-activity relationship (QSAR) is the process in which

the relation between the molecule properties and the molecule activity is explored
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Chapter 2 Fundamentals

[12]. QSAR methods can be employed for hit identification and lead optimiza-

tion. Classical QSAR methods assume that this relation is a linear one [11].

Activity = f(physicochemical properties and/or structural properties)+Error (2.1)

QSAR methods may be classified in accord with the molecule descriptors. Accord-

ingly, we will have 1D-QSAR; 2D-QSAR, 3D-QSAR and 4D-QSAR. As earlier men-

tioned, for efficiency reasons, 2D descriptors are preferred when screening large

databases of molecules. Given a set of input data, QSAR models these data and

then predicts new data of the same type. The resulting models from QSAR need

to be validated. The quality of a QSAR models depend on several factors such as

the type of used descriptors, the quality of data, the modeling methods and even

on the validation. QSAR is used in VS. In this context, QSAR takes the chemical

descriptors as input and produces the activity of new chemicals.
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Chapter 3

Scientific Background

3.1. Basic definitions in machine learning

The following definitions are based on the book ”foundations of machine learn-

ing” [33].

Learning: It is the process of understanding existing knowledge and using this knowl-

edge to predict not existing knowledge of the same type. Machine learning: It is a

computational algorithm for learning. It should be efficient and accurate. Exam-

ples: Instances of data used for learning. Features: Set of properties which represent

an example as vectors. Labels: Values given to examples for categorizing. Training

sample: A set of examples represented by their features. This set is used by learning

algorithm to learn from. Validation sample: A set of examples used to empirically

find the optimal values of the parameters of a learning algorithm. Test sample: A

set of examples used to test the performance of a learning algorithm. Loss function:

A function used to measure the difference between a predicted and true label. The

true labels and predicted labels of a test set can be input of this function. Supervised

learning: All training data are labeled. Unsupervised learning: All training data are
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unlabeled. Semi supervised learning: Training data are a combination of labeled

and unlabeled data. Classification: Assign a label to each example. Clustering:

Partition examples into homogeneous classes.

Support vector machine (SVM) One of the most effective methods in the field of

machine learning. It belongs to supervised learning algorithms. It was introduced

first in 1995 by Vladimir N. Vapnik [6]. SVM is used in classification and regres-

sion. Non-linear classification can efficiently done by SVM. This is due to the kernel

trick [1]. Given the features and the lables of a training sample, SVM tries to con-

struct a hyperplane which is used to classify the examples to their labels. The best

hyperplane is the one which separates the examples by the largest margin. Figure 3.1

shows two hyperplanes for the same training set. The right hand side hyperplane

separates the set with a bigger margin than the one of the left hand side.

Figure 3.1.: Two hyperplanes of one training set [33]

3.2. K nearest neighbors (Knn)

It is one of the simplest machine learning algorithms for classification [9]. The in-

put of the algorithm is a set of vectors (molecules) of known classes and another

set of vectors of unknown classes and the question is how to predict the class of

these vectors. The core idea of the algorithm is that for one new vector k nearest
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3.3 Classifier performance

neighbors are searched. A majority voting of the k neighbors decide the class of the

vector. Selecting k and the distance metric between the vectors are two essential

matters. Both depend on the data sets and the size of these data.

3.3. Classifier performance

A binary classifier gives tow results, one or zero, yes or no, positive or negative1.

However, these results may be true or false. Therefore, from a statistical point of

view, we have four results, true active, true inactive, false active and false inactive. I

will notate these four values as: TA, TI, FA, FI. Based on these four values we have

the definition of the sensitivity and specificity.

Sensitivity: It measures the proportion of the number of molecules correctly iden-

tified as active to the whole number of active molecules. It is given by the equation:

Number of TA

Number of TA + Number of FI
(3.1)

Specificity: It measures the proportion of the number of molecules incorrectly

identified as active to the whole number of active molecules. It is given in the

equation:

Number of TI

Number of TI + Number of FA
(3.2)

ROC It stands for Receiver Operating Characteristic curve or Relative Operating

Characteristic curve [31, 61]. It is one of the best accuracy measurements of diag-

nostic tests. It has several applications. One of them is to measure the accuracy of

binary classification as in this work. A ROC curve represents the relation between
1in this work our data (molecules) are classified into active and inactive. Therefore we will use

these two values as classifier results
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the sensitivity and specificity. The area under this curve represents the value of

ROC. The bigger this area the more accurate the measured test.

3.4. Graphs

This section contains basic definitions of graph theory. The content depends on the

book ”Handbook of Graph Theory” [15] and the article [7].

A Graph G = (V,E) consists of two sets V,E. The elements of V are called nodes

or vertices. The elements of E are called edges. The notations V (G), E(G) are used

when the graph G is not the only one under consideration. Each edge has a set

of one or two vertices associated to it. This set is called endpoints. A node u is

adjacent to node v if they are joined by an edge. Each two adjacent nodes are called

neighbors. A walk in graph G is an alternating sequence of edges and vertices,

W = v0, e1, v1, ..., en, vn

such that for j = 1, ..., n, the vertices vj−1 and vj−1 are the endpoints of the edge ej.

The distance between two nodes v, u, denoted D(v, u) is the length of the shortest

walk between them. A connected graph is a graph which has a walk between every

pair of vertecis. The eccentricity of a vertex v in a connected graph is the distance

of a vertex farthest from v. The radius r of a connected graph is its minimum

eccentricity. The neighborhood of radius r of vertex v is the set of vertecis of distance

D from v such that D ≤ r and is denoted by Nr(v). In graph G, the induced subgraph

on a set of vertices W = w1, ..., wk, denoted by G(W ), has W as it vertex-set, and

it contains every edge of G whose endpoints are in W . The neigborhood subgraph

of radius r of vertex v is the subgraph induced by the neighborhood of radius r of

v and is denoted by N v
r . A labeled graph is a graph whose vertices and/or edges

are labeled. The mapping function from a vertex/edge to a label is denoted as L.

Tow graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic (G1 ' G2), if there is
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a bijection φ : V1 → V2, such that for any two vertices u, v ∈ V1, there is an edge

vu iff there is an edge φ(u)φ(v) in G2.

3.4.1. Kernels

Kernel methods depend on the concept kernel. These methods are widely used in

machine learning. The advantage of kernel methods that they can compute inner

products efficiently [33]. Therefore, whenever a dot product problem exists, a kernel

function is used. This is called the kernel trick [1]. When typical classification

methods fail to find a hyperplane, kernels come into play. Kernels solve the problem

by projecting the data into a space of higher dimensionality. In other words, a kernel

function performs a mapping x→ (x, x2). Combining kernels with other techniques

like SVM results in a powerful learning methods. Kernels are often used as similarity

measurement. Many kernels are available. Selecting the best kernel strongly depend

on the problem at hand. Tuning the parameters of the selected kernel is another

important issue.

Definition and notation The following formal definition and notation is based

on [7,17]. Given a set X and a function K : X×X → R, K is a kernel on X×X if K

is symmetric. That is, for any x and y ∈ X, K(x, y) = K(y, x) and if K is a positive-

-semidefinite. K is positive-semidefinitive if for any N ≥ 1 and any x1, ..., xN ∈ X

the matrix defined by Kij = K(xi, xj) is positive-semidefinitve, that is ∑
ij
cicjKij ≥ 0

for all c1, ..., cN ∈ R. If each x ∈ X can be represented as φ(x) = {φ(x)}n≥1 such

that K is the ordinary l2 dot product K(x, y) = 〈φ(x), φ(y)〉 = ∑
n
φn(x)φn(y) then

K is a kernel. The vector space induced by φ is called the feature space.

23





Chapter 4

Methods

This chapter includes an explanation of the data and the methods used to accomplish

the work. In the first section we describe the data, how to store, organize and retrieve

them. In the next section, we describe the models, how to get, validate and mea-

sure their performance. Finally, a semi-supervised algorithm is explained. Figure 4.1

shows a simplified and general diagram of all steps used in the work.
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Prepare data

Prepare experiment

(k cross validation)

Train → Models

Test → Predictions

Measure performance

Figure 4.1.: All steps of the work and their order.

4.1. Infrastructure

The code of the application is written by Perl 5.10 in addition to bash Shell in Linux

Fedora.

4.1.1. Data collection

The needed data for this work is taken from the free online public repository Pub-

Chem [5]. Specifically, our data are downloaded from the FTP site (ftp://ftp.

ncbi.nih.gov/pubchem/). Molecules are stored in zipped SDF files. The data we

need for each molecule are the identifier of the molecule and its SMILE. Assays

are stored as zipped CSV files. The data we need for each assay is its identifier,
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4.1 Infrastructure

molecule identifiers and their activity values against this assay. The application au-

tomatically downloads the files and extracts the required information. Downloading

is essentially done by the tool GNU wget [36].

4.1.2. Data organization

A MySQL database is established for storing the data. The database mainly consists

of four tables. One table is for storing the compounds (cid, SMILE). Another table

is for storing the assays (aid). Another table is for storing the experimental activity

values IC50. It has three fields (aid, cid, activity). The fourth table has in each

row a molecule identifier and a descriptor of the molecule(cid, feature). A descriptor

represents a feature generated by NSPDK (see paragraph 4.2). Figure 4.2 shows the

four main tables and their relations.

Compounds

(cid, smile)

46626492

rows

Bioactivity

(aid, cid,

activity)

192083201

rows

Assays

(aid)

647467

rows

Descriptors

(cid,

feature)

Figure 4.2.: The main four tables of the database, the number of entries of each of them,

and their relations.
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4.1.3. Data retrieval

Having the data organized in this way we can now simply retrieve the data we

need. For example, given a number of assays we can retrieve all compounds related

to it, i.e. all compounds which are already experimented on it. Moreover, in case

we want to work on a specific data set, for example cancer, the application can do it

by taking advantage of the available APIs of Pubchem. For this goal, we integrated

our application with an API called Ebot [56] in order to fetch all assay identifiers

which are related to a search text like cancer or HIV or breast cancer, etc.

4.1.4. Hardware

The application has been run on a machine whose CPU is of the model Intel(R)

Core(TM)2 Duo CPU E6550 @ 2.33GHz and its main memory size is 4GB. Paral-

lelized parts of the script has been run on a cluster of 100 node. The CPU of each

node is of the model Dual Core AMD Opteron(tm) Processor 875. The size o the

main memory of each node is 32GB.

4.2. Models

The most important part of this work are the models. Our models are predictive

ones. A model represents the relation between molecules and their activity values.

The model is expressed by the equation:

m = Xw (4.1)

Where X is the feature of a molecular descriptor and w is the predicted weight. Fig-

ure 4.3 shows the flow diagram of the process of generating a model. In the next lines

we show how to get these models, validate them and measure their performance.
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Molecules (SMILES)

Molecules (Graphs)

Molecules (Features)

Similarity (kernel trick)

Models

Software (openbabel)

(NSPDK)

NSPDK

SVM

Figure 4.3.: The general procedure for getting models.

Molecular graphs In order to be able to generate models we need a mathematical

representation of our data. SMILES are strings. Therefore, SMILES are converted

into Graphs see paragraph 2.3.2.1. We used the software Openbabel [37] for conver-

sion.

Features At this point, the molecules are graphs. Thought, we do not use the

graphs to be the descriptors of molecules. But instead we compose new descriptors.

The new descriptor is a vector of features. Each index of the vector represents a
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subgraph (feature) and the corresponding value represents the number of times this

subgraph exists in the graph. The enumeration is done by NSPDK.

Similarity The similarity between two feature vectors then is decided by computing

the inner product of the resulting vectors. The higher the value of the inner product,

the more similar the relevant molecules. For this, we used the kernel NSPDK. The

similarity metric is the Dice coefficient metric.

NSPDK It stands for Neighborhood Subgraph Pairwise Distance Kernel. It is a

state of the art tool [7]. The kernel is employed to generate the feature vectors of

the molecular graphs. Moreover it is applied in SVM to generate the models.

NSPDK works through two steps (the same notations used in the method chapter

for graphs and kernels):

1. It decomposes a molecular graph into all its subgraphs. This is done by defin-

ing the relation R as:

Av, Bu are rooted graphs and have the relation Rr,d(Av, Bu, G) which is true

when v, u ∈ V (G) and d = D(u, v).

2. It calculates the number of identical pairs of subgraphs of radius r at dis-

tance d. This is done by a decomposition kernel κr,d given by the equation

Equation 4.2

κr,d(G,G′) = ∑
Av ,Bu∈R−1

r,d
(G)

A′
v′ ,B

′
u′∈R−1

r,d
(G′)

δ(Av, A
′
v′)δ(Bu, B

′
u′)

(4.2)
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4.3 Generating new descriptors

where G,G′ are two rooted graphs. such that:

δ(x, y) =


1 if x ' y (x, y are isomorphic graphs).

0 otherwise.
(4.3)

The final equation which enumerates the number of identical subgraph pairs

of increasing radius r at distance d is given by the next equation Equation 4.4:

K(G,G′) = ∑
r

∑
d
κr,d(G,G′)

(4.4)

Model generation Having the descriptors (features, activity profiles, combined

features) and their targets, SVM can train the corresponding models.

4.3. Generating new descriptors

Activity profile Activity profile of a molecule is a string of activity values against

each assay under study. Given a number of assays and a number of molecules we

can generate the activity profile of each molecule like the following:

1. Prepare train and test sets for each assay.

2. Generate models for each assay.

3. Predict the activity for each molecule using the models.

4. For one molecule concatenate the activity values in one string to be the activity

profile of the molecule.
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An activity profile looks like in Figure 4.4.

1:+1 3:-1 4:-1 20:+1 25:+1 101:-1 90:+1 3:-1 9:+1 5:+1 33:-1 43:+1 871:+1

Figure 4.4.: An activity profile.

Combined descriptors A new descriptor can be generated by combining both

descriptors. To combine the both we need to normalize each vector. Additionally,

we use importance factor α ∈ [0, 1] which specifies the importance of the activity

profiles relatively to the structural features which have the importance (1−α). Each

value of the vector is multiplied by its importance factor. Afterwards, we change the

index of each vector such that we avoid any conflict. Finally, we concatenate the

resulting two vectors to get the new combined descriptor.

4.4. Model performance

K cross validation K cross validation is one of the best techniques to measure

the generalization of a model on a set of data which does not belong to the train

set which is used to get the models [19, 33, 45]. In this technique, k is an integer

number (typically k=10). The data set under study is randomly divided into k

equal sets (folds). Each fold represents a test set whereas the remained k-1 folds

represent the corresponding train set. As a result of this splitting we get k test sets

and k corresponding train sets. For each molecules we will have k predictions. An

average of these predictions is calculated. The average represents the final prediction

value. The advantage of this technique is that the resulting prediction value is a

reliable one. Figure 4.5 shows a 10 fold cross validation.
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4.4 Model performance

Figure 4.5.: 10-folds cross validation.

Performance measurement Each fold of each assay results in a model. This model

is tested on the corresponding test set. The resulting predictions are compared to

the true values. ROC and APR are used to measure how accurate these predictions

are. For one assay we will have k of ROC values and k of APR values. The mean value

of ROC or APR is considered as an evaluation of the models performance. The error

is estimated by standard deviation. The mean value µ and the standard deviation σ

are given by the following relations respectively:

µ = 1
N

N∑
i=1

xi (4.5)

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2 (4.6)
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4.5. Semi-supervised algorithm

The lack of the number of molecules experimented against some assay makes ac-

tivity prediction a very difficult task. This is due to the fact that good predictive

models require a sufficient size of training set. To overcome this problem, we need

to increase the number of molecules of known activity for some assay. This is can be

done computationally. For this we proposed exploiting a semi-supervised algorithm.

Given a set of molecules and their experimental activity, an efficient algorithm can

classifies a set of new molecules to active and inactive. In this way, the number of

total molecules of known activity becomes bigger and sufficient for training good

models.

For simplicity reasons we chose the algorithm in [60] to be employed in our work.

The algorithm exploits the intrinsic manifold structure of the given set of data. The

input data are required to be represented in the Euclidean space. The algorithm is

summarized by three main steps:

1. Construct a graph using k nearest neighbor algorithm, see section 3.2. The

nodes xi are vectors of molecules features.

2. Weight the edges of the resulting graph using equation Equation 4.2 which

represents the similarity value between two molecules xi, xj.

3. Normalize the weight matrix:

4. Iterate calculating the classification function f(t) until convergence:

f(t+ 1) = αSf(t) + (1− α)y; α is a parameter in [0, 1], y is the target vector

whose values are either +1 or -1 or 0 in case the molecule is of unknown value.
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4.5 Semi-supervised algorithm

In words: Given a set of molecules and their targets. First, we represent them as

indirected graph. Construction of the graph is done by k nearest neighbor algorithm.

Then, the edges are weighted. Second, the weights are normalized for convergence

reasons. Third, the classification function is iterated until convergence. During iter-

ation the classification score of each node gets effected by the classification score of

its neighbors. The amount of contribution of classification score of other is expressed

by α. The result is a vector of classification values of input molecules. These values

are the activity values. The classification values are either positive real numbers or

negative real numbers. We consider the negative numbers as inactive values (-1) and

the positive numbers as active values (+1).
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1
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Chapter 5

Results

This chapter shows the results of the solution hypothesis, and then the result are

evaluated. As already mentioned, the proposed solution (for improving the activity

models) is based on two main points. First, using novel descriptors. Second, in-

creasing the number of contributing molecules per assay. Therefore we designed all

possible1 experiments necessary to check whether our proposals achieve our goal. The

next sections describe the specifications of one experiment. Afterwards, we compare

models resulting from using different descriptors. Finally, in section 4.5 we discover

the effect of employing the semi supervised algorithm described in the methods

chapters on the quality of models.

5.1. Experiment

Before we introduce the results of the experiments, it is necessary to precisely specify

what are the specifications of the experiment conducted here. An experiment is a

1We restricted ourselves to the available number of assays and molecules in our database (all

Pubchem data) so that resulting models stay of good quality.
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number of repetitions of k-fold cross validation of models resulting from a set of

molecules which belong to a set of assays which represents some data set (here

disease). Accordingly, an experiment can be specified by six parameters. First,

number of folds k. Second, number of molecules (active and inactive). Third,

number of assays. Fourth, the data set. Fifth, type of the molecular descriptor. Sixth,

number of repetitions. For all experiments we fixed the number of folds (k=10) and

the number of repetitions (=1). All other parameters were varied to serve studying

the results from different points of view. The size of the experiment is specified by the

first two parameters (see table 5.2). The fourth parameter, the disease name, allows

us to increase the diversity of our experiments. We worked on cancer, HIV, and flu.

The fifth parameter, the descriptors, is described separately in section 4.3. Table 5.1

shows three examples of experiments of various parameters.

Table 5.1.: Three variations of experiments using different values of the parameters.

# Assays # Mol Disease Descriptor

small small cancer structure

large medium HIV activity profiles

medium large Influenza combined

Experiment size Theoretically, we want to have specific values of the parameters of

the experiments (see table 5.2) to conduct the required experiments. Unfortunately,

the actual available number of molecules per assay is small. Therefore, we restrict

the experiment size to the available number of molecules for each assay. For this,

we defined the available experiment size. In the available experiment size, the upper

value of the number of molecules is the maximal number of molecules per assay such

that the number of assays does not exceed a lower bound (=10). In the same way,

the upper value of the number of assays is the maximal number of assays which has

a number of molecules does not exceed a lower bound (=300 active and 300 inactive

molecules). As a result of this definition the experiment size in HIV case becomes

38



5.2 Descriptors

as displayed in table 5.3.

Table 5.2.: Theoretical experiment size.

size # Assays # Mol per assay

small 10 10-100

medium 100 1000 -5000

large 1000 10000-100000

Table 5.3.: Available experiment size of HIV.

size # Assays # Mol per assay

small 12 300

medium 30 1000

large 47 1500

5.2. Descriptors

As described in the methods chapter, we have three descriptors. Our aim is to find

out which descriptor leads us into better models. To make this comparison we have

designed the necessary experiments. For this, 3 data sets (cancer, HIV, flu) were

experimented. And for each set, we studied the effect of the number of assays as

well as the number of molecules on the quality of the resulting models for each

of the three descriptors. Moreover, we observed the effect of the experiment size

on the models of each descriptor individually. For clarity and simplicity we used

the plots to show the results of the experiments. Detailed results are presented in

chapter appendix A. Models quality is measured by two measurements APR, and

ROC. However, only ROC values are used in the plots. The values of APR are put

in Appendix A.
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5.2.1. Effect of the importance factor

Before comparing the descriptors it is important to highlight the fact that the nor-

malization factor (α) affects the quality of the combined descriptor models. The

size of the activity profile descriptors is equal to the number of the corresponding

assays. The size of the activity profiles increases or decreases the importance of the

activity profile in the combined descriptors. A profile of size 5, for example, can not

be of higher importance than the corresponding structural features. To understand

the behavior of the models in relation to α we tested 3 values of the activity profile

size and measured the quality of the models for 9 values of α. The plot in Fig-

ure 5.1 shows that the quality of models is almost the same for α ∈ [0.1, 0.3] for

sizes 10, 50, and 150. Then, for bigger values of α, the quality of models gradu-

ally decreases. This implies that the activity profiles are of lesser importance than

the features at relatively small sizes (10, 50, 150). For better understanding of α

effect we drew another plot at 3 points (0.1, 0.5, 0.9) for the same dataset (cancer)

but this time at a smaller number of molecules (300). Using a smaller number of

molecules we avoid the negative effect of larger number of molecules which reduces

the quality of combined models. Therefore, in this plot we see that the ROC value

at α = 0.5 is bigger than this at α = 0.1. This implies that activity profiles become

more important than those in the first plot for smaller number of molecules and for

relatively small number of assays (activity profile size).
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Figure 5.1.: The relation between ROC and the importance of the activity profiles (α)

in the combined descriptors at 3 different sizes. Number of molecules is 1400.
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Figure 5.2.: The relation between ROC and the importance of the activity profiles in the

combined descriptors at 3 different sizes. The combined descriptors.
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5.2.2. Effect of the number of assays

Descriptors comparison To study the effect of the number of assays on the quality

of the models, we fix the number of molecules and vary the number of assays. Figure

5.3, figure 5.4, and figure 5.5 show the mean value and standard deviation of the

measurement ROC using three different number of assays in each of them. Number

of molecules is 300 for all. There are two common observations for the three fig-

ures. First, the structure bars and the combined bars totally overlap in all cases. Sec-

ond, the activity profile bars partially overlap with the other bars in all cases except

for one (cancer, 60 assays, 300 molecules). These two observations imply that the

structure models and the combined models are of the same quality. Additionally,

the activity profile models are of lesser equality but it is still comparable to the two

other models.
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Figure 5.3.: Standard deviation of ROC values. 300 Molecules. 3 values of the number

of assays 15, 27, 57. Flu dataset.
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Figure 5.4.: Standard deviation of ROC values. 300 Molecules. 3 values of the number

of assays 60, 160, 374. Cancer dataset.
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Figure 5.5.: Standard deviation of ROC values. 300 Molecules. 3 values of the number

of assays 10, 24, 47. HIV dataset.
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Models of each descriptor The same figures can be exploited to show the change

on the models quality with increasing number of assays for the 3 descriptors. Ap-

parently, the combined and the structural descriptor do not significantly improve

with increasing number of assays. However, the models of the activity profiles show

increase in the quality with increasing number of assays. As attempt to estimate

to which extent the ROC value increases in the number of assays we draw a fit

curve Figure 5.6 for the three points we have in the figure 5.6. This fit curve tells

that for a reasonably big number of assays (1000 assays), a significant improvement

on the quality of models will not occur.
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Figure 5.6.: The fit curve of the mean values of ROC in the number of assays. Descriptor

is activity profile. Number of molecules is 300. Cancer dataset.

5.2.3. Effect of the number of molecules

In the last results, the number of molecules were fixed, but the number of assays

were variable. Now we try to find out the effect of the number of molecules per

assay. Therefore, we fix the number of assays and vary the number of molecules. Fig-
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ure 5.7, figure 5.8, and figure 5.9 show three plots. Each plot is for one data set. The

number of assays is fixed in each plot. The number of molecules in each plot is

represented by three different values. Each plot represents the mean and standard

deviation of the values of the measurement ROC.

Descriptors comparison The standard deviation bars of the models of the struc-

ture and the combined descriptors substantially overlap at each point. The standard

deviation bars in the case of the activity profile descriptors partially overlap with

the other bars at a small amount of molecules, but it does not overlap when the

number is reasonably big. What we can conclude from these plots that the quality

of models in case of structural and combined descriptors are very similar, whereas

it is lower in the case of activity profiles.

The models of each descriptor The quality of the models in both cases the

structural descriptors and the combined ones explicitly increases with increasing

number of molecules. This is intuitive since the learning algorithm performs better

with more true examples. However, in contrast, increasing the number of molecules

does not improve the models of activity profiles. This is due to the prediction error,

since the activity profiles are artificially synthesized by the prediction values using

structural descriptors.
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Figure 5.7.: Standard deviation of ROC values. 30 Assays. 3 values of the number of

molecules 300, 600, 800. Flu dataset.
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Figure 5.9.: Standard deviation of ROC values. 30 assays. 3 values of the number of

molecules 300, 500, 700. HIV dataset.

5.2.4. Run time

The run time of the application for one experiment is the sum of the run time for

preparing the descriptors + the run time for preparing files of 10 cross validation

experiment + the run time required for training the models + the run time for

testing the models. Here, we study the time of the application in the number of

assays, the total number of unique molecules of all assays, and the type of the

descriptor of one experiment. The plots in figures 5.10 and 5.11 show that the time

is linear in the number of molecules for different number of assays and different

descriptor. However, the plot in figure 5.12 shows a divergence in the time line. This

is because our applications works in parallel on a cluster which sometimes results

in waiting time till at least a node of the cluster becomes free. The application has

been run on the machines mentioned in the methods chapter. The linearity of the

application is due to several reasons: 1) efficiency of the kernel NSPDK, 2) efficient
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database queries and 3) parallelism. The detailed values of the time are displayed

in the chapter Appendix A.
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5.3. Semi supervised algorithm

As we saw in the beginning of this chapter, the number of assays with sufficient num-

ber of molecules is limited in reality. In this section we study the models resulting

from the application after employing the semi supervised algorithm introduced in the

methods chapter. The algorithm help in increasing the number of molecules per as-

say. Having a number of molecules and their activity values per assay, the algorithm

classifies a number of new molecules into active and inactive. Consequently, now we

can contribute new assays which very limited number of experimented molecules. In

this section, we show the performance of the algorithm. Afterwards, we study the

effect of the number of neighbors. Finally, we introduce one example to present the

effect of increasing the number of assays on the activity profile models.

5.3.1. Performance of the algorithm

The input of the algorithm are two files, the molecules (represented by some de-

scriptor) and the activity values of them. Part of the molecules of known activity

values (+1,-1) and the rest of unknown activity value (0). Here, we vary the number

of molecules and measure the time and the precision of the algorithm. As table 5.4

shows, the time is linear in the number of molecules and the accuracy is very high

even at a big number of molecules. In this test, we fixed the number of neighbors

at 10.
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Table 5.4.: Performance and accuracy of the semi-supervised algorithm for α = 0.001

and 10 neighbors.

# of mol (known + unknown) CPU time (second) precision(%)

10+100 1 100

30+300 4 98.2

40+400 7 100

50+500 9 96

70+700 13 97.7

100+1000 35 94

300+3000 42 94.3

5.3.2. Effect of the number of neighbors

As we mentioned in the methods chapter we use the algorithm ”k nearest neighbor”

when building our the graphs of molecule vectors. Now, we want to check whether

the number of the neighbors has an influence on the quality of the models. To do

this we varied the number of neighbors for the same number of assays and the same

number of molecules per assay. Figure 5.13 shows that the number of neighbors

does not substantially change the quality of the models. However, for a relatively

big number of molecules (here 50) the ROC value becomes 0.5 which refers random

prediction results. This result is a logical one since the more neighbors the lesser

precise results, since the algorithm will consider molecules of small similarity value

as neighbors of the molecule.
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Figure 5.13.: 3 different number of neighbors. 300 Molecules. 10 assays. HIV dataset.

5.3.3. Effect of the number of new assays

As already mentioned, the algorithm can be exploited to increase the number of

contributing assays in one experiment. This helps to increase the size of the activ-

ity profiles. Figure 5.14 is a plot of ROC values in the number of assays per one

experiment. One value, the blue one, is obtained from running normal experiment

(without semi-supervised algorithm). The red line is obtained by ROC values of

four numbers of assays after applying the semi supervised algorithm. As we can no-

tice, increasing the number of contributing assays improves the quality of obtained

models of activity profiles. For theoretically estimating how the models behave with

increasing number of new assays, we drew a fit curve plot in figure 5.15. The fit

curve shows that for about 1000 new assays, the ROC value reaches 0.8.
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Chapter 6

Conclusions

6.1. Discussion

The main goal of this work was to come up with new computational predictive

models for predicting the biological activity of small molecules against new assays.

To achieve this goal, we proposed to generate virtual descriptors so that they lead

to good models, and to employ a semi-supervised algorithm so that it allows us to

include new molecules to existing models which, in turn, from one side improves the

predictive power of models for one assay, and from another side increases the number

of contributing assays in some experiment. We prepared the required infrastructure

and wrote an efficient script. All the required experiments were designed. However,

not all experiments have been conducted due to time limitations. Therefore, we

could not completely show the power of our method. Nevertheless, the conducted

experiments were sufficient to tell us many things. Two new descriptors allowed

us to generate new predictive models. A comparison between the models of these

descriptors and the models of structural descriptors has shown that our new models

have a similar quality to the structural ones. Two main factors were varied to make
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this comparison, number of assays and number of molecules per assay. Increasing

the number of assays has slightly improved the activity profiles models, but did not

improve the two others. The reason might be that the number of molecules directly

impacts the activity profiles, since the activity profile size equals the number of

assays. On the other side, the number of assays does not impact the models of the

structural and combined descriptors, because the number of molecules per assay

stays the same which means trained models stay the same. Increasing the number

of molecules (for a fixed number of assays) slightly decreases the quality of activity

profile models, and significantly increases the quality of the two others. The reason

behind this might be that in activity profile case, we have a prediction error which

increases with more new molecules, but the new molecules in the other two cases

would help the learning algorithm with more new true examples.

The second approach, which integrates the first one, tries to increase the contributing

molecules per assay. After presenting the power of the semi supervised algorithm

we showed that increasing the number of molecules helps in adding new assays to

some experiment. This, in turn, increases the quality of activity profiles models. The

impact of the semi-supervised algorithm needs further investigations. Although the

new descriptors did not outperform the quality of the structure-based models, the

new models are of comparable quality. Moreover, the virtual activity profiles have

the advantage that they can be used to represent molecules not yet tested against

an assay under study. This advantage is very beneficial because it allows us to test

compounds on many new assays in a too short time in comparison to the biological

screening.

6.2. Future work

Extensions of the work are possible in several ways. First, we can add new types

of descriptors to the database. This would give us the possibility to select the best
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descriptor for generating better activity profiles. Second, we can add the available

experimental information to the virtual activity profiles. This is expected to increase

the quality of the models. Third, a statistical study may be conducted to discover the

diversity of the truly predicted hits by the new models. Are the hits of the new models

different from the ones of other models? What kind of molecules do the new models

predict?. Fourth, instead of randomly choosing the new contributing molecules to

some experiment in the semi supervised algorithm, we can choose them such that

they are similar to the molecules of the corresponding assay. For this, for example,

we can design a library of molecules related to cancer data set. The library has

molecules which have never tested against cancer, but they are similar in structure

(or activity or both) to the molecules already tested against cancer. Fifth, we can

consult chemists or pharmacologists to ask them how we can extend the assays

of some experiment by new assays such that they enrich the experiment by new

information. Sixth, new molecules and assays can be added to the database. This

would help to get better models of all descriptors.
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Appendix A

Results details

A.1. Cancer Results

A.1.1. Effect of the number of assays

Table A.16, table A.17 and table A.18 contain values of the mean and standard

deviation of the measurements ROC and APR. The right hand side table is for

APR and the left hand side table is for ROC. The number of molecules for each

experiment is fixed to 300 active molecules and 300 inactive molecules. The number

of assays vary in [60, 160, 374].

Table A.1.: Cancer, 60 assays, 300 molecules.

Descriptor Mean sd

Structure 0.880 0.043

Activity profile 0.682 0.112

Combined 0.882 0.044

Descriptor Mean sd

Structure 0.886 0.050

Activity profile 0.700 0.101

Combined 0.887 0.052
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Table A.2.: Cancer, 160 assays, 300 molecules.

Descriptor Mean sd

Structure 0.866 0.098

Activity profile 0.711 0.120

Combined 0.873 0.095

Descriptor Mean sd

Structure 0.874 0.100

Activity profile 0.720 0.114

Combined 0.879 0.097

Table A.3.: Cancer, 374 assays, 300 molecules.

Descriptor Mean sd

Structure 0.867 0.096

Activity profile 0.737 0.124

Combined 0.871 0.095

Descriptor Mean sd

Structure 0.872 0.098

Activity profile 0.743 0.126

Combined 0.876 0.097

A.1.2. Effect of the number of molecules

Table A.4, table A.5 and table A.6 contain values of the mean and standard deviation

of the measurements ROC and APR. The right hand side table is for APR and the

left hand side table is for ROC. The number of assays for each experiment is fixed to

150. The number of active molecules vary in [400, 800, 1400]. The number of active

molecules and inactive molecules is balanced, i.e the number of inactive molecules

is 300 as well. The data set is for cancer.

Table A.4.: Cancer, 150 assays, 400 molecules.

Descriptor Mean sd

Structure 0.799 0.075

Activity profile 0.650 0.092

Combined 0.800 0.076

Descriptor Mean sd

Structure 0.780 0.085

Activity profile 0.646 0.085

Combined 0.779 0.085
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Table A.5.: Cancer, 150 assays, 800 molecules.

Descriptor Mean sd

Structure 0.851 0.060

Activity profile 0.650 0.069

Combined 0.853 0.058

Descriptor Mean sd

Structure 0.830 0.071

Activity profile 0.650 0.072

Combined 0.835 0.069

Table A.6.: Cancer, 150 assays, 1400 molecules.

Descriptor Mean sd

Structure 0.937 0.050

Activity profile 0.692 0.060

Combined 0.937 0.050

Descriptor Mean sd

Structure 0.940 0.053

Activity profile 0.689 0.069

Combined 0.940 0.053

A.2. Flu

A.2.1. Effect of the number of assays

Table A.7, table A.8 and table A.9 contain values of the mean and standard deviation

of the measurements ROC and APR. The right hand side table is for APR and the

left hand side table is for ROC. The number of molecules for each experiment is

fixed to 300 active molecules and 300 inactive molecules. The number of assays vary

in [15, 27, 57]. The dataset is for flu.
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Table A.7.: Flu, 15 assays, 300 molecules.

Descriptor Mean sd

Structure 0.849 0.136

Activity profile 0.706 0.148

Combined 0.857 0.124

Descriptor Mean sd

Structure 0.853 0.13

Activity profile 0.718 0.146

Combined 0.861 0.124

Table A.8.: Flu, 27 assays, 300 Molecules.

Descriptor Mean sd

Structure 0.863 0.118

Activity profile 0.719 0.132

Combined 0.868 0.112

Descriptor Mean sd

Structure 0.868 0.116

Activity profile 0.725 0.129

Combined 0.872 0.110

Table A.9.: Flu, 57 assays, 300 molecules.

Descriptor Mean sd

Structure 0.871 0.113

Activity profile 0.733 0.129

Combined 0.877 0.111

Descriptor Mean sd

Structure 0.875 0.113

Activity profile 0.737 0.130

Combined 0.881 0.109

A.2.2. Effect of the number of molecules

Table A.10, table A.11 and table A.12 contain values of the mean and standard

deviation of the measurements ROC and APR. The right hand side table is for APR

and the left hand side table is for ROC. The number of assays for each experiment

is fixed to 30. The number of active molecules vary in [300, 600, 800]. The number

of active molecules and inactive molecules is balanced, i.e the number of inactive

molecules is 300 as well. The data set is for flu.
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Table A.10.: Flu, 30 assays, 300 molecules.

Descriptor Mean sd

Structure 0.818 0.075

Activity profile 0.678 0.101

Combined 0.823 0.074

Descriptor Mean sd

Structure 0.802 0.084

Activity profile 0.674 0.099

Combined 0.807 0.084

Table A.11.: Flu, 30 assays, 600 Molecules.

Descriptor Mean sd

Structure 0.850 0.061

Activity profile 0.665 0.088

Combined 0.853 0.060

Descriptor Mean sd

Structure 0.830 0.069

Activity profile 0.661 0.086

Combined 0.835 0.071

Table A.12.: Flu 30 assays, 800 molecules.

Descriptor Mean sd

Structure 0.863 0.057

Activity profile 0.668 0.071

Combined 0.863 0.56

Descriptor Mean sd

Structure 0.845 0.066

Activity profile 0.667 0.071

Combined 0.847 0.065

A.3. HIV results

A.3.1. Effect of the number of assays

Table A.13, table A.14 and table A.15 contain values of the mean and standard

deviation of the measurements ROC and APR. The right hand side table is for

APR and the left hand side table is for ROC. The number of molecules for each
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experiment is fixed to 600 (300 active molecules + 300 inactive molecules). The

number of assays vary in [10, 24, 47]. The data set is for HIV.

Table A.13.: HIV, 10 assays, 300 molecules.

Descriptor Mean sd

Structure 0.798 0.106

Activity profile 0.621 0.121

Combined 0.791 0.100

Descriptor Mean sd

Structure 0.791 0.113

Activity profile 0.641 0.117

Combined 0.792 0.105

Table A.14.: HIV, 24 assays, 300 molecules.

Descriptor Mean sd

Structure 0.794 0.110

Activity profile 0.645 0.112

Combined 0.800 0.110

Descriptor Mean sd

Structure 0.783 0.116

Activity profile 0.655 0.109

Combined 0.790 0.116

Table A.15.: HIV, 47 assays, 300 molecules.

Descriptor Mean sd

Structure 0.790 0.108

Activity profile 0.642 0.115

Combined 0.797 0.101

Descriptor Mean sd

Structure 0.778 0.110

Activity profile 0.651 0.109

Combined 0.786 0.109

A.3.2. Effect of the number of molecules

Table A.16, table A.17 and table A.18 contain values of the mean and standard

deviation of the measurements ROC and APR. The right hand side table is for APR

and the left hand side table is for ROC. The number of assays for each experiment

is fixed to 30. The number of active molecules vary in [300, 600, 800]. The number
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of active molecules and inactive molecules is balanced, i.e the number of inactive

molecules is 300 as well. The data set is for flu.

Table A.16.: HIV, 30 assays, 300 molecules.

Descriptor Mean sd

Structure 0.823 0.23

Activity profile 0.733 0.25

Combined 0.827 0.22

Descriptor Mean sd

Structure 0.803 0.096

Activity profile 0.674 0.098

Combined 0.814 0.092

Table A.17.: HIV, 30 assays, 500 molecules.

Descriptor Mean sd

Structure 0.792 0.18

Activity profile 0.627 0.2

Combined 0.786 0.18

Descriptor Mean sd

Structure 0.814 0.099

Activity profile 0.655 0.103

Combined 0.821 0.097

Table A.18.: HIV, 30 assays, 700 molecules.

Descriptor Mean sd

Structure 0.839 0.12

Activity profile 0.712 0.14

Combined 0.837 0.11

Descriptor Mean sd

Structure 0.835 0.092

Activity profile 0.660 0.086

Combined 0.840 0.089
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A.4. Time complexity

Table A.19.: Structural descriptors.

# assays # unique molecules Time (minutes)

10 987 10.21

10 3040 13.10

10 5024 16.10

50 1526 18.57

50 4921 41.45

50 8064 67.41

150 16186 185.23

150 48086 381.51

150 80328 591.28

Table A.20.: Activity profile descriptors.

# assays # unique molecules Time (minutes)

10 987 12.06

10 3040 17.21

10 5024 22.09

50 1526 20.03

50 4921 61.31

50 8064 78.34

150 16186 203.45

150 48086 463.05

150 80328 651.54
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Table A.21.: Combined descriptors.

# assays # unique molecules Time (minutes)

10 987 13.10

10 3040 20.03

10 5024 27.13

50 1526 22.15

50 4921 69.19

50 8064 94.46

150 16186 219.09

150 48086 574.44

150 80328 920.18
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