
Masterarbeit

Approximate nearest neighbor query
methods for large scale structured

datasets

Joachim Wolff

24. Mai 2016

Albert-Ludwigs-Universität Freiburg im Breisgau
Technische Fakultät

Institut für Informatik

Bearbeitungszeitraum
27. 11. 2015 – 27. 05. 2016

Gutachter
Prof. Dr. Rolf Backofen
Dr. Frank Hutter

Betreuer
Dr. Fabrizio Costa
Milad Miladi

Erklärung

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbstständig verfasst habe, keine
anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen,
die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als
solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschluss-
arbeit nicht, auch nicht auszugsweiße, bereits für eine andere Prüfung angefertigt
wurde.

Freiburg im Breisgau, den 24. Mai 2016

Contents

Zusammenfassung 1

Abstract 3

1 Introduction 5
1.1 Task definition: Approximate k-nearest neighbors 5
1.2 Related works . 7

1.2.1 Algorithms . 7
1.2.2 Libraries providing implementations 10
1.2.3 Random projection . 11

2 Nearest Neighbor Search 13
2.1 Approximate Nearest Neighbor Search 14

3 Estimator induction 15
3.1 Curse of dimensionality . 15
3.2 Minimum Hash . 15
3.3 Winner takes it all hash . 18

4 Approximate nearest neighbor search algorithm 21
4.1 Measurements . 21

4.1.1 Euclidean distance . 21
4.1.2 Cosine similarity . 22

4.2 Estimator . 22
4.2.1 Runtime analysis . 23

4.3 Structure of the inverse index . 23
4.3.1 Pruning the inverse index . 24

4.4 Prediction phase . 24
4.4.1 Candidate selection I: Values from the inverse index 24
4.4.2 Candidate selection II: Neighbors of neighbors 25
4.4.3 Runtime analysis . 26

5 Memory saving techniques 29
5.1 Bloomier Filter . 29

5.1.1 Usage as the data structure for the inverse index 31
5.2 Memory saving techniques . 33

5.2.1 Pruning of hash functions . 33

i

5.2.2 Pruning of hash values . 33
5.2.3 Prune during the fitting process 34
5.2.4 Store hash values with least significant n-bits equals zero . . . 34
5.2.5 Compressing the signature . 34

6 Implementation 35
6.1 Interface . 35

6.1.1 MinHash . 35
6.1.2 MinHashClassifier . 38
6.1.3 WtaHash . 39
6.1.4 WtaHashClassifier . 39
6.1.5 MinHashClustering . 39

6.2 GPU support . 39
6.2.1 Programming model . 39

6.3 Installation . 40
6.4 Class diagram . 41

7 Results 43
7.0.1 Datasets . 43
7.0.2 Used machines . 44
7.0.3 Measurements . 45

7.1 Approximate nearest neighbor search 46
7.1.1 Best accuracy . 47
7.1.2 Best score . 53
7.1.3 Comparing with related algorithms 59
7.1.4 Scalability . 66
7.1.5 Random projection . 76
7.1.6 Memory usage . 78

7.2 Memory saving techniques . 79
7.2.1 Pruning of hash functions . 82
7.2.2 Pruning hash values . 83
7.2.3 Frequency of pruning . 84
7.2.4 Storing only hash values with least significant bit equal 0 . . . 85
7.2.5 Compress the signature . 86
7.2.6 Conclusion . 87
7.2.7 Recommendations . 87

7.3 Classification . 88
7.4 Clustering . 88

8 Discussion 91
8.1 Take away messages . 91

Bibliography 93

Zusammenfassung

Die Lösung des Similaritätsproblems der k-nächsten Nachbarn ist mit einem exak-
ten Algorithmus in O(n2 ∗m), mit n Instanzen und m Dimensionen gegeben. Die
Laufzeit eines solchen Algorithms wird gerade unter dem Aspekt des ’curse of dimen-
sionality’ kritisch. Approximative Algorithmen stellen hierbei einen Ausweg dar. In
der vorliegenden Masterthesis wird ein Algorithmus implementiert welcher zuerst
die Dimensionen der Eingabemenge reduziert und dann in zwei weiteren Schritten
Kandidaten für die Nachbarschaft auswählt um mit ihnen die k-nächsten Nachbarn
auf den Orginaldaten zu berechnen. Der vorliegende Algorithmus ist spezialisiert
auf sehr spärlich besetze und hochdimensionale Datensätze. Des weiteren unter-
stützt die vorliegende Implementierung moderne Multicore-Prozessoren und bietet
die teilweise Berechnung auf der Graphikkarte an. Möglichkeiten zur Reduzierung
des Speicherverbrauchs des Algorithmuses werden untersucht und wenn sinnvoll im-
plementiert. Es wird ein Python-Interface welches zu dem von scikit-learns nearest
neighbors Implementierung1 kompatibel ist angeboten.

1http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html, ac-
cessed: 2016-05-24

1

Abstract

An exact algorithm to solve the similarity problem of the k-nearest neighbors is given
with a runtime of O(n2 ∗m) with n instances and m dimensions. Given the curse of
dimensionality the runtime of this algorithm is critical, approximate algorithms can
be helpful to find a solution. In this master thesis an approximate nearest neighbor
search algorithm is implemented. In a first step the dimensions are reduced, followed
by two candidate selection rounds on the original dataset to compute the k-nearest
neighbors of an instance. The implemented algorithm is specialized to very sparse
and very high-dimensional datasets. Methods to reduce the usage of memory are
examined and implemented if useful. Multi core-CPU support is provided and parts
of the algorithm can run on the graphic card. An interface compatibility to scikit-
learns nearest neighbor algorithm1 python interface is provided.

1http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html, ac-
cessed: 2016-05-24

3

1 Introduction

In bioinformatics it is useful to know if molecules, genes, proteins or RNA structures
are somehow related, searching here for similarities is used to get a first intuition
what could be related and is reducing the search space for a more complex compu-
tation. Another usage is to select candidates for a real world test in the laboratory.
It is simply a cost factor to test as less as possible in real, a good candidate selection
is crucial to save a lot of working time and money. A similarity search is given by
a brute force algorithm which runs in O(n2 ∗ m), with n instances and m dimen-
sions. In bioinformatics it is likely to have very sparse and very high dimensional
datasets, there are datasets which are having one million dimensions and 400 to 4000
non-zero features per instance. Working here with dense datasets is today possible,
typically the nearest neighbors are computed with a matrix multiplications which
leads to a memory usage of O((n ∗ m)). The required main memory for example
128 GB costs around 800 to 1000 Euro (May 2016) which is the price of a normal
computer and second the computation time is too long. Too much resources are
wasted for storing and computing zeros. Storing and computing as a very sparse
dataset for the k-nearest neighbor search is very important to overcome these issues,
but todays k-nearest neighbor search algorithm are often not specialized to this kind
of data structure. To reduce the complexity only an algorithm which is based on
approximations is possible, the payoff is to allow a specific error term. In many
cases inaccuracies are acceptable because the order of the k-nearest neighbors is not
that important, only the fact that these instances are within the k-nearest neighbors
matters. Furthermore it is in many cases better to have a solution with a few errors
within reasonable time instead of waiting long for the computation.
In this work an approximate approach is used. Given a very sparse and very high
dimensional dataset it is likely for an instance to have their neighbors with these
instances that share features with it, no matter what the values of this feature are.
In the following an algorithm and an implementation specialized on this kind of data
structure is developed.

1.1 Task definition: Approximate k-nearest neighbors

Current approximate nearest neighbor search algorithms are often dealing with a
lack of support of very high dimensional but very sparse datasets. The benefits of a
sparse dataset is that only the non-zero features of every instance need to be stored.

5

Chapter 1 Introduction

Algorithms like annoy1 or local sensitive hashing forest2 accept sparse datasets as
an input but they need a lot of memory. Other algorithms like kd-tree or ball-tree
do not accept a sparse data matrix as an input.
The higher the dimensions are the more is the runtime of the algorithm depended
on the number of dimensions and not as usually assumed by the number of input
instances. Bellman [1] was showing the problematic with this issue in his book
about dynamic programming in 1957. The solution to this problem is to reduce
the dimensions. To reduce them, a random projection can be used and then the
reduced dataset is given to the nearest neighbor algorithm. But random projection
leads to a decrease in accuracy, see Figure 1.4. Lastly, the nearest neighbor search
is a task which can be parallelized perfectly in theory. Every neighbor and every k-
nearest neighbor query for an instance can be computed independently. Usually two
or four, less common also eight, twelve and sixteen cores are available in a modern
processor. In most cases only a single thread is used instead of all threads which are
available. Second, if a parallelization is used like in scikit-learns nearest neighbor
algorithm it is badly implemented. For example in the most recent version 0.17 of
scikit-learn multi core support for the nearest neighbor search was introduced. But
on a quad core CPU there is just a little bit more than 20 % speedup between one
(1.2 seconds) and four (0.93 seconds) threads instead of the expected speedup of
factor 4. Third, general purpose GPU programming (GPGPU) with frameworks
like openCL3 or Nvidia’s CUDA4 with a huge parallelization capability is not used.
This master thesis tries to solve these issues. First, a dimension reduction based on
the two hash algorithms ’minimum hash’ (MinHash) and ’winner takes it all hash’
(WTA-Hash) is implemented. Second, an approximate k-nearest neighbors search
based on a candidate selection is computed. The implementation is written in C++
to get optimal speed and parallelization is supported with openMP5. Last, for those
parts of the algorithms which can be parallelized a GPU support is provided. To
reduce the amount of stored memory different methods are evaluated. With the
acceptance of less accurate results memory can be saved which makes sense for large
datasets which could not be computed otherwise with the available memory of a
todays desktop computer (8 - 16 GB). The two implementations are compared with
other nearest neighbor search algorithms and it is examined if they can be used as
a base for a classification and clustering algorithm. The two dimension reduction
methods MinHash and WTA-Hash are compared to each other.
An interface which is compatible with scikit-learns python interface for the nearest
neighbor search6 is provided.

1https://github.com/spotify/annoy, accessed: 2016-05-24
2http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LSHForest.html, accessed:
2016-05-24

3https://www.khronos.org/opencl/, accessed: 2016-05-24
4http://www.nvidia.com/cuda, accessed: 2016-05-24
5http://openmp.org, accessed: 2016-05-24
6http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html, ac-
cessed: 2016-05-24

6

1.2 Related works

1.2 Related works

In the following different algorithms for the nearest neighbor search are shown and
libraries which provide an implementation of (approximate) nearest neighbor search
algorithms are mentioned.

1.2.1 Algorithms

1.2.1.1 Brute force solution

The brute force solution provided by the nearest neighbor algorithm of scikit-learn is
computing the nearest neighbors based on different measurements like the euclidean
distance or the cosine similarity. The brute force algorithm compares every instance
with every other instance and returns in this way an exact solution. The compu-
tation can be done by multiple dot product computations. These computations are
implemented in the background with BLAS1, using highly optimized Fortran source
code. This makes the algorithm in the case of high dimensions like 4000 very fast.

1.2.1.2 Kd-tree

Kd-trees were first introduced by Bentley in 1975 [2] and used by Friedman [3]
as a base for the nearest neighbor search. Kd-trees are binary trees and they
split the data space by the median of each set for the specific dimension. A
kd-tree works as follows: Given a d-dimensional dataset D with the instances
{x0, ..., xn} ∈ D and xi = {y0, ..., yd}. The tree is constructed by computing the
median for the first dimension and placing every instance which is smaller to the
left and every instance which is bigger to the right. For every subtree this is re-
peated with the next dimension of the subset. In Figure 1.1a the 2-dimensional set
{(1, 3), (4, 2), (6, 9), (7, 9), (9, 11), (15, 12)} is given. The median for the first instance
is 7. According to this value the dataset is split into the two sets: {(1, 3), (4, 2), (6, 9)}
and {(7, 9), (9, 11), (15, 12)}. For the second dimension the first set is split at 4 which
leads to the two subsets {(1, 3), (4, 2)} and {(6, 9)}; the second set is split at 11 which
leads to {(7, 9)} and {(9, 11), (15, 12)}. A nearest neighbor search works as follows:
Given some data point x the value of the first dimension is compared to the root
node. Based on the decision here the left or the right subtree is evaluated according
to the value of the second dimension. This method is an approximate nearest neigh-
bor search method because it can miss some instance. This can happen if a neighbor
falls into another subtree. In this case the instance is not seen. In the example in
Figure 1.1b the neighbors for instance (8, 10) are searched. It only finds the neighbor
(7, 9) but not the also nearest neighbor (9, 11). The kd-tree implementation from
scikit-learn is not accepting a sparse matrix as an input.

1http://www.netlib.org/blas, http://docs.scipy.org/doc/scipy/reference/linalg.blas.html, ac-
cessed: 2016-05-24

7

Chapter 1 Introduction

(a) Kd-tree for 2-dimensions
(b) Approximate nearest neighbor search

path.

Figure 1.1: A kd tree used for approximate nearest neighbor search.

1.2.1.3 Ball tree

Approximate nearest neighbor search based on the data structure ’ball tree’ works
similar to kd-tree. Instead of splitting by median, the distance to two specified cen-
troids is computed, every instance belongs to one of the centroids and is creating
a cluster implicitly. If the distance for an instance is for both centroids equal, one
cluster is chosen at random. A node can not be a member in two clusters. For each
created cluster two centroids are chosen again and this is repeated recursive until
each cluster is containing a specified number of instances or a predefined number
of clusters is reached. The search for an approximate nearest neighbor computes
recursively to which cluster it belongs and the nearest neighbors are given by the
cluster. Again some nearest neighbor instances can be missed in case that an in-
stance belongs to another cluster. The ball-tree implementation from scikit-learn is
not accepting a sparse matrix as an input.

1.2.1.4 RPForest

RPForest [4](random projection forest) is using multiple random projection trees
which is a variant from the kd-tree [5]. Each tree is recursively split into subsets until
each leaf node is responsible for a predefined number of instances. The instances
are separated by the cosine angle value for an instance computed to some random
hyperplane. As it is usual in binary trees every instance which is smaller as the
median angle falls into the left subtree, everything else in the right one. A query is
searching in each tree for the corresponding leaf. All instances from here are merged
together with the results of all trees. Duplicates are removed and the candidates
are sorted by the measurement to the query point.

8

1.2 Related works

1.2.1.5 Annoy

Annoy (Approximate Nearest Neighbors Oh Yeah) [6], [7] is an algorithm based
on random projections and trees. It was developed by Erik Bernhardsson in 2015
working at that time at spotify. Annoy is designed to search in date sets up to 100
to 1000 dense dimensions. To compute the nearest neighbors it is splitting the set of
points into half and is doing this recursively until each set is having k items. Usually
k should be around 100. See Figure 1.2. For every set a binary tree is build. To
get the nearest neighbors of a point, the right set needs to be chosen and than the
binary tree is used for the search. It can happen that a point is next to the border
of a set. In this case the neighbor set is also considered. To get better results a
priority queue sorted by the minimum margin for the path from the root node is
used to search the tree. For every set multiple trees are build. See Figure 1.3. If
k items in the trees are found, duplicates are removed and for these instances the
distances are computed on the original dataset.

Figure 1.2: Splitting of the dataset used by annoy. Source: [7]

(a) Consider buckets next its own. (b) Consider multiple trees.

Figure 1.3: Source: [7]

9

Chapter 1 Introduction

1.2.1.6 Local sensitive hashing forest - LSHF

Local sensitive hashing forest (LSHF) by Bawa et al [8] was published in 2005.
LSHF is based on the idea of local sensitive hashing like it was introduced in [9]
and [10]. The idea of local sensitive hashing is that similar values are hashed into
the same bucket to preserve locality. The probability that two similar values are
hashed to the same bucket needs to be higher than the probability of two non similar
values. Usually a LSH index is built that one value p is hashed by k hash functions
which leads to the label g(p) = (h0(p), ..., hk(p)). Bawa is introducing a variable
length of g(p) instead of a fixed one so that every point gets an unique label. All
the labels are than stored in a prefix tree, and each point needs only that many
hash functions until its label is unique in the tree. To increase the accuracy of the
algorithm multiple trees are constructed which leads to a forest. A query is working
in two phases: First all the trees in the forest are searched to get to the leafs with
the largest prefix match according to the computed label of the query point. In the
second phase all instances from the leafs are collected. Starting at the deepest level
of the leaf over all prefix trees the instances are collected level by level until the root
node is reached or a predefined number of points is collected.

1.2.2 Libraries providing implementations

1.2.2.1 Flann

Flann (Fast Library for Approximate Nearest Neighbors) [11] is a library which is
providing different implementations for a nearest neighbor search. It provides the
brute force search and the approximate nearest neighbor search based on kd-trees,
kmeans and a mixture of both.

1.2.2.2 Panns

Panns (Python approximate nearest neighbor search) [12] is using a binary tree as a
data structure. Every instance is scalar-projected with a random projection. Each
node represents the median of all scalar-projections of all included data points. As
usual every instance with a value less than this median falls into the left subtree,
every other node to the right one. For a query the tree is searched according to the
random projections.

1.2.2.3 Nms lib

Nmslib (Non-Metric Space Library) [13] provides different implementations like
panns for the nearest neighbor search. It is implemented in C++ and is often
using SIMD (Single Instruction Multiple Data) optimizations like SSE. A Python
interface is provided.

10

1.2 Related works

1.2.2.4 scikit-learn

Scikit-learn [14] is a machine learning library for Python and is providing implemen-
tations for the brute-force, LSHForest, BallTree and kd-tree algorithm.

1.2.3 Random projection

A common used technique to reduce the dimensionality is a random projection. The
idea behind random projection is the Johnson-Lindenstrauss lemma [15] projecting
the d-dimensional original data space to k-dimensions. It is computed with a simple
matrix multiplication:

Xrandomprojected
k,n = Rk,d ∗Xd,n (1.1)

The projection matrix R is original based on Gaussian distribution but Achlioptas
[16] has shown that it is enough to use for each entry:

ri,j =
√

3

+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(1.2)

The greater the dimensionality reduction the more accuracy is getting lost. In
Figure 1.4b it is shown that if the dataset ’Bursi’ (see subsubsection 7.0.1.1) with
about 1 million dimensions and 370 non-zero features per instance on average is
reduced with the sparse random projection from sklearn the accuracy decreases for
example to 90 % with 10000 dimensions and to 73 % for 800 dimensions. Further-
more the runtime is influenced by the projection. The sparse projection tries to
achieve that about 30 % are non-zero features, which leads to a runtime of about a
minute for the projected dataset with 10000 dimensions compared with a little bit
less than five seconds for the original dataset. Also it is interesting to see that the
dimensions need to be reduced to 600 dimensions and less to have a faster query
than on the original dataset.
The Gaussian random projection in sklearn which would reduce the given sparse
dataset to a dense one is not working on a today’s normal computer with 8 GB
RAM because the software is terminating with error message ’Memory error’.

11

Chapter 1 Introduction

(a) Runtime for the projected dimensions. (b) Accuracy for the projected dimensions.

Figure 1.4: Influence of the random projection to the accuracy.

12

2 Nearest Neighbor Search

The nearest neighbor search is a similarity problem to find the closest points to a
given instance:

Definition
Out of a set of n instances P = {p1, ..., pn} in some metric space X the nearest neigh-
bor search computes the closest instance q to an instance p under some measurement
function.

The k-nearest neighbors are:

Definition
Out of a set of n instances P = {p1, ..., pn} in some metric space X the k-nearest
neighbor search computes the closest k-instances {q0, ..., qk} to an instance p un-
der some measurement function. The set {q0, ..., qk} is ordered according to the
measurement function.

Figure 2.1: 5-nearest neighbors to an instance (black circle).

An exact algorithm is working well with low dimensions, as a distance or similarity
measure they usually use the euclidean distance or the cosine similarity. The time
complexity is O(n ∗ m) for n instances and m dimensions per query and for all
instances it is O(n2 ∗m) . It is easy to see that for lower dimensions the runtime of
a query is not that much influenced by the number of dimensions. If the dimensions

13

Chapter 2 Nearest Neighbor Search

are significant larger than the number of instances, it leads to a problem called
’curse of dimensionality’. To fight the curse of dimensionality Indyk and Motwani
[10] introduced the approximate nearest neighbor search.

2.1 Approximate Nearest Neighbor Search

The idea behind the approximate nearest neighbor search is to speed up the com-
putation of the nearest neighbors, the exact algorithm which is in O(n2) can not be
improved. The only way to speed up the computation is to allow errors.
Definition
Find a point p ∈ P that is an ε-approximate nearest neighbor of the query q, that
∀p′ ∈ P , d(p, q) ≤ (1 + ε)d(p′q).

This definitions says that instances which are only a factor of ε away from the
real nearest neighbors can be considered as nearest neighbors. Thankfully this is
not too difficult to achieve because the value of ε is not restricted to a given range.
Approximations can work in different ways. As described in section 1.2 the usual way
is to reduce the number of dimensions by a random projection. This does not reduce
the O(n2) runtime but fights the curse of dimensionality. The second approach is to
compute k candidates per instance which leads to a runtime of O(n ∗ k). Also both
solutions can be combined.

Figure 2.2: Approximate nearest neighbors to an instance (black circle).

14

3 Estimator induction

To fight the curse of dimensionality two estimators are evaluated, minimum hash
(MinHash) [17], [18] and winner takes it all hash (WTA-Hash) [19]. The estimators
are used to reduce the dimensions of a dataset to the number of used hash functions.
To do this they compute a signature for each instance. After it the signature is
inserted to an inverse index; this inverse index is used for a fast prediction of the
k-nearest neighbors.

3.1 Curse of dimensionality

The curse of dimensionality was first mentioned by Bellman in 1957 [1]. The well
known notion of big O to specify the theoretical runtime of an algorithm focuses
on the number of input elements. Bellman showed that for a computation of n
instances with m dimensions that the runtime is more depended on the number of
dimensions if m >> n. For example if n = 1000 and m = 100000 then a quadratic
factor for the runtime of the prediction for the k-nearest neighbors with O(n2 ∗m)
is not influencing the runtime that drastically in comparison to the influence of the
dimensions.

3.2 Minimum Hash

Minimum Hash is a local sensitive hash function introduced by Broder [17]. Lo-
cal sensitive hash functions are, as the name indicates, hash functions that try to
preserve the locality information of the data. Broder addresses the issue of how to
compare the content of two documents A and B with each other to find out first, the
resemblance r(A,B) ’ how likely it is that the documents are roughly the same’ and
second, ’the containment c(A,B) [...] indicates that A is roughly contained within
B’. To achieve this, he reduces the content of a document to canonical tokens which
means that no matter how a document is formatted, as long as the content is the
same, they are reduced to the same tokens. To compute the resemblance and the
containment, Broder reduces the problem to an intersection of sets. To do so, he
defines the sets per document as follows:

Definition

15

Chapter 3 Estimator induction

A bag for a document D contains all sets of subsequences for the document D with
the tokens S(D,w), where w is the shingle size and equals to the size of each subset.

Example:
The document ’(a, rose, is, a, rose, is, a, rose)’ with w = 4 leads to the bag {(a,
rose, is, a), (rose, is, a, rose),(is, a, rose, is),(a, rose, is, a),(rose, is, a, rose)}.

The resemblance is defined as:

rw(A,B) = | S(A,w) ∩ S(B,w) |
| S(A,w) ∪ S(B,w) | (3.1)

and the containment as:

cw(A,B) = | S(A,w) ∩ S(B,w) |
| S(A,w) | (3.2)

These definitions implicate the issue that it can happen that different documents A
and B would have the a same, but permuted bag, e.g. (a, c, a, b, a) and (a, b, a, c,
a). To overcome this, Broder introduces the following:
Definition
Let Ω bet the set of all shingles of size w. Without loss of generality Ω is totally
ordered. For fixed parameter s and W ⊆ Ω MINs(W) is:

MINs(W) =

the set of the smallest s elements in W, if | W |≥ s;
W, otherwise

(3.3)

and

MODm(I) =
{
the set of elements of W that are 0 mod m (3.4)

Let g : Ω→ N and π : Ω→ Ω be a permutation of Ω and letM(A) = MINs(π(S(A,w)))
and L(A) = MODm(g(π(S(A,w)))).
Now

r(A,B) = |MINs(M(A) ∪M(B)) ∩M(A) ∩M(B) |
|MINs(M(A) ∪M(B)) | (3.5)

and

r(A,B) = | L(A) ∩ L(B) |
| L(A) ∪ L(B) | (3.6)

are both values unbiased estimates of the resemblance of A and B; for the contain-
ment is

c(A,B) = | L(A) ∩ L(B) |
| L(A) | (3.7)

16

3.2 Minimum Hash

valid.
Heyne and Costa [18] transfered the work from Broder to the subject of the nearest
neighbors and dimension reduction. To achieve this, they consider for each instance
only the non-zero feature ids of an instance and compute a signature as follows:
Using a set of random hash functions Fi : N → N. The hash functions have to
satisfy: ∀xj 6= xk, fi(xj) 6= fi(xk) and xj 6= xk, P (fi(xj) ≤ fi(xk)) = 1/2. The
minimum hash function or MinHash is defined as

hi(x) = argminxj∈xfi(xj) (3.8)

For every instance the values of n MinHash functions are computed and stored as
the signature of this instance. The dimensions of the input data is reduced to the
number of used MinHash functions.
The number of features that two instance are having in common is given by the
Jaccard similarity: s(x, y) = (|x ∩ y|)/(|x ∪ y|). MinHash is an unbiased estimator
of it:

P (hi(x) = hi(y)) = (|x ∩ y|)/(|x ∪ y|) = s(x, y) (3.9)

This means that the probability that for two instances the hash function with the
minimum hash value is the same as the fraction of non-zero features that these two
instances are having in common [18]. To decrease the variance of this estimate N
independent MinHash functions can be computed. The MinHash algorithm is shown
in Algorithmus 1.

Data : m hash functions H, input vector X with non-zero feature ids
Result : Signature S for input vector X with a size of m
for hash_functioni in H do

minHashValue = MAX_VALUE;
argmin = 0;
for each non-zero feature id xj in X do

hashValue = hash_functioni(xj);
if hashValue < minHashValue then

minHashValue = hashValue;
argmin = xj;

end
end
Si = argmin;

end
return S;

Algorithmus 1 : MinHash algorithm

17

Chapter 3 Estimator induction

Example
Given is the dataset in Figure 3.1. Only the feature ids of the non-zero features are
considered, these would be for instance 1: 1 and 3. For every non-zero feature id
a hash value is computed and only the minimal hash value and the corresponding
feature id is stored, h(1) = 4 and h(3) = 2. In this case the MinHash value for the
first instance would be 3. This is computed for n-hash functions, for every instance.
The value per MinHash function is stored in the signature: {x0, ..., xn}

Figure 3.1: Example data for MinHash

3.3 Winner takes it all hash

The winner-takes-it-all algorithm was developed by Yagnik el al [19]. It is based
on the idea of rank correlation measures and satisfies the condition of a local sen-
sitive hash function. It uses m permutations Θ and a window size K. For every
permutation θi it permutes all the values given by an input vector X, afterwards
it considers only the first K values given some ordering and out of these it stores
the index id of the highest values as a value for permutation θi, called ci. All ci are
stored in a vector CX = [c0, ..., cm]. CX is the signature. The algorithm is shown in
Algorithmus 2.

Example
The example given in Figure 3.2 works the following. For the given permutation
Θ = {1, 4, 2, 5, 0, 3} the values are permuted e.g. in (d) the zero position with an
11 is permuted to position index 4 according to the permutation Θ. After this the
first k values are considered. In this case just the first k = 4 are considered but it
could also be sorted according to some other criteria. Out of the first 4 positions
the highest value, 13, is searched and the index position, 1, is stored as the winner
takes it all hash value.

To use WTA-Hash for a dimension reduction and a candidate selection the defini-
tions from Yagnik et al. needs to be specified more. The permutations of the values
are done by hashing, the values are then ordered by the smallest hash value. Out of

18

3.3 Winner takes it all hash

Data : A set of m Permutations Θ, window size K, input vector X.
Result : Sparse vector of codes CX

for each permutation θi in Θ do
a) Permute elements of X according to θi to get X ′.;
b) Initialize ith sparse code cxi

to 0.;
c) Set cxi

to the index of the maximum value in X ′(1...K);
for j = 0 to K -1 do

if X ′(j) > X ′(cxi
) then

cxi
= j

end
end

end
return CX = [cx0 , cx1 ,, cxm]. C contains m codes, each taking a value between 0
and K − 1.

Algorithmus 2 : WTA-Hash algorithm. Source: [19]

the smallest k hash values the index of the hash value for which the original value
from the dataset is the biggest is taken as the result.

Example
The original feature ids and associated values are: 1 : 0.3, 5 : 0.7, 9 : 0.1. Hashing
them will produce: h(1) = 4, h(5) = 1, h(9) = 3. With this setting the hash values
would be ordered to 1, 3, 9. If k is set to 2, the two values of 1, 3 which are the
hashed values for the feature ids 5 and 9 and the associated values are: 0.7 and 0.1.
The highest value is 0.7, which was for the hash value at index position 1. 1 would
be returned as a value for this permutation.

Winner takes it all hashing comes with the problematic nature that it is too less sen-
sitive for the locality information. Only k buckets exist and this leads to the effect
that too many instances are in one bucket. To much candidates are selected and the
most candidates are not that good distinguishable, they have all more or less the
same number of hits. This leads to the effect that for a test run with the algorithm
as it was proposed a run time of 2.5 seconds was recorded, compared with 0.6 sec-
onds for MinHash and 0.92 for the brute force algorithm. Second, the accuracy was
just 0.55 compared to 0.92 of MinHash. To overcome this issue the algorithm needs
to be modified a little bit. Instead of taking the index value of the highest value, the
actual value i.e. the hashed feature id is used. With this small change the winner
takes it all algorithm runs for the same parameter configuration with 0.7 seconds
and an accuracy of 0.88. The modified algorithm is shown in Algorithmus 3.

19

Chapter 3 Estimator induction

Figure 3.2: Winner takes it all hash example. Source [19]

Data : m hash functions, window size K, input vector with non-zero feature ids
X, input vector V with associated values

Result : Vector of codes CX

for each hash function θi in Θ do
a) Hash non-zero feature ids xj of X according to θi to get X ′.;
b) Sort hash values by ascending order, keep relation to the original values vj

in the vector V ′;
c) Initialize ith code cxi

to 0.;
d) Set cxi

to the hash value X ′(j) of the maximum original value V ′(j);
for j = 0 to K -1 do

if V ′(j) > V ′(maxIndex) then
cxi

= X ′(j);
maxIndex = j;

end
end

end
return CX = [cx0 , cx1 ,, cxm].;
C contains m codes, each taking a value between 0 and MAX_INT .;

Algorithmus 3 : modified WTA-Hash algorithm.

20

4 Approximate nearest neighbor
search algorithm

The approximate nearest neighbor search algorithm based on the dimension re-
duction introduced in chapter 3 works in two phases: First the fitting phase: the
dimensions are reduced with MinHash or WTA-Hash, then they are inserted in an
inverse index. Optional the inverse index is pruned with different methods to save
memory. The used measurements are the euclidean distance or cosine similarity. In
the second phase, the query phase, the following happens: First the signature of
every query instance is computed and every signature is queried against the inverse
index. Based on the number of hits per hash function, the instances are ranked. In
the fast case of the algorithm, the instances are returned as the nearest neighbors.
In the non-fast case two additional rounds are computed: based on the candidate
selection from the inverse index, all the neighbors for a given instance are measured
on the original dataset. Based on this, the neighbors of the k-neighbors are taken
as candidates and are measured on the original dataset again.

4.1 Measurements

The approximate nearest neighbor search is providing two measurements: the eu-
clidean distance as a distance measurement and the cosine similarity as a similarity
measurement.

4.1.1 Euclidean distance

As a distance measurement the euclidean distance is used. The euclidean distance
is defined for the n-dimensional space as:

d(x, y) =
√√√√ n∑

i=0
xi − xj

2 (4.1)

For sparse matrices the following definition is having benefits:

d(x, y) =
√
dot(x, x)− 2 ∗ dot(x, y) + dot(y, y) (4.2)

21

Chapter 4 Approximate nearest neighbor search algorithm

And the dot product is defined as:

dot(x, y) =
n∑

i=0
xi ∗ yi (4.3)

The benefits are that first, dot(x, x) can be precomputed and second, instead of a
subtraction and a square root for ever dimension it is reduced to a multiplication of
non-zero dimensions.

4.1.2 Cosine similarity

The cosine similarity is used as a similarity measurement and is defined as follows:

cos_sim(x, y) =

m∑
i=0

xiyi√
m∑

i=0
xi

2

√
m∑

i=0
yi

2
= dot(x, y)√

dot(x, x)
√
dot(y, y)

(4.4)

4.2 Estimator

At the fitting process the dimensions of the input dataset are reduced to the number
of hash functions. The reduced data per instance is called a signature and is com-
puted with MinHash or WTA-Hash, introduced in chapter 3. The signatures are
inserted in the inverse index. During or after the fitting process the inverse index
can be pruned. The idea is to save memory and to speed up the computation. These
optimizations are explained in detail in chapter 5, the analysis in section 7.2. The
computed signatures are stored per instance to avoid the expensive recomputation
of a known instance for the queries.

Data : Sparse dataset with n dimensions
Result : The inverse index
signatureStorage = list<list<signatures> > ;
inverseIndex = list<map<hashvalues, list<instances> > >;
for every instance do

signatureStorage[instance] = compute signature;
end
for every signature in signatureStorage do

for every hashValue in signature do
insertInInverseIndex(hashValue, instance, hashFunction);

end
end

Algorithmus 4 : Basic fitting algorithm

22

4.3 Structure of the inverse index

4.2.1 Runtime analysis

The runtime of the fitting part is given by:

• The computation of the signatures. For each instance n the number of non-
zero features m needs to be hashed by h hash functions if MinHash is used.
This leads to a runtime of O(n∗m∗h). For WTA-Hash each instance n withm
non-zero features needs to be hashed by h hash functions. Per hash function,
in terms of the WTA-Hashing permutations Ω, only the best k-values need
to be stored and additional the index with the maximal value is returned as
the final value. This needs additional 2 ∗ k steps. All together this leads to a
runtime of O(n ∗m ∗ h ∗ 2 ∗ k).

• The values need to be inserted in the inverse index. For n instances and h
hash values per signature this needs O(n ∗ h).

• The fitting needs O(n∗m∗h+n∗h) for MinHash and O(n∗m∗h∗2∗k+n∗h)
for WTA-Hash.

4.3 Structure of the inverse index

The inverse index is storing per hash function the created values and from which
instance they are coming from. This realized with a map per hash function which
is storing as a key the hash value and as a value a vector of the instances.

Example
As it can be seen in Figure 4.1 the computed values are stored per hash function.
For the first instance the value 2 is stored in the map for the first hash function and
the value 1 for the first instance is associated with it.

Figure 4.1: Inserted signatures in the inverse index.

23

Chapter 4 Approximate nearest neighbor search algorithm

4.3.1 Pruning the inverse index

To save memory and to speed up the computation time the inverse index can
be pruned. The details are discussed in section 5.2. To be exemplary for these
techniques two ideas are shown as an algorithm. First Algorithmus 5 shows that
hash values with less associated instances than a given threshold can be deleted
and second Algorithmus 6 shows that hash functions with less entries as a given
threshold can be deleted. Both pruning steps are increasing the runtime of the fit-
ting process. The first idea contributes additional O(h ∗ k) with h hash functions
and k hash values at maximum to the fitting process and the second O(h).

Data : A threshold, the inverse index
Result : The pruned inverse index
for every hash function in the inverse index do

for every hash value in a hash function do
if number of instances for hash value < threshold then

delete hash value;
end

end
end

Algorithmus 5 : Pruning of hash values

Data : A threshold, the inverse index
Result : The pruned inverse index
for every hash function in the inverse index do

if number of hash values for hash function < threshold then
delete hash function;

end
end

Algorithmus 6 : Pruning of hash functions

4.4 Prediction phase

The prediction phase is split into two phases: in the first phase candidates are
searched in the inverse index and these candidates are taken to compute the real
distance respectively similarity on the original dataset. In the second phase the
neighbors of neighbors are taken as the candidate set to increase the accuracy level
of the algorithm.

4.4.1 Candidate selection I: Values from the inverse index

The first candidate selection round queries against the inverse index which was
created during the fitting process. For each instance the signature needs to be

24

4.4 Prediction phase

computed. If it is a known instance i.e. it was part of the training data, the signature
is taken from memory. Each value from the signature is used to check in the inverse
index if for the specific hash function a hash value was created at the fitting process.
If yes all related instances are taken and stored. After all hash functions were
checked, the occurrence of instances is counted. This count is called the number
of hits. The instances are sorted after the number of hits in descending order. At
this point it is possible to return the found instances, this mode of the algorithm is
the ’fast’ mode. As it can be seen in chapter 7 it is significant faster but it is less
accurate. In the non-fast mode of the algorithm the candidate selection continues
with the computation of the real distances respectively similarities on the original
dataset. For the computation k ∗m candidates are considered, k is the number of
nearest neighbors that should be returned and m is an excess factor. The excess
factor is used that more instances than the k neighbors can be considered. If the
last candidate given by the sorting of the number of hits is having the same number
of hits as the k ∗m+1 candidate, this candidate is considered too. This extension of
the candidate set is continued until the next candidate is having less number of hits
than the k ∗m candidate. The extension is implemented because the instances with
the same number of hits can not be distinguished. The computed distances are then
sorted by ascending order for the distance measurement respectively in decreasing
order for a similarity measurement. If the values would be returned at this point
and the second candidate selection would not be computed, the accuracy would be
limited to 80% as you can see in Figure 4.2.

Figure 4.2: Accuracy with n hash functions if returned after the first candidate
selection.

4.4.2 Candidate selection II: Neighbors of neighbors

The second candidate selection is based on the idea that not all real nearest neigh-
bors are seen because of the approximate candidate selection, see Figure 4.3a. But
maybe a neighbor of an instance is having one of the real neighbors in its candidate
set, see Figure 4.3b. The candidate selection II is rebuilding the candidate set for
each instance and the members are the computed k-nearest neighbors from the first

25

Chapter 4 Approximate nearest neighbor search algorithm

candidate selection and the k + m candidates from each neighbor. This leads to a
candidate set size of k ∗ (k+m) per instance. Given the new candidate set, the real
distances respectively the similarity is computed on the original dataset. With this
trick a higher accuracy can be reached, accuracy levels of 0.9 to 0.95 are possible
in reasonable time as it can be seen in chapter 7. In contrast to the first candidate
selection the excess factor is added and not multiplied. This is done to limit the
number of neighbors which needs to be computed in the second candidate selection.

(a) Candidate (with out an arrow) is not in
the first candidate set.

(b) Candidate is inside the candidate set of
a neighbor.

Figure 4.3: Idea of candidate selection II

4.4.3 Runtime analysis

The algorithm shown in Algorithmus 7 needs:
• for n input query instances O(n∗h∗m) with h hash functions and m non-zero

features to compute the signatures if they are not in the signature storage.
• O(n ∗ h) to get the values out of the inverse index and O(hi+ n ∗ c ∗ log2(c))

to count hi hits and to sort c unique candidates per instance.
• O(n ∗ c ∗m+ c ∗ log2(c)) to compute and sort the euclidean distance / cosine

similarity for n query instances, c candidates per instance and m non-zero
features.
• O(n ∗ c2 ∗m+ n ∗ c2 ∗ log2(c2)) to compute and sort the euclidean distance /

cosine similarity for the second candidate set and O(n ∗ k ∗ (k+ e)) to get the
second candidate set c2 with k nearest neighbors and e as the excess factor.

26

4.4 Prediction phase

Data : Instances to predict the k-nearest neighbors
Result : The k-nearest neighbors of every query instance
for ever instance do

compute signature;
end
hitsPerInstance = list(set());
for every signature do

for hash value from hash function do
if hash value in inverseIndex[hash function] then

hitsPerInstance(instance) = inverseIndex[hash function][hash value];
end

end
for all instances do

sort hitsPerInstance in descending order;
end
if fast == true then

return hitsPerInstance;
end
for all instances do

compute for every hitsPerInstance[instance] the euclidean distance or cosine
similarity and sort desc or asc.

end
for all instances do

collect for every neighbor the nearest neighbors + excessFactor;
end
for all instances do

compute for every new candidate set[instance] the euclidean distance or
cosine similarity and sort desc or asc.

end
return neighbors;

end
Algorithmus 7 : Prediction phase.

27

Chapter 4 Approximate nearest neighbor search algorithm

• All together this leads to a runtime which is mainly dependent on the number
of query instances n, the size of the candidate set, the number of used hash
functions h and the number of non-zero features m: O(n ∗ h ∗m+ n ∗ h+ n ∗
c ∗m+ n ∗ c2 ∗m) ∼ O(4 ∗ n ∗ c ∗m).

28

5 Memory saving techniques

To store as less as possible values is a key factor for a good performance of the ap-
proximate nearest neighbor search. The less hash values that need to be considered,
the faster a query, the faster the algorithm is. In the following different techniques
are introduced and discussed under the two aspects if they achieve to save memory
and or to decrease the runtime of a prediction. Except the Bloomier filter which is
an alternative to store the inverse index, the methods operate on the built inverse
index or during build time.

5.1 Bloomier Filter

The Bloomier Filter is introduced by Chazelle et al in 2004 [20]. It is based on
the bloom filter from Bloom published in 1970 [21]. The intend of bloom filters is
to save memory by combining the stored elements. A bloom filter is operating on
the input elements I = x1, ..., xn and storing these values in a m− bit-sized vector.
Initial all bits are set to 0. To store the values k hash functions are used and each
hash function is projection to the range of 0 to m. Every to be stored number is
hashed with every hash function and the value of the hash value is taken to set the
bit at this index position to 1. If it is already 1 it is not changed. See Figure 5.1.
Bloom filters are answering the question if an element is inserted always correct with
just one bit operation which makes it fast. An element is in the bloom filter if all
computed index positions are set to 1. False positives appear with a probability of
(1− p)k if p is the probability that a bit is 0: p = (1− 1

m
)kn ≈ e−kn/m [22].

Figure 5.1: Functional principle of a bloom filter. Source: [22]

29

Chapter 5 Memory saving techniques

Bloomier Filters work a little bit different. Instead of just answering the question if
a key was seen before, Bloomier filters can store key/value pairs. If a key was seen
before, it returns the stored value of this key, otherwise it returns a negative answer.
Chazelle et al [20] defines Bloomier filters as follows:

Definition
Given a domain D = {0, ..., N − 1}, a range R = {⊥, 1, ..., |R|}, a subset S =
{t1, ..., tn} of D, [...] encode the function f : D → R such f(ti) = vi for 1 ≤ i ≤ n
and f(x) = ⊥ for x ∈ D\S.

The used data structure is a table with m entries with a size of k each. With a
hash function HASH : D → {1, ...,m}k random locations can be accessed. To store
a value in the table a neighborhood for key t defined by HASH(t) = (h1, ..., hk)
is computed. These hash values are considered as the neighborhood N(t). The
neighborhood is used to store the location of the value. Out of the neighborhood of
a key, the minimum element which was not used for any other key before is searched.
This element is called a singleton. If there is no such element a new neighborhood
needs to be computed. All elements of a neighborhood are defined as used and are
not allowed to be changed after it. To set an element the first time the following is
computed:

1. The neighborhood (h1, ..., hk,M) = HASH(t) with k positions in the table
and a mask M .

2. The index position of the singleton ι(t) = l within the neighborhood.

3. The hash value of the singleton hl : L = τ(t) .

4. The key is stored in the Table1: Table1[L] = ENCODE(l)⊕M⊕⊕k
i=1,i 6=l Table1[hi].

ENCODE means to get the value l into a m-size bit vector.

5. The associated value v to t is stored in Table2[L] = v.

To retrieve a value the following is computed:

1. The neighborhood (h1, ..., hk,M) = HASH(t) with k positions in the table
and a mask M .

2. l = DECODE(M ⊕⊕k
i=1 Table1[hi]).

3. If the retrieved l is within the range of {0, ..., k} than the value hl from the
neighborhood is taken, hl = L, and Table2[L] is returned, otherwise there is
no value stored.

To change a stored value, the computation is the same like for the retrieving but
instead of returning the value, the new value is set. Chazelle et al. is assuming that
all values that should be stored are known at the time the Bloomier filter is created.
This is not the case if it is used as a data structure for the inverse index. To use it
without the knowledge of the to be stored values, the algorithm needs to be changed
a little bit. Instead of returning a ’value not known / false’ if a value should be set

30

5.1 Bloomier Filter

Figure 5.2: Example computation to set a value for the first time in a Bloomier
filter.

but a) the retrieved value of l is not within the range of {0, ..., k} or the associated
index position within the Table2 is empty, the function to set a value the first time
is called.

Example
Assume the key t gives the neighborhood HASH(t) = {1, 3, 5, 8, 9}. Lets assume
the value h2 = 5 is the singleton and the mask isM = 9. Now ι(t) = 2 and τ(t) = 5.
To store the value l the m = 4-sized bit vectors in Table1 for the positions 1, 3,
8 need to be xored (Figure 5.2 left and mid up). This result is xor’ed with the
mask M which needs to be encoded as a 4-bit vector and with the encoded version
of l = 2 (Figure 5.2 mid). The result is stored in Table1[5](Figure 5.2 right), the
associated value in Table2[5]. To retrieve the value, the same neighborhood needs to
be computed and all the values for the index positions in Table1 are xor’ed. Xoring
the values ’1011, 0001, 0110, 0111 and 1001’ leads to ’0010’ which is 2. At index
position 2 in the neighborhood the value 5 is stored and the value can be retrieved
by a lookup at position 5 in Table2.

5.1.1 Usage as the data structure for the inverse index

The intend to use the Bloomier filter as a data structure for the inverse index is
to save memory and faster query times. Both intends failed. In the following the
approximate nearest neighbor search algorithm was used with first the Bloomier
filter as a data structure for the inverse index and second the unordered map im-
plementation from the standard C++11 library. The used algorithm is from an
earlier development stage (mid December 2015) and many optimizations in terms of
speed are not implemented. The runtime of the algorithm are not comparable to the
running times in chapter 7. The memory and time was measured with the ipython

31

Chapter 5 Memory saving techniques

notebooks cell magic command %memit and %time. MinHash was used with 400
hash functions and cosine similarity as a measurement, two CPU cores were used
on an Intel i5-5200U.

5.1.1.1 Memory usage

The usage of memory with the unordered map was for the fitting about 70 MB,
the Bloomier used 230 MB. Why is there such a huge gap between the two data
structures? The main reason is how the Bloomier filter is building its tables. For
every key it is xor’ing k values. In one of these values the data is written, but all k
values are not allowed to be used as singleton after it. With an optimal finding of the
singletons n + k − 1 values would be needed per Bloomier filter. But the Bloomier
filter is computing with hashing k neighbors and out of these one value have to be a
singleton. Under the assumption that the used hash function distributes the values
uniform, this issue can be reduced to a classical example of stochastics: The coupon
collector’s problem. How many tries t does it take until all n different coupons are
collected if s coupons can be taken at the same time? If the implementation would
allow that only the minimal number of values n+k−1 is allowed as the domain size,
the probability of finding a singleton would become too soon too less. To increase
the probability of finding values the size of the domain must be increased. This
leads to the issue that many possible positions in the Bloomier filter are empty. If
the domain size is too small and no singleton is found in the first try, the algorithm
tries to find a singleton with another hash functions. But the information which
hash function need to be used to retrieve the values need to be stored which costs
additional memory. Second, it is unknown from the beginning how many hash values
need to be stored in the Bloomier filter per MinHash function. For every MinHash
function in the inverse index the maximum size of values need to be hold. This is
significant different from the unordered map. The unordered map can be empty
at initialization time and is extended if a new element is inserted. To have this
behavior for the Bloomier filter all keys would need to search a new neighborhood
after every extension of the space. Nevertheless it would be possible in general but
the compressed keys are not stored in the Bloomier filter. To rehash them to find
a new neighborhood the original values have to be stored. This contradicts the
idea to save memory. Another solution would be to compute first all keys for a
Bloomier filter and create the Bloomier filter at the time it is known how many
elements should be inserted. The issue with this solution is again the contradiction
with the idea to save memory. If the key/value pairs need to be stored and than
inserted into the Bloomier filter the peak memory usage would be at least the same
as if no Bloomier filter is used at all. Another issue is not solved by the Bloomier
filter at all: Not the number of hash values and in terms of the Bloomier filter
the keys are the main factor in the memory usage, the associated instances are it.
A Bloomier filter would only compress the keys but the associated lists with the
instance where a hash values was appearing would still have the same size. In a

32

5.2 Memory saving techniques

worst case scenario all instances would have a different hash value per hash function
and every list would have just one element. But this distribution is not the case.
For example in Figure 7.30 it can be seen that there are more than 105 hash values
with a list size of one, but the majority is having more than one instance per hash
value. This leads to the realization that even if the Bloomier filter would not have
all the problematic issues mentioned above, the compression of the keys would not
have a major influence to the needed memory. Furthermore for an implementation
it is not possible to use random m-bit size vectors per Bloomier filter position. The
smallest possible data type in C++ is for example a char with 8-bits, all values of
m would need to be round up to the next multiple of 8.

5.1.1.2 Fitting and Query Times

The fitting time for the unordered map was 2.29 seconds, the Bloomier filter used
3.12 seconds. The query time was 0.94 seconds for the unordered map and 1.78
seconds with the Bloomier filter. The computation of the Bloomier filter version
takes longer because per access to an element k values needs to be hashed to get
the correct index values for the xor operation, and then these k values needs to be
xor’ed. Now the result can be taken to return the value out of the second table. This
is different from the unordered map implementation. Here it is enough to access the
element in constant time and this is returning the associated values.

5.2 Memory saving techniques

5.2.1 Pruning of hash functions

The idea behind removing complete hash functions is that some hash function do
not influence the result significant. First the can store values which are more or less
the same than in the other hash functions which makes a hash function redundant.
Second a hash value can contain for the hash values only instances which will not
influence the order of the instances per hit or third simply contribute only instances
which are not considered in any other hash function. To remove complete hash
functions from the inverse index the following is done: After the the inverse index
is built, the number of hash values per hash function are counted. After it, hash
functions containing less then n instances are removed. How big a hash function
should be can be user defined or every hash function which less than the mean +
standard deviation are removed.

5.2.2 Pruning of hash values

Pruning hash values out of a hash function is done to remove hash values which do
not contain at least n instances. These hash values usually do not contribute much

33

Chapter 5 Memory saving techniques

to the number of hits per instance but appear often.

5.2.3 Prune during the fitting process

The idea to prune the inverse index during the fitting process is to reduced the
amount of maximal memory usage. If the inverse index is pruned after the fitting
process to a smaller size the maximal amount of used memory is the same.

5.2.4 Store hash values with least significant n-bits equals zero

This is one of the most effective techniques to reduce the the amount of stored
values. Only hash values with the least n significant bits equals to 0 are inserted
in the inverse index. This method helps that the amount of used memory is not
growing that much.

5.2.5 Compressing the signature

Compressing signatures means to combine the hash values of multiple hash functions
to one. There are three parameters for this technique: the number of hash functions
n, the block size m and the shingle size k. The block size is a multiplication factor for
the number of hash functions, this means n * m hash functions are computed. After
this the number of hash values are reduced by the factor of k shingles. It means
that k consecutive hash values are combined to one. This leads to a signature size
of n ∗m/k.

34

6 Implementation

The implementation of the nearest neighbor search was designed to have a com-
patible interface to scikit-learns brute force nearest neighbor search algorithm. The
first idea was to write the algorithm completely in Python. But it turned out that
Python is way to slow to write a serious alternative. Furthermore Python is behav-
ing different as expected and needed. The used hash function from Thomas Wang1

uses bit shifting. In C/C++ a left bit shift will throw away the highest significant
bit all others shift to left and the least significant bit is 0. Python is having an
unlimited precision for long integers2. This leads to the effect if a normal 32-bit
integer is left shifted that there are not 32-bits after the shift but 33-bit in case of a
range of one. In practice this means that the data type is not the right one anymore
and it needs to be reassigned. This slows down the computation drastically and
second the result of the hashing is different. Because of this behavior the algorithm
is implemented with C/C++ and an interface for Python is provided. This works
the following: the data is given to the Python interface and is parsed to C with
Pythons C-API3. Within C/C++ the approximate nearest neighbors are computed
and are parsed back to Python.

6.1 Interface

There are four python interfaces: MinHash, MinHashClassifier, WtaHash, Wta-
HashClassifier and MinHashClustering

6.1.1 MinHash

A MinHash object is created as shown in Figure 6.1. First the algorithms needs to
be imported from the bioinf_learn package (line 2). After it, the objects needs to be
created and the parameters listed in Figure 6.1.1 are possible (line 7), the dataset
needs to be fitted (line 8) and than the k-nearest neighbors can be computed (line
10).

1Integer Hash Functions, 1997 / 2007 https://gist.github.com/badboy/6267743, accessed: 2016-
05-24

2https://docs.python.org/2/library/stdtypes.html#numeric-types-int-float-long-complex, ac-
cessed: 2016-05-24

3https://docs.python.org/2/c-api/index.html, accessed: 2016-05-24

35

Chapter 6 Implementation

Figure 6.1: Trivial example for MinHash
The following parameters can be used for the initialization of the object:

• n_neighbors = 5: This parameter defines how many k-nearest neighbors
should be searched by default. This value is used if no other value is defined
by the call of the k-neighbors-function.
• radius = 1.0: This parameter defines the range within an instance should be

considered for the nearest neighbor search in case of a range search with the
function radius_neighbors.
• fast=False: This parameter defines if the fast version of the algorithm should

be used or the more accurate but slower one. See chapter 7 for results.
• number_of_hash_functions=400: This parameter defines how many hash

functions should be used for MinHash. The number of used hash functions
is equal to the number of reduced dimensions. Default value is 400. For this
value it is recommended that it is not less than 150 and not more than 1000.
Starting with about 1000 hash functions the results converge usually. With
less than 150 hash functions too less hits are computed in the inverse index
and bad or even worse no result can be computed.
• max_bin_size = 50: This value defines how many instances a hash value for

a hash function should have at maximum in the inverse index. The idea here
is that too popular values do not contribute anything to the result.
• minimal_blocks_in_common = 1: This parameter defines how many hits a

value should have at least after the inverse index was queried to be considered
in the further computation.
• shingle_size = 4: This parameter defines how many contiguous values of a

signature should be merged to one. Not used if the parameter ’shingle’ is set
to ’0’.
• excess_factor = 5: This parameter defines the factor how many instances

should be considered after the querying of the inverse index. For example if
the 5-nearest neighbors are searched, for each instance 5 * excess_factor many
values are considered and used as candidates. In the second candidate selection
round for each instance k*(k+excess_factor) candidates are considered.
• similarity=False: This parameter defines if the cosine similarity (true) or the

euclidean distance (false) should be used as a measurement.

36

6.1 Interface

• number_of_cores=None: Here it can be defined how many cores by openMP
should be used. If set to ’None’ all available cores are used.

• chunk_size=None This parameter defines how many elements per thread from
openMP should be taken. If it is set to ’None’ the default behavior of openMP
which is splitting the to be computed elements equally to the threads is used.

• prune_inverse_index=-1: This parameter defines if and how many hash values
from the inverse index should be pruned. This means for example if its set to
10 that all hash values with less than 10 instances are deleted from the inverse
index. If this value is set to ’-1’ it is deactivated.

• prune_inverse_index_after_instance=-1.0: This parameter defines if the in-
verse index should be pruned after x% of the fitted data or not (value -1 or
0.) If it is for example 0.1 it means that the inverse index should be pruned
after 10%, 20%...90% of the data. This value should not be greater than 1.

• remove_hash_function_with_less_entries_as=-1: This parameter defines if
a hash function with less hash values than n should be deleted. If it is set to
’-1’ it is deactivated. If it is set to ’0’ all hash functions with less hash values
as the mean + standard deviation over all hash functions are removed.

• block_size = 5: This parameter defines how many additional MinHash val-
ues should be computed for the signature. If k hash functions are used, a
block_size of m and a shingle_size of n, the size of the signature will be
(k ∗m)/n. This parameter is ignored if the parameter ’shingle’ is set to ’0’.

• shingle=0: This parameter defines if MinHash values in the signature should
be merge together (set it to 1) or not (set it to 0). The parameters ’block_size’
and ’shingle_size’ are influencing the size of the signature.

• store_value_with_least_significant_bit=0: This parameter defines that only
hash values which are having the n-least significant bits 0 are stored in the
inverse index. All other values are thrown away. If it is set 0 it is deactivated.

• cpu_gpu_load_balancing=0: This parameter defines if the parts of the com-
putation should be supported by the GPU (1) or CPU only (0).

• gpu_hashing=0: If the hashing should be computed on the GPU (1) or not
(0).

• speed_optimized=None: This parameter defines if values for the parameters
above computed with a hyper-parameter optimization should be used. The
goal here was to reach at least an accuracy level of 0.7 and to speed up the
computation. If this parameter is used, all other parameters are ignored. Can
not be used with the parameter ’accuracy_optimized’ at the same time.

• accuracy_optimized=None: This parameter defines if values for the param-
eters above computed with a hyper-parameter optimization should be used.
The goal here was to reach at least an accuracy level of 0.9. If this parameter

37

Chapter 6 Implementation

is used, all other parameters are ignored. Can not be used with the parameter
’speed_optimized’ at the same time.

The following functions are provided, the documentation to each function can be
read in the Python doc strings.

• fit(X, y=None)

• kneighbors(X=None, n_neighbors=None, return_distance=True, fast=None,
similarity=None)

• kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’, fast=None,
symmetric=True, similarity=None)

• radius_neighbors(X=None, radius=None, return_distance=None, fast=None,
similarity=None)

• radius_neighbors_graph(X=None, radius=None, mode=’connectivity’, fast=None,
symmetric=True, similarity=None)

• fit_kneighbors(X, n_neighbors=None, return_distance=True, fast=None, sim-
ilarity=None)

• fit_kneighbor_graph(X, n_neighbors=None, mode=’connectivity’, fast=None,
symmetric=True, similarity=None)

• fit_radius_neighbors(X, radius=None, return_distance=None, fast=None, sim-
ilarity=None)

• fit_radius_neighbors_graph(X, radius=None, mode=’connectivity’, fast=None,
symmetric=True, similarity=None)

6.1.2 MinHashClassifier

The initialization parameters are the same as for MinHash subsection 6.1.1.

• fit(X, y)

• partial_fit(X, y)

• kneighbors(X = None, n_neighbors = None, return_distance = True, fast=None)

• kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’, fast=None)

• predict(X, n_neighbors=None, fast=None, similarity=None)

• predict_proba(X, n_neighbors=None, fast=None, similarity=None)

• score(X, y , sample_weight=None)

38

6.2 GPU support

6.1.3 WtaHash

WtaHash uses the winner takes it all hashing for the dimension reduction. All other
things are equal to MinHash, except that the hashing on the GPU is not provided.
The object creation interface is having one additional parameter:
• rangeK_wta=10: The first k elements that should be used to select the min

value after the permutation.

6.1.4 WtaHashClassifier

The WtaHashClassifier interface is equal to the MinHashClassifier except the one
parameter for the initialization of the objection mentioned in the interface descrip-
tion of WtaHash in subsection 6.1.3.

6.1.5 MinHashClustering

MinHashClustering takes two objects as an input: The MinHash object and an ob-
ject for a clustering algorithm. It precomputes the nearest neighbors with MinHash
and uses the result as input for the clustering algorithm. The clustering algorithm
needs to support the parameter ’precomputed’ as input.

6.2 GPU support

To speed up the computation parts of the algorithm can be computed on the GPU.
As a framework NVIDIAs CUDA was chosen, which means the GPU support is
only available on computers with a NVIDA graphic card. Given the programming
model and C as the only programming language the computation of the hash values
for MinHash and the computation of the euclidean distances respectively the cosine
similarity can be done on the GPU. Important here is that the graphic cards needs
to have enough memory otherwise the computation will fail. To program CUDA
and as a source of knowledge for the next section the following books were used:
’Cuda by Example’ from Sanders and Kandrot [23] and ’CUDA Programming’ from
Cook [24].

6.2.1 Programming model

To program software for the graphic card is fundamental different than classical,
serial CPU programming. A function which is running on the GPU is called a ’kernel’
and can be called from the ’host’ (the CPU), the graphic card is called ’device’. A
kernel is called by defining a number of blocks and for each block a number of

39

Chapter 6 Implementation

threads. Not more than 65536 threads can run in parallel. This parallelism is a
pseudo-parallelism only 32 threads per instruction unit can be executed at once,
these 32 threads are called a ’wrap’. But the context switch is very fast. Nvidia is
using for CUDA the programming model ’single instruction multiple data’ (SIMD)
which means that all threads from one wrap are executing the same line of code.
This is significant different from the CPU. If there are multiple threads on the CPU
these threads are executed independently from each other in the sense that each
thread can be at a different part of the instruction execution. If i.e. there is an if-
else construct this construct would be executed by two threads independently from
each other. If one thread goes to the if branch and the other one to the else, both
would be executing the specific part of the source code and would terminate. On the
GPU this works different. If there would be an if-else construct and for the half of
the threads the if condition would be true and for the other half not, still all threads
would execute first the if and then the else branch. But the instruction would not
be applied on the data for the threads that the if would be false for. This comes
because each instruction is applied not to one thread, it is applied to a wrap. To
prevent branching is crucial to get a speedup with the GPUs. In theory all blocks
and threads can run at the same time but in practice 32 threads per instruction
unit run at the same time. This leads to the programming model that always 32,
or a multiple of it, threads should be used per block, the data structures should be
organized that always the number of threads many elements can be read at once
and no boundary checking needs to be performed. It is faster if a few threads are
calculating with neutral elements instead to do a boundary checking. To get optimal
speed it is necessary that data which should be assigned to consecutive threads is
stored consecutive in the memory. Per read from the memory 128-bits can be read,
if e.g. one integer with 32-bit is read at random, 3/4 of the bandwidth is not used.
But if 4 consecutive threads want to access 4 integers which are stored consecutive
in memory, only one read is necessary and the values are distributed to the threads.
GPU programming is always a speedup factor if one operation can be applied to
many data points without checking any index values e.g. the multiplication of two
dense matrices. The multiplication of a sparse matrix is not that fast because the
index values need to be checked.

6.3 Installation

To install the software download it from:

https://github.com/joachimwolff/minHashNearestNeighbors

and run python setup.py. There are additional parameters:
• --user: To install it in an user only context
• --noopenmp: If the software should not be installed with openMP support.

40

6.4 Class diagram

The installer assumes under Ubuntu that openMP is installed. If this is not
the case or openMP should simply not be used set this parameter.
• --openmp: Under MAC OS X it is assumed that openMP is not installed by

default. If openMP support should be forced, set this parameter
• --nocuda: If the installer registers that CUDA is installed on the system, it

is compiling the related classes. With this parameter it can be forced that the
CUDA classes are not compiled and installed.

6.4 Class diagram

The class diagram shown in Figure 6.2 gives a short overview how the software is
implemented. There is a Python interface and from there the data is parsed to C++.
Within C++ the computation of nearest neighbors is done. The parts which are
providing source which is necessary for the GPU implementation are labeled with
the suffix ’Cuda’.

41

Chapter 6 Implementation

F
igure

6.2:T
he

relationship
between

the
different

classes.

42

7 Results

The MinHash and WTA-Hash algorithm are tested on two datasets, Bursi and RNA.
Different settings to optimize the speed, accuracy or the memory usage are tested.
After this the MinHash algorithm is compared to the brute force algorithm and two
other approximate k-nearest neighbor search algorithms: Local sensitive hashing
forest and annoy. Furthermore it is examined how the MinHash algorithm and the
brute force solution are scaling if up to 64 CPU threads were used and how big
the benefit of a todays high-end GPU is. Additional the size of the inverse index
is investigated and how big the influence of the different memory saving techniques
that were introduced in chapter 5 is. WTA-Hash is not considered because as it
can be seen in subsection 7.1.1 or in subsection 7.1.2 that the performance for the
accuracy and the prediction runtime are comparable.

7.0.1 Datasets

7.0.1.1 Bursi

Bursi1 is a dataset that classifies 4337 molecular structures into 2401 mutagens and
1936 non-mutagens. For further information see [25]. Bursi has 1048577 dimensions
with 373 non-zero features per instance on average.

7.0.1.2 RNA

The RNA dataset is downloaded from RFAM[26]. RFAM is a database of RNA
families, 20 RNA families are evaluated:

’RF00004’,’RF00005’,’RF00015’,’RF00020’,’RF00026’,’RF00169’,
’RF00380’,’RF00386’,’RF01051’,’RF01055’,’RF01234’,’RF01699’,
’RF01701’,’RF01705’,’RF01731’,’RF01734’,’RF01745’,’RF01750’,
’RF01942’,’RF01998’,’RF02005’,’RF02012’,’RF02034’

These families are used as an input for RNAfold [27] to compute the secondary
structure of the RNA. EDeN2 encodes these secondary structures as a graph and
is using subgraphs to transfer the data to a sparse matrix. For further information

1http://www.bioinf.uni-freiburg.de/∼costa/bursi.gspan, accessed: 2016-05-24
2https://github.com/fabriziocosta/EDeN, accessed: 2016-05-24

43

Chapter 7 Results

see [18]. The parameter setting was ’n_max=50, complexity=3, nbits=16’. This
creates a dataset which has 1150 instances, 65537 dimensions and 3670 non-zero
features per instance on average.

7.0.2 Used machines

The following results are computed on three computers:

• Intel Core i5-5200U@2.20GHz (2 cores, 4 threads), Nvidia GeForce 920M with
2 GB RAM and 384 CUDA cores, 8 GB RAM. This computer is referred to
as ’the slow’ computer in the following.

• Intel Core i5-6600@3.30GHz (4 cores, 4 threads), Nvidia GeForce GTX 750Ti
with 2 GB RAM and 640 CUDA cores, 16 GB RAM. This computer is referred
to as ’the average’ computer in the following.

• 2 x Intel Xeon E5-2698 v3@2.3GHz (2x16 cores, 2x32 threads), Nvidia GTX
980Ti with 6 GB RAM and 2816 CUDA cores, 250 GB RAM. This computer
is referred to as ’the high-end’ computer in the following.

All systems were running with Ubuntu 14.04 and were using Python 2.7, CUDA 7.5,
g++ 4.8.4 and ipython 4.0.0.

For a fair comparison between the CPU and the GPU implementation it is im-
portant that the hardware is more or less on a same level. To compare e.g. a good
old Pentium 4 CPU with a high-end Titan X GPU would be unfair. It is obvious
that processors and graphic cards are very different, their architecture is optimized
for different tasks and objective measures like FLOPS can not help to compare; i.e.
the slightly more powerful i5-6600K (instead of the used i5-6600) is having around
174 GFLOPS1 and the 750Ti 1305 GFLOPS2 for single floating point precision.
But graphic cards are only faster if the specific task fits good into the programming
model. With this in mind the conclusion is that the only fair comparison measure
is how much the hardware costs. At the time this thesis is written, May 2016, the
used i5-6600 CPU costs around 200 Euro. The used 750Ti GPU costs around 120
Euro, for around 200 Euro a GTX 960 could be bought. This GPU is having 1024
CUDA cores3 and reaches 5939 points4 compared to 3684 points5 of the 750Ti in
the ’G3D Mark’-benchmark. Please have in mind: if equal hardware in terms of

1https://www.pugetsystems.com/labs/articles/Skylake-S-i7-6700K-and-i5-6600K-for-compute-
maybe-697/, accessed: 2016-05-24

2http://www.pcgameshardware.de/Grafikkarten-Grafikkarte-97980/Tests/Geforce-GTX-750-Ti-
im-Test-Maxwell-1109814/, accessed: 2016-05-24

3http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-960/specifications, accessed:
2016-05-24

4http://www.videocardbenchmark.net/gpu.php?gpu=GeForce+GTX+960, accessed: 2016-05-24
5http://www.videocardbenchmark.net/gpu.php?gpu=GeForce+GTX+750+Ti, accessed: 2016-
05-24

44

Results

the price would be used, the GPU parts of the average computer should be around
40% faster. The following benchmarks are created with multiple ipython notebooks.
The runtime of the algorithms on the bash are usually faster than with the ipython
notebook but because all benchmarks have to deal with this issue, it should not
matter.

7.0.3 Measurements

7.0.3.1 Accuracy

The accuracy measure is measuring how many instances within a k-neighborhood
are equal compared to the brute force computation of scikit-learns nearest neighbors.

Definition
Let X be a k-sized approximate neighborhood, X = {x0, ..., xk} and Y is the k-sized
brute force neighborhood, Y = {y0, ..., yk}. The accuracy is given by:

accuracy(X, Y, k) = |X ∩ Y |
k

(7.1)

The accuracy of a n-sized query is given by:

Definition
Let A be the set of k-approximate neighborhoods, A = {a0, ..., an} and |A| = n; B
be the set of k-neighborhoods which are computed by brute force, B = {b0, ..., bn}
and |B| = n. The accuracy is:

accuracy_query(A,B, k) =
∑n

i=0 accuracy(ai, bi, k)
n

(7.2)

This definition is less strict than an itemized accuracy but it is used because it
is considered more useful to know that the neighbors within a k-neighborhood are
correct than that the ordering and the index position is correct too. In the case of
an itemized accuracy a shift of the positions by just one would lead to 0.0 accuracy.
The error term is given by:

Definition

error = 1− accuracy_query(A,B, k) (7.3)

7.0.3.2 Speed

To measure the speed of an algorithm the runtime is stopped in python. For example
if the speed of a query should be tested, the time of the system with pythons
’time.time()’ is stopped before and after the call. The difference is taken as the
runtime in seconds.

45

Chapter 7 Results

7.0.3.3 Memory

To measure the memory usage, two approaches were used. To measure the memory
usage of the inverse index all size_t’s within the inverse index’s are counted and
this number is multiplied by 8 because 8 bytes are used for a size_t in C++. This
leads to the memory usage in bytes. The overhead which is appearing for the
usage of vectors or maps is ignored. The second measure is how much memory an
execution is requesting from the operating system at maximum. It is measured with
’/usr/bin/time -v ’ and here the parameter ’Maximum resident set size’ is listed.

7.0.3.4 Score

The score as a measurement can be used to balance the error term, the speed and the
memory usage. The most important factor is the error; memory and time are log’ed
to make sure only significant changes are taken into account. The memory usage is
here equal to the size of the inverse index. Memory and time can be weighted by
the parameters α and β to control the influence of each parameter.

score =

error + log10(memory) α + log10(time) β
penalty score if error >= min error level

(7.4)

7.1 Approximate nearest neighbor search

MinHash and WTA-Hash are used with a parameter setting which was computed
with a hyper-parameter optimization using the Python software hyperopt1. In the
following the MinHash and WTA-Hash algorithm are optimized to achieve the high-
est possible accuracy independent from the runtime. After it, the optimization tries
to achieve the best score which means that the highest accuracy should be reached,
but also the runtime should be minimized and the size of the inverse index should be
as small as possible. The next section is examining if optimizations which were com-
puted for one dataset can be transfered to another one, for this MinHash is compared
to competitive algorithms. Furthermore the scalability for multi core computing of
MinHash and the brute force algorithm is observed, MinHash and WTA-Hash are
then compared to a brute force solution which is operating on a sparse random pro-
jected dataset. Last but not least the memory usage of the algorithms is measured
and compared.

1http://jaberg.github.io/hyperopt/, accessed: 2016-05-24

46

7.1 Approximate nearest neighbor search

7.1.1 Best accuracy

To compute the best accuracy value the hyper-parameter optimization optimized
only the accuracy value and ignored the runtime and memory usage. The optimiza-
tion was computed for the 10-nearest neighbors using first the Bursi dataset (see
subsubsection 7.0.1.1) and after it the RNA dataset, see subsubsection 7.0.1.2.

7.1.1.1 Bursi dataset

The best accuracy for MinHash and WTA-Hash for the Bursi dataset was reached
with the parameters listed in Table 7.1. In Figure 7.1 the comparison of the accuracy
with the different versions of MinHash and WTA-Hash is shown. The fast version of
the MinHash algorithm reaches almost 0.6 accuracy (red bar), WTA-Hash around
0.5 (blue bar). The non-fast version of MinHash reaches 0.964 accuracy (green +
cyan bar) and WTA-Hash 0.923 (purple + yellow bar). There is a slightly differ-
ence in the accuracy of the CPU versions compared to the GPU versions. Reasons
for this are that first, floating precision leads to slightly different rounding on the
different devices which can influence the distance and with this the ordering of the
instances. Second, it is also possible that this difference is caused by bugs in the im-
plementation. In Figure 7.2 the runtime of a query is shown. As a query the nearest
neighbors of all data points were searched, the computed signatures from the fitting
could be taken from memory. It is interesting to see that both, MinHash (second red
bar) and WTA-Hash (blue bar) are outperforming the brute force algorithm with
their fast versions. This is independent what hardware is used. For the non-fast
case it depends on which hardware the algorithm is running. If a slow GPU like
the used 920M is used, the computation time increases in comparison to the CPU
version (see Figure 7.2a green vs cyan bar). But if average hardware like the 750Ti
is used, the performance is almost the same, see Figure 7.2b green vs cyan bar). The
fitting time is shown in Figure 7.3. It is obvious that the GPU version of MinHash
benefits from the high parallelism and reduces the computation time drastically (red
vs. cyan bar). This is independent from the used hardware. The fitting time of
WTA-Hash is much longer as the MinHash fitting time. This is caused by the more
complex computation especially the ordering of the lowest hash values and after it
the search for the hash value with the highest original value. These steps are not
necessary for MinHash, it is enough to get the minimum hash value. This is one
reason why there is no GPU version of the WTA-Hash, the mentioned steps do not
fit well into the programming model of a GPU.
To achieve a high accuracy many hash functions are necessary and only hash values
with less instances as 1 should be removed. At the same time only a quarter (Min-
Hash) or the half (WTA-Hash) of the created hash values are stored. A high excess
factor of 14 for both algorithms shows that a few instances which are necessary
to achieve a high accuracy are not even close in the k-neighborhood after the first
candidate selection on the inverse index. An excess factor of 14 means that for a

47

Chapter 7 Results

k-neighborhood k ∗ 14 instances are taken as candidates. As a base for this bench-
mark the 10-nearest neighbors were searched, per instance 140 candidates for the
first candidate selection are considered. This is usually equal to consider all found
candidates, the average number of candidates after the inverse index was searched
is about 80.

Parameter MinHash WTA-Hash
number_of_hash_functions 903 916
max_bin_size 49 46
shingle_size 2 1
excess_factor 14 14
prune_inverse_index 1 0
prune_inverse_index_after_instance 0.0 0.5
remove_hash_function_with_less_entries_as 0 0
shingle 1 1
block_size 4 3
store_value_with_least_significant_bit 2 1
rangeK_wta - 16

Table 7.1: Parameter setting for the best accuracy on Bursi.

Figure 7.1: Best accuracy on Bursi for MinHash and WTA-Hash.

48

7.1 Approximate nearest neighbor search

(a) Slow computer

(b) Average computer

Figure 7.2: Query time on Bursi dataset for best accuracy.

(a) Slow computer (b) Average computer

Figure 7.3: Fitting time on Bursi dataset for best accuracy.

49

Chapter 7 Results

7.1.1.2 RNA dataset

On the RNA dataset the parameters for MinHash are looking similar, see Table 7.2,
the same high excess factor for WTA-Hash is used. Interesting is that for WTA-
Hash the merging of hash values (shingle) is deactivated. The maximal accuracy
with 0.83 is less; WTA-Hash is achieving an accuracy of 0.84. The influence of
the GPU fitting phase is higher than for the Bursi dataset. About one magnitude
less fitting time on the slow and average computer shows that the fitting task fits
perfectly to the GPU programming model, see Figure 7.5 red vs cyan bar. For the
queries it is the first time that the GPU version is faster as the CPU version, see
Figure 7.6b green vs cyan and purple vs yellow bar. If a faster GPU like the one
from the high-end computer could be used the benefit should be higher. But it needs
to be considered that the GPU version on the slow computer is much slower than
the CPU version, see Figure 7.6a e.g. green vs cyan bar for MinHash. Furthermore
it should to be noticed that the brute force implementation is faster as the MinHash
and WTA-Hash implementation in the non-fast case.

Parameter MinHash WTA-Hash
number_of_hash_functions 828 739
max_bin_size 51 30
shingle_size 2 3
excess_factor 11 14
prune_inverse_index 0 1
prune_inverse_index_after_instance 0.0 0.5
remove_hash_function_with_less_entries_as 0 0
shingle 1 0
block_size 4 1
store_value_with_least_significant_bit 1 2
rangeK_wta - 23

Table 7.2: Parameter setting for the best accuracy on RNA dataset.

50

7.1 Approximate nearest neighbor search

Figure 7.4: Best accuracy on RNA for MinHash and WTA-Hash.

(a) Slow computer (b) Average computer

Figure 7.5: Fitting time on RNA dataset for best accuracy.

51

Chapter 7 Results

(a) Slow computer

(b) Average computer

Figure 7.6: Query time on RNA dataset for best accuracy.

7.1.1.3 Conclusion

To achieve a high accuracy level it needs a large number of hash functions, it is a
benefit to activate the shingling but on the same time the hash values with a size
less than n should not be pruned or only for a value of 1. For non-zero feature ids of
300 to 400 on average per instance like it is on Bursi the MinHash and WTA-Hash
implementations are on the same level with the brute force algorithm. But if the
situation is like on the RNA dataset with 4000 non-zero feature ids, the brute force
implementation is performing significant better. The usage of the GPU is a benefit
for the fitting, for the query part it depends which GPU is used and how fast the
CPU is. As it can be seen later in Figure 7.17 not only a high-end GPU is necessary
to outperform the brute force implementation the CPU needs a high single thread
speed too. This is caused by the fact that some parts in the MinHash and WTA-

52

7.1 Approximate nearest neighbor search

Hash algorithm of the GPU version are implemented as a single thread version, e.g.
if the computed values on the GPU are transfered back and need to be parsed to
the data format which is used on the CPU side. As it can be seen in Figure 7.1 vs
Figure 7.4 the accuracy for the RNA dataset is lower (0.97 to 0.83). This should be
caused by the way MinHash and WTA-Hash are designed. Both compute a signature
out of the given non-zero feature ids of an instance. If two instances are sharing the
same non-zero feature ids the signature will look the same and the instances are not
distinguishable for the algorithm. If the shared non-zero feature ids of two instances
are not the same but still are sharing the most ones, it is likely that the signatures
will look more or less equal and again, the instances are hard to distinguish by the
algorithm. Bursi is having 373 non-zero features on average in a bit more than a
million dimensions which leads to a sparsity of 0.00035; the RNA dataset is having
3670 non-zero features on average in 65537 dimensions which leads to a sparsity of
0.056. It is for the RNA dataset more likely that instances can not be distinguish
by the algorithm than it is for the Bursi dataset. The more sparse a dataset is the
better are MinHash and WTA-Hash performing. But be careful: if one instance is
sharing more or less no feature ids with other instances, MinHash and WTA-Hash
can not find any neighbors.

7.1.1.4 Take home message

For a high accuracy level a lot hash functions should be used and not too much
values should be removed out of the inverse index. The accuracy level that can
be reached is depended on the dataset, the sparser it is, the better MinHash and
WTA-Hash are performing.

7.1.2 Best score

In this section it is examined how the parameters look if the hyper parameter op-
timization for MinHash and WTA-Hash optimizes for the best score. The score is
defined in Equation 7.4. As it was in the best accuracy section, subsection 7.1.1,
the optimization is computed for the 10-nearest neighbors first on Bursi and second
on the RNA dataset.

7.1.2.1 Bursi dataset

The hyper parameter optimization for MinHash and WTA-Hash was executed with
α = 0.1 β = 0.23. The resulting parameters are listed in Table 7.3. MinHash and
WTA-Hash achieving the same accuracy level of about 0.92, the fast version is with
less than 0.4 around 20% less accurate in comparison to the highest accuracy, see
Figure 7.7 vs. Figure 7.1. The fitting support of the GPU is a benefit (Figure 7.8)
for MinHash but the computation of the prediction takes longer with GPU support

53

Chapter 7 Results

on the slow computer (Figure 7.9a green vs. cyan bar), on the average computer
it is a minimal benefit to use the CPU. The parameters for the shingle_size and
block_size can be ignored because shingle is set to 0 and deactivated. With the
computed parameter setting a score of 0.54 and an accuracy of 0.92 for MinHash
and a score of 0.73 with an accuracy of 0.91 for WTA-Hash is reached. The higher
score for WTA-Hash is caused by the higher memory usage. As it can be seen in
Table 7.3 MinHash is pruning all hash values with less instances as 11, WTA-Hash
removes only the values with a size less than 6. Second reason is that MinHash is
storing only 1/8 of the created hash values, WTA-Hash stores 1/2. Mentionable
is that the accuracy in the fast case for MinHash and WTA-Hash differs not much
although MinHash is storing less values in the inverse index.

Figure 7.7: Best score on Bursi for MinHash and WTA-Hash.

(a) Slow computer (b) Average computer

Figure 7.8: Fitting time on Bursi dataset for best score.

54

7.1 Approximate nearest neighbor search

(a) Slow computer

(b) Average computer

Figure 7.9: Query time on Bursi dataset for best score.

55

Chapter 7 Results

Parameter MinHash WTA-Hash
number_of_hash_functions 596 186
max_bin_size 49 87
shingle_size - -
excess_factor 11 11
prune_inverse_index 11 6
prune_inverse_index_after_instance 0.5 0.0
remove_hash_function_with_less_entries_as 0 0
shingle 0 0
block_size - -
store_value_with_least_significant_bit 3 1
rangeK_wta - 17

Table 7.3: Parameter setting for the best score on the Bursi dataset.

7.1.2.2 RNA dataset

For the best score on the RNA dataset the hyper-parameter optimization for Min-
Hash and WTA-Hash was running with α = 0.1 β = 0.5. The time was weighted
higher because the runtime on the RNA dataset is, compared to the brute force al-
gorithm, worse. To get a parameter configuration which is optimized for speed and
not for memory usage was more desirable. MinHash reaches an accuracy of almost
0.8, needs 11529 elements in the inverse index and is having a score of 1.01. WTA-
Hash reaches about 0.75 accuracy, needs 47510 elements in the inverse index and is
having a score of 1.11. The higher score should be caused by the higher memory
usage. WTA-Hash is using more memory because it needs more hash functions, 168
vs. 100 for MinHash and instead of pruning hash values with less instances as 14,
it just prunes 2. The query time is on the RNA dataset with GPU support slower
if a slow GPU like the one from the slow computer is used. With an average GPU
it is slightly faster, see Figure 7.12 purple and yellow bar. The usage of the GPU
for the fitting is on the RNA dataset a benefit too. Both algorithms are slower than
the brute force implementation of scikit-learn. For both algorithms the merging of
hash values is deactivated and it is interesting to see that MinHash is pruning hash
values with less size of 14 and at the same time storing only 1/4 of the created hash
values.

56

7.1 Approximate nearest neighbor search

Figure 7.10: Best score on RNA for MinHash and WTA-Hash.

(a) Slow computer (b) Average computer

Figure 7.11: Fitting time on RNA dataset for best score.

57

Chapter 7 Results

(a) Slow computer

(b) Average computer

Figure 7.12: Query time on RNA dataset for best score.

58

7.1 Approximate nearest neighbor search

Parameter MinHash WTA-Hash
number_of_hash_functions 100 168
max_bin_size 90 47
shingle_size - -
excess_factor 13 11
prune_inverse_index 14 2
prune_inverse_index_after_instance 0.5 0.5
remove_hash_function_with_less_entries_as 0 0
shingle 0 0
block_size - -
store_value_with_least_significant_bit 2 1
rangeK_wta - 19

Table 7.4: Parameter setting for the best score on the RNA dataset.

7.1.2.3 Conclusion

The best score for both dataset comes only with a small higher error but the fitting
time compared to the highest accuracy is about one magnitude (101 vs 100) faster,
see Figure 7.3b and Figure 7.8b. The query time is on the Bursi dataset for the best
accuracy slower as the brute force implementation, for the best score the MinHash
and WTA-Hash are faster. On the RNA dataset the brute force implementation is
for the prediction always faster.

7.1.2.4 Take home message

It is possible to run MinHash and WTA-Hash with not that many hash functions
and still getting a high accuracy as it can be seen at the RNA dataset.

7.1.3 Comparing with related algorithms

In this section the algorithms and implementations mentioned in the introduction
should be compared to MinHash and WTA-Hash. For not all algorithms was this
possible. Algorithms like the kd-tree and ball-tree based solutions from scikit-learn
do not accept a sparse data matrix as an input. If called with one an error message is
displayed and a fall back mode to the brute force algorithm is executed. A dimension
reduction to a dense dataset with the Gaussian random projection1 from scikit-learn
is e.g. for the Bursi dataset not possible because it is simply terminating with the

1http://scikit-learn.org/stable/modules/generated/sklearn.random_projection.GaussianRandomProjection.html,
accessed: 2016-05-24

59

Chapter 7 Results

error ’memory error’. Flann and Panns accept sparse matrix inputs in the first
place but are failing in the fitting process because they can not handle the data.
An algorithm like RPForest can not be used because of its massive memory usage.
Even if the input matrix is reduced by a sparse random projection down to 100
dimensions, a configuration with a leaf size of 3 and 5 trees needs more than 16 GB
RAM plus 16 GB swap and its terminated by the operating system.
To test the algorithms which accept sparse input matrices but need too much main
memory to compute, like annoy or LSHF, the dataset is sparse random projected
to values between 100 and 1000 dimensions. These dimensions are equal to the
number of used hash functions for MinHash and WTA-Hash. As it can be seen in
subsection 7.1.1 MinHash and WTA-Hash perform similar for the prediction, WTA-
Hash is significant worse for the fitting. Because of this similar behavior for the
prediction runtime and accuracy and the better performance for the fitting process
only MinHash is compared to the brute force implementation of scikit-learn, annoy
and the local sensitive hashing forest.
The idea to use a hyper-parameter optimization for the parameters mentioned in
chapter 6 was designed because the approximate nearest neighbor search is very
sensitive to the parameter values. It can happen that one wrong parameter value can
make the difference between an accuracy level of 0.95 to just 0.3 or even worse to 0.0.
To prevent this, a hyper-parameter optimization was running on the dataset ’bursi’
and in a next step these parameter values are tested on the RNA dataset. With
this it is examined if the parameter setting is transferable to other datasets. The
optimization was done for the 10-nearest neighbor search. For the hyper-parameter
optimization the prediction runtime was used as an objective function as long as the
defined accuracy level was reached on the Bursi dataset. In the following the brute
force algorithm is always executed on the original dataset, not on a projected one.
It appears for a better comparison for every projected dimension again.
Annoy was used with 100 trees, local sensitive hashing forest with 200 trees and 20
estimators.

60

7.1 Approximate nearest neighbor search

Parameter 0.95 0.9 0.7
number_of_hash_functions 800 600 200
max_bin_size 45 86 54
shingle_size - - 4
excess_factor 10 7 8
prune_inverse_index 14 10 0
prune_inverse_index_after_instance 0.0 1.0 0.0
remove_hash_function_with_less_entries_as 0 0 0
shingle 0 0 1
block_size - - 4
store_value_with_least_significant_bit 0 2 1

Table 7.5: Parameter setting for the accuracy level 0.95, 0.9, 0.7 with the fastest
query time.

7.1.3.1 Accuracy level 0.95

Figure 7.13a shows that MinHash fast is the fastest (purple), the slow version (blue)
is slower but faster as the brute force algorithm and with more dimensions faster than
annoy. The local sensitive hashing forest is by far the slowest algorithm (green). A
look to the other dataset gives us a slightly different picture. For the RNA dataset
the MinHash Fast algorithm is still the fastest but the slow version is significant
slower than the brute force algorithm and annoy. The issue here is that the brute
force algorithm is using the highly optimized library BLAS which is written in
Fortran. The fitting time for MinHash (Figure 7.13e and Figure 7.13f) benefits from
the GPU (yellow) compared to the non-GPU version (blue); with the GPU support
the fitting times are similar to annoy, LSHF is having the fastest fitting time. The
brute force algorithm does not do any fitting, it is just setting a reference to the
dataset. The accuracy level that was reached for Bursi could not be reached for
the RNA dataset but the difference is not that bad if it is compared to the highest
possible accuracy that was achieved in subsubsection 7.1.1.2.
A look at the parameter setting, Table 7.5, shows that hash values with less instances
as 14 were pruned but at the same time all created hash values are stored. The
main difference to the highest possible accuracy is that no shingles were used which
is reducing the computation time for the fitting process.

61

Chapter 7 Results

(a) Query time Bursi (b) Query time RNA dataset

(c) Accuracy Bursi (d) Accuracy RNA dataset

(e) Query time Bursi (f) Fitting time RNA dataset

Figure 7.13: Different query times, accuracy and fitting times for the hyper-
parameter optimization for an accuracy level of 0.95 for the Bursi dataset.

7.1.3.2 Conclusion

The usage of the GPu leads to comparable fitting times for MinHash, the CPU
version needs more time and is growing faster. The runtime for Bursi and RNA
dataset are comparable, the growth factor depending on the input data is linear
and the increase of the runtime is linear by the number of projected dimensions.
The parameter setting is transferable, the accuracies are, compared to the maximal
accuracy, on a high level.

62

7.1 Approximate nearest neighbor search

7.1.3.3 Accuracy level 0.90

The query time on Bursi is for this accuracy level faster than the brute force im-
plementation and for 400 projected dimensions at the level of annoy Figure 7.14a.
LSHF is by far the slowest algorithm but it is more accurate than the fast imple-
mentation of MinHash. Annoy and LSHF are at a similar accuracy level. The GPU
supported fitting is faster than annoy for Bursi, Figure 7.14e, CPU based fitting is
again the slowest. The MinHash algorithm is the most accurate on Bursi and on
the RNA dataset, on the RNA dataset accuracy is getting lost, only 0.7 is reached.
But this is still a high value compared to LSHF and annoy, Figure 7.14d.

(a) Query time Bursi. (b) Query time RNA dataset.

(c) Accuracy Bursi. (d) Accuracy RNA dataset

(e) Fitting time Bursi. (f) Fitting time RNA dataset

Figure 7.14: Different query times, accuracy and fitting times for the hyper-
parameter optimization for an accuracy level of 0.90 for the Bursi dataset.

63

Chapter 7 Results

7.1.3.4 Conclusion

The parameter setting for 0.9 for Bursi can be transfered to the RNA dataset but
a bit accuracy is getting lost. Instead of the expected loss of 5%, 10% are lost. The
runtime of the brute force implementation is still faster.

7.1.3.5 Accuracy level 0.7

An accuracy level of 0.7 on the Bursi dataset can be achieved with just 200 hash
functions, see Figure 7.15c. With this parameter setting MinHash is finally faster as
the brute force algorithm for the RNA dataset, Figure 7.15b, but this was paid with
a decrease of the accuracy down to 0.15, Figure 7.15d. This is not an acceptable
value, MinHash is worse than annoy and LSHF. The main reason for this is that too
many values were pruned out of the inverse index, less than 0.1 correct neighbors
could be found in the fast case of MinHash. Based on this the exact computation
can not achieve more and it is likely that not wrong candidates were found, it is
highly likely that no candidates were found. This would explain why the slow case
of MinHash is so fast, specially if the runtime of 10−1 is compared to the runtime in
the 0.95 or 0.9 accuracy level where it was about 101. It needs to be noticed that
the runtime of the fitting is much longer as for the accuracy level of 0.95 or 0.9. This
is caused by the activated shingling. For the computed 200 hash functions by the
hyper-parameter optimization it is no problem to activate the shingling, but for a
higher number of hash functions the runtime is exploding. This is only true for the
CPU version. The GPU version is increasing too but compared to the fitting times
of the 0.95 and 0.9 level the runtime for e.g. 1000 hash functions is only doubled.
The CPU version needs about four times longer.

7.1.3.6 Conclusion for 0.7

As it was shown here the computed parameters are not always transferable to a
different dataset and to a different number of hash functions. Furthermore it can be
seen that the influence of the shingle to the runtime of the fitting can be drastically.
For a lower number of hash functions shingles should be no problem but for e.g.
1000 hash functions the increase is too high.

64

7.1 Approximate nearest neighbor search

(a) Query time Bursi. (b) Query time RNA dataset.

(c) Accuracy Bursi. (d) Accuracy RNA dataset

(e) Query time Bursi. (f) Fitting time RNA dataset.

Figure 7.15: Different query times, accuracy and fitting times for the hyper-
parameter optimization for an accuracy level of 0.70 for the Bursi dataset.

7.1.3.7 Conclusion for comparison section

A hyper-parameter optimization works great on one dataset but can not always be
transfered to a different dataset. MinHash compared to LSHF and annoy is having
the best accuracy, if the parameter setting is conservative it is transferable to other
datasets. A conservative setting is that many hash functions are used, the excess
factor is large and not too many hash values are pruned. If too many values are
pruned to reach a faster runtime it can be that the accuracy drops for another
dataset too much. For the usage of MinHash it can be said, that it is the best case if
a hyper-parameter optimization is applied on a subset of the dataset and with this
configuration the algorithm is executed. Another solution would be to go without

65

Chapter 7 Results

memory optimizations or apply only obvious ones like to remove hash values with a
size of one. To decrease the fitting time and to bring it on a level of LSHF and annoy
the GPU version should be used. The low accuracy of annoy and LSHF on the RNA
dataset should exposed, this shows how bad a random projection can work.

7.1.4 Scalability

In this section it is examined how the MinHash algorithm scales for the fitting
and the prediction phase if more CPU threads are used and if the GPU version is
influenced by that.

7.1.4.1 Bursi dataset

The MinHash algorithm scales well, the prediction runtime is decreasing by the
factor of used CPU cores i.e. Figure 7.16c. It makes a difference if threads can run
on a physical available core or if threads using Intel’s hyper-threading technique,
Figure 7.16c vs. Figure 7.16a and Figure 7.17a with more than 32 threads. The
query time for one core is slower as the brute force implementation, for two cores it
depends: if the hardware is not that fast i.e. Figure 7.16a it is faster, otherwise it is
slower. This behavior is interesting. It should be cause by the fact that the source
code of the brute force algorithm is not scaling good for more CPU cores but it
profits by a higher instruction number per second of a faster CPU. For 4 threads the
MinHash algorithm profits from its good scalability, the brute force algorithm is not
increasing its performance as it would be expected. If the GPU is additionally used,
it can be seen that slow GPUs slow down the computation Figure 7.16b, the used
number of threads does not matter that much. A faster GPU is good to use if a fast
CPU is available but not that many cores. On a high-end computer it looks similar:
MinHash scales linear from 1 to 16 threads, after it is still getting faster and it is the
fastest with 64 threads but the improvement from 32 threads to 64 is only minimal,
see Figure 7.17a. For the brute force implementation it is looking different. First it
is scaling only a bit, from 8 to 16 threads the performance is identical. If more than
16 threads are used, the performance decreases and is the worst with 64 threads.
For 64 threads it needs almost twice of the time as the single thread execution. The
benefits of using a high-end graphic card is on Bursi not a big improvement. In
comparison to the average 750Ti graphic card, Figure 7.16d, the time is with 1.5
seconds compared to 1.0 not that big; it is 1/3 faster but the performance difference
of the two graphic cards is more than 1/3. An explanation is that the bottleneck is
the used CPU. The high-end Xeon CPU is having way more cores than the average
i5-6600 but the performance per single thread is worse (Benchmark single thread:

66

7.1 Approximate nearest neighbor search

Xeon: 1925 points1 vs i5-6600: 2105 points2).
For the fitting it is even more obvious as for the query: if the number of threads
matches the number of physical cores, the time for the fitting reduces as it is expected
by the number of threads, see Figure 7.18c. If hyper-threading is used there is still a
speed up but only a little one, see Figure 7.18a and Figure 7.19a. The usage of the
GPU brings a major improvement for the fitting: the fittings times are decreasing
drastically, i.e. instead of about 9 seconds it just needs 1.6 seconds on the slow
computer, see Figure 7.18a and Figure 7.18b. The number of used CPU threads is
influencing the fitting time only if it goes from one used thread to two, but the usage
of more cores brings more or less nothing. On a high-end computer the influence
of the GPU is not that high. The fitting on the average computer, Figure 7.16d is
with 0.4 seconds faster than the high-end computer, Figure 7.19b, with 0.6 seconds.
The reason is, like it was already diagnosed for the prediction, the slower single
thread speed of the CPU. It is obvious that the main part of the fitting is caused by
the hash computation. On both graphic cards this is done very fast and the time
difference is then caused by the CPU.

1https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E5-2698+v3+%40+2.30GHz, ac-
cessed: 2016-05-24

2https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i5-6600+%40+3.30GHz, accessed:
2016-05-24

67

Chapter 7 Results

(a) Slow computer (b) Slow computer

(c) Average computer (d) Average computer

Figure 7.16: Query time on Bursi dataset for different number of used CPU threads.
Slow and average computer.

68

7.1 Approximate nearest neighbor search

(a) High-end computer

(b) High-end computer

Figure 7.17: Query time on Bursi dataset for different number of used CPU threads
on a high-end computer.

69

Chapter 7 Results

(a) Slow computer (b) Slow computer

(c) Average computer (d) Average computer

Figure 7.18: Fitting time on Bursi dataset for different number of used CPU
threads on a slow and average computer.

7.1.4.2 RNA dataset

The advantage of a high-end GPU can be seen better on the RNA dataset than
on Bursi. In Figure 7.20d the query time for the average computer is shown with
about 10 seconds if 4 threads are used, in comparison to the high-end computer,
Figure 7.21b, where it is less than 5 seconds. It would be interesting to see what
would happen if the average CPU with the higher single core speed would be com-
bined with the high-end GPU. On the other hand Figure 7.20b shows the bad in-
fluence of a low-end GPU, the runtime is about 10 times slower. The advantage
to use more threads for the query and for the fitting can be seen in Figure 7.21a,
Figure 7.20a and Figure 7.20c; for the fitting: Figure 7.23a, Figure 7.22a and Figure 7.22c.
The brute force implementation is showing the same effect for a higher thread num-
ber as it was on Bursi, the hyperthreading of a CPU brings again only a small
benefit.

70

7.1 Approximate nearest neighbor search

(a) High-end computer, CPU only.

(b) High-end computer, with GPU.

Figure 7.19: Fitting time on Bursi dataset for different number of used CPU
threads.

71

Chapter 7 Results

(a) Slow computer (b) Slow computer.

(c) Average computer. (d) Average computer.

Figure 7.20: Query time on RNA dataset for different number of used CPU threads.

72

7.1 Approximate nearest neighbor search

(a) High-end computer, CPU only.

(b) High-end computer, with GPU

Figure 7.21: Query time on RNA dataset for different number of used CPU threads.

73

Chapter 7 Results

(a) Slow computer. (b) Slow computer.

(c) Average computer (d) Average computer

Figure 7.22: Fitting time on RNA dataset for different number of used CPU
threads.

7.1.4.3 Conclusion

MinHash is scaling very well with a large number of CPU threads. The brute force
implementation is scaling only a little bit and with a higher thread number the
runtime is increasing. As it could be shown the influence of a high-end GPU for the
fitting process is not that high, here it depends more on the single thread perfor-
mance of the CPU. To compute the query on a high-end GPU brings a reduction of
the runtime by a factor of 2. If a low-end GPU is used, the runtime can increase as
it was shown for the slow computer. In this case it is better to use the GPU only
for the fitting part. For the fitting it is independent what GPU is used, it is always
a benefit. It can be seen that MinHash is scaling linear in respect to the input data
size.

74

7.1 Approximate nearest neighbor search

(a) High-end computer, CPU only.

(b) High-end computer, with GPU.

Figure 7.23: Fitting time on RNA dataset for different number of used CPU
threads.

75

Chapter 7 Results

7.1.5 Random projection

In this section it is examined how a classical brute force algorithm behaves on a
random projected dataset in comparison to MinHash and WTA-Hash. MinHash and
WTA-Hash are using the number of hash functions to reduce the dimensions. For
the random projection the sparse random projection from scikit-learn with default
settings was used. In Figure 7.24a it can be seen that the accuracy for the brute force
algorithm is significant less than the MinHash and WTA-Hash if the dimensions are
reduced to 100 - 1000 dimensions, 0.15 difference to MinHash on average, for 100,
200 and 400 dimensions 0.5 to 0.3 for WTA-Hash. WTA-Hash is accurate even for
low dimensions as 100 or 200, MinHash is here less accurate, 0.9 for WTA-Hash
vs. 0.5 and 0.7 for MinHash. MinHash can improve its accuracy with an increasing
number of projected dimensions and is more accurate as WTA-Hash for 800 and
1000 dimensions. It is also interesting to see that WTA-Hash is not increasing its
accuracy with an increasing number of projected dimensions. The disadvantage of
WTA-Hash is that it is for less than 600 dimensions slower than the brute force
solution and in all cases slower or at the same speed as MinHash, see Figure 7.25a.
A look at the RNA dataset shows that the accuracy is just around 0.2 if the brute
force algorithm is used (Figure 7.24b) but the query times are much faster than the
MinHash and WTA-Hash algorithm, less than 100 vs. about 101 for MinHash and
WTA-Hash.

7.1.5.1 Conclusion

To sparse random project the data and apply on this the brute force algorithm is
faster as MinHash and WTA-Hash on the RNA dataset; but the speedup comes
with an accuracy level of less than 0.3. On Bursi the brute force algorithm is on an
equal runtime level for 200 and 400 dimensions, with 600 dimensions and more it is
slower. MinHash and WTA-Hash are at the same time more accurate.

76

7.1 Approximate nearest neighbor search

(a) Accuracy on Bursi.

(b) Accuracy on RNA.

Figure 7.24: Accuracy on Bursi and RNA. Using random projection and brute
force, running on the average computer.

77

Chapter 7 Results

(a) Query time on Bursi.

(b) Query time on RNA.

Figure 7.25: Query time on Bursi and RNA dataset. Using random projection and
brute force, running on the average computer.

7.1.6 Memory usage

The memory usage was one of the key issues to design the MinHash and WTA-
Hash algorithm. In Table 7.6 the system memory usage which was measured with
’/usr/bin/time -v ’ and here the parameter ’Maximum resident set size’, is listed.
If the random projected dataset is used LSHF, annoy and the brute force algorithm
are using less memory, independent from the number of projected dimensions. The
higher usage of memory from MinHash and WTA-Hash is caused by its structure:
First the data is given to a python interface and the data is hold here in memory.
Additional the data is transfered to C++ and is stored here again to have a fast
access to the data for the hashing and the exact candidate computation. Also the
computed signatures per instance are hold in memory to be faster in the case of a
query for all fitted instances. In other words, the original data is hold twice. The
impact of the inverse index to the memory size is not that big. If the memory usage
of MinHash and WTA-Hash is compared to the competitors when they are applied
to the original dataset, it is clear that MinHash and WTA-Hash perform the best.

78

7.2 Memory saving techniques

The brute force algorithm needs about 420 MB, LSHF and annoy unacceptable 5.6
GB respectively 14.6 GB; MinHash in the case of 1000 dimensions 288 MB and
WTA-Hash 308 MB. If the higher accuracy of MinHash and WTA-Hash is taken
into account the higher usage of memory is acceptable.

Number of Dimensions 100 200 400 800 1000 original

Algorithm
Brute force 138 139 138 138 139 420
MinHash 239 247 258 278 288 -
WTA-Hash 246 254 267 294 308 -
LSHF 163 170 174 183 195 5.6 GB
annoy 138 139 160 170 187 14.6 GB

Table 7.6: System memory usage in Megabyte (if not defined otherwise) of the
different algorithms on the Bursi dataset.

7.1.6.1 Take away message

If no random projection should be done, MinHash and WTA-Hash are using the
least memory. If it can be random projected and less accuracy is acceptable, annoy
or the brute force algorithm should be used.

7.2 Memory saving techniques

The following analysis is based on the MinHash algorithm which was executed on
the Bursi dataset with 400 hash functions. No memory optimizations were activated
except the one which was analyzed. In Figure 7.26 the distribution of the number of
instances per hash function is shown, over all 324420 values are stored in the inverse
index which is with assumed 8 byte per size_t approximately 2.5 MB. In contrast
to the used memory which was measured in subsection 7.1.6 it can be seen that only
a small piece of the used memory is caused by the inverse index. As it can be seen
in Figure 7.26 and Figure 7.27 the distribution for the hash values is for MinHash
and WTA-Hash equal; the distribution of the size of the hash functions differ a bit,
but both are normal distributed, see Figure 7.28 and Figure 7.29.

79

Chapter 7 Results

Figure 7.26: Distribution of the number of instances per hash function for Min-
Hash.

Figure 7.27: Distribution of the number of instances per hash function for WTA-
Hash.

80

7.2 Memory saving techniques

Figure 7.28: Distribution of the size of the hash functions for MinHash.

Figure 7.29: Distribution of the size of the hash functions for WTA-Hash.

81

Chapter 7 Results

7.2.1 Pruning of hash functions

In Figure 7.30 it is shown how much the removing of hash functions is influencing
the size of the inverse index. Hash functions with a size less than 500 do not
influence the size at all (Figure 7.30), at the size of around 500 the error is decreasing
(Figure 7.31). The error is not much influenced until hash functions with a size of
900 to 1000 are removed which means, there are not that many hash functions of this
size. A look at Figure 7.30 shows that between a size of 500 and 900 the size of the
inverse index is decreasing slow. The size is still bigger than 105. If hash functions
with a size more than 1000 are removed, the size of the inverse index is decreasing
to less than 105. This indicates that the size of hash functions is normal distributed;
Figure 7.28 confirms this assumption. Removing hash functions with a size less
than 800 does not influence the error, removing of bigger hash functions than 1000
influence the error term exponential (blue line). A hyper-parameter optimization in
respect to the score gives with α = 0.5 and β = 0.1 a score of 0.702 and suggests to
prune at a size of 1013.

Figure 7.30: Size of the inverse index after pruning hash functions with a size less
than n.

82

7.2 Memory saving techniques

Figure 7.31: Influence of pruning the hash functions and the hyper-parameter
optimization.

7.2.2 Pruning hash values

As you can see in Figure 7.26 there are more than 103 hash values with no entries
and more than 105 with just one. Hash values with no entries appear because if
the number of instances a hash value is assigned to becomes too large the assigned
instances are deleted. To mark this hash value for future insertions as ’full’ it is
left empty and not deleted. In Figure 7.32 it is shown for 400 hash values and a
maximum of 50 instances per hash value how much the removing of hash values
with less than n entries is influencing the size of the inverse index. In Figure 7.33 it
is shown how much the removing influences the fitting time, the query time and the
error rate. For hash values less than ten the error can more or less ignored. For more
than ten the error is increasing linear until about 35 - 40, after it it is increasing
exponential. The hyper-parameter optimization with α = 0.5 and β = 0.1 is getting
as a minimum a score of 1.69 for pruning all hash values with less or equal 10
instance.

83

Chapter 7 Results

Figure 7.32: Number of elements in the inverse index after pruning hash values
with a size less than n.

Figure 7.33: Error, fitting time and query time.

7.2.3 Frequency of pruning

To prune after a given number of elements should avoid that the peak usage of
the memory is getting too high. It comes with the risk that some hash values are
blocked too soon and the accuracy is decreasing. As it can be seen in Figure 7.34a
the influence of the pruning is the biggest if every 10% the data is pruned, but if
too many values are pruned it can happen that not enough values are stored in
the inverse index. To prune after 10% of the data leads to fast prediction times

84

7.2 Memory saving techniques

(see Figure 7.35a), the less values and with this the less instances are stored in the
inverse index, the less candidates can be selected for the exact computation. If the
values are pruned after 50% and then after 100% the decrease in the inverse index
is similar but the query times are higher, see Figure 7.35b. Also the fitting time
is longer, the reason is that pruning one time more values costs more time than
pruning more often less values. Not only the pruning costs more time in the second
case, also the increasing size of vectors and maps leads to reallocations. A hyper-
parameter optimization in respect to the score gives with α = 0.5 and β = 0.1 a
score of 0.883 and suggests to prune every 10% with 7.

(a) Pruning every 10%. (b) Pruning every 50%.

Figure 7.34: Size of the inverse index if pruned with n hash values after k%.

(a) Pruning every 10%. (b) Pruning every 50%.

Figure 7.35: Fitting and query time, error rate for pruning during the fitting.

7.2.4 Storing only hash values with least significant bit equal 0

To store only hash values in the inverse index if the least n significant bits are equal
to 0 is a very good way to decrease the number of stored hash values. As it can be
seen in Figure 7.36b it does not affect the accuracy much if only a half, a quarter or
an eight of the values are stored, even if only the sixteenth part of the data is stored
the error rate is still less than 0.4. A hyper-parameter optimization in respect to

85

Chapter 7 Results

the score gives with α = 0.5 and β = 0.1 a score of 1.0 and suggests to store half of
the data.

(a) Size of inverse index. (b) Fitting and query time, error rate

Figure 7.36: Behavior if only values with least n significant bits equal 0 are stored.

7.2.5 Compress the signature

To compress the signature by a factor of 1, ..., 5 leads to the predictable effect that
the size of the inverse index is decreasing linear, e.g. a little less than 800000 values
are in the index if 2 values are merged and a little more than 400000 if 4 values
are merged together, see Figure 7.37a. In Figure 7.37b it can be seen that merging
two values together can have a positive effect to the accuracy, but not more than
two values should be merged together. If more values are merged, the error term is
getting too fast too big.

(a) Size of inverse index. (b) Fitting and query time, error rate

Figure 7.37: Behavior if n values are merged together.

86

7.2 Memory saving techniques

7.2.6 Conclusion

The examined techniques are achieving their goals and can save memory. But even
more than the memory usage the performance increase is important. For example if
every hash value with less instances as 10 is pruned the query time decreases from
about 0.55 seconds to 0.45, a decrease of about 20% (Figure 7.33). The same effect
can be seen if hash functions with less than the mean + the standard deviation
are removed (Figure 7.31) or if the hash values are pruned after 50%(Figure 7.35b),
and hash values with less instances as 5 are pruned, 0.63 vs 0.46 seconds query
time. It is important to know how theses techniques are influencing each other. In
Table 7.5 the parameters for the accuracy level of 0.95, 0.9 and 0.7 on the Bursi
dataset are listed. It can be seen that the pruning of hash functions (parameter
’remove_hash_function_with_less_entries_as’) is set to 0 which means that all
hash functions with a size less than the mean + standard deviation are pruned and
hash values with less than 14 respectively 10 are pruned too. To merge values is
deactivated, the pruning during the fitting process too. For an accuracy level of 0.7
significant less hash values (200 vs 600 or 800) are used and all the memory saving
techniques except the pruning of the hash functions is deactivated. If the parameters
are optimized for the best accuracy setting (Table 7.1) the shingle parameter is used.
A large number of hash values (903) is used, only hash values with the two least
significant bits equal 0 are stored, i.e. only a quarter of the data. At the same time
hash values with less instances as 1 are pruned, all hash functions with less entries
as the mean plus the standard deviation are pruned. In conclusion, the size of the
hash functions is more or less equal distributed and removing hash functions with a
size less than the mean plus the standard deviation removes only the outliers. This
is the reason why in all hyper-parameter optimizations the result is that these hash
functions can be removed.

7.2.7 Recommendations

How many values can be pruned influences the usage of the memory, the runtime
and the accuracy of MinHash and the WTA-Hash algorithm. In the following a few
recommendations are listed.

• Hash functions with a size less than the mean + standard deviation can usu-
ally removed without loosing accuracy. To use it set the specific parameter
’remove_hash_function_with_less_entries_as ’to 0. This parameter can be
combined with other parameters with no risk of losing accuracy.

• If the parameters to prune the hash values and to store only 1/x of the data
are both activated, use for both only small values like 0, 1 or 2 to prune the
hash values and 1 for the storing. If both are used with a large value too many
hash values are removed and too less candidates are found in the inverse index.
This would lead to a small accuracy.

87

Chapter 7 Results

• If the parameter to store hash values is used alone than do not choose a value
bigger as 3, in some cases 4 could be acceptable too. Remember: 3 means that
only 1/8 of the created values is stored, for 4 its 1/16.
• If the parameter to prune hash values with less instances as n is used alone,

do not prune more than 10 to 15.
• To prevent a high peak memory usage the parameter to prune after x% should

be set to 0.5. Especially if it is combined with the other parameters a higher
frequence would lead to a decrease of the accuracy. A less frequency would
not have a big influence in comparison to the pruning after 100% of the data.

7.3 Classification

In this section it is shown for the RNA dataset how good the prediction of the
classifier based on MinHash and WTA-Hash is working. MinHash and WTA-Hash
were executed with the parameters for the best score from subsubsection 7.1.2.2.
The results are listed in Table 7.7. A look at the predicted probabilities shows
that for MinHash are 0.93 of the probabilities are the same as in the brute force
implementation. This is a high value but the most of the classes have a probability
of 0.0 and an accuracy of e.g. 0.74 for the WTA-Hash fast algorithm where the
most probabilities are wrong should relativize this value. The score which measures
the mean accuracy on the given test data and labels shows that the MinHash and
WTA-Hash are a bit more accurate than the brute force implementation. MinHash,
WTA-Hash and the brute force solution are not good estimators to predict the
correct labels, 0.6 accuracy is too less.

Algorithm MinHash MinHash Fast WtaHash WtaHash Fast Brute force

Predict prob. accu 0.71 0.93 0.74 0.92 -
Score 0.41 0.57 0.47 0.59 0.56

Table 7.7: Accuracy and score of the prediction with MinHashClassifier and Wta-
HashClassifier in comparison to sklearn’s KNeighborsClassifier.

7.4 Clustering

Some clustering algorithms are based on the nearest neighbors and compute them
internally as a base for their clustering. Algorithms like the spectral clustering from
sklearn having the option that instead of an input data matrix and some measure-
ment a precomputed nearest neighbors graph can be used as an input. The idea is

88

7.4 Clustering

that the precomputation can be done faster and then the clustering should be faster.
With the current version 0.17 of scikit-learn this is not true. The precomputation
with some artificial dataset is done fast but somehow the tested spectral clustering
needs more time if the precomputed nearest neighbor graph is given compared to
the non-precomputed version. Spectral clustering is running in 17.7 seconds and is
achieving an adjusted rand score of 0.33. With the precomputed nearest neighbor
graph the runtime is 55 seconds with an adjusted rand score of 0.01. The memory
usage of the precomputed case is less, 390 MB vs. 560 MB. The situation with DB-
SCAN is bad in a different way. Without precomputation the runtime is 15 seconds,
with precomputation it is 8 seconds. The memory usage with 639 MB vs 86 MB
is way better with the precomputation. These two numbers are looking good but
the adjusted random score is here the critical issue. DBSCAN is very sensitive to
its ε-parameter, without the right choice the adjusted random score is 0. In the
expectation the adjusted random scores of the clustering with and without the pre-
computation should be more or less the same if the approximate nearest neighbors
compute an accurate neighborhood. But it does not look so. Why this is the case
needs to be further investigated.
For the speed difference it looks like that sklearn is using different source code in
the implementation for the two cases. If it is using optimized Fortran source code
from BLAS like in the brute force nearest neighbors computation and for the pre-
computed case this is not possible and normal Python or C/C++ code is used the
slower runtime in the precomputed case could be explained.

89

8 Discussion

8.1 Take away messages

• MinHash and WTA-Hash are scaling well on multi core computers, the brute
force implementation of scikit-learn does not.
• To compute the hash values for MinHash on the GPU is a benefit.
• For the GPU part it is not only important to have a fast GPU, the CPU single

thread speed is crucial too.
• MinHash andWTA-Hash do not need to use a sparse random projected dataset

to compute the nearest neighbors. They can operate on the original dataset
and are more accurate than the local sensitive hashing forest or annoy. In
comparison to these two MinHash and WTA-Hash need less memory.
• For dataset with 300 to 400 non-zero features MinHash and WTA-Hash per-

form better than the brute force implementation.
• For dataset with 3000 to 4000 non-zero features and the computer has 4 to 8

cores the brute force implementation of scikit-learn is performing better. If 32
cores are available, MinHash should be used.
• The best computer configuration for MinHash would be an 8 core computer

with a high-end graphic card. With this setting it should be faster as the brute
force implementation in the most cases.
• To reduce the memory usage of the inverse index and to speed up the prediction

the half to a quarter of the values can be pruned without losing much accuracy.

The presented work shows that MinHash and WTA-Hash are working great for the
approximate k-nearest neighbor search on very sparse and very high dimensional
datasets. The most competitive implementations do not work on sparse datasets or
perform worse. The local sensitive hashing forest needs longer query times but is
fitting very fast. It needs more memory (5 GB) on the original dataset and without
a random projection it is not performing well. If projected it needs less memory and
the accuracy is about 0.1 higher as the fast version of MinHash but it needs two
magnitudes (10−1 s to more than 101 s) longer for the query. Compared to the non-
fast version it is still slower for lower dimensions but more or less equal for higher
ones e.g. like it was shown for the RNA dataset. The query time of Bursi and the
RNA dataset combined shows that the local sensitive hashing forest is better in the

91

Chapter 8 Discussion

fight against the curse of dimensionality, the run times for these two datasets are
more or less equal. For further work it would be interesting to examine a similar way
for having an index like LSHF. The fitting time should be no problem as long as the
GPU is used for this computation. With the CPU this could take too much time.
In a best case scenario the accuracy is at a level that one or maybe both steps for
the exact computation could be removed. For the local sensitive hashing forest and
annoy it is obvious that their lack of accuracy is not caused by a bad approximation.
It is highly likely that it is caused by the dimension reduction of the input data.
Both algorithms are showing equal results compared to the brute force algorithm
operating on the reduced dataset. The biggest issue with local sensitive hashing
forest and annoy is that they consume too much memory if they are applied on the
original dataset. This is a clear benefit of MinHash and WTA-Hash. They need
only the input dataset and additionally they store an inverse index in the memory
which is, depending on multiple factors, in the size of a few hundred kilobyte to
usually not more than 50 megabyte.
Surprisingly the brute force implementation from scikit-learn shows that there is still
room for improvement. The scaling of the algorithm is linear in theory and should
be influenced by the curse of dimensionality but the brute force algorithm shows
that a highly optimized source code can outperform a theoretical better algorithm.
For further work this is one issue that needs to be worked on. The fast case of the
MinHash and WTA-Hash algorithm shows that the dimension reduction performs
well and the accuracies are not that far away from the brute force solution applied
on a reduced dataset.
The usage of the GPU is a big improvement for the fitting phase of the algorithm.
The advantages of the GPU architecture can be used in this case perfectly. To
compute the dot products it is important to have a fast GPU otherwise the CPU
computation will be faster. For further work it would be interesting to see how the
usage of CPU extensions like SSE can improve the performance and how a SSE
optimized implementation would perform in comparison to a GPU implementation.
The performance increase of CPUs were getting slower in the last years but the GPU
performance and specially the costs for GPUs are decreasing. The performance of
a todays (May 2016) high end graphic card like a Titan X (6.2 TFlops) which costs
today around 1100 Euro should be on the same level as the announced upper mid
class GPU GTX 1070 (6.5 TFlops) which should cost 400 to 500 US-Dollars1. It
is likely that the usage and the performance benefit of the GPU will become more
important in the near future.

1http://www.heise.de/newsticker/meldung/Turbo-Pascal-Nvidia-stellt-GeForce-GTX-1080-und-
GeForce-1070-vor-3198470.html, accessed: 2016-05-24

92

Bibliography

[1] R. Bellman, Dynamic Programming (Princeton Landmarks in Mathematics and
Physics). republished by Princeton University Press, 1957/2010.

[2] J. L. Bentley, “Multidimensional binary search trees used for associative search-
ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best
matches in logarithmic expected time,” ACM Transactions on Mathematical
Software (TOMS), vol. 3, no. 3, pp. 209–226, 1977.

[4] “rpforest on github,” https://github.com/lyst/rpforest, accessed: 2016-04-15.

[5] S. Dasgupta and Y. Freund, “Random projection trees and low dimensional
manifolds,” in Proceedings of the fortieth annual ACM symposium on Theory
of computing. ACM, 2008, pp. 537–546.

[6] “Annoy on Github,” https://github.com/spotify/annoy, accessed: 2016-04-15.

[7] “Approximate nearest neighbor methods and vector models –
NYC ML meetup 2015,” http://www.slideshare.net/erikbern/
approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup,
accessed: 2016-04-15.

[8] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-tuning indexes for
similarity search,” in Proceedings of the 14th international conference on World
Wide Web. ACM, 2005, pp. 651–660.

[9] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions
via hashing,” in VLDB, vol. 99, no. 6, 1999, pp. 518–529.

[10] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards remov-
ing the curse of dimensionality,” in Proceedings of the thirtieth annual ACM
symposium on Theory of computing. ACM, 1998, pp. 604–613.

[11] “Flann - Fast Library for Approximate Nearest Neighbor search.” http://www.
cs.ubc.ca/research/flann/, accessed: 2016-04-19.

[12] “Panns on Github,” https://github.com/ryanrhymes/panns, accessed: 2016-
04-15.

[13] B. Naidan and L. Boytsov, “Non-Metric Space Library Manual,” arXiv preprint
arXiv:1508.05470, 2015.

93

https://github.com/lyst/rpforest
https://github.com/spotify/annoy
http://www.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup
http://www.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup
http://www.cs.ubc.ca/research/flann/
http://www.cs.ubc.ca/research/flann/
https://github.com/ryanrhymes/panns

Bibliography

[14] “Scikit-learn - Machine learning in Python,” http://scikit-learn.org/, accessed:
2016-05-02.

[15] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings into a
Hilbert space,” Contemporary mathematics, vol. 26, no. 189-206, p. 1, 1984.

[16] D. Achlioptas, “Database-friendly random projections,” in Proceedings of
the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 2001, pp. 274–281.

[17] A. Z. Broder, “On the resemblance and containment of documents,” in Com-
pression and Complexity of Sequences 1997. Proceedings. IEEE, 1997, pp.
21–29.

[18] S. Heyne, F. Costa, D. Rose, and R. Backofen, “GraphClust: alignment-
free structural clustering of local RNA secondary structures,” Bioinformatics,
vol. 28, no. 12, pp. i224–i232, 2012.

[19] J. Yagnik, D. Strelow, D. A. Ross, and R.-S. Lin, “The power of comparative
reasoning.” in ICCV, D. N. Metaxas, L. Quan, A. Sanfeliu, and L. J. V.
Gool, Eds. IEEE Computer Society, 2011, pp. 2431–2438. [Online]. Available:
http://dblp.uni-trier.de/db/conf/iccv/iccv2011.html#YagnikSRL11

[20] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter: an
efficient data structure for static support lookup tables,” in Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 2004, pp. 30–39.

[21] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[22] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A
survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[23] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 2010.

[24] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing
with GPUs (Applications of Gpu Computing). Morgan Kaufmann, 2012.

[25] F. Costa and K. De Grave, “Fast neighborhood subgraph pairwise distance ker-
nel,” in Proceedings of the 26th International Conference on Machine Learning.
Omnipress, 2010, pp. 255–262.

[26] E. P. Nawrocki, S. W. Burge, A. Bateman, J. Daub, R. Y. Eberhardt, S. R.
Eddy, E. W. Floden, P. P. Gardner, T. A. Jones, J. Tate et al., “Rfam 12.0:
updates to the RNA families database,” Nucleic acids research, p. gku1063,
2014.

[27] R. Denman, “Using RNAFOLD to predict the activity of small catalytic RNAs.”
Biotechniques, vol. 15, no. 6, pp. 1090–1095, 1993.

94

http://scikit-learn.org/
http://dblp.uni-trier.de/db/conf/iccv/iccv2011.html#YagnikSRL11

	Contents
	Zusammenfassung
	Abstract
	1 Introduction
	1.1 Task definition: Approximate k-nearest neighbors
	1.2 Related works
	1.2.1 Algorithms
	1.2.2 Libraries providing implementations
	1.2.3 Random projection

	2 Nearest Neighbor Search
	2.1 Approximate Nearest Neighbor Search

	3 Estimator induction
	3.1 Curse of dimensionality
	3.2 Minimum Hash
	3.3 Winner takes it all hash

	4 Approximate nearest neighbor search algorithm
	4.1 Measurements
	4.1.1 Euclidean distance
	4.1.2 Cosine similarity

	4.2 Estimator
	4.2.1 Runtime analysis

	4.3 Structure of the inverse index
	4.3.1 Pruning the inverse index

	4.4 Prediction phase
	4.4.1 Candidate selection I: Values from the inverse index
	4.4.2 Candidate selection II: Neighbors of neighbors
	4.4.3 Runtime analysis

	5 Memory saving techniques
	5.1 Bloomier Filter
	5.1.1 Usage as the data structure for the inverse index

	5.2 Memory saving techniques
	5.2.1 Pruning of hash functions
	5.2.2 Pruning of hash values
	5.2.3 Prune during the fitting process
	5.2.4 Store hash values with least significant n-bits equals zero
	5.2.5 Compressing the signature

	6 Implementation
	6.1 Interface
	6.1.1 MinHash
	6.1.2 MinHashClassifier
	6.1.3 WtaHash
	6.1.4 WtaHashClassifier
	6.1.5 MinHashClustering

	6.2 GPU support
	6.2.1 Programming model

	6.3 Installation
	6.4 Class diagram

	7 Results
	7.0.1 Datasets
	7.0.2 Used machines
	7.0.3 Measurements

	7.1 Approximate nearest neighbor search
	7.1.1 Best accuracy
	7.1.2 Best score
	7.1.3 Comparing with related algorithms
	7.1.4 Scalability
	7.1.5 Random projection
	7.1.6 Memory usage

	7.2 Memory saving techniques
	7.2.1 Pruning of hash functions
	7.2.2 Pruning hash values
	7.2.3 Frequency of pruning
	7.2.4 Storing only hash values with least significant bit equal 0
	7.2.5 Compress the signature
	7.2.6 Conclusion
	7.2.7 Recommendations

	7.3 Classification
	7.4 Clustering

	8 Discussion
	8.1 Take away messages

	Bibliography

