
Master’s Thesis

Modular and Linear-Time Structural
Clustering of RNA Sequences using the

Galaxy Framework

Eteri Sokhoyan
April 2017

Albert-Ludwigs-Universität Freiburg im Breisgau
Technische Fakultät

Institut für Informatik

First Examiner Prof. Dr. Rolf Backofen
Second Examiner Prof. Dr. Wolfgang Hess
Supervisors Milad Miladi, Dr. Bjoern Gruening

Declaration
I hereby declare, that I am the sole author and composer of my thesis and

that no other sources or learning aids, other than those listed, have been
used. Furthermore, I declare that I have acknowledged the work of others
by providing detailed references of said work. I hereby also declare, that my
thesis has not been prepared for another examination or assignment, either
wholly or excerpts thereof.

Freiburg im Breisgau, April 10, 2017
Eteri Sokhoyan

Zusammenfassung

Die Erforschung von non-coding RNA ist ein relativ neues Forschungsgebiet
und die Funktion vieler non-coding RNAs ist bis zum heutigen Tage nicht
bekannt. Das Clustering von Sequenzen ist die allgemein akzeptierte Methode
zur funktionellen Annotation. Es ist bekannt, dass die Sekundärstruktur
von ncRNAs besser erhalten bleibt als die Sequenz, weswegen das Clustering
basierend auf dieser Vorteile gegenüber dem rein sequenzbasiertem Clustering
hat. Die GraphClust Pipeline, veröffentlicht im Jahr 2012, ist eines der besten
Verfahren zum Clustern von alignment-freien Sekundärstrukturen. Seine
lineare Zeitkomplexität ermöglicht es mit bis zu mehreren hunderttausend
Sequenzen zu arbeiten.

Im Rahmen dieser Arbeit stellen wir eine neue und verbesserte Version von
GraphClust vor. Die Integration dieser in das Galaxy Framework ermöglicht
nicht nur eine einfache Nutzung, sondern ist auch flexibel und modular.
Benutzern wird hierdurch ermöglicht das Tool mittels ihres Web-Browsers,
unabhängig von ihrem Betriebssystem zu nutzen. Des Weiteren ermöglicht
dies eine Erweiterung und den Austausch von Teilen der Pipeline, ohne tief in
den Programmcode eingreifen zu müssen.
Wir zeigen anhand einer vergleichenden Analyse, dass unsere Methode

bessere Ergebnisse als die originale Pipeline erziehlt. Außerdem präsentieren
wir beispielhaft Ergebnisse unserer Methode angewandt auf einen Metatran-
scriptome Datensatz, welcher 100000 Sequenzen enthält.

Abstract

Non-coding RNA research is a relatively new field and there are still many non-
coding RNAs with unkown function. Clustering sequences is an accepted way
for functional annotation of ncRNAs. As it is known, for ncRNAs the secondary
structure is better preserved than the sequence, hence, clustering based on
the secondary structure has an advantages over that on sequences. The
GraphClust pipeline, introduced in 2012, is by far one of the best alignment-
free secondary structure clustering approaches. Its linear time complexity
enables users to work with hundreds of thousands of sequences.

We present an upgraded and improved version of GraphClust. Integration
of the pipeline in Galaxy framework makes it not only easy to use but also
more flexible and modular. Users can deploy the pipeline via web browser,
independent from their working platform. Furthermore, it is possible to extend
or exchange parts of the pipeline without touching the source code.

Moreover, we present the results of a comparative analysis of our approach
and show that it is performing better than the original pipeline. Furthermore,
we present results of a use case on a metatranscriptome dataset with 100000
sequences.

Contents

1 Introduction 10

2 Theoretical Background 12
2.1 Biological Overview . 12

2.1.1 DNA . 12
2.1.2 RNA . 14
2.1.3 RNA Secondary Structure 15
2.1.4 Common Types of RNA 17

2.2 RNA Bioinformatics Background 19
2.2.1 Sequence Alignment 19
2.2.2 RNA Secondary Structure Prediction 20
2.2.3 Comparative Methods for RNA Analysis 21

2.3 Methods and Technical Overview 23
2.3.1 RNAalifold . 23
2.3.2 LocARNA . 24
2.3.3 Infernal . 25
2.3.4 NSPDK . 27
2.3.5 MinHash Technique . 28

3 Galaxy Framework 30
3.1 User Interface . 30
3.2 Tool Wrapper . 31
3.3 Accessibility in Galaxy . 33
3.4 Reproducibility in Galaxy . 34
3.5 Workflows . 35

4 GraphClust : Challenge and Approach 37
4.1 GraphClust Pipeline . 37
4.2 Challenge . 41
4.3 Approach . 42

5 Data Analysis 47
5.1 Benchmarking . 47
5.2 Exemplary Use Case . 54

5.2.1 Quantitative Analysis 55

6 Conclusion and Future Perspectives 59

1 Introduction

Biology is a field of life sciences, which aims to study all living entities e.g
humans, animals and plants. It evolved over centuries and led to the foundation
of many specialized subfields. One of these is bioinformatics. Bioinformatics
can be considered a bridge between life sciences and computer science. Due to
the infeasibility of humans to handle big amounts of data, biology "merged"
with computer science and resulted in bioinformatics. Bioinformatics supports
life science by providing automated tools for solving life science problems.
There are already many tools and methods that help scientists to answer
biological questions. However, with fast developing computational resources,
new discoveries are made in science, with a demand for novel techniques.
For example, the discovery of non-coding RNAs opened a whole new field
of a research. New discoveries are quickly changing our understanding of
genome complexity and raise further challenging questions. That is why the
comparison, prediction and functional annotation of non-coding RNAs are
now one of the major problems of modern RNA research. Clustering RNA
sequences has become a generally accepted way for ncRNAs annotation.
In 2012 Steffen Heyne and Fabrizio Costa presented an RNA clustering

approach, called GraphClust, which is taking into account sequential, as well
as the structural information. GraphClust [1] is a pipeline for alignment-free,
structural clustering of local RNA secondary structures. It is based on graph
kernels and local sensitive hashing techniques and aims to discover new ncRNA
families, as well as to predict conserved structures. GraphClust is a complex
pipeline consisting of different steps and using several third-party tools. It was
proven to have linear run-time and thus is able to work with up to hundreds
of thousands of sequences. However, there is room for improvement, especially
with respect to modularity and accessibility.

In the scope of this work we explain the existing GraphClust pipeline in
detail, discuss possible improvements and challenges and present our approach
designed to solve these problems. Furthermore, we integrated it in the Galaxy
framework [2], enabling users to use GraphClust via a web browser, without
any restrictions concerning the platform they are working on. This also
enables users to easily extend the pipeline with available Galaxy tools, in

10

11

order to perform extra pre- or post-processing of the data, as well as to use
the components of the pipeline independently.

Moreover, we make a comparative analysis of our approach with the original
pipeline. We evaluate the qualities of the clusters obtained from both methods
and show that our approach outperforms the original. Additionally, we
demonstrate our approach on a use case with a metatranscriptome dataset
dominated by cyanobacteria, and show that it can handle large-scale datasets.

2 Theoretical Background

In this chapter we give an overview of major biological, as well as technical
concepts and techniques, that we used throughout this thesis.

2.1 Biological Overview

Deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins are three
major biological macromolecules that are essential for various known forms
of life. Fig. 2.1 shows relations of these three macromolecules, or so-called
central dogma of molecular biology[3]. The central dogma of molecular biology
describes the information flow in the genes from DNA to RNA to proteins.
In the following sections we will give a brief overview of DNA and talk more
detailed about RNA, as it is the basis of this work.

Figure 2.1: Information flow in biology. DNA contains instructions
for making a protein, which are copied to RNA via transcription. Then
RNA uses these instructions to synthesize a protein via translation [4].

2.1.1 DNA

DNA or Deoxyribonucleic acid molecule stores genetic information in living
systems. This genetic information is crucial for a living system to live, develop
and reproduce. A DNA molecule consists of a phosphate group, deoxyribose

12

2.1. Biological Overview 13

sugar and a nitrogen base. The nitrogen base can be one of the four nitrogen-
containing nucleobases adenine (A), thymine (T), guanine (G) and cytosine
(C). These bases can form pairs adenine - thymine and guanine - cytosine.
These pairs are also known as complementary pairs [5]. In DNA the sugars
and phosphates bind together to form two backbones. These backbones are
attached to each other by the nucleobases. Because, as mentioned before,
nucleotides pairing is done according to the rule A with T and G with C, thus
one strand or backbone of DNA is the reverse complement of the other one
[6]. The double stranded or double helix structure of the a DNA is shown in
Fig. 2.2.

Figure 2.2: DNA double helix. The DNA molecule consists of two sugar-
phosphate backbones or so-called strands. These strands held together by
bonds between complementary bases A-T, G-C [7].

Transcription

As it was stated in the previous section, DNA contains genetic information that
living system needs for existence. To be able to use this genetic information
DNA is transcribed or summarized to a different molecule called RNA. This
process is called transcription. So transcription is the first step of the process
described by the central dogma : DNA to RNA (Fig. 2.1). It is the transfer
of genetic instructions in DNA to messenger RNA (mRNA) (Sec. 2.1.4).
During the transcription, a strand of mRNA is made in a way, that it is
complementary to a strand of DNA [8]. Transcription consists of three steps
initiation, elongation and termination. It starts with initiation. During this
step the enzyme RNA polymerase binds to a specific region of a gene called

2.1. Biological Overview 14

promoter. The DNA untwists, such that the enzyme can “read” the bases in
one of the DNA strands. The next step is elongation, where the addition of
nucleotides to the mRNA strand occurs. RNA polymerase reads the DNA
strand and builds the mRNA molecule, using complementary base pairs.
During this process, an adenine (A) in the DNA binds to an uracil (U) in the
RNA. The transcription is considered to be over when the RNA polymerase
reaches a termination sequence in the gene. It means that mRNA is complete
and detached from the DNA. This step is called termination [8].

Translation

While transcription is the process of information flow from DNA to RNA,
translation is the process of making proteins : RNA to proteins (Fig. 2.1).
After the termination step of transcription mRNA moves to a structure called
ribosome. Ribosome is a complex molecule, with a small and a large subunits,
consisting of rRNA (Sec. 2.1.4) and proteins. Just like transcription, trans-
lation process has three stages called initiation, elongation and termination.
During the initiation step, the small subunit of the ribosome binds to the start
of mRNA sequence. Next tRNA, which carries amino acid called methionine,
binds to the start codon of mRNA. This start codon has the sequence AUG
for all mRNA molecules. Then the large subunit of ribosome binds forming
the complete initiation complex. The elongation stage one can imagine as an
iterative process where in each round ribosome translates one codon of mRNA.
This process is resulting a growing chain of amino acids linked by peptide
bond. Translation process reaches the termination stage when the ribosome
reaches a stop codon. The new protein is synthesized and the translation
complex is disorganized [9].

2.1.2 RNA

RNA molecules, which are linear chains (or polymers) of ribonucleotides
or just nucleotides, perform a number of critical functions. Many of these
functions are related to protein synthesis. Some RNA molecules bring genetic
information from a cell’s chromosomes to its ribosomes, where proteins are
assembled. Others help ribosomes translate genetic information to assemble
specific sequences of amino acids. Nucleotides, the building blocks of RNAs,
consist of a ribose (a five-carbon sugar), a phosphate group and nitrogen-
containing base. The nitrogen-containing base may be adenine (A), cytosine
(C), guanine (G), or uracil (U). The nucleotides in RNA molecules are linked
together to form chains. The link between two nucleotides is between a

2.1. Biological Overview 15

Figure 2.3: RNA strand. An RNA molecule consist of a ribose, which
is a five-carbon sugar, a phosphate group and a nitrogen-containing base
(A, C, G, U) [11].

phosphate group attached to the fifth (5’ or "five prime") carbon of the sugar
on one nucleotide and a hydroxyl group on the third (3’ or "three prime")
carbon of the sugar on the other. The link is called a 5’- 3’ phosphodiester
bond [10].

Whereas DNA is usually double-stranded (Fig. 2.2), with the bases on one
strand pairing up with ones on the other, RNA usually exists as single chains
of nucleotides (Fig. 2.3). The bases in RNA follow Watson-Crick base-pair
rules: A and U can pair with each other, as can G and C. Wobble base pairs
or non Watson-Crick base pairs are also possible, but these are considered as
very rare events [5].

The RNA structure can be divided in three different levels, which are
primary,secondary and tertiary structure. The primary structure can be
denoted by lining up the bases from 5’ to 3’ in the order of the backbone. In
other words the primary structure is a one dimensional representation of the
RNA. The secondary structure of RNA is formed when bases form base-pairs.
This can be considered as a two dimensional representation of RNA. And
finally the three dimensional representation is called tertiary structure.
In the scope of this work, RNA secondary structure is the most relevant,

that is why we will take a closer look into it.

2.1.3 RNA Secondary Structure

As outlined above, the RNA secondary structure is formed when two bases
form a base-pair, i.e. two bases form hydrogen bonds with each other. The
two bases that can form a base-pair are also called complementary bases. An

2.1. Biological Overview 16

RNA secondary structure can be formally defined as shown in Def. 2.1.1.
Definition 2.1.1. Let S ∈ {A,C,G, U}∗ be an RNA sequence with length
n = |S|. A Secondary structure of an RNA is a set of base pairs P , where
P ⊆ {(i, j) | 1 ≤ i < j ≤ n, Si and Sj are complementary }, such that P has
degree of at most one, i.e. ∀(i, j)(i′ , j ′) ∈ P : (i = i

′ ⇔ j = j
′) and i 6= j.

The restriction on the degree of P is preventing the formation of cross-
ing base-pairs, i.e. each base can form a base-pair with no more than one
complementary base.

In literature one can find term pseudoknots for crossing base-pairs (Def. 2.1.2).
The problem with pseudoknots is that computational cost for predicting struc-
tures containing them is expensive and that is why most RNA structure
predicting algorithms do not consider them.
Definition 2.1.2. Two base-pairs (i, j) and (i′ , j ′) are crossing iff (i < i

′
<

j < j
′) or (i′ < i < j

′
< j).

If an RNA secondary structure does not contain any pseudoknots it is called
a nested structure. RNA secondary structure consists of several elements:
single-stranded bases enclosed by one or more base-pairs, stackings and loops.
Fig. 2.4 is the graphical representation of RNA secondary structure elements
and Def. 2.1.3 is the formalization of these elements.
Definition 2.1.3. Let S be an RNA sequence and P be the structure for S.

• Stacking is formed by a base-pair (i, j) ∈ P if (i+ 1, j − 1) ∈ P

• Hairpin loop is formed by a base-pair (i, j) ∈ P if ∀i < i
′ ≤ j

′
< j :

(i′ , j ′) /∈ P

• Internal loop (i, j, i′ , j ′) is formed by base-pairs (i, j) ∈ P and (i′ , j ′) ∈ P
if
• i < i

′
< j

′
< j

• (i′ − i) + (j − j ′) > 2 (no stacking)
• there is no base-pair (k, l) between (i, j) and (i′ , j ′)

• Left (right) bulge is a special case of internal loop when, j = j
′ + 1

(i′ = i+ 1)

• A k-multiloop consists of multiple base-pairs (i1, j1)....(ik, jk) ∈ P with a
closing base-pair (j0, ik+1) with following properties :
• ∀0 ≤ l ≤ k : (jl < il+1)
• ∀0 ≤ l, l′ ≤ k is true that there is no base-pair (i′ , j ′) ∈ P with
i
′ ∈ [jl....il+1] and j ′ ∈ [jl′il′+1]

2.1. Biological Overview 17

Figure 2.4: RNA secondary structure elements. Examples of typical
elements found in an RNA secondary structure. Such elements are stacking
regions (or helices), bulge loops, internal loops, hairpin loops and multiple
loops [12].

2.1.4 Common Types of RNA

In this section we describe the most common types of RNA, which play an
important role in the function of a cell and protein synthesis.

Messenger RNA

Messenger RNA or just mRNA accounts for just 5% of the total RNA in the
cell. mRNA is the most heterogeneous of the 3 most common types of RNA in
terms of both base sequence and size. It carries the genetic code copied from
the DNA during transcription (Sec. 2.1.1) in the form of triplets of nucleotides
called codons. Each codon specifies a particular amino acid, but one amino
acid can be coded by many different codons. Although there are 64 possible
codons or triplet bases in the genetic code, only 61 of them represent amino
acids. The remaining three are stop codons [10].

Transfer RNA

Transfer RNA or tRNA is one of the smaller types of RNA, having about 75-95
nucleotides. tRNAs are essential components of translation, where their main
function is the transfer of amino acids during protein synthesis. Therefore
they are called transfer RNAs. Each tRNA molecule has an anticodon for
the amino acid it carries. An anticodon is a sequence of 3 bases, and it is
complementary to the codon for an amino acid. Each of the 20 amino acids has

2.1. Biological Overview 18

a specific tRNA that binds with it and transfers it to the growing polypeptide
chain. tRNAs also act as adapters in the translation of the genetic sequence of
mRNA into proteins. That is why they are also called adapter molecules [13].

Ribosomal RNA

Ribosomal RNAs or rRNAs are found in the ribosomes and account for 80% of
the total RNA present in the cell. Both prokaryotic and eukaryotic ribosomes
are composed of a large and a small subunits. In prokaryotes the large subunit
is called 50S and small one 30S, and in eukaryotes 60S and 40S respectively.
Each of these subunits has its own rRNA molecules. Different rRNAs present
in the ribosomes include small rRNAs and large rRNAs, which denote their
presence in the small and large subunits of the ribosome.

rRNAs combine with proteins in the cytoplasm to form ribosomes, which act
as the site of protein synthesis and have the enzymes needed for the process.
These complex structures travel along the mRNA molecule during translation
and facilitate the assembly of amino acids to form a polypeptide chain. They
bind to tRNAs and other molecules that are crucial for protein synthesis.
In bacteria, the small and large rRNAs contain about 1500 and 3000

nucleotides, whereas in humans, they have about 1800 and 5000 nucleotides.
However, the structure and function of ribosomes is largely similar across all
species [14].

Non-coding RNA

As briefly mentioned earlier, not all RNAs are translated into proteins. These
RNA molecules encoded by genes in genome are functional but non-translated
into proteins called non-coding RNAs (ncRNAs). Alanine transfer RNA is
the first discovered ncRNA [15], followed by many more afterwards. It is
important to note that these ncRNAs have vital functions even though they
are not translated into proteins. There are different groups of ncRNAs with
various roles in cellular processes. In human genome the exact number of
ncRNAs is unknown yet, however recent studies suggests the existence of
thousands of ncRNAs. Recent studies in genomics have shown that in complex
biological organisms, a major part of the genetic information is copied into
ncRNAs [16]. This has brought a lot of attention to the study of structures and
functions of different types of ncRNAs. In contrast to protein-coding RNAs,
ncRNAs belong to a diverse array of classes with vastly different structures,
functions, and evolutionary patterns. Moreover, ncRNAs can be divided into

2.2. RNA Bioinformatics Background 19

RNA families, according to inherent functional, structural, or compositional
similarities [17].

2.2 RNA Bioinformatics Background

2.2.1 Sequence Alignment

Sequence alignment is used in bioinformatics to help scientists to understand
structural, functional and evolutionary relationships between sequences. The
idea of a sequence alignment (Def. 2.2.1) is to transform one sequence to
another by set of edit operations. Edit operations are insertion, deletion and
substitution. One edit operation is done for a pair of residues (x, y), where x
is an instance of sequence a and y of sequence b. Insertion is the procedure
of inserting a gap in sequence a, deletion is inserting a gap in sequence b.
Substitution is the process of aligning x with y when x 6= y. This is called a
mismatch.
Definition 2.2.1. Let a, b ∈ Σ∗ be 2 words and Σ = {A,C,G, U}.The align-
ment of (a, b) consists of 2 sequences a∗, b∗ ∈ (Σ ∪ {−}) such that:
• |a∗| = |b∗| the length of 2 sequences is the same
• @1 ≤ i ≤ |a∗| such that a∗i = b∗i = − no column with only gaps is allowed
• a∗−{−} = a and b∗−{−} = b removing gaps from alignment sequences
will result the original sequences

To understand how strongly two sequences are related, or if related at all,
a measurement of similarity is needed. If the similarity score is high, then
sequences are similar and thus the distance score is low and vise versa. So to
compute alignment based on similarity, the score should be maximized and in
case of distance the score should be minimized. The most common distance
metrics are the Euclidean distance, the Hamming distance and the Levenshtein
distance. Each metric has its own definition on how to evaluate the distance
between sequences. The Levenshtein distance, for example, counts the number
of edit operations which are necessary to convert one sequence into another.
The similarity measure of two sequences can be calculated through a scoring
function. For that we need a cost function (Eq. (2.1)) which defines costs for
match, mismatch and gap cases.

s(x, y) =

α, if x = y,

β, if x 6= y,

γ, if x = − or y = −
(2.1)

2.2. RNA Bioinformatics Background 20

A match should have a higher score than a mismatch, and a gap should be
punished. Having such a scoring function, we can define a similarity score for
an alignment (a, b) as shown in equation Eq. (2.2).

s(a, b) =
∑

1≤i≤|a|
s(ai, bi) (2.2)

There are two types of alignment methods: global and local. Global
alignment methods always align both sequences completely with each other.
In contrast, local alignment methods try to find sections in both sequences
that are highly similar [18].

2.2.2 RNA Secondary Structure Prediction

The function of an RNA sequence is largely associated with its structure, that
is why predicting the RNA structure from its sequence has become increasingly
important. The RNA structure formation is mainly a hierarchical process,
which can be divided into two steps [19]. The first step is the formation of
the secondary structure from a chain of nucleotides. The second step, the
formation of the tertiary structure, consists of the bending and folding of
the secondary structure, leading to the final three-dimensional fold of the
RNA sequence. The tertiary structure of an RNA is more complex and more
difficult to obtain experimentally or predict computationally. Because the
secondary structure base pairing and base stacking energies already contribute
the major part of the energy gained by folding the RNA, the tertiary structure
interactions only play a minor role energy-wise and are therefore a lot more
difficult to predict. However, the RNA secondary structure is often sufficient
to perform a successful functional analysis. One of the most common used
algorithms for predicting RNA secondary structure is the Zuker algorithm,
based on minimization of the free energy (MFE) [20]. Simply said, the Zuker
algorithm assumes that the correct structure of the RNA sequence is the one
that has the minimum free energy.
Even tough today the most popular structure prediction algorithms, for

folding a single sequence, are based on free energy, this method has limitations
in practice [21]. For this reason, to achieve the best accuracy, mostly so-called
comparative methods are used.

2.2. RNA Bioinformatics Background 21

Figure 2.5: Comparative RNA analysis. Plan A at first finds an
alignment of the sequences, then a consensus structure. Plan B does
simultaneous alignment and structure prediction. Plan C, at first, does
structure prediction and then finds the alignment of the structure [18]

2.2.3 Comparative Methods for RNA Analysis

The idea of RNA comparison is - given an input set of sequences - to find the
most common structure and sequence, the so-called consensus structure and
the alignment of these sequences. There are three approaches how to achieve
this task, known as Plan A, B and C (Fig. 2.5). In the following sections we
will give a brief overview for each plan.

Plan A

Plan A aims to at first align the sequences and then using this alignment, find
a consensus secondary structure. The simplest way to align multiple sequences
is to use Progressive Alignment. Progressive alignment at first makes pairwise
alignments (Sec. 2.2.1) for all the sequences, then constructs a guide tree,
using these alignments, and finally builds a multiple alignment by following
the guide tree. The second step of Plan A is to find a consensus structure of
the alignment. One of the most famous approaches for predicting consensus
structure from an alignment is RNAalifold [22].

One of the drawbacks of Plan A is that because the alignment is done before
the structure prediction, it can cause structural misalignments. However, it

2.2. RNA Bioinformatics Background 22

is very useful when sequences have high similarity, or when the alignment is
already known.

As we used RNAalifold in this work, we will explain it in more detail later
in Sec. 2.3.1.

Plan B

The idea of Plan B is to simultaneously align RNA sequences and predict
RNA secondary structures. The bottleneck of this approach is that for a
good secondary structure a good sequence alignment is needed, and for a
good alignment good secondary structure is needed. However, the Sankoff
algorithm [23] solves this problem. Nowadays there are many implementations
for simultaneous alignment and folding, based on variants of the Sankoff
algorithm with heuristics. One example is LocARNA [24] which we used in
this work and which will be described it in more detail in Sec. 2.3.2.

Plan C

In contrast to Plan A, Plan C at first predicts secondary structure for each
single sequence and then computes an alignment for the structures (aligns
structures). This approach is useful when there was no information about
sequence conservation observed. Many algorithms for predicting RNA sec-
ondary structures from single sequence exists e.g. Zuker, Nusinov etc [20].
In Plan C the most interesting part is how the alignment of the predicted
structures is done. RNA structures are often represented as trees, due to their
nested nature. For aligning sequences edit operations are used for similarity
measurement. However it is also possible to generalize this method for trees
[25][26]. The idea behind is to construct an RNA tree (Def. 2.2.2) from the
secondary structure and then align these trees.

Definition 2.2.2. An RNA tree is an ordered, labeled tree G, where each
node v ∈ VG is either a base node, base pair or root. Labels are l(v) ∈ {A, C,
G, U} for base nodes and l(v) ∈ {AU , UA, CG, GC, GU , UG} for base pair
nodes.

Just like sequence alignment, tree alignment is the transformation of an RNA
tree into the another one, by making use of edit operations to find a common
subtree. For tree alignment, basic edit operations are renaming base nodes,
insertion/deletion of base nodes, renaming base-pair nodes, insertion/deletion
of base-pair nodes. A definition for RNA tree alignment is given in Def. 2.2.3.

2.3. Methods and Technical Overview 23

Definition 2.2.3. The alignment of an RNA tree is an ordered, labeled tree
T , where each node v ∈ VT is either a base node, base pair or root. Each node
has a pair of labels (l1(v), l2(v)) such that:
• li(v) ∈ { A, C, G, U , −} for base nodes
• li(v) ∈ { AU , UA, CG, GC, GU , UG, −−} for base pair nodes,

where i = (1, 2).

The crucial point in plan C is the question, whether the initial folding
produces at least some structures that can align well, thus give some ideas
about the consensus structure if such exists.

2.3 Methods and Technical Overview

In the following sections we will talk about computational tools, frameworks
and techniques that were used in the scope of this work.

2.3.1 RNAalifold

RNAalifold finds an optimal consensus structure by minimizing the combina-
tion of the conservation score and sum of free energy for all RNA sequences
present in the alignment. Conservation score γ is computed for each base pair
by awarding mutations and penalizing non-complementarities. Eq. (2.3) shows
how the conservation score is computed. Function h(x, y) is called Hamming
distance. It is equal to 0 if x = y, or 1 otherwise.

γ(i, j) =
∑

1≤l<l′≤K

h(αli, αl′ i) + h(αlj, αl′j) if αli − αlj, αl′ i − αl′j are compl.
0 otherwise

+δ
∑

1≤l≤K

0, if αli − αlj are compl
0.25, if αli − αlj are both gaps
1, otherwise

(2.3)

RNAalifold uses four recursive matrices shown in Eq. (2.4), Eq. (2.5),
Eq. (2.6) and Eq. (2.7).

2.3. Methods and Technical Overview 24

Fi,j = min(Fi+1,j,mini<k≤j(Ci,k, Ck+1,j)) (2.4)

Ci,j = βγ(i, j) +min

∑
α∈A eH(i, j, α)

mini<k<l<j(
∑
α∈A(eSBI(ij, kl, α) + Ck,l))

mini<k<j(Mi,k +M1
k+1,j + a)

(2.5)

Mi,j = min

Mi+1, + c

mini<k<jCi,k +Mk+1,j + b

M1
i,j

(2.6)

M1
i,j = min(M1

i,j−1 + c, Ci,k) (2.7)

Each matrix holds energies of optimal fold for every subsequence (i, j) in
the following way:
• F - unconstrained structures
• C - structures enclosed by (i,j)
• M - multi-loop components
• M1 - multi-loop with one branch
eH(i, j, α) and eSBI(ij, kl, α) correspond to Turner energy for hairpin

and stacking, bulge, internal-loop enclosed by alignment positions (i, j) and
(i, j, k, l) in sequence α of alignment A respectively. In Eq. (2.5), Eq. (2.6)
and Eq. (2.7) a, b and c represent contributions for closing multi-loop, branch
and unpaired positions respectively [22].

2.3.2 LocARNA

LocARNA is a tool to compute alignment of RNA sequences. As described
in Sec. 2.2.1, an alignment is basically a comparison of RNA sequences.
LocARNA does this comparison by taking into account RNA sequences, as
well as secondary structures. The difficulty of such a structural comparison is
that each RNA sequence has potentially many structures that it can fold to.
LocARNA is using a probability based model, that allows it to consider the
most potential structures according to their probability and identify the one
that fits the best to all compared RNA sequences simultaneously. The idea
behind the probabilistic model is to take into account base pair probabilities
during the alignment step. By this it is possible to sort out insignificant base

2.3. Methods and Technical Overview 25

pairs from the beginning. As an input, LocARNA requires only RNA sequences
and it outputs a multiple alignment together with a consensus structure [24].
Moreover, LocARNA package contains several tools and algorithms which
reduce LocARNA runtime complexity. ExpaRNA-P [27] and SPARSE [28]
are examples of such algorithms.

2.3.3 Infernal

Infernal is a suit of tools that can be used to search sequence databases for
homologs of structural RNA sequences and to do sequence- and structure-
based RNA sequence alignments [29]. Infernal uses a position specific scoring
system for edit operations to build a profile from a multiple sequence alignment.
Profiles in Infernal are called covariance models which are probabilistic models
and a special type of a stochastic context-free grammar (Def. 2.3.1) [30]. In
other words, covariance models or CMs are statistical models of structurally
annotated RNA multiple sequence alignments and structures. CMs are closely
related to Hidden Markov Models (HMMs), but unlike them in CMs base
paired positions are dependent on each other. This dependency allows the
profile to model covariance at the dependent positions, which often occurs
between base paired columns of structural RNA alignments [29].

Definition 2.3.1. A stochastic context free grammar (SCFG) consists of the
following:
• Set M of non-terminal symbols or just states.
• Set K terminal symbols (e.g. the alphabet (a, c, g, u) for RNA).
• A number of production rules of the form: V → γ , where γ can be any
string of non-terminal and/or terminal symbols, including a special case,
the empty string ε.
• Each production rule is associated with a probability, such that the sum
of the production probabilities for any given non-terminal V is equal to
1.

In this work we used cmbuild and cmsearch programs of Infenral. For this
reason, in following sections we will talk only about these two programs i.e.
how to build covariance models and how to search for homologues.

cmbuild

With cmbuild a covariance model for a multiple sequence alignment is built.
The only requirement is the consensus secondary structure annotation in

2.3. Methods and Technical Overview 26

the alignment file, because it is used to determine the architecture of the
covariance model. As mentioned before, a covariance model is a special type
of SCFG. It consists of groups of model states, which are associated with base
pairs and single-stranded positions in an RNA consensus secondary structure.
A CM has seven types of states and production rules as shown in Tab. 2.1.

State Type Production Emission Transition
P - pair emmiting P → aY b ev(a, b) tv(Y)
L - left emitting L→ aY ev(a) tv(Y)
R - right emitting R→ Y a ev(a) tv(Y)
B - bifurcation B → SS 1 1
D - delete D → Y 1 tv(Y)
S - start S → Y 1 tv(Y)
E - end E → ε 1 t1

Table 2.1: Covariance model: states and rules

Where Y ∈M and a, b ∈ K. A covariance model consists of many states,
where each state is one of these seven basic types. Each state has its own
emission and transition probability distributions, and its own set of states that
it can transition to. P states are used to model consensus base pairs, L and
R states are used to model single stranded left and right residues respectively.
Deletions relative to the consensus are modeled by D states and the branching
topology of the RNA secondary structure by B, S, and E states.

The first step of building a CM is to produce a binary guide tree from the
consensus structure. The nodes of the tree represent the consensus secondary
structure. So the guide tree is a parsing-tree for the consensus structure, with
nodes as non-terminals and alignment columns as terminals. The nodes of
the guide tree are numbered in preorder traversal (thus parent nodes always
have lower indices than their children). We will not go in details how the
guide tree is constructed, however important to note that the guide tree is the
skeleton on which the covariance model is built [29]. To construct a covariance
model from a guide tree set of transitions were introduced. These transitions
were designed such that given the guide tree, there is unambiguously one and
only one parsing tree for any given individual structure. The final covariance
model is an array of M states, connected as a directed graph by transitions
tv(y). One can imagine the covariance model as an array of states in which
all transition dependencies run in one direction [29].

2.3. Methods and Technical Overview 27

cmsearch

cmsearch is used to search one or more covariance models against a sequence
database and determine sequences with the most significant matches to the
covariance models. Significance is measured either by cm-bit score or E-value.
Cm-bit score is a log-odds score defined as in Eq. (2.8).

S(seq, CM) = log2
P (seq|CM)
P (seq|null) (2.8)

Where P (seq|CM) is the probability of the target sequence, according to the
covariance model build by cmbuild. P (seq|null) is the probability of the target
sequence given the null hypothesis. In this context the null hypothesis is a
one-state covariance model that states that random sequences are independent
and identically distributed with equally probable nucleotide composition. So
a positive score S indicates that the covariance model is a better model of
the target sequence than the null model. The E-value represents the expected
number of false positives at, or above the specified bit score. Thus the lower
the E-value is, the better are the results. To be able to use E-values, covariance
models must be calibrated using Infernal’s cmcalibrate program. cmsearch is
a pipepline, consisting of several filtering steps. These steps can be divided in
two groups: HMM filtering and covariance model filtering. Because covariance
models are more complex than HMMs, covariance model filters are used after
HMMs (to work only with the sequences that survived HMM filters). The
sequences that passed all the filters are reported at the end as homologue
sequences for the given covariance model [29].

2.3.4 NSPDK

Graph kernels are used to compute a similarity measure between graphs in
terms of dot product. A decomposition kernel is a composite kernel that
operates over all possible units defined by a specific relation [31]. In this
project a special type of decomposition kernel, so-called Neighborhood Subgraph
Pairwise Distance Kernel(NSPDK) [32], was used. NSPDK defines pairs of
subgraphs as neighborhood subgraphs (Def. 2.3.2).

Definition 2.3.2. For a given graph G = (V,E) and an integer r ≥ 0 the
neighborhood subgraph is a subgraph of G with root vertex v and induced by
the set of vertices at distance d, where the distance d ≤ r. Such subgraph is
denoted as N v

r (G).

When the distance between the roots of two neighborhood subgraphs of

2.3. Methods and Technical Overview 28

radius r is equal to d the neighborhood-pair relation Rr,d is held. Decomposition
kernel on that relation Rr,d is defined as Eq. (2.9)

kr,d(G,G
′) =

∑
A,B∈R−1

r,d
(G)

A′,B′∈R−1
r,d

(G′)

1(A ∼= A
′) 1(B ∼= B

′) (2.9)

K(G,G′) =
∑
r

∑
d

kr,d(G,G
′) (2.10)

where the inverse relation R−1
r,d indicates all possible pairs of neighborhood

subgraphs of radius r with root verticies at distance d in the given graph G. 1
represents the indicator function and ∼= stands for isomorphism between the
graphs. NSPDK is defined as the sum of all kernels for all radii and all distances
(Eq. (2.10)). To overcome the high computational costs of similarity and
isomorphism tests, authors designed an efficient graph serialization procedure
to reduce two isomorphic graphs to an identical string. This was achieved by
using a distance information between pairs of vertices. At the end an iterative
hashing procedure is used to map the string encoding into an integer code.
Thus, the isomorphism test between to graphs is reduced to the equality check
between their integer codes [32].

2.3.5 MinHash Technique

Heyne and Costa [1] adapted Minimum Hash function, local sensitive hash
function, introduced by Broder [33] to the subject of nearest neighbors and
dimension reduction. The purpose of the adaption was to efficiently determine
candidate clusters for GraphClust pipeline. The main idea was to define the
clustering problem in terms of approximate nearest neighbors queries, which
in their turn can be answered efficiently. Definition of such a query is given in
Def. 2.3.3.

Definition 2.3.3. Let P = {p1, ...pn} be a set of n instances in a metric
space X with a distance function d. A procedure that returns the instance in
P closest to the query instance q ∈ X is called neighborhood query.

hi = argminxj∈xfi(xj) (2.11)

The adapted MinHash function is defined as shown in Eq. (2.11) where
fi : N→ N is a set of random hash function. These hash functions must be
independent and satisfy following constraints:
• ∀xj 6= xk, fi(xj) 6= fi(xk)

2.3. Methods and Technical Overview 29

• ∀xj 6= xk, P (fi(xj) ≤ fi(xk)) = 0.5
MinHash function returns the first feature indicator under a random permuta-
tion of the features order. The authors notice that the MinHash collision is
an unbiased estimator of Jaccard similarity, meaning that the probability of
the hush function with minimum hash value for two instances being the same
function, is exactly the fraction of non-zero features that these two instances
are having in common (Eq. (2.12)).

P (hi(x) = hi(z)) = |x ∩ z|
|x ∪ z|

= s(s, z) (2.12)

To obtain an efficient neighbor search procedure, at first all results from
the set of MinHash functions are collected in so-called instance sketch in form
of tuple ((h1(x), ..., hN(x))). Then inverse index is built, returning all the
instances that have the same MinHash value. Formally saying, for a given
i-th hash function and a value h = hi(x), the set of returned instances will be
Zi(h) = {z ∈ P , where hi(z) = h}. Finally the approximated neighborhood
Z is induced from the multi-set Z = {Zi}N1 . At the end the elements in Z
are sorted according to their occurrence frequency. So k-neighborhood of the
instance x is the set of k closest elements: Nk(x). Candidate clusters are finally
obtained from the densest neighborhoods. The density of the neighborhood
for the instance x is defined by the average pairwise similarity between x and
all the elements in its k-neighborhood [1].

3 Galaxy Framework

Nowadays it is hard to imagine everyday life without computers, even harder, if
not impossible, to imagine science without computational power. Life sciences
are not exceptions. Fast developing computational resources give more and
more opportunities for new research. However, not every life scientist has
programming or computer science skills, which yields to problems during an
installation and usage of needed tools. Hence, the accessibility problem of
computational tools must be addressed, or in other words, a solution must
be provided which will enable scientists with no programming experience
to easily integrate and run even complicated tools. Another major aspect
for scientific research is reproducibility. Reproducing experimental results
requires knowledge about, for example, the current set of tools, parameters
and datasets that were used during the experiment. In this case again, the
lack of programming skills makes it hard to find out all the details needed for
reproducing the experiments.
Galaxy, an open web-based platform, was designed to address these problems.

It enables users to perform computational analysis of genomic data [2]. Galaxy
is “bridging the gap between tool developers and researchers” [34]. It contains
various tools needed for analyzing and visualizing data, as well as it gives
users access to publications, experiments etc.

In the following sections we will describe the Galaxy framework more
detailed. This includes its interface, usage and the integration of a new
tool. Furthermore we will explain how Galaxy ensures accessibility and
reproducibility of its tools and experiments.

3.1 User Interface

The Galaxy public server gives access to numerous tools for analysis, genomic
data and other resources to anyone who has Internet [35]. The Galaxy interface
or, so-called, workspace is divided into four parts - top, left, central and right
(Fig. 3.1). The navigation bar is located on the top. The left part is so-called
tool panel, where different tools are located. The tools are grouped in categories

30

3.2. Tool Wrapper 31

Figure 3.1: Galaxy Workspace. Galaxy workspace is divided in four
parts. Top: navigation bar. Left: tool panel. Central: tool interface. Right:
history.

(e.g. text manipulation, statistics, filters and sorting) and are searchable. The
central panel is designed for the tool interface, meaning when users choose
a tool from the tool panel, it appears in the central panel. Here inputs and
parameters are set for the execution. Finally, the right panel is the history
panel, where, all the actions the user performed are stored. This includes the
used datasets, tools, information about used parameters and when the tool was
executed. Galaxy also provides interactive tours, which explain step-by-step
how the framework can be used. Galaxy developers or contributors can write
such tours for any action they want to explain.

3.2 Tool Wrapper

A Galaxy tool can be any piece of software written in any programming
language. To include a tool in the Galaxy platform, one needs to create a tool
wrapper. The wrapper is an XML file which contains instructions for Galaxy
about how to use the tool. Each tool needs its own wrapper. The wrapper
must explain what kind of input the tool expects, which output it produces
and what parameters it uses. In the dummy example we show how to write
such a wrapper. Lets assume we have a tool (e.g. a python script) called
PrintLine that takes as an input a text file and writes one line, specified by
the user, to an output file.

3.2. Tool Wrapper 32

The wrapper for our tool is called printLine.xml. Every wrapper in Galaxy
must contain a <tool></tool> tag. Everything else must be written inside
this tag. Mandatory parameters for the <tool> tag are id, name and version.
Once these are defined we can start to describe our tool. As mentioned, the
input for our tool is a text file, so within <inputs></inputs> tag we tell
Galaxy that we need a file in txt format by adding the following line:

<param type="data" name=" input " format ="txt" help=" input for the tool"/>

In the same way we define the parameter for choosing the line to print. In
this case the type of the parameter will be integer, instead of data, and we
should also specify a default value for it. The output of the tool is defined
similarly to an input, but is written within an <outputs></outputs> tag.
When all the inputs, parameters and outputs are defined we have to tell
Galaxy how to run the tool. The tag <command></command> is designed
exactly for this purpose. There we just call our tool and give it the needed
parameter names starting with a dollar sign ($). The complete wrapper is
shown in Fig. 3.2.

Figure 3.2: printLine.xml Galaxy wrapper for a dummy tool. The tool
takes as an input a text file and writes one line, specified by the user, to an
output file.

The <help></help> tag - even tough not mandatory - is a very useful
tag. With it developers can write detailed descriptions of their tool and
make it more user friendly. These are the very basic and necessary steps for
the wrapper creation. Galaxy provides very detailed online tutorials for the

3.3. Accessibility in Galaxy 33

tool creation and integration of new tools into Galaxy [36]. After the tool is
integrated into Galaxy it will appear in the tool panel. Fig. 3.3 shows how
the tool looks like in the Galaxy workspace.

Figure 3.3: Integrated PrintLine Tool. All tools integrated in Galaxy
have a uniform graphical interface.

In the tool panel, on the left, we created a new category called dummy and
put our tool there. By clicking on the PrintLine tool, in the central panel we
can see the interface of our tool. As we described in our wrapper, here we
must specify the input file and the number of the line we want to get. By
clicking the execute button, our tool will run and give us the desired output,
which will appear on the history panel.

3.3 Accessibility in Galaxy

While introducing our tool to the Galaxy framework via the wrapper, in
the previous section, we did not write any style information, for the tool
appearance. However, Galaxy was able to graphically show the tool. The
reason is that, Galaxy automatically generates a web interface which is uniform
for the all integrated tools. This means that all tools interfaces have the same
style, which makes it easier for users to work with new, unfamiliar tools. This
and the easy integration of the new tools improves accessibility. Another
aspect that makes the Galaxy framework accessible is the data. Users can
easily upload their own data to the server, or use already available data
from several established data warehouses. Fig. 3.4 shows a part of the data
acquisition options on the tool panel of Galaxy [37].

3.4. Reproducibility in Galaxy 34

Figure 3.4: Galaxy Datasets. A part of the data acquisition section.
Galaxy users can import their own datasets, but also make use of the data
provided by warehouses.

3.4 Reproducibility in Galaxy

Galaxy enables users to import datasets and use different tools for analyzing
these datasets. Reproducing these analyses can be helpful for understanding
the results and thus, for better usage of them. It was mentioned earlier,
that in order to be able to reproduce an experiment or analysis, a detailed
description capturing all aspects of an analysis, including used tools, datasets
and parameters is needed. Galaxy automatically tracks this kind of information
every time a tool or set of tools is used. This is called metadata in Galaxy.
The metadata is stored in a relational database, which is available in the
history panel after the execution of the tool is finished. These histories can be
viewed, copied and even shared with other users. Examples of such metadata
are shown in Fig. 3.5. Moreover, Galaxy’s interface provides an option to
automatically re-run the performed task with the same parameters, without
manually setting them again. Another aspect that supports reproducibility
is user created metadata. Galaxy supports labeling of items and annotations.
By labeling and annotating the items, users can provide better understanding
of the purpose of the performed actions to other users [37].

3.5. Workflows 35

Figure 3.5: Galaxy Tool Metadata. Galaxy metadata contains detailed
description of the tool, including the used parameters, datasets and the
execution time.

3.5 Workflows

Usually data analysis consists of several steps, this means scientists make use
of several consecutive tools to achieve desired results. This procedure can
be time-consuming, when one has to run the same experiment many times.
Galaxy workflows help users to avoid this inconvenience. One can think about
Galaxy workflow as a rooted, directed, cyclic graph. The nodes of the graph
are the tools, represented as rectangles and divided in two sections for inputs
and outputs. The edges of the graph are connections between these tools. In
this context, a connection defines the output of a tool which should be used
as an input for another tool. The root of the graph is the input that will
be passed to the following tools for execution. Galaxy provides a graphical
workflow editor, where users can easily create workflows. Similarly to the
Galaxy workspace, the workflow editor is divided in four parts. The navigation
bar is on the top, where users can switch between the workflow editor and
the workspace. The left-most panel is the tool panel, but unlike in workspace,
here the tools can not be executed. Instead, users can select, drag and drop

3.5. Workflows 36

Figure 3.6: Galaxy Workflow Editor. The workflow editor is divided
in four parts. Top: navigation bar. Left: tool panel. Central: editor panel.
Right: parameter panel.

the needed tool into the central panel, which is the editor panel. To connect
two tools together, users should select and drag the output from one tool to
the input section of another one. However, to be able to connect two tools, the
output format of one tool must the same as the input format of the other one.
The right-most panel is the tool parameter panel, where users can define the
parameters for each tool separately. Once the workflow is created and saved,
it will appear in the workflow section of the Galaxy workspace. Now it can be
used as any other single tool. Every time a workflow runs, it runs the same
tools, in the same order with the same parameter configuration. However, like
for any other tool, the default parameters of the workflow can be changed.
When the workflow is executed, not only the final results are stored in the
history, but all intermediate results as well. However, it is possible to hide
these intermediate results from the history and automatically clean them up.
And as with single tools, metadata is generated for a workflow, containing
detailed information about every single step. Fig. 3.6 shows an example of a
workflow composed of four tools in the workflow editor.

In addition, Galaxy enables users to chain workflows. Basically, to have a
workflow containing one or more workflows. Such workflows are called sub
workflows. In other words, a workflow is called sub workflow if it is a part of
another workflow. As mentioned above, after creation, workflows appear in
Galaxy tool panel, therefore in workflow editor, instead of a single tool users
can choose existing workflow to add to their own workflow.

4 GraphClust : Challenge and
Approach

In recent years, non-coding RNAs became a key research topic in molecular
biology. New discoveries are quickly changing our impression of genome com-
plexity and raising more challenging questions. That is why the comparison,
prediction and functional annotation of non-coding RNAs are now one of the
most important tasks of modern RNA research. However, precise annotations
for the majority of predicted non-coding RNAs still remain difficult to achieve.
One of the reasons for that is that non-coding RNAs, unlike protein coding
ones, are divided in various classes, with a huge number of different struc-
tures, functions and evolutionary patterns [17]. An RNA class contains such
non-coding RNAs that share common structural and functional properties,
even though they do not have obvious homology at the sequential level. Thus,
clustering RNA sequences according to sequence–structure similarity has now
become a generally accepted scheme for ncRNAs annotation.
In 2012, Steffen Heyne and Fabricio Costa presented a novel approach for

clustering RNA sequences, according to sequence and structure information:
GraphClust [1]. GraphClust is a tool for alignment-free structural clustering
of local RNA secondary structures. It was proven to have linear run-time and
thus is able to work with up to hundreds of thousands of sequences.

In the following sections we will describe the existing GraphClust pipeline
in details. Furthermore we will highlight problems the pipeline is facing now
and introduce our approach, designed to solve these problems.

4.1 GraphClust Pipeline

As mentioned above, GraphClust is a pipeline for clustering RNA sequences
using sequence and structural information. The authors propose to first sample
a small number of probable, but adequately different structures for each RNA
sequence and encode these structures as labeled graphs. In other words, the
structure of the sequence is represented as a graph with possibly disconnected

37

4.1. GraphClust Pipeline 38

components. Then they extract an explicit vector representation for each
graph and build an inverse index on a compressed representation using hashing
techniques, instead of directly computing the similarities between graphs. This
is done to avoid a quadratic number of comparisons and achieve constant
runtime for nearest neighbor searches for any target structure. Once neighbor-
hoods are defined, they are evaluated and the neighborhoods that contain very
similar elements are chosen as candidate clusters. To achieve better accuracy,
resulting candidate clusters are refined using alignment techniques. Then a
covariance model is constructed for each cluster. In the final step, the dataset
is scanned using the constructed covariance model and hits are added to the
corresponding clusters. GraphClust is an iterative approach, so the sequences
that were already clustered are removed from the dataset and the process
starts again [1].
Fig. 4.1 represents the nine steps of the pipeline. In the following sections

we will describe each step in detail.

Figure 4.1: GraphClust pipeline. The GraphClust pipeline is an itera-
tive approach for clustering RNA sequences. It consist of nine steps. The
iteration performed for steps (4) to (8) [1].

Preprocessing

The GraphClust pipeline starts with a preprocessing step. As an input,
GraphClust takes a file in FASTA format. As mentioned before, GraphClust
can work with hundreds of thousand of sequences, so the FASTA file can be
very big. In this step the BLASTClust [38] is used to eliminate nearly identical
sequences to achieve better accuracy for clustering. Also long sequences can
be split into smaller fragments to enable local signal detections. This step is
sequential, but it runs only once and creates several files, e.g. file containing
the length of each sequence, new generated IDs and sequences etc. These files
will be used by other steps of the pipeline during the clustering procedure.

4.1. GraphClust Pipeline 39

Figure 4.2: RNA secondary structure encoding. The graph encoding
preserves the nucleotide information (vertex labels) and the base pairs (edge
labels), here shown in different colors (A). Additional vertices are inserted
to induce features related to stacking base-pairs quadruplets (B). On the
right: example of features induced by the NSPDK for a pair of vertices
u, v at distance 3 with radius 0,1,2. Neighborhood graphs are enclosed in
dashed ovals [1]

Structure Determination

In this step sequences are divided into smaller overlapping fragments. Then
RNAshape [39] is used on each resulting subsequence to obtain the l most
representative structures for that subsequence. Then each structure is encoded
as a graph. Vertices of the graph encode the nucleotides of the subsequence
and edges encode nucleotide sequence adjacency information and the pairwise
binding status. Also, for each stacking base pairs quadruplet an additional
vertex is added to the graph, with four edges connected to the corresponding
nucleotides. Fig. 4.2 represents such an encoding of an RNA structure to a
graph.

Encoding

Then, the pipeline produces explicit sparse feature encodings, based on the
graphs produced in the previous step. To deal with entities represented as
graphs, the authors chose the neighborhood subgraph pairwise distance kernel
(NSPDK) (Sec. 2.3.4). In GraphClust the integer code, produced by NSPDK,
is used as a feature indicator. In other words, the integer associated to each
feature can be interpreted as the feature key and the normalized count of
occurrences as its value. By this, a sparse vector in Rm is obtained for an
explicit feature representation for a given graph G.

4.1. GraphClust Pipeline 40

Candidate Cluster

After a sparse vector is obtained, the candidate clusters can be found using
the technique described in Sec. 2.3.5. The most dense instances are more
likely to be in the same cluster, thus returning only the top ranking dense
neighborhoods would result in highly redundant sets. To overcome this
problem, some threshold th is chosen, and candidate clusters are chosen as
the top ranking neighborhoods, if the size of their overlap is below the th. To
speed up this phase, a small set of sequences is uniformly randomly extracted.
And only sequences in this set are ranked according to their approximate
density. This is possible instead of ranking the entire set of sequences, as the
larger the cluster, the higher the probability that it will be hit by a sample.

Cluster Refinement

By the end of the previous step, sequences in obtained candidate clusters are
considered similar according to the NSPDK similarity measure (Sec. 2.3.4).
To increase the quality of candidate clusters and to take into account domain
specific knowledge (e.g. compensatory mutations) LocARNA [24] (Sec. 2.3.2)
is used to compute a sequence-structure alignment for each cluster. LocARNA
produces a matrix with pairwise distance information. This matrix is used
to create a cluster tree using the average-linkage algorithm. All subtrees
that have at least 3 leaves, meaning 3 sequences, are ranked according to
their average pairwise distance of the leaves. Only the top ranked subtree is
returned.

Cluster Model

For each refined cluster a covariance model is created by using Infernal
(Sec. 2.3.3). The covariance models are built based on the consensus secondary
structure of the multiple sequence alignment defined in the previous step.

Model Scanning

After the covariance model for each cluster is obtained, it is used to search
against the whole dataset for potential cluster members. This procedure is
done by cmsearch tool from Infernal package (Sec. 2.3.3). In this step some
ambiguity is allowed, meaning that some sequences can be assigned to several
clusters.

4.2. Challenge 41

Iteration and Removal

After sequences are assigned to clusters, they are removed from the dataset
and the next iteration starts again from defining new candidate clusters. This
iterative process continues until either 1) no more sequences left to cluster,
2) the predefined number of iterations is performed, or 3) some time limit is
reached.

Post-processing

After all iterations are finished, similar clusters are merged together and the
sequences that were assigned to more than one cluster in this step will be
assigned to only one cluster unambiguously. The similarity of the clusters is
measured by their pairwise relative overlap. Two clusters are merged together
if the overlap is e.g. more than 50%.

4.2 Challenge

In order to use GraphClust, the user at first has to download the source
code of the pipeline and compile it. However, for successful compilation, the
user has to be sure that all the tools that the pipeline is using, are already
installed e.g. Vienna RNA Package, RNAshapes, LocARNA, Infernal and
others. Once all needed tools are installed, their paths should be added to the
$PATH environment variable for GraphClust to find them. Only after that the
compilation can be successful, and the user can start exploiting it. GraphClust
provides a set of default parameters for running the pipeline, yet the user
can adjust these parameters before running it. Because GraphClust has no
graphical interface, everything is done through command line interface, it can
be tricky to set all the parameters correct. The config file, which contains
all the parameters that will be used during the whole process of GraphClust,
does not contain any information about the purpose and the meaning of the
parameters, except the descriptive name. The above mentioned is making the
usage of the GraphClust hard for scientists with no or very little programming
skills. Which limits the accessibility of the pipeline.
Another limitation of the pipeline is the tight requirements for the third-

party tools. As mentioned before GraphClust uses different tools at the
different stages of the clustering. The current GraphClust configuration is
rather inflexible when it comes to a tool exchange, whether due to maintenance
or upgrade. The poor modularity of the pipeline does not allow users to change

4.3. Approach 42

any third-party tool without going deep into the source code.
Despite these criticisms, the efficiency of the GraphClust pipeline is hard to

underestimate. The approach we explain in the following section is designed to
overcome these limitations at the same time keep the efficiency of the original
pipeline.

4.3 Approach

The key idea of our approach is to make GraphClust more modular, accessible
and transparent, and to integrate it into the Galaxy Framework. As described
in Ch. 3 Galaxy framework increases accessibility and reproducibility of the
integrated tools. Thus, we decided to separate each step of the pipeline by
creating independent tools for each step, then create wrappers (Sec. 3.2) for
each of these tools, integrate them in Galaxy, and finally build a workflow
(Sec. 3.5) to connect all the components. From now on we will refer to our
approach as Galaxy-GraphClust.
The configuration of the Galaxy framework allows users to avoid manual

installation processes for any third-party tool. By defining requirements for
third-party tools or libraries in the tool wrapper, developers enable Galaxy
to automatically install these tools without any engagement from the user.
The only prerequisite for this is the existence of conda packages for these tools
[40]. During the development of our approach we used already existing conda
packages as well as created new ones for the tools that were missing them.
We started the development of our approach by creating a tool for the

preprocessing step. The input of the GraphClust pipeline is a file with
sequences in FASTA format. The same type of input we expect for our new
tool, which we named preprocessing. There is no restriction on the length
or the number of the sequences. Our tool has the same parameters and
functions as the preprocessing step of GraphClust with only one difference.
We eliminated the BLASTClust tool from the preprocessing step. As the goal
of our project is to integrate GraphClust to Galaxy, and as Galaxy already
contains several tools which serve similar purpose as BLASTClust, we decided
to not include it in the preprocessing step. This will allow users to choose a
tool, for eliminating redundant sequences, that fits the best for their dataset
and needs. The new tool has three parameters called window size, window shift
and minimum length. All the input sequences will be split into fragments of
the length defined by the window size parameter. The window shift parameter
represents a percentage by which the windows will overlap. All the input
sequences shorter than the defined minimum are ignored. Fig. 4.3 shows an

4.3. Approach 43

Figure 4.3: Sequence Splitting. The red rectangle highlights the first
fragment of the sequence and the green one highlight the second one, where
the window size = 6 and the window shift = 50%.

example of the splitting sequences into fragment where the window size is
6 and the window shift is 50%. The red and the green rectangles highlight
the first fragment and the second fragments respectively. However, if there is
no need to split the sequences one can define very high value for the window
size (e.g. 100000) and 100% for the window shift to avoid splitting. The tool
produces nine files, which contain information about the input sequences as
well as the actual sequences with newly defined unique IDs. These files later
are used by other tools. Furthermore, we decided to group all the files and
output them as a zip file, that users can download and see all the files at one
place. The interface of the integrated Preprocessing tool is shown in Fig. 4.4.
The next step of the pipeline is the structure determination. This step

requires RNAshapes [41], and because there already was a conda package
for it, we simply included it in the requirements of the wrapper. The tool,
which we called fasta_to_gspan, takes as an input the preprocessed FASTA
file. On each sequence of the input, RNAshapes tool is used to construct a
set of structures, based on the parameters obtained from Galaxy, and save
them in to separate files. Then these structures are converted into graphs
and finally grouped together. The final output of the tool is a file containing
graph descriptions for all the sequences.
The encoding stage is the next step of the pipeline. This and the next step are
using NSPDK (Sec. 2.3.4), therefore, we created a conda package for NSPDK
to make the deployment easier. The tool, we created, expects two input files.
First one is the graph file created in the previous step, and the second one is
the preprocessed FASTA file with all the sequences. The tool produces sparse
vectors containing explicit feature encodings.

Above mentioned tools are part of so-called pre-iteration phase. More
specifically, during the whole process of clustering, these three tools will be
called only once, they are not part of the iteration. This means also that all
the parameters these tools are using are global and they do not depend on
the number of iterations. The iterative phase starts with finding candidate
clusters. As mentioned above, this is done using NSPDK tool. Thus, the tool
we created is called nspdk_candidateClusters. This tool requires three input

4.3. Approach 44

Figure 4.4: Preprocessing. Graphical interface of the Preprocessing
tool integrated into Galaxy. The ’Help’ section is not shown completely in
the picture.

files. The first input contains the sparse vectors obtained from the previous
step, and the other two files are obtained from the preprocessing step. The
nspdk_candidateClusters tool contains all the parameters the original pipeline
is using for this step. However, here we have an extra parameter, which
determines the number of the current iteration. More specifically, the tool has
two different configurations for a single iteration and multiple iterations. If the
tool is in multiple iteration mode, some additional input files and parameters
are needed e.g. blacklist and the output of the tool from the previous round.
In a similar manner, we created tools and corresponding wrappers for all

the remaining steps. As a result, we got the following tools - preprocessing,
fasta_to_gspan, nspdk_sparseVect, nspdk_candidateClusters, pgma_graphclust,
locarna_graphclust, cmfinder, cluster_collection_report. For building a covari-
ance model and searching homologue sequences we used Infernal 1.1 available
in Galaxy. Having the steps of the pipeline as separate tools allows users to
not only use the entire pipeline, but also to use separate tools for their own
purposes. Furthermore, this level of modularity allows users to easily update

4.3. Approach 45

or exchange parts of the pipeline if the need occurs.
The cluster_collection_report tool is the very last step of our pipeline. This

step is very similar to the post-processing step of the original pipeline, but in
our tool we have an extra option. As mentioned before, we excluded BLAST-
Clust tool from our approach. However, the configuration of Galaxy enables
users to use any tool for preprocessing data before running Galaxy-GraphClust.
One of these tools is CD-hit [42]. So, in the cluster_collection_report tool,
we included an option that allows us to add sequences to the already defined
clusters. More specifically, if CD-hit was used for removing highly similar
sequences from the input dataset of the Galaxy-GraphClust pipeline, providing
the output of CD-hit to the cluster_collection_report tool, we will have the
clusters enriched with the sequences that were removed by CD-hit. The new
sequences will be added to these clusters that contain their representaives.
Moreover, we added R-scape [43] visualizations for identifying base pairs of
the consensus structure with statistically significant covariation. Galaxy’s
interface allows usage of the in-browser view of the results, which enables a
quick inspection of the latter.

Figure 4.5: Galaxy-GraphClust. 1 iteration workflow of Galaxy-
GraphClust in the workflow editor. The numbers at the top of each
box are indicating the execution order of the tools.

The final step of our approach is the construction of a workflow (Sec. 3.5).
To create simple one round pipeline we just connected all the tools in the
correct order (Fig. 4.5). To enable the iterations we decided to create sub
workflows. We constructed such a subworkflow for the iterative part of our
pipeline and by duplicating and connecting these subworkflows we will have
iterations. Galaxy enables users to download, upload and share workflows.
The workflow appears in the tool panel in the Workfllows section. To run a

4.3. Approach 46

workflow the user should just click on it and execute as any other tool. After
clicking on the workflow it is displayed in the tool interface panel, where users
can change the parameters of each tool if needed.
As a result, Galaxy-GraphClust is a collection of integrated Galaxy tools,

combined in workflows for clustering RNA sequences. Moreover, these work-
flows can be easily extended by any pre- or post-processing steps. As mentioned
before, an example of such an extension can the preprocessing step performed
by CD-hit. Additionally, Galaxy-GraphClust supports more recent versions of
LocARNA and Infernal packages.

5 Data Analysis

We have tested and measured the performance of Galaxy-GraphClust by clus-
tering known ncRNAs obtained from the Rfam [44] database. We compared
our results with results obtained from the original GraphClust pipeline. Fur-
thermore, as a use case for our approach, we worked with a metatranscriptome
dataset dominated by cyanobacteria. In the first part of this chapter we
discuss the benchmarking results and then we present a quantitative analysis
of the results of clustering the metatranscriptome dataset.

5.1 Benchmarking

To compare the performance of our approach with the original GraphClust
pipeline we performed five clustering rounds on three small datasets of labeled
ncRNAs using both approaches. As a sample datasets we used the Rfam-cliques
[45] benchmark dataset, which is based on Rfam 12 [46] family seed alignments.
The Rfam-cliques benchmark dataset consists of 3 different datasets, named
Rfam-cliques Low, Rfam-cliques Medium and Rfam-cliques High. Tab. 5.1
shows quantitative information about these three datasets.

Dataset Number of sequences Number of families Average sequence length
Low 92 10 78 nt
Medium 166 26 87 nt
High 234 48 95 nt

Table 5.1: Rfam-cliques datasets. Quantitative statistics about the size,
length and the number of RNA families per dataset.

The parameters for both, GraphClust and Galaxy-GraphClust, were set
identically. The only difference is in the version of Infernal. GraphClust uses
version 1.0, whereas Galaxy-GraphClust uses version 1.1 of Infernal. The
upgraded version of Infenral enables us to use E-values, instead of covariance
model scores for the final refinement of the clusters. The preprocessing
parameters were chosen in a way to avoid fragmentation of the sequences.

47

5.1. Benchmarking 48

To evaluate the quality of the clusters we used clustering metrics from
the scikit-learn machine learning library [47]. More specifically, we measured
completeness, homogeneity, V-measure and adjusted Rand score. The com-
pleteness score measures intra-cluster similarity, while homogeneity measures
inter-cluster similarity. In other words, completeness states how similar the
elements within a single cluster are, whereas homogeneity measures how differ-
ent clusters are in comparison. The V-measure is the harmonic mean between
homogeneity and completeness. These metrics can take values between zero
and one, where 1 indicates a perfectly complete and homogeneous clustering.
The aim of the adjusted Rand index is to establish an overall comparison
between the predicted and the ideal clustering. In other words, the Rand
index computes the percentage of pairs of objects for which both clustering
methods, the computed and the ideal one, agree. It takes values from −1
to 1, where completely random clustering gets a score close to 0 and perfect
match score 1. The adjusted Rand index can yield negative values if the index
is less than the expected index. As ground truth class assignments for our
sequences, we took the RNA family each sequences belongs to. Having such
ground truth enables us to compute the mentioned metrics. However, for the
case that not all the sequences of the dataset were clustered, we manually
assigned each unclustered sequence to a new cluster, in order to be able to do
our evaluation, e.g. if 5 sequences where not clusters we manually add 5 new
clusters, each containing one of the unclustered sequences.

Figure 5.1: Rfam-cliques Low. (a) Predicted clusters after 5 rounds.
The height of the bars represents the number of sequences in each cluster.
(b) Number of predicted clusters after each round.

We started with clustering the Rfam-cliques Low dataset. After five itera-
tions both approaches clustered 73 sequences out of 92. Fig. 5.1 (a) shows the
final clusters after the 5th iteration. The blue and red bars represent clusters

5.1. Benchmarking 49

obtained from Galaxy-GraphClust and GraphClust respectively. Fig. 5.1 (b)
represents the number of predicted clusters after each round. As it can be
observed in the figure, GraphClust predicted six clusters whereas Galaxy-
GraphClust predicted five. In the first iteration both approaches predicted
two clusters, however, Galaxy-GraphClust clustered 41 sequences for the first
cluster, while GraphClust clustered only 36. The clusters predicted in the
next three iterations were identical for both approaches. In the last iteration
both approaches predicted one new cluster, which contains sequences from
the same family as the cluster found in the first iteration. However, because
in the first iteration GraphClust found less elements for that cluster, the
overlap percentage was not enough to merge these clusters, which resulted in
two clusters containing elements from the same family for GraphClust, while
Galaxy-GraphClust merged these clusters. The content of the clusters is shown
in Fig. 5.2, where each color represents a specific RNA family. The Fig. 5.2
(a) shows the clusters predicted by GraphClust and (b) the clusters from
Galaxy-GraphClust. As it can be seen, cluster 1 and cluster 6 from Graph-
Clust contain elements from the same family, whereas each cluster predicted
by Galaxy-GraphClust contain elements from a single family. The evaluation
of the clusters shown in Tab. 5.2 illustrates that the clusters obtained from
Galaxy-GraphClust have better scores for all four evaluation metrics than the
ones from GraphClust.

Similarly, we performed five clustering iterations on Rfam-cliques Medium
and Rfam-cliques High datasets. For Rfam-cliques Medium, GraphClust
clustered 120 sequences out of 160, resulting in 12 different clusters. In
contrast, Galaxy-GraphClust clustered 107 sequences in 9 clusters (Fig. 5.3).
For Rfam-cliques High, the number of clustered sequences is 163 in 17 clusters
with GraphClust and 140 sequences in 14 clusters with Galaxy-GraphClust
(Fig. 5.4). The difference in the number of clusters and the number of sequences
between 2 approaches is influenced by difference in versions of Infernal. Infernal
1.1 has several major improvements compared with version 1.0. Besides the
huge improvement in the run time, in the newer version the authors changed
the definition of insert and match columns for alignments. This and other
changes described in [29] mean that for a given input alignment a model built
with version 1.1 may have different numbers of states and nodes, and will
have usually slightly different parameters, than a model built from the same
alignment with version 1.0.
The distribution of RNA families on different clusters for Rfam-cliques

Medium and Rfam-cliques High are shown in Fig. 5.5 and Fig. 5.6 respectively.
After each iteration both approaches merged overlapping clusters if such
existed. However, the quality of predicted clusters and the merging was better

5.1. Benchmarking 50

for Galaxy-GraphClust, which is indicated by the evaluation scores in Tab. 5.3
and Tab. 5.4.

Figure 5.2: Rfam-cliques Low. Each color represents an RNA family.
(a) Clusters obtained from GhaphClust. Cluster 1 and 6 contain members
of the same family but were not merged together. (b) Clusters obtained
from Galaxy-GhaphClust.

Method
Metric Completeness Homogeneity Adjusted Rand V Measure

GraphClust 0.747 0.999 0.723 0.855
Galaxy-GraphClust 0.852 1.0 0.980 0.920

Table 5.2: Rfam-cliques Low. Evaluation of clusters using scikit-learn
evaluation metrics. Galaxy-GraphClust outperforms the original pipeline
according to these four metrics.

5.1. Benchmarking 51

Figure 5.3: Rfam-cliques Medium. Summary of clusters after 5
rounds. GraphClust predicted 12 clusters with in total 120 sequences, and
Galaxy-GraphClust clustered 107 sequences in 9 clusters. (a) The height
of the bars represents the number of sequences in each cluster. (b) The
number of predicted clusters after each round.

Figure 5.4: Rfam-cliques High. Summary of clusters after 5
rounds. GraphClust predicted 17 clusters with in total 163 sequences, and
Galaxy-GraphClust clustered 140 sequences in 14 clusters. (a) The height
of the bars represents the number of sequences in each cluster. (b) The
number of predicted clusters after each round.

5.1. Benchmarking 52

Figure 5.5: Rfam-cliques Medium Each color represents an RNA family.
(a) Clusters obtained from GhaphClust. (b) Clusters obtained from Galaxy-
GhaphClust.

Method
Metric Completeness Homogeneity Adjusted Rand V Measure

GraphClust 0.812 0.913 0.703 0.859
Galaxy-GraphClust 0.801 0.911 0.847 0.852

Table 5.3: Rfam-cliques Medium. Evaluation of clusters using scikit-learn
evaluation metrics. Even though GraphClust has slightly higher scores
for completeness, homogeneity and v measure, the adjusted Rand score
for Galaxy-GraphClust is higher by ∼ 14% which states that the clusters
predicted by Galaxy-GraphClust are less random than ones from the original
GraphClust implementation.

5.1. Benchmarking 53

Figure 5.6: Rfam-cliques High Each color represents an RNA family.
(a) Clusters obtained from GhaphClust. (b) Clusters obtained from Galaxy-
GhaphClust.

Method
Metric Completeness Homogeneity Adjusted Rand V Measure

GraphClust 0.840 0.896 0.666 0.867
Galaxy-GraphClust 0.845 0.926 0.841 0.883

Table 5.4: Rfam-cliques High. Evaluation of clusters using scikit-learn
evaluation metrics. Galaxy-GraphClust outperforms the original pipeline
according to all four metrics.

5.2. Exemplary Use Case 54

This benchmarking showed that, even though in some cases Galaxy-GraphClust
clustered less sequences than GraphClust, it improved the quality of predicted
clusters for all three datasets.

5.2 Exemplary Use Case

As a use case for the approach, we worked with a metatranscriptome dataset.
A metatranscriptome is a transcriptome of a several interacting organisms
or species. Transciptome is the entire RNA content of the cell [48], which is
constructed during the process of transcription (Sec. 2.1.1). In other words,
the metatranscriptome is a collection of entire RNAs from several organisms.
In our case, the dataset we worked with was dominated by cyanobacteria,
specifically Trichodesmium. Cyanobacteria are a large and diverse phylum in
the kingdom Bacteria. It includes many different species. Cyanobacteria are
oxygenic phototrophs, which means that they use photosynthesis to acquire
energy from light, then they use that acquired energy to convert carbon dioxide
from the air into the nutrients needed for growth. During the photosynthesis
process oxygen is generated. This property makes cyanobacteria unique,
because no other known bacteria can generate oxygen. Because they are
bacteria, they are quite small and usually unicellular, however, they often
grow in colonies large enough to be seen with bare eye [49]. Trichodesmium,
also known as sea sawdust is a species of cyanobacteria. It is a colonial marine
cyanobacteria. They can be found in tropical and subtropical ocean waters as
well as in Red Sea. The distinguishing property of this bacteria is its ability to
fix atmospheric nitrogen into ammonium in daylight under aerobic conditions
without the use of heterocysts. So far, it is the only known bacteria with this
property [50].

Originally the dataset contained ∼ 3.5 million sequences. To remove highly
redundant sequences from the dataset, we performed a CD-Hit [42] clustering
with similarity threshold of 0.9. This resulted in ∼ 900000 clusters, and thus
∼ 900000 representative sequences.

We created three datasets by randomly sampling 1000, 5000, 10000, 20000,
50000 and 100000 sequences from the CD-Hit pre-processed dataset and
performed 2 rounds of clustering for each of them. The parameters for Galaxy-
GraphClust where based on the default parameters of the original GraphClust
pipeline with few differences. In contrast to the default configuration, the
parameters for the pre-processing step were chosen to avoid fragmenting the
sequences. More precisely, we chose window size of 10000 and window shift of
100%. For the graph encoding step, the group size parameter was set to 200 to

5.2. Exemplary Use Case 55

parallelize, and hence speed up the process. And in the final post-processing
step all sequences with E-value bigger than 0.001 were discarded.

In the following sections we present the quantitative analysis of the clustering
results of the metatranscriptome dataset.

5.2.1 Quantitative Analysis

We started clustering the datasets according to their sizes in ascending order.
The Galaxy-GraphClust was performed on the Freiburg Galaxy server [51],
in a real life scenario with queuing of the tasks, thus, we were unable to
measure the precise run time. However, from the overall run time of the
Galaxy-GraphClust on the server, we could see that the run time of the
approach is linear on the number of sequences (Fig. 5.7). We measured the

Figure 5.7: Run times. The run time of the Galaxy-GraphClust for 1
iteration on 6 datasets with 1000, 5000, 10000, 20000, 50000 and 100000
sequences. The run time is linear on the number of sequences.

run time of 1 iteration for each dataset. One iteration on the dataset of 1000
sequences was finished after approximately 30 minutes and the biggest dataset
of 100000 sequences in about 50 hours.
We inspected the results of the datasets and here we present quantitative

analysis of the results of two iterations for the dataset containing 100000

5.2. Exemplary Use Case 56

sequences. After the first iteration Galaxy-GraphClust predicted 77 clusters
with 5085 sequences. However, the original number of predicted clusters was
89, but several clusters were merged together resulting in the final number.
After the second round 95 new clusters were predicted but 3 of them where
merged, resulting in total 169 clusters with 6777 sequences (Tab. 5.5). Fig. 5.8

Before merge After merge Number of sequences
Round 1 89 77 5085
Round 2 95 92 1701
Final 169 6777
Table 5.5: Number of predicted clusters after each round. The last row
represents the final number of clusters and clustered sequences.

Figure 5.8: Clusters sizes. Distribution of the cluster sizes after the first
round. The x-axis represent the size of each cluster, while y-axis represent
number of clusters containing that number of sequences. Majority of the
clusters contain few sequences, however 11 clusters contain more than 100
sequences.

shows the sizes of the final clusters. As it can be seen from the visualization
most of the predicted cluster contain only few sequences. However, one of the
predicted clusters contains more than 600 sequences. The size of the smallest
allowed cluster can be set in the last step of the pipeline, and in our case we
set it to 3.

5.2. Exemplary Use Case 57

Figure 5.9: Ratio of clusters sizes. Each segment of the pie chart
represents the ratio of clusters containing number of sequences within the
indicated range, e.g. 13.0% of all the clusters contain from 51 to 100
sequences.

In Fig. 5.9 are shown the percentages of clusters according to their sizes
i.e. each segment of the pie chart represents the ratio of clusters containing
number of sequences within the indicated range, e.g. 33.1% of all the clusters
contain from 6 to 25 sequences.
We also examined covariance model scores (Sec. 2.3.3) for the clustered

sequences. The maximum, minimum, average and median values for CM
scores for each cluster are shown in Fig. 5.10 (a). After the first iteration
77 clusters were predicted, and it can be seen from the figure that sequences
clustered in the first iteration have higher CM scores than the majority of the
sequences clustered in the second iteration. This makes sense because NSPDK
finds candidate clusters from the most dense neighborhoods and that is why
the sequences clustered in the first iteration have higher CM score than the
ones clustered in the second iteration. The distribution of CM scores for all
the clusters is shown via boxplots [52] in Fig. 5.10 (b). The horizontal axis is
showing four numerical attributes listed below
• maximum CM scores
• minimum CM scores
• average CM scores
• median CM scores

On each box, the central mark is the median, the edges of the box are the lower
hinge (defined as the 25th percentile) and the upper hinge (the 75th percentile),
the whiskers extend to the most extreme data points not considered outliers,

5.2. Exemplary Use Case 58

Figure 5.10: Destribution of CM scores.(a) The maximum, minimum,
average and median CM scores per cluster. (b) The distribution of CM
scores for all the clusters. Sequences predicted in the first iteration have on
average higher scores than the onces predicted in the second iteration.

these ones are plotted individually as circles. Using the graph we can compare
the range and distribution of the CM scores for all the clusters. We computed
the listed values for each cluster. As a results we had four lists containing the
maximum, minimum, average and median values for each cluster. As it can
be seen in the Fig. 5.10 (b), the median of the highest CM scores is around
∼ 220, the median of the lowest scores is ∼ 35, the average is ∼ 130 and the
median CM score for all the sequences in all the clusters is ∼ 125.

6 Conclusion and Future
Perspectives

Invention of new technologies and fast growing computational power greatly
increased the acquisition of new knowledge. The accumulation of scientific
knowledge and new computational technologies has changed human life and
our understanding of life. Today, it is barely possible to imagine any field of
science that is not using computational methods, and especially the fields of
life sciences. However, not every life scientist has programming or computer
science skills, which yields to problems during installation and usage of essential
tools and methods. Due to this, the accessibility problem of computational
tools must be addressed, or in other words, a solution must be provided, which
will enable scientists to easily integrate and run even complicated tools.

In this work we presented Galaxy-GraphClust, an upgraded and improved
version of an iterative approach for alignment-free, structural clustering of
RNA sequences called GraphClust. We split the original pipeline into pieces
and created an independent module for each part, ensuring the modularity of
the pipeline. Moreover, we integrated each tool in an open web-based platform,
called Galaxy framework. The Galaxy framework contains numerous tools
and enables users to perform computational analysis of genomic data. It is
independent from the platform users are working on, which means anyone with
access to the Internet can use it. Furthermore, Galaxy ensures accessibility
of its tools and reproducibility of the analysis made in the framework. After
integration of our modules in the Galaxy framework, we connected independent
modules into a Galaxy workflow. Galaxy workflows allow users to run a set of
tools at once. By using workflows we recreated the structure of the pipeline
from single modules.
The modularity level of Galaxy-GraphClust allows to easily upgrade or

exchange single modules of the pipeline, while original GraphClust, due to
its monolithic configuration, strictly depends on all the third-party tools it
is using, and thus, is hard to maintain. Furthermore, the integration into
the Galaxy framework, allows users to extend the pipeline with any pre- or
post-processing tools available, and provides the freedom to exchange the

59

60

steps.
We compared Galaxy-GraphClust with GraphClust on several labeled

datasets. Using both approaches, we performed five iterations on three small
sets of RNA sequences from the Rfam-cliques dataset. We evaluated predicted
clusters using various machine learning evaluation metrics. The evaluation
showed that Galaxy-GraphClust outperforms the original GraphClust for all
three cases.
Additionally, we tested Galaxy-GraphClust on a real world use case of

a metatranscriptome dataset. We performed two clustering iterations on
datasets of 1000, 5000, 10000, 20000, 50000 and 100000 sequences. These
tests demonstrate that Galaxy-GraphClust can not only handle big datasets
as well as the original pipeline, but also that it has linear run time complexity
on the number of the sequences.
Despite these encouraging results, there is room for improvement in the

future. It would be interesting to extend and exchange parts of the pipeline
(e.g. integrate RNA structure probing experiments), in order to find better
and more efficient combination of individual modules. Another direction of
interesting research would be the improvement of the iterations in Galaxy.
Currently Galaxy does not provide a feature to rerun an entire workflow from
the history like it is possible to do with single tools, or to change parameters
for subworkflows. However, Galaxy is a constantly developing and improving
framework and hopefully in near future it will be possible to improve the
iterative part of the Galaxy-GraphClust.

Clustering the entire metartancsriptome dataset presented earlier and gain-
ing biologically meaningful results was beyond the scope of this work. However,
it would be interesting to cluster the entire dataset in the proceeding works and
for example compare the predicted clusters with existing genome databases in
order to find possible matches.

Bibliography

[1] Steffen Heyne, Fabrizio Costa, Dominic Rose, and Rolf Backofen. Graph-
clust: alignment-free structural clustering of local rna secondary struc-
tures. Bioinformatics, 28(12):i224–i232, 2012.

[2] Galaxy: an open platform for accessible, reproducible, and transparent
biomedical research. http://galaxyproject.org.

[3] Francis Crick et al. Central dogma of molecular biology. Nature,
227(5258):561–563, 1970.

[4] Science explained. http://science-explained.com/theory/
dna-rna-and-protein/.

[5] N. B. Leontis. The non-watson-crick base pairs and their associated
isostericity matrices. Nucleic Acids Research, 30(16):3497–3531, aug
2002.

[6] P. Clote and R. Backofen. Computational Molecular Biology: An Intro-
duction. Wiley Series in Mathematical & Computational Biology. Wiley,
2000.

[7] Unravelling the double helix. http://www.yourgenome.org/stories/
unravelling-the-double-helix.

[8] Ehud Lamm and Ron Unger. Biological computation. CRC Press, 2011.
[9] Suzanne Clancy and William Brown. Translation: Dna to mrna to protein.

Nature Education, 1(1):101, 2008.
[10] Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul Matsudaira,

David Baltimore, and James Darnell. Molecular cell biology: An inte-
grated view of cells at work. 2000.

[11] The complexity of living systems. https://complexityoflivingcell.
wordpress.com/tag/codon/.

[12] Peter Steffen and Robert Giegerich. BMC Bioinformatics, 6(1):224, 2005.
[13] Joel L Sussman, Stephen R Holbrook, R Wade Warrant, George M

Church, and Sung-Hou Kim. Crystal structure of yeast phenylalanine
transfer rna: I. crystallographic refinement. Journal of molecular biology,
123(4):607–630, 1978.

61

http://galaxyproject.org
http://science-explained.com/theory/dna-rna-and-protein/
http://science-explained.com/theory/dna-rna-and-protein/
http://www.yourgenome.org/stories/unravelling-the-double-helix
http://www.yourgenome.org/stories/unravelling-the-double-helix
https://complexityoflivingcell.wordpress.com/tag/codon/
https://complexityoflivingcell.wordpress.com/tag/codon/

Bibliography 62

[14] Marat M Yusupov, Gulnara Zh Yusupova, Albion Baucom, Kate Lieber-
man, Thomas N Earnest, JHD Cate, and Harry F Noller. Crystal structure
of the ribosome at 5.5 å resolution. science, 292(5518):883–896, 2001.

[15] Robert W Holley, Jean Apgar, George A Everett, James T Madison,
Mark Marquisee, Susan H Merrill, John Robert Penswick, and Ada Zamir.
Structure of a ribonucleic acid. Science, 147(3664):1462–1465, 1965.

[16] J. S. Mattick. Non-coding RNA. Human Molecular Genetics,
15(90001):R17–R29, apr 2006.

[17] Rolf Backofen, Stephan H. Bernhart, Christoph Flamm, Claudia Fried,
Guido Fritzsch, Jörg Hackermüller, Jana Hertel, Ivo L. Hofacker, Kristin
Missal, Axel Mosig, Sonja J. Prohaska, Dominic Rose, Peter F. Stadler,
Andrea Tanzer, Stefan Washietl, and Sebastian Will. Rnas everywhere:
genome-wide annotation of structured rnas. Journal of Experimental
Zoology Part B: Molecular and Developmental Evolution, 308B(1):1–25,
2007.

[18] Rna bioinformatics lecture, uni freiburg. www.bioinf.uni-freiburg.de.
[19] Philippe Brion and Eric Westhof. HIERARCHY AND DYNAMICS

OF RNA FOLDING. Annual Review of Biophysics and Biomolecular
Structure, 26(1):113–137, jun 1997.

[20] Michael Zuker and David Sankoff. Rna secondary structures and their
prediction. Bulletin of mathematical biology, 46(4):591–621, 1984.

[21] Paul P Gardner and Robert Giegerich. A comprehensive comparison of
comparative rna structure prediction approaches. BMC Bioinformatics,
5(1):140, 2004.

[22] Stephan H Bernhart, Ivo L Hofacker, Sebastian Will, Andreas R Gruber,
and Peter F Stadler. RNAalifold: improved consensus structure prediction
for RNA alignments. BMC Bioinformatics, 9(1):474, 2008.

[23] David Sankoff. Simultaneous solution of the rna folding, alignment
and protosequence problems. SIAM Journal on Applied Mathematics,
45(5):810–825, 1985.

[24] S. Will, T. Joshi, I. L. Hofacker, P. F. Stadler, and R. Backofen. LocARNA-
p: Accurate boundary prediction and improved detection of structural
RNAs. RNA, 18(5):900–914, mar 2012.

[25] Bruce A Shapiro and Kaizhong Zhang. Comparing multiple rna sec-
ondary structures using tree comparisons. Computer applications in the
biosciences: CABIOS, 6(4):309–318, 1990.

[26] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the
editing distance between trees and related problems. SIAM journal on

www.bioinf.uni-freiburg.de

Bibliography 63

computing, 18(6):1245–1262, 1989.
[27] Christina Otto, Mathias Möhl, Steffen Heyne, Mika Amit, Gad M Landau,

Rolf Backofen, and Sebastian Will. ExpaRNA-p: simultaneous exact
pattern matching and folding of RNAs. BMC Bioinformatics, 15(1), dec
2014.

[28] Sebastian Will, Christina Otto, Milad Miladi, Mathias Möhl, and Rolf
Backofen. SPARSE: quadratic time simultaneous alignment and folding
of RNAs without sequence-based heuristics. Bioinformatics, 31(15):2489–
2496, apr 2015.

[29] Eric P Nawrocki and Sean R Eddy. Infernal 1.1: 100-fold faster rna
homology searches. Bioinformatics, 29(22):2933–2935, 2013.

[30] Karim Lari and Steve J Young. The estimation of stochastic context-
free grammars using the inside-outside algorithm. Computer speech &
language, 4(1):35–56, 1990.

[31] David Haussler. Convolution kernels on discrete structures. Technical
report, Citeseer, 1999.

[32] Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise
distance kernel. In Proceedings of the 26th International Conference on
Machine Learning, pages 255–262. Omnipress, 2010.

[33] Andrei Z Broder. On the resemblance and containment of documents.
In Compression and Complexity of Sequences 1997. Proceedings, pages
21–29. IEEE, 1997.

[34] Enis Afgan, Dannon Baker, Marius van den Beek, Daniel Blankenberg,
Dave Bouvier, Martin Čech, John Chilton, Dave Clements, Nate Coraor,
Carl Eberhard, Björn Grüning, Aysam Guerler, Jennifer Hillman-Jackson,
Greg Von Kuster, Eric Rasche, Nicola Soranzo, Nitesh Turaga, James
Taylor, Anton Nekrutenko, and Jeremy Goecks. The galaxy platform
for accessible, reproducible and collaborative biomedical analyses: 2016
update. Nucleic Acids Research, 44(W1):W3–W10, may 2016.

[35] Public galaxy service. http://usegalaxy.org.
[36] Galaxy add tool tutorial. https://wiki.galaxyproject.org/Admin/

Tools/AddToolTutorial.
[37] Jeremy Goecks, Anton Nekrutenko, James Taylor, and The Galaxy Team.

Galaxy: a comprehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences. Genome
Biology, 11(8):R86, 2010.

[38] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J Lipman. Gapped blast

http://usegalaxy.org
https://wiki.galaxyproject.org/Admin/Tools/AddToolTutorial
https://wiki.galaxyproject.org/Admin/Tools/AddToolTutorial

Bibliography 64

and psi-blast: a new generation of protein database search programs.
Nucleic acids research, 25(17):3389–3402, 1997.

[39] Peter Steffen, Björn Voß, Marc Rehmsmeier, Jens Reeder, and Robert
Giegerich. Rnashapes: an integrated rna analysis package based on
abstract shapes. Bioinformatics, 22(4):500, 2005.

[40] Intro to conda. https://conda.io/docs/intro.html.
[41] S. Janssen and R. Giegerich. The RNA shapes studio. Bioinformatics,

31(3):423–425, oct 2014.
[42] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and

comparing large sets of protein or nucleotide sequences. Bioinformatics,
22(13):1658–1659, 2006.

[43] Elena Rivas, Jody Clements, and Sean R Eddy. A statistical test for
conserved RNA structure shows lack of evidence for structure in lncRNAs.
Nature Methods, 14(1):45–48, nov 2016.

[44] Sam Griffiths-Jones, Alex Bateman, Mhairi Marshall, Ajay Khanna, and
Sean R Eddy. Rfam: an rna family database. Nucleic acids research,
31(1):439–441, 2003.

[45] Milad Miladi, Alexander Junge, Fabrizio Costa, Stefan E Seemann, Jakob
Hull Havgaard, Jan Gorodkin, and Rolf Backofen. Rnascclust: cluster-
ing rna sequences using structure conservation and graph based motifs.
Bioinformatics.

[46] Eric P Nawrocki, Sarah W Burge, Alex Bateman, Jennifer Daub, Ruth Y
Eberhardt, Sean R Eddy, Evan W Floden, Paul P Gardner, Thomas A
Jones, John Tate, et al. Rfam 12.0: updates to the rna families database.
Nucleic acids research, page gku1063, 2014.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[48] Terence A Brown. Genomes. Garland science, 2006.
[49] Life history and ecology of cyanobacteria. University of California Museum

of Paleontology. Retrieved 17 July 2012. http://www.ucmp.berkeley.
edu/bacteria/cyanointro.html.

[50] Edward J Carpenter and Douglas G Capone. Marine pelagic cyanobacte-
ria: Trichodesmium and other diazotrophs, volume 362. Springer Science
& Business Media, 2013.

[51] The Freiburg Galaxy Project. http://galaxy.uni-freiburg.de/.

https://conda.io/docs/intro.html
http://www.ucmp.berkeley.edu/bacteria/cyanointro.html
http://www.ucmp.berkeley.edu/bacteria/cyanointro.html
http://galaxy.uni-freiburg.de/

Bibliography 65

[52] Robert Mcgill, John W. Tukey, and Wayne A. Larsen. Variations of box
plots. The American Statistician, 32(1):12–16, 1978.

	Introduction
	Theoretical Background
	Biological Overview
	DNA
	RNA
	RNA Secondary Structure
	Common Types of RNA

	RNA Bioinformatics Background
	Sequence Alignment
	RNA Secondary Structure Prediction
	Comparative Methods for RNA Analysis

	Methods and Technical Overview
	RNAalifold
	LocARNA
	Infernal
	NSPDK
	MinHash Technique

	Galaxy Framework
	User Interface
	Tool Wrapper
	Accessibility in Galaxy
	Reproducibility in Galaxy
	Workflows

	GraphClust : Challenge and Approach
	GraphClust Pipeline
	Challenge
	Approach

	Data Analysis
	Benchmarking
	Exemplary Use Case
	Quantitative Analysis

	Conclusion and Future Perspectives

