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Summary
RNA-RNA interaction is a subject of considerable biological relevance as the binding of
ncRNA to mRNA can affect both the transcription and translation of the bound mRNA
and hence regulate gene expression. The accuracy and reliability of single sequence RNA
structure prediction has been shown to increase significantly when the structure of an aligned
set of RNA homologs is computed. As such, it is posited that by augmenting an existing
RNA-RNA interaction prediction algorithm, that determines an interaction structure based
only on thermodynamics, with a phylogenetic component a structure prediction of improved
quality can be obtained. This thesis presents the theory, implementation and evaluation
of an algorithm that combines thermodynamic and phylogenetic information to predict a
consensus interaction structure on a set of aligned mRNAs and ncRNAs.



Zusammenfassung
Interaktionen zwischen zwei RNA-Molekülen sind von großer biologischer Bedeutung. Beispiel-
sweise kann die Bindung einer nicht-kodierenden RNA (ncRNA) an eine mRNA sowohl Tran-
skription als auch Translation der gebundenen mRNA beeinflussen und damit die Expres-
sion des kodierten Gens regulieren. Die Genauigkeit und Verlässlichkeit von RNA-Struktur-
Vorhersage auf einzelnen Sequenzen wird deutlich verbessert, wenn die Struktur nicht für eine
Einzelsequenz, sondern für ein Alignment von Homologen der entsprechenden RNA berech-
net wird. Von daher wird postuliert, dass durch die Erweiterung eines bestehenden RNA-
RNA-Interaktionsvorhersage-Algorithmus um eine phylogenetische Komponente die Vorher-
sagequalität verbessert werden kann im Vergleich zur Interaktionsvorhersage nur anhand von
Thermodynamik. Diese Arbeit präsentiert die Theorie, Implementierung und Evaluation von
einem Algorithmus, der thermodynamische und phylogenetische Information kombiniert, um
eine Konsensus-Interaktions-Struktur auf einer Menge von alignierten mRNA- und ncRNA-
Sequenzen vorherzusagen.
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1. Introduction

The focus of this thesis is the prediction of inter-molecular binding of RNA strands. Specif-
ically, between a(n) non-coding RNA (ncRNA) and messenger a(n) RNA (mRNA). This
problem is commonly termed RNA-RNA Interaction Prediction and hence is also known
as the RIP problem. The RIP problem deals specifically with complementary RNA-RNA
interactions, i.e. base pair formation of canonical (Watson-Crick) and G-U (wobble) base
pairs. RNA-RNA interaction is of considerable biological relevance as the binding of ncRNA
to mRNA can affect both the transcription and translation of the bound mRNA and hence
regulate gene expression. Consequently the RIP problem for single pairs of interacting RNA
sequences has been extensively studied and a wide range of methods and tools exist for
working with this problem.

The goal of this thesis is to improve the prediction of RNA-RNA interaction by adapting
a technique from RNA secondary structure prediction. Predicting the structure of an RNA
sequence was originally computed by maximizing base pairs [33], minimizing free energy [52]
or predicting base pair probabilities [28] of a single sequence. The accuracy and reliability
of RNA structure prediction has been shown to increase significantly when the structure of
an aligned set of RNA homologs is computed [19]. This consensus structure incorporates
both a thermodynamic contribution, usually free energy minimization or partition function
based, and an evolutionary component such that only base pairs that a majority of the
aligned sequences allow will be contained in the consensus structure.

As interaction prediction is essentially the prediction of structure formed by two molecules,
it follows that a shift to a consensus model should improve the quality of inter-molecular
interactions predicted. As little work has, up to now, gone into Consensus Interaction Pre-
diction this thesis aims to explicate this topic and develop an algorithm for the fast, accurate
and reliable prediction of RNA-RNA interaction.

1.1. Motivation

The RNA world theory, popularized by Walter Gilbert in [14], promotes the possibility that
the functional arrangement of DNA, RNA and protein that comprises all living organisms
today, evolved from an RNA only system. Although RNA is now only one part in the system
of molecules that support life, it plays a role of fundamental importance. RNA was earlier
thought to only be an intermediate stage in the synthesis of proteins from information stored
in DNA, its functional role in the ribosome was seen as an exception. Recently a large num-
ber of RNAs that are not, or may not be, translated into protein have been discovered and
the importance of the functional role RNA plays within the cell has been highlighted.

It has been shown that eukaryotic miRNAs and siRNAs and bacterial sRNAs post tran-
scriptionally regulate the expression of target genes by binding to mRNAs [37] [3] [17] [49]
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2 Introduction

[15]. Non-coding RNAs in bacteria (sRNAs) have also been shown to activate genes by a
variety of mechanisms [12]. Meyer [29] provides the following list of functions non-coding (or
functional) RNAs can perform, RNA: cleavage, editing, modification, splicing, translation,
suppression of translation and degradation. Meyer also states that pre-messenger RNAs,
through alternative-splicing, can play a functional role meaning a single RNA can act both
functionally and non-functionally. Interactions of microRNA with the 3’-UTR or coding se-
quence (CDS) of targets mostly causes repression of the encoded gene through a variety of
mechanisms such as translational control, induced mRNA cleavage and deadenylation [12]
[48].
Small non-coding RNAs have predominantly been shown to repress bacterial mRNAs by
masking the Shine-Dalgarno (SD) or AUG start codon sequence, thereby preventing 30S
ribisome entry and, consequently, translation initiation [7] [12] [47]. The sRNA-mRNA du-
plex is then frequently subject to degradation by RNase E [47]. As an example, the ncRNA
MicA is shown to be an antisense regulator of ompA and blocks ribosome binding at the
translation start site and facilitates RNase E cleavage which leads to mRNA decay [43].
Animal miRNAs target transcripts through imperfect base-pairing to multiple sites in 3’
untranslated regions, and Watson-Crick base pairing to the 5’ end of miRNAs, especially to
the seed region, is crucial for targeting [8]. MiRNAs use base-pairing to guide RNA-induced
silencing complexes (RISCs) to repress targeted messages through mechanisms such as trans-
lational inhibition, accelerated exonucleolytic mRNA decay or site-specific endonucleolytic
cleavage [8].
According to Waters and Storz [47], the suitability of RNA as a regulatory medium for gene
expression can be attributed to the fact that RNA regulators are less costly to the cell and
can be faster to produce, they also do not require the extra step of translation. Also when
input signals are large and persistent, sRNAs are hypothesized to be better than transcrip-
tion factors at strongly and reliably repressing protein levels, as well as filtering noise [47].

Translation of the Salmonella ompN mRNA is repressed by base pairing of the RybB sRNA.
Although this base pairing does not sequester the SD or AUG sequences, it sufficiently dis-
rupts formation of the ternary complex to inhibit translation [7]. Staphylococcus aureus,
the Gram-positive pathogen most commonly responsible for staph infections, yielded the
first sRNA discovered to activate gene expression [12] [32]. Investigation has suggested that
an upstream anti-Shine-Dalgarno sequence folds back to pair with the SD region of the hla
mRNA, and that by binding to the anti-SD and competing with the formation of a hairpin
structure the 514nt RNAIII releases the SD of hla and promotes its translation [12]. DsrABb

acts through the same anti-antisense mechanism to activate translation of the rpoS mRNA
in Borrelia burgdorferi, an agent of Lyme disease and non-Hodgkin lymphomas [12].

An increasing number of bacterial sRNAs have recently been shown to repress multiple
if not large sets of mRNAs [7]. The fact that a base pairing sRNA often regulates multi-
ple targets means that a single sRNA can globally modulate a particular physiological re-
sponse [47]. MiRNAs are thought to regulate a large part of the protein-coding transcriptome
and play a vital role in development, stress adaption and hormone signalling [8]. Further-
more, non-coding bacterial RNAs have been implicated in the regulation of stress responses
and virulence traits [44]. Examples cited by [43] [47], of functionally characterized sRNAs of
Escherichia coli involved in stress response and and adaptive change are listed in table 1.1.
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Oxidative stress OxyS
SOS response IstR
Cold shock DsrA
Low iron RhyB
Osmotic stress MicF
Outer membrane stress MicA, RybB
Elevated glycine GcvB
Glucose concentration change Spot42, CyaR
Elevated glucose-phosphate levels SgrS

Table 1.1.: Stress response in bacteria

Functional features tend to be conserved in evolution, and in the context of RNA-RNA
interactions this means nucleotides whose evolution along a phylogenetic tree is coupled so
that the functional features of the RNA-RNA interaction are conserved [29]. This motivates
the effort to combine thermodynamic and evolutionary information in the prediction of RNA-
RNA structure. Comparative methods can distinguish, given input alignments of sufficient
quality, spurious base-pairs from evolutionarily conserved bp’s [29]. In the context of RNA-
RNA interactions, a comparative method may prefer a highly conserved inter-molecular bond
over a more thermodynamically stable intra-molecular bond.

An example taken from [43] of the relevance of evolutionary information to structure pre-
diction follows. MicA sequences differ substantially between bacteria. However, base changes
are often located in single stranded regions/loops, or occur as compensatory changes when
in stem regions. In two bacterial species Erwinia carotovara and Klebsiella pneumoniae,
compensatory changes in both MicA and the ompA target maintain base-pairing. Chemical
and enzymatic probing results were essentially consistent with the conformation predicted
by MFold [51] and additional support was obtained from comparative analyses of the MicA-
homologous sequences in Klebsiella, Shigella, Salmonella, Yersinia, Enterobacter and Serra-
tia species [43].

The role of non-coding RNAs in development, virulence traits, physiological response to
stress and hormone signalling highlights the importance of understanding how RNA-RNA
interactions function. The prevalence of regulatory RNAs and the variety of mechanisms
through which they act require improved prediction techniques. The fact that functional
features tend to be conserved in evolution provides strong motivation for the incorporation
of evolutionary information into the model for predicting RNA-RNA interactions.

1.2. Related Work

The work related to this thesis falls into three categories. RNA secondary structure predic-
tion based on a multiple alignment of RNA sequences, RNA-RNA interaction prediction and
the combination of these two approaches.

RNA secondary structure prediction (folding) using the Zuker algorithm [52] provides the
commonly used method of predicting secondary structure from a sequence. A structure is
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computed by finding the unique decomposition of a sequence, into secondary structure ele-
ments, that minimizes the free energy of the system. Such secondary structure elements, as
described in the following chapter, have experimentally determined energies [42], [25], [26].

Two extensions of this basic method of structure prediction are important for this thesis.
Consensus structure prediction, i.e. the simultaneous structure prediction of a set of aligned
RNA sequences, provides a way to combine thermodynamic and phylogenetic information to
predict a more accurate and reliable secondary structure. The specific approach to consensus
structure prediction that will be utilized in this thesis has been developed and implemented
in RNAalifold [5].

The second important extension to secondary structure prediction is the partition function
approach developed by McCaskill [28]. This work provides a method to access the base
pair and structure probabilities of an RNA sequence. Specifically it provides base-pairing
probabilities over the ensemble of structures an RNA sequence may form. A useful adaption
of the partition function to the task of predicting RNA-RNA interaction is found in the work
done on RNAup [30].

RNA-RNA interaction prediction forms the second category of related work. One approach to
predicting the interaction structure of an mRNA and ncRNA is to concatenate the sequences
and apply a variant of Zuker and Stiegler’s algorithm as in PairFold [1] and RNAcofold [4].
The limitations of this approach, such as the inability to predict important motifs such as
kissing-hairpin loops [20] [29], suggest the alternative; treat the mRNa and ncRNA sequences
separately and predict the interaction complex they form.

Three components conventionally comprise the quality of an RNA-RNA interaction, the
central being the energy contribution of inter-molecular bonds also termed hybridization
energy. An intra-molecular binding energy (accessibility) is used to more accurately model
competing forces that form the RNA duplex. A region of perfect complementarity (seed
region) is often observed in base pairing RNA interactions and can be applied as a constraint
on prediction to increase the specificity of a computed interaction.

RNAhybrid is an extension of Zuker’s algorithm that predicts multiple potential binding sites
of ncRNAs (miRNA) in large target RNAs [37] using energy parameters from [25]. Bulge
and internal loops are restricted to a constant maximum length (c), branching structures
(multi-loops) and intra-molecular bonds are forbidden. RNAhybrid enforces the existence of
a seed region and finds the minimal free energy structure with time and space requirements
O(c2mn), O(mn) respectively, where m and n are the lengths of input sequences.

RNAup implements an extension of the standard partition function that computes proba-
bilities of unpaired sequence intervals [31]. As such, Mückstein et al. incorporate both the
hybridization energy (energy gained from inter-molecular bonding) and interaction site ac-
cessibility (or energetic unfolding cost) of the individual sequences. RNAup’s computation of
the MFE structure requires O(n3) time and O(n2) space where n is the length of the mRNA.

IntaRNA integrates both the enforcement of a seed region and the accessibility of the indi-
vidual sequences with the energy gained from hybridization to predict an MFE structure.
The complete approach (restricting bulge and loop sizes) requires O(m2n2) time and O(mn)
space, with m and n as the lengths of input sequences. A heuristic simplification of the
complete approach provides space complexity O(mn) and time complexity O(mn) where
n = maxn, L3 and L is the size of the sequence window in which both mRNA and ncRNA
are folded. This thesis will extend IntaRNA to include a phylogenetic component in order
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that prediction of consensus interaction is supported.

The third category of related work concerns methods that already include both thermody-
namic and evolutionary components. Currently, the only known approach is implemented
in PETcofold [40] which utilizes covariance information to hierarchically fold concatenated
sequences to predict a joint secondary structure. PETcofold considers both hybridization
and accessibility in computing an MFE structure and allows pseudknots between intra and
inter-molecular base pairs. An extended version of PETfold [39] along with an hierarchical
folding strategy form the basis of this approach.

1.3. Contribution

Presented in this work is an algorithm for predicting RNA-RNA interactions based on ther-
modynamic and evolutionary information. The algorithm implemented by IntaRNA [9] has
been extended to predict a structure on a set of aligned mRNAs and ncRNAs. The Consensus
Interaction Prediction has been implemented and evaluated against a dataset of experimen-
tally validated structures, and compared against the quality of interactions predicted by
IntaRNA.

1.4. Overview

The content and organization of the rest of this thesis are as follows. Chapter 2 provides
the concepts and formal definitions that are necessary in the design of an algorithm for
Consensus Interaction Prediction. Chapter 3 develops the prediction algorithm, formally
defines its function and explains through example the detail of its working. Chapter 4 gives
detail on the implementation of the algorithm and outlines how the algorithm is evaluated.
The final chapter presents results and an analysis of the evaluation.





2. Fundamental Concepts and
Definitions

The focus of this chapter is to develop the concept of computational RNA-RNA Interac-
tion Prediction and formally define the components necessary to successfully implement an
algorithm for Consensus Interaction Prediction.

2.1. Ribonucleic Acid (RNA)

Figure 2.1.: mRNA
and
ncRNA

RNA is a biologically fundamental macro-molecule present in eu-
karyotes, prokaryotes and archaea. RNA is composed of a series
of nucleotides. It forms the bridge between information storage (in
the form of DNA) and function as enacted by protein. RNA can be
coarsely divided into two classes: Messenger RNA (mRNA) that as
it’s primary function acts as a template for protein synthesis and
Non-coding RNA (ncRNA). From ribosomal RNA (rRNA) to long
non-coding RNAs such as Xist, non-coding RNA plays an impor-
tant functional role in living organisms although it is generally
not translated into protein. As this thesis focuses on the prediction
of interaction between an mRNA and ncRNA, the biological rel-
evance is in how ncRNA can affect, and specifically regulate, cell
function. Explain trans.

Primary structure

A sequence consisting of four nucleotides; Adenine (A), Cytosine (C), Guanine (G) and
Uracil (U). This can be formally defined as follows.

Let S ∈ {A,C,G, U}n be an RNA sequence of length n = |S|. (2.1)

For access to individual nucleotides in S the subscript notation is used. The following example
demonstrates.

S = ACGUCGUCGUACUGACGU, S1 = A, S4 = U, Sn = U

Secondary structure of a single stranded RNA

The secondary structure of an RNA molecule is primarily determined by hydrogen bonds
formed between Watson-Crick nucleotide pairs and G-U wobble pairs. As such, the ability

7



8 Fundamental Concepts and Definitions

of two nucleotides to pair is defined by the following.

Define B = {(A,U), (U,A), (G,C), (C,G), (G,U), (U,G)} as the set of canonical base pairs.
(2.2)

π(a, b) =

{
true if (a, b) ∈ B

false otherwise
(2.3)

A secondary structure of an RNA sequence can be defined by a set of base-pairs.

Let P ⊆ {(i, j)|1 ≤ i < j ≤ n, π(Si, Sj)} (2.4)

The following constraints must be satisfied for a secondary structure to be valid.

Each nucleotide may pair with at most 1 other nucleotide. Such that,

∀(i, j), (i′, j′) ∈ P : (i = i′ ⇐⇒ j = j′) ∧ i 6= j. (2.5)

A structure may not contain pseudoknots (crossing base pairs). Given (i, j), (i′, j′) ∈ P, P
is a non-nested (crossing) structure iff

i < i′ < j < j′ ∨ i′ < i < j′ < j. (2.6)

Secondary structure of an RNA hybridization

The following formally defines the structure of a hybridization between two RNA sequences.
Intra-molecular base pairs are not yet considered, only the definition and constraints on
inter-molecular structure are presented.

Let M be an mRNA of length m and N be an ncRNA of length n.

Let P ⊆ {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n, π(Mi, Nj)} describe a duplex structure
formed by M and N such that (i, k), (j, l) are constrained by (2.5). The constraint
on non-crossing base-pairs (2.6) needs to be adapted for a hybrid structure.

∀(i, j), (k, l) ∈ P ⇒ i < k ⇔ j < l (2.7)

Shown below is the simplest example of a hybridization structure violating the non-crossing
constraint.

l

i

j

k

Figure 2.2.: Invalid hybridization structure

Secondary structure elements
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RNA secondary structure is composed of sub-structures of type: hairpin, bulge, internal
loop, stacking, multi-loop and dangling ends. An RNA-RNA interaction structure (duplex)
consists of two components. The independent structures both mRNA and ncRNA form is
used to account for intra-molecular base pairing. All types of sub-structure are admitted.
The second component considered is the structure of the duplex formed by both sequences,
which accounts for inter-molecular bonds. Stacking, internal loops, bulges and dangling ends
sub-structure types are considered.

Left End Basepair of Hybridization
Bulge

Stacking
Internal Loop
Right End Basepair of Hybridization
Figure 2.3.: Structural elements of an RNA-RNA interaction

The following formally defines the sub-structures comprising hybridization.

Stacking: consists of two consecutive base pairs. As such, (i, j), (k, l) ∈ P , where 1 ≤ i <
k ≤ m and 1 ≤ j < l ≤ n, comprise a stacking if and only if j = i+ 1 and l = k + 1.

Bulge: is closed by two base pairs where exactly one set of involved nucleotides on the same
molecule are consecutive. Formally (i, j), (k, l) ∈ P form a bulge in the mRNA molecule
iff l = k+ 1 and j− i > 1. In the case that j = i+ 1 and l− k > 1, (i, j), (k, l) form an
ncRNA bulge. All nucleotides between the bases forming the bulge must be unpaired,
the non-crossing constraint (2.7) is sufficient to ensure this.

Internal Loop: is closed by two base pairs (i, j), (k, l) : k − i > 1, l − j > 1. Additionally,
all nucleotides between i, k and j, l must be unpaired. Formally, ¬∃(p, q) ∈ P : i < p <
k, j < q < l and the non-crossing constraint (2.7) suffice to describe a valid internal
loop sub-structure.

Dangling Ends: are included at both ends of the hybridization region. They consist of the
outermost base pairs formed by the mRNA and ncRNA. Additionally, 0-2 unpaired
nucleotides outside the hybridization region can also contribute to each dangling end.
Thus, base pair (i, j) ∈ P : ¬∃(i′, j′) ∈ P ∧ i′ < i (which through the non-crossing
constraint (2.7) ensures j′ > j) denotes the left-end terminal base pair and for i >
1, j > 1 the dangling end sub-structure includes nucleotides (i− 1) and (j − 1).

Free energy minimization
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Free energy minimization ([52], [42], [50]) is based upon a large number of measurements
performed on small RNAs and the and the assumption that stacking base pairs and loop
entropies contribute additively to the free energy of an RNA secondary structure [31] [25]
[27] [26]. An RNA molecule is folded according to the combination of RNA secondary sub-
structures that minimize the total free energy of the system.

2.2. Partition Function

Although the performance of MFE methods decreases for long structured regions of RNA,
the performance for short (e.g. RNA-RNA interactions) can be increased by considering the
entire statistical ensemble of configurations as described by the Boltzmann distribution [29].

Let P be the ensemble of structures that sequence S may form.

The equilibrium partition function is defined as follows.

ZP =
∑
P∈P

e−
E(P )
RT

And can be alternatively expressed.

E(P) = −RT ln(ZP).

If we take Pi,k as the set of all structures with i . . . k unpaired, the accessibility (energy
required to unfold) a region i, k is:

ED(i, k) = E(Pi,k)− E(P).

2.3. RNA Interaction

RNA interaction prediction can be achieved similarly to the prediction of single sequence
RNA secondary structure. The set of base pairs formed between two RNA molecules can be
divided into a set of RNA secondary sub-structures. Presented below is the core of the hy-
bridization recursion defined for RNAhybrid[37] with the notation adapted from the original
to fit the unified notation used in this document.

Hi,j =



min



stacking(i, j,Hi+1,j+1)
min

i+2≤k≤min(i+16,m−1)

{
bulgem(i, j, k,Hk,j+1)

}
min

j+2≤l≤min(j+16,n−1)

{
bulgen(i, j, l, Hi+1,l)

}
min

i+2≤k≤min(i+16,m−1)
j+2≤l≤min(j+16,n−1)

{
internalLoop(i, j, k, l, Hk,l)

}
openEnd(i, j,m− 1, n− 1)


if π(xi, yj)

∞ otherwise
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An optimal structure is calculated by minimizing over a score comprised of the thermody-
namic contributions [42] of a set of RNA secondary sub-structures.

2.4. RNA Consensus Structure

RNAalifold [5] computes an RNA consensus secondary structure by folding an alignment of
homologous sequences. Secondary structure elements able to be formed by each sequence in
the alignment contribute to sum total energy.
A base pair conservation score is introduced, that penalizes gaps in sequences when alignment
columns are paired. The score also provides a bonus to alignment columns where consistent
and compensating mutations occur in paired bases.





3. Consensus Interaction Prediction

Let M and N be alignments of mRNA and ncRNA sequences. The number of sequences in
alignment M is defined as |M|. Mx denotes the xth row, or sequence, of the mRNA alignment.
Mx and Nx form a sequence pair. As such,

|M| = |N|

The following constants are used in the calculation of a Consensus Interaction Score, and
although mentioned where relevant are provided here for reference.

DI Duplex initiation penalty
NGC Non GC pair penalty for the right-most base pair of an interaction
ILL Maximum allowable internal loop length size
φγ Co-variance bonus weighting
φr 0
φf 0

3.1. Mapping

To deal with gaps in the alignments the following mapping function has been introduced.

Mx
= Mz : z = 1 . . .m,Mz ∈ {A,C,G, U}

Mx
is the raw, or un-gapped sequence in the xth alignment row. N is similarly defined. These

raw sequence mappings are required primarily for the calculation of accessibility, however
they are also used to access nucleotides. Mx

i , where i is an alignment column index. Ṁx
i

provides access to the index of i in Mx
.

The following function is useful for determining whether an RNA secondary sub-structure
should be a stacking, bulge or internal loop.

Ṁx
i∆p = |Ṁx

i − Ṁx
p |

3.2. Utility

The functions in this section support the calculation of a Consensus Interaction Structure.
The hamming distance of two alignment positions (nucleotides or gaps) is used in the calcu-
lation of the co-variance bonus.

h(a, b) =

{
1 if a = b
0 otherwise

13
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Sequence-pair specific left-most base pair of optimal interaction with left-end i, j.

Rip;jq = ]
0≤x<|M|

Rx
ip;jq

Rx
ip;jq =


rxi;j :=< i, j > if πxi;j
rxi;j := rxp;q if rxp;q 6= ∅
rxi;j := ∅ otherwise

Right-end base pair of optimal interaction with left-end i, j.

Fip;jq =

{
fi;j :=< i, j > if (i = p) ∧ (j = q)
fi;j := fp;q otherwise

3.3. Accessibility

Intra-molecular energy contributions to the RNA-RNA complex are calculated using the
partition function, as explained in the previous chapter. In implementation, RNAup [30] is
used to calculate these values. Accessibility calculation is unchanged from how it is specified
in IntaRNA [9], except that the accessibility of an alignment region is calculated as the
average of the single sequence accessibilities for the same region, as below. The notation has
also been adapted for clarity.

EDM
ik =

1

|M|
∑

0≤x<|M|

ED(Mx

ik)

EDik;jl = EDM
ik + EDN

jl

ED∆
ipk;jql = EDik;jl − EDpk;ql

3.4. Hybridization

The hybridization score of an interaction is the inter-molecular energy contribution of base
pairing between RNA sequences. The following recursions have been adapted from In-
taRNA [9] to incorporate evolutionary information in the same manner as RNAalifold [5].
By averaging the energy contributions of RNA secondary sub-structures closed by indices
(i, j), (p, q) a score is obtained that incorporates both thermodynamic and evolutionary
information.

The following recursions pertain to the right end of an interaction (i.e. dangling ends).

Ldip;jq =
1

|M|
∑

0≤x<|M|

Ldxip;jq
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Ldxip;jq =

{
dlxip;jq +NGCi;j if πxi;j
0 otherwise

The following provides access to the Turner [42] free energies of RNA sub-structures.

dlxip;jq =


0 if (p = i) ∧ (q = j)
ed5(i, j, q) if (p = i) ∧ (q = j + 1)
ed3(i, j, p) if (p = i+ 1) ∧ (q = j)
ed5(i, j, q) + ed3(i, j, p) if (p = i+ 1) ∧ (q = j + 1)

For clarity of exposition, the mapping from alignment indices to raw sequence nucleotides
has been omitted.

Recursion pertaining to hybridization energies for the purposes of extending an interaction.

Lip;jq =
1

|M|
∑

0≤x<|M|

Lxip;jq

The significant difference to RNAalifold [5], RNAhybrid [37] and IntaRNA [9] is the addition
of cases 2, 3, 4 below.

Lxip;jq =


elxip;jq if πxi;j ∧ πxp;q
elxik;jl if πxi;j ∧ ¬πxp;q ∧ rxp;q 6= ∅
Qx
i;j if πxi;j ∧ ¬πxp;q ∧ rxp;q = ∅

0 otherwise

where rxp;q =< k, l >

Qx
i;j = min

i≤p≤min(i+1,m)
j≤q≤min(j+1,n)

{Ldxip;jq +
DI

|M|
}

The first important difference is when (i, j) cannot pair, 0 is returned instead of∞. Non con-
sensus interaction prediction methods [9] [37] would disallow the pairing, and RNAalifold [5]
penalizes the mismatch with an explicit ad hoc penalty. The purpose in not penalizing a
mismatch can be seen in case 2.

If rxp;q 6= ∅, it contains the left-most base-pair in the interaction we are testing for extension,
and as such (i, j) can form an RNA secondary sub-structure with (k, l) = rxp;q. It is important
to note that because (p, q) in x cannot pair, the region Mx

p,k,Nx
q,l has not yet contributed to

the score of the interaction. The intention is that consensus will be scored more naturally
than with the introduction of an ad-hoc penalty.

Case 3 covers the case where a sequence in an interaction has not formed a right end base
pair. As such, Qx

i;j incorporates the interaction start structure.

Access to RNA secondary sub-structures with type of structure dependent on mapped raw
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sequence index differences.

elxip;jq =


stack(i, p, j, q) if Ṁx

i∆p = 1 ∧ Ṅx
j∆q = 1

iloop(i, p, j, q) if (Ṁx
i∆p > 1 ∧ Ṅx

j∆q > 1)

bulge(i, p, j, q) if (Ṁx
i∆p = 1 ∧ Ṅx

j∆q > 1) ∨ (Ṁx
i∆p > 1 ∧ Ṅx

j∆q = 1)

Again, mapping of alignment indices to raw sequence nucleotides has been omitted for clarity.

3.5. Covariance Scoring

In order to integrate evolutionary information, and calculate a Consensus Interaction Score, a
bonus is added for consistent and compensatory mutations of pairing bases. This method has
been adapted from RNAalifold [5] to removed ad hoc gap penalties and provide a normalized
score. Interaction partners (mRNA-ncRNA sequence pairs) are compared pair-wise (with
other mRNA-ncRNA sequence pairs, or rows in the alignments) and a bonus is added for
any shared base pairs that are comprised of different nucleotides.

Γi;j =
1(|M|
2

) ∑
0≤x<y<|M|


h(Mx

i ,M
y
i ) + h(Nx

j ,N
y
j ) if πxi;j ∧ πyi;j

0 otherwise

3.6. Combined Consensus Interaction Score

The Combined Consensus Interaction Score integrates the inter-molecular energy contribu-
tion (hybridization), intra-molecular energy contribution (accessibility) and the evolutionary
information (co-variance bonus) to calculate a score for each possible (i, j) forming a left-end
base pair to an interaction region.

The optimal consensus score for an alignment of mRNAs and ncRNAs can be found by a
minimization over all (i, j). From this, the interaction producing such a score can be found
by dynamic programming traceback.

C(M,N) = min
0≤i<m
0≤j<n

CM;N
i;j

In its simplest form, the score for left-end base pair (i, j) can be calculated as the co-variance
bonus of the alignment positions and the energetically most favourable of two choices. The
first possibility is to start a new interaction region, with (i, j) as the right most base pair.
Alternatively, (i, j) can form the left-most base pair of an existing interaction region.

CM;N
i;j = min{Cstart

i;j , Cgrow
i;j }+ φγΓi;j

To calculate a score for both possibilities and determine the optimal choice, the following
additions are needed. It is important to note that, while F and R appear alongside Cstart

and Cgrow they do not directly contribute to the score of a structure. That is, φr = 0 and
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φf = 0.

CM;N
i;j = min

{
Cstart
i;j + φrRii;jj + φfFii;jj

Cgrow
i;j + φrRip;jq + φfFip;jq

}
+ φγΓi;j,

where p and q are obtained by applying an argmin in Cgrow

Both F and R update matrices that support the calculation of hybridization energy and ac-
cessibility. They are integrated here to make explicit the point at which the support matrices
are updated, and with what values. Note, the inclusion of these functions assumes only one
case succeeds, and therefore F and R are only updated once. That is, if Cstart is minimum,
then F and R are updated with the above values and vice-versa.

3.6.1. Starting a new interaction

To start a new interaction at (i, j) all four possible cases of dangling ends must be evalu-
ated and the accessibility relevant to each case included in the search for a minimal energy
structure. A duplex initiation penalty is also included.

Cstart
i;j = min

i≤p≤min(i+1,m)
j≤q≤min(j+1,n)

{Ldip;jq + EDip;jq +DI}

3.6.2. Extending an existing interaction

Extending an existing interaction to a new left-most base pair (i, j) involves finding a min-
imum score over all the possible left-most base pairs ((p, q)) to extend from. The range of
previous base pairs to extend from has been limited by the ILL, internal loop length. The
score derived from extending an interaction region is comprised of a hybridization component
L, accessibility component ED and the score of the previous interaction region ending at
(p, q). The support matrix f contains the right-end base pair of the interaction with left-end
base pair (p, q).

Cgrow
i;j = min

i<p≤min(i+ILL,m)
j<q≤min(j+ILL,n)

{Lip;jq + ED∆
ipk;jql + Cp;q}, where (k, l) = fp;q





4. Implementation and Evaluation of the
Algorithm

This chapter details how the Consensus Interaction Prediction algorithm is implemented.
The data and methods used to evaluate the quality of predicted interaction structures are
also explained.

4.1. Implementation

The Consensus Interaction Prediction algorithm is implemented in C++. The implemen-
tation makes use of the Vienna RNA package [18], the University of Freiburg Bioin-
formatics Department BIU library(www.bioinf.uni-freiburg.de/SW/BIU/), C++ Boost li-
brary(www.boost.org) and re-uses some code from the IntaRNA [9] program.

The program takes the following as input:

• A co-variance weighting (φγ)

• An input file in fasta format containing |M| aligned mRNA sequences

• An input file in fasta format containing |N| aligned ncRNA sequences

As the tool operates on sequences pairs, it is necessary that |M| = |N|. As output, the tool
provides a mapping of the predicted consensus structure to each input sequence pair. Dot-
bracket notation, IntaRNA style format and a listing of base pair indices are available as
output options for hybridization visualization.
Source code for the recursions relating to the algorithm is provided in Appendix C.

4.2. Evaluation

The performance of the algorithm, in terms of accuracy of interaction prediction was evalu-
ated in the following way. Data sets were prepared as for [40]. The Consensus Interaction
Prediction tool was on orthologs of the validated interactions in a number of organisms. A
total of 29 interactions were predicted
IntaRNA single sequence pair predictions were created for each interaction with a validated
structure using mRNA and ncRNA genes from the reference organisms (AE006468, U00096).
The predicted structures were then compared with the experimentally validated structures
using the measures described in the following section. The results of the evaluation are
contained in Appendix B, and discussed in the following chapter.

19
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4.2.1. Measures

The following measures are used to evaluate the quality of interactions. Both the Consensus
Interaction structure and the structure predicted by IntaRNA are compared with an exper-
imentally validated structure.

Sensitivity of a prediction measures the proportion of base pairs, according to the exper-
imentally validated interaction, correctly identified by the algorithm.

sensitivity =
true positives

true positives + false negatives

Specifically, true positives are base pairs the prediction shares with the validated structure.
False negatives are base pairs in the validated structure, not contained in the prediction.

The positive predictive value (PPV) of a structure is the proportion of predicted base pairs
which are contained in the experimentally validated structure.

PPV =
true positives

true positives + false positives

True positives are as in the sensitivity measure, false positives are base pairs predicted by
the algorithm but not contained in the validated structure.

F-measure combines both sensitivity and PPV. As such, it is primarily used to compare
structures predicted by IntaRNA and the Consensus Interaction method. It is also used to
calculate the optimal value of φγ.

F-measure = 2× sensitivity× PPV

sensitivity + PPV

4.2.2. Datasets

The datasets used in the evaluation of the Consensus Interaction Prediction algorithm are
a subset of those used in the evaluation of PETcofold [40]. The datasets with references are
in Appendix D.



5. Results and Discussion

Table 5.1 lists the F-measure score for IntaRNA and the Consensus Interaction Prediction
algorithm with the co-variance weighting set at the global optimum and a per sequence
optimum. The following table lists how many cases each tool performs as well as or better
than the others.

CIP φγ = 0.00 CIP argmaxφγ IntaRNA
13 16 17

The average F-measure for both data sets was measured with 10 different values of φγ.

φγ U00096 AE006468 average
0.00 0.635 0.658 0.647
0.02 0.628 0.657 0.643
0.04 0.625 0.657 0.641
0.06 0.626 0.551 0.589
0.08 0.628 0.542 0.585
0.10 0.627 0.542 0.585
0.12 0.619 0.542 0.581
0.14 0.610 0.542 0.576
0.16 0.576 0.542 0.559
0.18 0.573 0.444 0.509

IntaRNA scored the following average F-measure scores.

U00096 AE006468 average
0.680 0.602 0.641

5.1. Discussion

The Consensus Interaction Prediction algorithm performs favourably when compared with
IntaRNA, however the optimal weighting of φγ = 0.00 suggests that the co-variance bonus
detracts from the quality of prediction. This is likely a product of the chosen evaluation
method. The consensus interaction structure was predicted using an alignment of sequences
from different organisms. The mapping back to the reference organism and comparison to
a single sequence pair prediction in the same organism is likely to be an unfair comparison.
A genome wide scan, and comparison with another consensus prediction tool, such as PET-
cofold [40] would better demonstrate the capability of the algorithm to predict a conserved
and energetically favourable interaction structure. Overall, the method looks promising, how-
ever more analysis is necessary to determine the true benefit of the Consensus Interaction
Prediction algorithm and how the method can be improved.

21
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ncRNA, mRNA, Organism CIP with φγ = 0.00 CIP with best φγ IntaRNA
CyaR,luxs,U00096 0.889 0.889 0.889
CyaR,yqaE,U00096 0.643 0.643 0.857
DsrA,hns,U00096 0.621 0.621 0.690
DsrA,rpoS,U00096 0.692 0.717 0.792
GcvB,sstT,U00096 0.000 0.000 0.000
GlmZ,glmS,U00096 0.636 0.636 1.000
MicA,ompA,U00096 0.968 1.000 0.897
MicC,ompC,U00096 0.800 0.800 0.842
MicF,ompF,U00096 0.941 0.941 0.941
OmrA,cirA,U00096 0.621 0.621 0.462
OmrA,ompR,U00096 0.750 0.750 0.750
OmrA,ompT,U00096 0.514 0.632 0.514
OxyS,fhlA,U00096 0.667 0.667 0.545
RprA,rpoS,U00096 0.000 0.000 0.286
RyhB,fur,U00096 0.000 0.000 0.353
RyhB,sodB,U00096 1.000 1.000 0.900
SgrS,ptsG,U00096 0.850 0.850 0.850
CyaR,ompX,AE006468 0.478 0.478 0.478
GcvB,argT,AE006468 0.750 0.750 0.848
GcvB,gltI,AE006468 0.316 0.316 0.000
GcvB,livJ,AE006468 0.955 0.955 0.000
GcvB,livK,AE006468 0.743 0.743 0.722
GcvB,oppA,AE006468 0.905 0.905 0.978
GcvB,STM4351,AE006468 0.588 0.588 0.529
MicA,lamB,AE006468 0.286 0.286 0.902
MicC,nmpC,AE006468 0.917 0.960 0.960

Table 5.1.: Comparison of F-measure, Consensus Interaction Prediction and IntaRNA



A. Sensitivity, PPV, F-measure of
Consensus Interaction Prediction

A.1. CyaR,luxs,U00096

φγ Sensitivity PPV F-measure
0.00 0.800 1.000 0.889
0.02 0.800 1.000 0.889
0.04 0.800 1.000 0.889
0.06 0.800 1.000 0.889
0.08 0.800 1.000 0.889
0.10 0.800 1.000 0.889
0.12 0.800 1.000 0.889
0.14 0.800 1.000 0.889
0.16 0.800 1.000 0.889
0.18 0.800 1.000 0.889

A.2. CyaR,nadE,U00096

φγ Sensitivity PPV F-measure
0.00 0.909 1.000 0.952
0.02 0.909 0.625 0.741
0.04 0.909 0.625 0.741
0.06 0.909 0.625 0.741
0.08 0.909 0.625 0.741
0.10 0.909 0.625 0.741
0.12 0.909 0.556 0.690
0.14 0.909 0.556 0.690
0.16 0.909 0.556 0.690
0.18 0.909 0.556 0.690
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A.3. CyaR,ompX,U00096

φγ Sensitivity PPV F-measure
0.00 0.900 0.375 0.529
0.02 0.900 0.375 0.529
0.04 0.900 0.375 0.529
0.06 0.900 0.375 0.529
0.08 0.900 0.375 0.529
0.10 0.900 0.375 0.529
0.12 0.900 0.375 0.529
0.14 0.900 0.375 0.529
0.16 0.900 0.375 0.529
0.18 0.900 0.375 0.529

A.4. CyaR,yqaE,U00096

φγ Sensitivity PPV F-measure
0.00 0.750 0.562 0.643
0.02 0.750 0.562 0.643
0.04 0.750 0.562 0.643
0.06 0.750 0.562 0.643
0.08 0.750 0.562 0.643
0.10 0.750 0.562 0.643
0.12 0.750 0.562 0.643
0.14 0.750 0.562 0.643
0.16 0.750 0.562 0.643
0.18 0.750 0.562 0.643

A.5. DsrA,hns,U00096

φγ Sensitivity PPV F-measure
0.00 0.692 0.562 0.621
0.02 0.692 0.562 0.621
0.04 0.692 0.562 0.621
0.06 0.692 0.562 0.621
0.08 0.692 0.562 0.621
0.10 0.692 0.562 0.621
0.12 0.692 0.562 0.621
0.14 0.692 0.562 0.621
0.16 0.692 0.562 0.621
0.18 0.692 0.562 0.621
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A.6. DsrA,rpoS,U00096

φγ Sensitivity PPV F-measure
0.00 0.692 0.692 0.692
0.02 0.692 0.692 0.692
0.04 0.692 0.692 0.692
0.06 0.731 0.704 0.717
0.08 0.731 0.704 0.717
0.10 0.731 0.704 0.717
0.12 0.731 0.704 0.717
0.14 0.731 0.704 0.717
0.16 0.731 0.704 0.717
0.18 0.731 0.704 0.717

A.7. GcvB,sstT,U00096

φγ Sensitivity PPV F-measure
0.00 0.000 0.000 0.000
0.02 0.000 0.000 0.000
0.04 0.000 0.000 0.000
0.06 0.000 0.000 0.000
0.08 0.000 0.000 0.000
0.10 0.000 0.000 0.000
0.12 0.000 0.000 0.000
0.14 0.000 0.000 0.000
0.16 0.000 0.000 0.000
0.18 0.000 0.000 0.000

A.8. GlmZ,glmS,U00096

φγ Sensitivity PPV F-measure
0.00 0.467 1.000 0.636
0.02 0.467 1.000 0.636
0.04 0.467 1.000 0.636
0.06 0.467 1.000 0.636
0.08 0.467 1.000 0.636
0.10 0.467 1.000 0.636
0.12 0.467 1.000 0.636
0.14 0.467 1.000 0.636
0.16 0.000 0.000 0.000
0.18 0.000 0.000 0.000
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A.9. MicA,ompA,U00096

φγ Sensitivity PPV F-measure
0.00 0.938 1.000 0.968
0.02 0.938 1.000 0.968
0.04 0.938 1.000 0.968
0.06 0.938 1.000 0.968
0.08 1.000 1.000 1.000
0.10 1.000 1.000 1.000
0.12 1.000 1.000 1.000
0.14 1.000 1.000 1.000
0.16 1.000 1.000 1.000
0.18 1.000 1.000 1.000

A.10. MicC,ompC,U00096

φγ Sensitivity PPV F-measure
0.00 0.727 0.889 0.800
0.02 0.727 0.889 0.800
0.04 0.727 0.889 0.800
0.06 0.727 0.889 0.800
0.08 0.727 0.889 0.800
0.10 0.727 0.842 0.780
0.12 0.682 0.682 0.682
0.14 0.682 0.682 0.682
0.16 0.682 0.682 0.682
0.18 0.682 0.682 0.682

A.11. MicF,ompF,U00096

φγ Sensitivity PPV F-measure
0.00 0.960 0.923 0.941
0.02 0.960 0.923 0.941
0.04 0.960 0.923 0.941
0.06 0.960 0.923 0.941
0.08 0.960 0.923 0.941
0.10 0.960 0.923 0.941
0.12 0.960 0.923 0.941
0.14 0.960 0.632 0.762
0.16 0.960 0.632 0.762
0.18 0.960 0.632 0.762
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A.12. OmrA,cirA,U00096

φγ Sensitivity PPV F-measure
0.00 0.450 1.000 0.621
0.02 0.450 1.000 0.621
0.04 0.450 1.000 0.621
0.06 0.450 1.000 0.621
0.08 0.450 1.000 0.621
0.10 0.450 1.000 0.621
0.12 0.450 1.000 0.621
0.14 0.450 1.000 0.621
0.16 0.450 1.000 0.621
0.18 0.450 0.750 0.563

A.13. OmrA,ompR,U00096

φγ Sensitivity PPV F-measure
0.00 0.600 1.000 0.750
0.02 0.600 1.000 0.750
0.04 0.600 1.000 0.750
0.06 0.600 1.000 0.750
0.08 0.600 1.000 0.750
0.10 0.600 1.000 0.750
0.12 0.600 1.000 0.750
0.14 0.600 1.000 0.750
0.16 0.600 1.000 0.750
0.18 0.600 1.000 0.750

A.14. OmrA,ompT,U00096

φγ Sensitivity PPV F-measure
0.00 0.346 1.000 0.514
0.02 0.462 1.000 0.632
0.04 0.462 1.000 0.632
0.06 0.462 1.000 0.632
0.08 0.462 1.000 0.632
0.10 0.462 1.000 0.632
0.12 0.462 1.000 0.632
0.14 0.462 1.000 0.632
0.16 0.462 1.000 0.632
0.18 0.462 1.000 0.632
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A.15. OxyS,fhlA,U00096

φγ Sensitivity PPV F-measure
0.00 0.500 1.000 0.667
0.02 0.500 1.000 0.667
0.04 0.500 0.800 0.615
0.06 0.500 0.800 0.615
0.08 0.500 0.800 0.615
0.10 0.500 0.800 0.615
0.12 0.500 0.800 0.615
0.14 0.500 0.800 0.615
0.16 0.500 0.800 0.615
0.18 0.500 0.800 0.615

A.16. RprA,rpoS,U00096

φγ Sensitivity PPV F-measure
0.00 0.000 0.000 0.000
0.02 0.000 0.000 0.000
0.04 0.000 0.000 0.000
0.06 0.000 0.000 0.000
0.08 0.000 0.000 0.000
0.10 0.000 0.000 0.000
0.12 0.000 0.000 0.000
0.14 0.000 0.000 0.000
0.16 0.000 0.000 0.000
0.18 0.000 0.000 0.000

A.17. RyhB,fur,U00096

φγ Sensitivity PPV F-measure
0.00 0.000 0.000 0.000
0.02 0.000 0.000 0.000
0.04 0.000 0.000 0.000
0.06 0.000 0.000 0.000
0.08 0.000 0.000 0.000
0.10 0.000 0.000 0.000
0.12 0.000 0.000 0.000
0.14 0.000 0.000 0.000
0.16 0.000 0.000 0.000
0.18 0.000 0.000 0.000
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A.18. RyhB,sodB,U00096

φγ Sensitivity PPV F-measure
0.00 1.000 1.000 1.000
0.02 1.000 0.900 0.947
0.04 1.000 0.900 0.947
0.06 1.000 0.900 0.947
0.08 1.000 0.900 0.947
0.10 1.000 0.900 0.947
0.12 1.000 0.900 0.947
0.14 1.000 0.900 0.947
0.16 1.000 0.900 0.947
0.18 1.000 0.900 0.947

A.19. SgrS,ptsG,U00096

φγ Sensitivity PPV F-measure
0.00 0.739 1.000 0.850
0.02 0.739 1.000 0.850
0.04 0.739 1.000 0.850
0.06 0.739 1.000 0.850
0.08 0.739 1.000 0.850
0.10 0.739 1.000 0.850
0.12 0.739 1.000 0.850
0.14 0.739 1.000 0.850
0.16 0.739 1.000 0.850
0.18 0.739 1.000 0.850

A.20. CyaR,ompX,AE006468

φγ Sensitivity PPV F-measure
0.00 0.500 0.458 0.478
0.02 0.500 0.458 0.478
0.04 0.500 0.458 0.478
0.06 0.500 0.458 0.478
0.08 0.500 0.458 0.478
0.10 0.500 0.458 0.478
0.12 0.500 0.458 0.478
0.14 0.500 0.458 0.478
0.16 0.500 0.458 0.478
0.18 0.500 0.458 0.478
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A.21. GcvB,argT,AE006468

φγ Sensitivity PPV F-measure
0.00 0.938 0.625 0.750
0.02 0.938 0.625 0.750
0.04 0.938 0.625 0.750
0.06 0.938 0.625 0.750
0.08 0.938 0.536 0.682
0.10 0.938 0.536 0.682
0.12 0.938 0.536 0.682
0.14 0.938 0.536 0.682
0.16 0.938 0.536 0.682
0.18 0.938 0.536 0.682

A.22. GcvB,dppA,AE006468

φγ Sensitivity PPV F-measure
0.00 0.941 0.485 0.640
0.02 0.941 0.485 0.640
0.04 0.941 0.485 0.640
0.06 0.941 0.485 0.640
0.08 0.941 0.485 0.640
0.10 0.941 0.485 0.640
0.12 0.941 0.485 0.640
0.14 0.941 0.485 0.640
0.16 0.941 0.485 0.640
0.18 0.941 0.485 0.640

A.23. GcvB,gltI,AE006468

φγ Sensitivity PPV F-measure
0.00 0.500 0.231 0.316
0.02 0.500 0.231 0.316
0.04 0.500 0.231 0.316
0.06 0.500 0.231 0.316
0.08 0.500 0.231 0.316
0.10 0.500 0.231 0.316
0.12 0.500 0.231 0.316
0.14 0.500 0.231 0.316
0.16 0.500 0.231 0.316
0.18 0.500 0.231 0.316
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A.24. GcvB,livJ,AE006468

φγ Sensitivity PPV F-measure
0.00 0.955 0.955 0.955
0.02 0.955 0.955 0.955
0.04 0.955 0.955 0.955
0.06 0.955 0.328 0.488
0.08 0.955 0.328 0.488
0.10 0.955 0.328 0.488
0.12 0.955 0.328 0.488
0.14 0.955 0.328 0.488
0.16 1.000 0.344 0.512
0.18 0.955 0.328 0.488

A.25. GcvB,livK,AE006468

φγ Sensitivity PPV F-measure
0.00 1.000 0.591 0.743
0.02 1.000 0.591 0.743
0.04 1.000 0.591 0.743
0.06 1.000 0.591 0.743
0.08 1.000 0.591 0.743
0.10 1.000 0.591 0.743
0.12 1.000 0.591 0.743
0.14 1.000 0.591 0.743
0.16 1.000 0.591 0.743
0.18 1.000 0.591 0.743

A.26. GcvB,oppA,AE006468

φγ Sensitivity PPV F-measure
0.00 0.864 0.950 0.905
0.02 0.864 0.950 0.905
0.04 0.864 0.950 0.905
0.06 0.864 0.950 0.905
0.08 0.864 0.950 0.905
0.10 0.864 0.950 0.905
0.12 0.864 0.950 0.905
0.14 0.864 0.950 0.905
0.16 0.864 0.950 0.905
0.18 0.864 0.950 0.905
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A.27. GcvB,STM4351,AE006468

φγ Sensitivity PPV F-measure
0.00 0.909 0.435 0.588
0.02 0.909 0.435 0.588
0.04 0.909 0.435 0.588
0.06 0.000 0.000 0.000
0.08 0.000 0.000 0.000
0.10 0.000 0.000 0.000
0.12 0.000 0.000 0.000
0.14 0.000 0.000 0.000
0.16 0.000 0.000 0.000
0.18 0.000 0.000 0.000

A.28. MicA,lamB,AE006468

φγ Sensitivity PPV F-measure
0.00 0.217 0.417 0.286
0.02 0.217 0.385 0.278
0.04 0.217 0.385 0.278
0.06 0.217 0.385 0.278
0.08 0.217 0.208 0.213
0.10 0.217 0.208 0.213
0.12 0.217 0.208 0.213
0.14 0.217 0.208 0.213
0.16 0.217 0.167 0.189
0.18 0.217 0.167 0.189

A.29. MicC,nmpC,AE006468

φγ Sensitivity PPV F-measure
0.00 0.917 0.917 0.917
0.02 0.917 0.917 0.917
0.04 0.917 0.917 0.917
0.06 0.917 0.917 0.917
0.08 1.000 0.923 0.960
0.10 1.000 0.923 0.960
0.12 1.000 0.923 0.960
0.14 1.000 0.923 0.960
0.16 1.000 0.923 0.960
0.18 0.000 0.000 0.000



B. Sensitivity, PPV, F-measure of
IntaRNA Interaction Prediction

ncRNA, mRNA, Organism Sensitivity PPV F-measure
CyaR,luxs,U00096 0.800 1.000 0.889
CyaR,nadE,U00096 - - -
CyaR,ompX,U00096 - - -
CyaR,yqaE,U00096 0.750 1.000 0.857
DsrA,hns,U00096 0.769 0.625 0.690
DsrA,rpoS,U00096 0.808 0.778 0.792
GcvB,sstT,U00096 0.000 0.000 0.000
GlmZ,glmS,U00096 1.000 1.000 1.000
MicA,ompA,U00096 0.812 1.000 0.897
MicC,ompC,U00096 0.727 1.000 0.842
MicF,ompF,U00096 0.960 0.923 0.941
OmrA,cirA,U00096 0.300 1.000 0.462
OmrA,ompR,U00096 0.600 1.000 0.750
OmrA,ompT,U00096 0.346 1.000 0.514
OxyS,fhlA,U00096 0.375 1.000 0.545
RprA,rpoS,U00096 0.316 0.261 0.286
RyhB,fur,U00096 0.214 1.000 0.353
RyhB,sodB,U00096 1.000 0.818 0.900
SgrS,ptsG,U00096 0.739 1.000 0.850
CyaR,ompX,AE006468 0.500 0.458 0.478
GcvB,argT,AE006468 0.875 0.824 0.848
GcvB,dppA,AE006468 - - -
GcvB,gltI,AE006468 0.000 0.000 0.000
GcvB,livJ,AE006468 0.000 0.000 0.000
GcvB,livK,AE006468 1.000 0.565 0.722
GcvB,oppA,AE006468 1.000 0.957 0.978
GcvB,STM4351,AE006468 0.818 0.391 0.529
MicA,lamB,AE006468 1.000 0.821 0.902
MicC,nmpC,AE006468 1.000 0.923 0.960
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C. Source Code for Algorithm
Recursions

C.1. Ci;j

static double C(int i, int j,

PairMatrix& f, DoubleMatrix& gamma, BoolMatrix3D& pi, DoubleMatrix& avg_pi,

DoubleMatrix& avg_ED_mRNA, DoubleMatrix& avg_ED_ncRNA,

DoubleMatrix& C_ij,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA,

vector<char>& mode_base_mRNA, vector<char>& mode_base_ncRNA,

PairMatrix3D& r, StructMatrix& u)

{

double grow = MAX_DOUBLE;

double start = MAX_DOUBLE;

double ded = MAX_DOUBLE;

double oldc = MAX_DOUBLE;

double newl = MAX_DOUBLE;

Pair argmin_pq = undef;

if ((unsigned)i != rawmap_mRNA.numColumns()-1 &&

(unsigned)j != rawmap_ncRNA.numColumns()-1)

{

grow = Cgrow(i, j, f,

pi, avg_pi, avg_ED_mRNA, avg_ED_ncRNA, C_ij,

raw_mRNA, raw_ncRNA,

rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA,

r, argmin_pq, ded, oldc, newl);

}

/* ## start a new interaction at i,j ## */

start = C_start(i, j,

pi, avg_pi, avg_ED_mRNA, avg_ED_ncRNA, C_ij,

raw_mRNA, raw_ncRNA,

rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA);

34
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if (grow == MAX_DOUBLE && start == MAX_DOUBLE)

{

//return MAX_DOUBLE;

}

/* ## test which score is better */

if (grow < start && (unsigned)i != rawmap_mRNA.numColumns()-1 &&

(unsigned)j != rawmap_ncRNA.numColumns()-1)

{

Pair current(i,j);

f[i][j] = f[argmin_pq.get<0>()][argmin_pq.get<1>()];

u[i][j] = u[argmin_pq.get<0>()][argmin_pq.get<1>()];

u[i][j].insert(current);

for (unsigned x = 0; x < r.size(); ++x)

{

if (pi[x][current.get<0>()][current.get<1>()] == 1)//error?

{

r[x][i][j] = current;

}

else if (r[x][argmin_pq.get<0>()][argmin_pq.get<1>()] != undef)

{

r[x][i][j] = r[x][argmin_pq.get<0>()][argmin_pq.get<1>()];

}

}

}

else

{

Pair start(i,j);

u[i][j].insert(start);

f[i][j] = start; //set the current bp to be the final bp

for (unsigned x = 0; x < r.size(); ++x)

{

if (pi[x][i][j] == 1)

{

r[x][i][j] = start;

}

}

}

double min_score = min(start, grow);

return PHI_GAMMA*gamma[i][j] + min_score;

}
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C.2. Cstart

static double dl(int i, int p, int j, int q, int x,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA)

{

if (p == i && q == j)

{

return 0.0;

}

else if (p == i && q == j + 1) //try for 5’ dangle

{

int nextj = map_right(rawmap_ncRNA, rightmap_ncRNA, x, j);

if (nextj != -1)

{

return ed5(char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]), char2int_base(raw_ncRNA[x][nextj]));

}

else

{

return 0.0;

}

}

else if (p == i + 1 && q == j) //try for 3’ dangle

{

int nexti = map_right(rawmap_mRNA, rightmap_mRNA, x, i);

if (nexti != -1)

{

return ed3(char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]), char2int_base(raw_mRNA[x][nexti]));

}

else

{

return 0.0;

}

}

else //if (p == i+1 && q == j+1)

{

int nexti = map_right(rawmap_mRNA, rightmap_mRNA, x, i);

int nextj = map_right(rawmap_ncRNA, rightmap_ncRNA, x, j);

if (nexti == -1 && nextj == -1)

{

return 0.0;
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}

else if (nexti == -1 && nextj != -1)

{

return ed5(char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]),

char2int_base(raw_ncRNA[x][nextj]));

}

else if (nexti != -1 && nextj == -1)

{

return ed3(char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]),

char2int_base(raw_mRNA[x][nexti]));

}

else

{

return ed5(char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]),

char2int_base(raw_ncRNA[x][nextj])) +

ed3(char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]),

char2int_base(raw_mRNA[x][nexti]));

}

}

}

static double L_dx(int i, int p, int j, int q, int x,

BoolMatrix3D& pi,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA)

{

if (pi[x][i][j] == 1)

{

return (

dl(i, p, j, q, x,

raw_mRNA, raw_ncRNA, rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA) +

nonGC_penalty(raw_mRNA[x][rawmap_mRNA[x][i]],

raw_ncRNA[x][rawmap_ncRNA[x][j]])

);

}

else

{

return 0.0;

}

}
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static double L_d(int i, int p, int j, int q,

BoolMatrix3D& pi,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA)

{

double sum = 0;

for (unsigned x = 0; x < raw_mRNA.size(); ++x)

{

sum += L_dx(i, p, j, q, x, pi,

raw_mRNA, raw_ncRNA, rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA);

}

return sum/raw_mRNA.size();

}

static double C_start(int i, int j,

BoolMatrix3D& pi, DoubleMatrix& avg_pi,

DoubleMatrix& avg_ED_mRNA, DoubleMatrix& avg_ED_ncRNA,

DoubleMatrix& C_ij,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA)

{

double min_score = MAX_DOUBLE;

double temp_score = min_score;

for (int p = i; p <= min(i+1, (int)rawmap_mRNA.numColumns()-1); ++p)

{

for (int q = j; q <= min(j+1, (int)rawmap_ncRNA.numColumns()-1); ++q)

{

temp_score =

(

L_d(i, p, j, q, pi, raw_mRNA, raw_ncRNA,

rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA) +

ED(avg_ED_mRNA, avg_ED_ncRNA, i, p, j, q) +

duplex_init

);

if (temp_score < min_score)

{

min_score = temp_score;

}
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}

}

return min_score;

}

C.3. Cgrow

static double el(int i, int p, int j, int q, int x,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA)

{

unsigned pd_M = pos_diff(x, i, p, rawmap_mRNA);

unsigned pd_NC = pos_diff(x, j, q, rawmap_ncRNA);

if (pd_M == 1 && pd_NC == 1) //stacking

{

return StackingEnergy

(

char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]),

char2int_base(raw_mRNA[x][rawmap_mRNA[x][p]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][q]])

);

}

else if ((pd_M == 1 && pd_NC > 1)

|| (pd_M > 1 && pd_NC == 1)) //ncRNA bulge OR mRNA bulge

{

return BulgeEnergy

(

pd_NC+pd_M-2,

char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]),

char2int_base(raw_mRNA[x][rawmap_mRNA[x][p]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][q]])

);

}

else if (pd_M > 1 && pd_NC > 1) //interior loop

{

return InteriorLoopEnergy

(

pd_M-1,

pd_NC-1,

char2int_base(raw_mRNA[x][rawmap_mRNA[x][i]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][j]]),
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char2int_base(raw_mRNA[x][rawmap_mRNA[x][p]]),

char2int_base(raw_ncRNA[x][rawmap_ncRNA[x][q]]),

char2int_base(raw_mRNA[x][map_right(rawmap_mRNA, rightmap_mRNA, x, i)]),

char2int_base(raw_ncRNA[x][map_right(rawmap_ncRNA, rightmap_ncRNA, x, j)]),

char2int_base(raw_mRNA[x][map_left(rawmap_mRNA, leftmap_mRNA, x, p)]),

char2int_base(raw_ncRNA[x][map_left(rawmap_ncRNA, leftmap_ncRNA, x, q)])

);

}

}

static double Rstart(int i, int j, int x,

BoolMatrix3D& pi,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA)

{

double min_score = MAX_DOUBLE;

double temp_score = min_score;

for (int p = i; p <= min(i+1, (int)rawmap_mRNA.numColumns()-1); ++p)

{

for (int q = j; q <= min(j+1, (int)rawmap_ncRNA.numColumns()-1); ++q)

{

temp_score =

(

L_dx(i, p, j, q, x, pi,

raw_mRNA, raw_ncRNA, rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA) +

duplex_init/rawmap_mRNA.numRows()

);

if (temp_score < min_score)

{

min_score = temp_score;

}

}

}

return min_score;

}

static double L_x(int i, int p, int j, int q, int x,

BoolMatrix3D& pi,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA,

PairMatrix3D& r)
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{

if (pi[x][i][j] == 1 && pi[x][p][q] == 1)

{

return el(i, p, j, q, x,

raw_mRNA, raw_ncRNA, rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA);

}

else if (pi[x][i][j] == 1 && pi[x][p][q] == 0 && r[x][p][q] != undef)

{

return el(i, r[x][p][q].get<0>(), j, r[x][p][q].get<1>(),

x, raw_mRNA, raw_ncRNA, rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA);

}

else if (pi[x][i][j] == 1 && pi[x][p][q] == 0)

{

return Rstart(i, j, x, pi, raw_mRNA, raw_ncRNA,

rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA);

}

return 0.0;

}

static double L(int i, int p, int j, int q,

BoolMatrix3D& pi,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,

IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA,

PairMatrix3D& r)

{

double sum = 0;

for (unsigned x = 0; x < raw_mRNA.size(); ++x)

{

sum += L_x(i, p, j, q, x, pi,

raw_mRNA, raw_ncRNA, rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA, r);

}

return sum/raw_mRNA.size();

}

static double Cgrow(int i, int j, PairMatrix& f,

BoolMatrix3D& pi, DoubleMatrix& avg_pi,

DoubleMatrix& avg_ED_mRNA, DoubleMatrix& avg_ED_ncRNA,

DoubleMatrix& C_ij,

vector<string>& raw_mRNA, vector<string>& raw_ncRNA,
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IntMatrix& rawmap_mRNA, IntMatrix& leftmap_mRNA, IntMatrix& rightmap_mRNA,

IntMatrix& rawmap_ncRNA, IntMatrix& leftmap_ncRNA, IntMatrix& rightmap_ncRNA,

PairMatrix3D& r, Pair& argmin_pq, double& ded, double& oldc, double& newl)

{

double min_score = MAX_DOUBLE;

double temp_score = min_score;

int argmin_p = -1;

int argmin_q = -1;

int k = -1;

int l = -1;

for (int p = i+1; p <= min(i+ILOOP_SIZE, (int)rawmap_mRNA.numColumns()-1); ++p)

{

for (int q = j+1; q <= min(j+ILOOP_SIZE, (int)rawmap_ncRNA.numColumns()-1); ++q)

{

k = f[p][q].get<0>();

l = f[p][q].get<1>();

if (p <= k && q <= l)

{

temp_score = (

L(i, p, j, q, pi,

raw_mRNA, raw_ncRNA, rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA, r) + //hybridization

delta_ED(avg_ED_mRNA, avg_ED_ncRNA, i, p, k, j, q, l) + //accessibility

C_ij[p][q] //combined score to the right of current loop (DP recursion)

);

if (temp_score < min_score)

{

min_score = temp_score;

argmin_p = p;

argmin_q = q;

ded = delta_ED(avg_ED_mRNA, avg_ED_ncRNA, i, p, k, j, q, l);

newl = L(i, p, j, q, pi,

raw_mRNA, raw_ncRNA, rawmap_mRNA, leftmap_mRNA, rightmap_mRNA,

rawmap_ncRNA, leftmap_ncRNA, rightmap_ncRNA, r);

oldc = C_ij[p][q];

}

}

}

}

argmin_pq.get<0>() = argmin_p;

argmin_pq.get<1>() = argmin_q;

return min_score;

}



D. Data sets of validated interactions

D.1. AE006468

ncRNA mRNA acc.id reference
CyaR ompX AE006468 [34]
GcvB argT AE006468 [41]
GcvB dppA AE006468 [41]
GcvB gltI AE006468 [41]
GcvB livJ AE006468 [41]
GcvB livK AE006468 [41]
GcvB oppA AE006468 [41]
GcvB STM4351 AE006468 [41]
MicA lamB AE006468 [6]
MicC nmpC AE006468 [35]

D.2. U00096

ncRNA mRNA acc.id reference
CyaR luxs U00096 [11]
CyaR nadE U00096 [11]
CyaR ompX U00096 [11]
CyaR yqaE U00096 [11]
DsrA hns U00096 [22]
DsrA rpoS U00096 [23]
GcvB sstT U00096 [36]
GlmZ glmS U00096 [45]
MicA ompA U00096 [43]
MicC ompC U00096 [10]
MicF ompF U00096 [38]
OmrA cirA U00096 [16]
OmrA ompR U00096 [16]
OmrA ompT U00096 [16]
OxyS fhlA U00096 [2]
RprA rpoS U00096 [24]
RyhB fur U00096 [46]
RyhB sodB U00096 [13]
SgrS ptsG U00096 [21]
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