
Friedrich-Schiller-Universität Jena
Fakultät für Mathematik und Informatik

Pairwise Comparison of RNA Secondary
Structures via Exact Pattern Matches

Diplomarbeit
zur Erlangung des akademischen Grades

Diplom-Bioinformatiker

eingereicht von Steffen Heyne
geboren am 21. März 1980 in Dresden

Gutachter: Prof. Dr. Rolf Backofen
Prof. Dr. Stefan Schuster

Betreuer: Dr. Sven Siebert
Dr. Sebastian Will
Prof. Dr. Rolf Backofen

Jena, 07. November 2007

Dank im Besonderen an
Rolf Backofen, Stefan Schuster, Sven Siebert, Sebastian Will, Martin Mann.
Annkatrin Hammann, Anita Maercker, Janice Kielbassa, Dorothée Marth,
Ralf-Peter Weiß, Sara Sundermann, Axel Schäfer, Kris Adler, Can Senguel.
Margit Heyne, Konrad Heyne, Andrea Langwald, Rico Langwald.

Zusammenfassung
Ribonukleinsäuren (RNAs) sind in lebenden Organismen an vielen wichtigen zellulären
Prozessen beteiligt. Lange Zeit waren für RNAs nur grundlegende Zellfunktionen wie
die der mRNAs zur Informationsübertragung von DNA zu Proteinen bekannt. Die Ent-
deckung von Ribozymen sowie im besonderen Forschungen aus jüngster Zeit brachten
Funktionen für RNAs ans Tageslicht, die sonst nur mit Proteinen assoziiert wurden. So
können zum Beispiel RNAs die nicht für Proteine codieren, die Aktivierung oder Unter-
drückung von Genen sowie das Niveau der Genexpression beeinflussen. Diese und eine
vielzahl weiterer Entdeckungen haben dafür gesorgt, dass RNAs sich wieder im Blick-
punkt aktueller Forschung befinden.

Die Funktion eines RNA Moleküls wird bestimmt durch seine dreidimensionale Struktur.
Darüberhinaus sind spezifische Funktionen mit speziellen Teilstrukturen oder so genann-
ten Motiven innerhalb des RNA Moleküls verbunden. Beispiele für solche Motive sind
SECIS Elemente oder IRES Sequenzen. Das Charakteristische dieser Motive besteht in
der Kombination von sequentiellen und strukturellen Merkmalen. Für die Identifizierung
von neuen als auch von bekannten Motiven sind deshalb Vergleichsmethoden für RNAs
notwendig, die auf Sequenz und Struktur basieren. Verschiedene methodische Ansätze
existieren dafür, aber viele von diesen arbeiten nicht auf der Basis von Motiven und be-
handeln identische Teilstrukturen nicht als eine Einheit. Desweiteren sind diese Methoden
oft nicht schnell genug für große RNAs.

In der vorliegenden Diplomarbeit werden zwei Methoden für den paarweisen Vergleich
von RNA Sekundärstrukturen auf der Basis von exakten Teilstrukturen vorgestellt. Diese
Teilstrukturen werden ”Exact Pattern Matches“ genannt. Für den Vergleich werden dazu
in einem ersten Schritt eine Menge von sich überlappenden und kreuzenden Teilstruktu-
ren der beiden vorgegebenen genesteten RNA Sekundärstrukturen bestimmt. Dazu wird
der Ansatz für gemeinsame Teilstrukturen von Siebert/Backofen genutzt. Die erste neu
entwickelte Methode bestimmt nun die größte globale Teilmenge von sich nicht kreuzen-
den und nicht überlappenden Teilstrukturen von zwei gegebenen RNAs. Dieses Problem
wird als Longest Common Subsequence of Exact RNA Patterns bezeichnet und
steht in Verbindung zum bereits bekannten LAPCS Problem. Zur Lösung wird ein dy-
namischer Programmieralgorithmus entwickelt, welcher dieses Problem in O(n2m2) Zeit
und O(nm) Speicherplatz löst. Die zweite entwickelte Methode findet lokale Cluster von
exakten Teilstrukturen. Ein Cluster ist eine Anordnung von sich nicht kreuzenden und
nicht überlappenden Teilstrukturen mit einer zusätzlichen Distanzbedingung zwischen
einzelnen Teilstrukturen des Clusters. Die entwickelte ”Clustering Strategie“ für die Be-
stimmung von Clustern ist schnell und flexibel für verschiedene analytische Probleme.
Beide Methoden wurden mit zwei Hepatitis C Virus IRES RNAs und zwei 16S riboso-
malen RNAs getestet. Die Ergebnisse zeigen, dass beide Methoden klare Ähnlichkeiten
zwischen zwei RNA Sekundästrukturen auf schnelle Weise finden können.

Abstract
In living organisms, ribonucleic acids (RNA) are involved in important cellular processes.
For a long time, only basal functions had been known for RNAs like messenger RNAs
as the information carrier between DNA and proteins. The discovery of ribozymes and
especially recent findings revealed functions for RNAs formerly assumed only for proteins.
For example, RNAs that do not code for proteins can influence processes like the acti-
vation and repression of genes as well as the regulation of gene expression levels. These
discoveries set RNAs in the focus of current research.

The function of an RNA molecule is determined by its three-dimensional structure. More-
over, specific functions are associated to specific substructures or motifs within an RNA
molecule. Examples are SECIS elements, iron-responsive elements and IRES sites. The
key feature for such motifs is usually a combination of sequential and structural prop-
erties. Sequence-structure based comparison methods are necessary to identify already
known motifs as well as putative new motifs. Different approaches exist which deal with a
sequence-structure comparison of RNA molecules, but most of them are not motif-based
and they do not treat identical substructures as hole unit. Further, they are often not
fast enough for large RNAs.

In this thesis we have developed two pairwise comparison methods on the basis of exact
matching substructures, called exact pattern matches. In a first step, a set of overlapping
and crossing substructures for two nested RNA secondary structures is found with the
approach of pairwise common substructures from Siebert/Backofen. Our first method
deals with the task to identify the best global subset of Non-Crossing exact pattern
matches for two given RNAs. In relation to the LAPCS problem, we call this problem
the Longest Common Subsequence of Exact RNA Patterns. The developed
dynamic programming algorithm needs O(n2m2) time and O(nm) space. Our second
approach detects (local) clusters of exact pattern matches. A cluster is a Non-Crossing
arrangement of exact pattern matches with a distance constraint between the substruc-
tures included in a cluster. The developed clustering strategy to find clusters is fast and
flexible enough for different analytical problems. We have tested both methods with two
Hepatitis C virus RNAs and two 16s ribosomal RNAs. The results show that both meth-
ods are able to identify significant similarities between two RNA secondary structures in
a fast way.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Related Work . 8
1.3 Contribution . 10
1.4 Overview . 10

2 Preliminaries 13
2.1 Ribonucleic Acid (RNA) . 13
2.2 Motifs and Locality . 18
2.3 Pairwise Sequence-Structure Comparison 20

2.3.1 Sequence-Based Comparison . 20
2.3.2 Sequence-Structure Comparison . 24

2.4 General Edit Distance of RNA Structures 26
2.4.1 Edit Operations and Problem Description 26
2.4.2 A polynomial time algorithm for EDIT(Nested, Nested) 28

3 Exact Matchings in RNA Structures 31
3.1 Basic Definitions for Matchings . 31
3.2 Properties of the Set of Exact Pattern Matches 36
3.3 Structural Definitions on Exact Pattern Matches 39
3.4 A Fast Method to Detect Exact Pattern Matches 44

4 The Longest Common Subsequence of Exact RNA Patterns 49
4.1 Problem Description for LCS-ERP . 49
4.2 Dynamic Programming Algorithm for LCS-ERP 51
4.3 Correctness and Complexity . 55

5 A Local Clustering Strategy for Exact Pattern Matches 59
5.1 Local Clusters of Exact Pattern Matches 59
5.2 Distance Methods . 60

5.2.1 DISTANCE-SEQUENCE . 60
5.2.2 DISTANCE-SEQUENCE-EQUAL 61
5.2.3 DISTANCE-STRUCTURE-SHORTESTPATH 62

5.3 Clustering Strategies . 63
5.4 The Pairwise Pattern Clustering Algorithm 65

5.4.1 Preprocessing . 65
5.4.2 Clustering . 66
5.4.3 Complexity Analysis . 71

6 Contents

6 Results 73
6.1 Implementation of LCS-ERP and Clustering 73
6.2 Comparison to other Methods . 74
6.3 Application of LCS-ERP and Clustering 75

6.3.1 Hepatitis C Virus IRES RNAs . 76
6.3.2 16S Ribosomal RNAs . 83
6.3.3 Summary for the Clustering Parameters 89

6.4 Discussion of Results . 89
6.4.1 The LCS-ERP Approach . 89
6.4.2 The Clustering Approach . 91

7 Discussion 93
7.1 Conclusion . 93
7.2 Open Problems and Future Work . 94

A Comparative Alignments 95
A.1 RNA align applied to two Hepatitis C Virus IRES RNAs 95
A.2 RNAforester applied to two Hepatitis C Virus IRES RNAs 96
A.3 RNA align applied to two 16S rRNAs . 98
A.4 RNAforester applied to two 16S rRNAs 100

B Additional Results 103
B.1 Clustering applied to two 16S rRNA . 103
B.2 Clustering applied to two Hepatitis C virus IRES RNAs 106

C MCS algorithm 107
C.1 Pseudocode for the MCS-algorithm . 107
C.2 MCS-algorithm applied to two Hepatitis C virus IRES RNAs 109

Bibliography 111

List of Figures 115

List of Tables 117

List of Algorithms 119

Chapter 1

Introduction

1.1 Motivation

Ribonucleic acid (RNA) is an important biopolymer which attracts more and more re-
searchers’ attention since recent discoveries have revealed its wide range of functions in
living organisms. For a long time it has been assumed that only proteins can catalyze
biochemical reactions. With the discovery of the first ribozyme in 1980, a catalytic ac-
tive RNA that facilitates its own splicing, the view on RNA as a simple carrier between
DNA and proteins started to crumble. The “breakthrough“ in RNA research has then
been proclaimed in 2002 by the readers of the Science journal for the numerous newly
discovered functions for small RNAs [Cou02].

The group of functional RNAs which are not translated into proteins are often summarized
as non-coding RNAs (ncRNA) and they are involved in different cellular processes. For
example, the translation machinery (ribosome) is built to a large extent of ribosomal
RNAs (rRNA). Transfer RNAs (tRNA) here realize the translation of codons into amino
acids. In the spliceosome RNAs guarantee the exact cleavage of introns.

Recent findings for RNAs add especially functions formerly assigned to proteins. Exam-
ples are the influence of RNAs in the activation or repression of genes as well as their
potential to control the expression levels of genes. There are even indications that RNAs
take part in the cell development [Cou02].

Understanding this broad range of different functions, an analysis of the concrete three-
dimensional structure of RNA molecules is necessary. Comparison methods revealed that
specific functions are associated to specific motifs in the RNA structure. For example, the
presence of a SECIS element in the 3’ untranslated (UTR) mRNA region of mammalians
facilitates the integration of the 21st amino acid selenocysteine in the peptide chain of
proteins. The key feature within the SECIS element is the combination of sequential and
structural properties that form the motif [KCN+03, WSPB97, FCDK01].

The task of bioinformatical approaches is to provide automatic methods for RNA molecules
which identify such motifs as well as identify putative new motifs. For example, see the
conserved structural pattern in figure 1.1. The indicated substructure could represent a
necessary part of the SECIS motif in this organism. Furthermore, one can think about
motifs which consist of several such substructures [SB07].

8 Chapter 1 Introduction

Figure 1.1: Putative SECIS elements in non-coding regions of Methanococcus
jannaschii according to [WSPB97]. The indicated substructure is found by the
MCS algorithm and represents an exact pattern match. Figure taken from [Sie06].

The computational problem is the high complexity of the structural interactions in an
RNA molecule. Nevertheless, most of the known motifs can be described reasonable on
the basis of nested secondary structures. This makes the motif-finding problem tractable
for algorithms and there exist several methods for the comparison of RNA molecules.
However, most methods treat at least a base-pair as a whole unit and common substruc-
tures are not part of their ”alphabet“ [BMR95, JLMZ02]. This could be a drawback for
the discovery of motifs comprising different substructures. Moreover, existing methods
are often not fast enough for large RNAs. This motivates the development of motif-based
and fast approaches for the comparison of two RNA molecules.

In this thesis we deal with this task and develop two fast pairwise sequence-structure
comparison methods based on identical substructures between two given RNA secondary
structures. The first method aims on global similarities whereas the second method tries
to find clusters of common substructures.

1.2 Related Work

Several methods exist which address the problem of sequence-structure comparison for
RNA molecules. Based on the given structural information, one can distinguish three
main approaches. If no structural information is given at all, Sankoff-like methods try
to predict the secondary structure along with a sequence alignment [San85]. Another
group of methods try to derive a secondary structure for a given RNA sequence from
another RNA with its primary and secondary structure [BMR95, LRV98]. A third group
of methods compare two RNAs given with their primary and secondary structures. This
type of RNA sequence-structure comparison best represents the approach treated in this
thesis. Here one can further distinguish global and local methods.

Global Comparison Methods

Due to the complex base pairings, RNA structures are in general crossing structures.
However, this class of RNA structures is algorithmically hardly tractable, because the

1.2 Related Work 9

comparison problem becomes easily NP-hard. In the case of pairwise comparison this is
often denoted as Problem(Type1,Type2), whereby the two types describe the complex-
ity of the given RNA secondary structures. A standard comparison approach is the com-
putation of edit distances between given RNAs, but even the problem Edit(Crossing,
Plain) is MAX-SNP-hard [JLMZ02]. The most tractable variant for the comparison of
RNA structures is the reduction to nested RNA secondary structures. But the problem
Edit(Nested,Nested) is still NP-hard. With some restrictions to the scoring scheme
methods exist, which achieve a pairwise comparison in polynomial time. In the field of
global alignment-based methods, which allow mismatches and gaps, the most prominent
approach is given by Jiang et al. with the general edit distance for RNA secondary struc-
tures [JLMZ02]. See section 2.4 for more details and how this is achieved for the edit
distance problem. Previous proposed structural alignment methods have treated base
pairs as a whole [BMR95].

With the focus on exact matchings, the LAPCS problem (longest arc-preserving common
subsequence) received much attention in literature in the last years [Eva99]. Here the
problem is to find an arc-preserving subsequence from two given RNA structures. The
problem LAPCS(Nested,Nested) is NP-hard as well but there exist several approxi-
mation algorithms [JLMZ00].

In contrast to these methods based on arc-annotated sequences a tree representation for a
nested secondary structure is possible as well. These representations are shown in figure
2.4 c) and 2.4 d). Tree-based methods are proposed by Zhang and Shasha [ZS89] for the
edit distance between two ordered labeled trees as well as by Jiang et al. for the alignment
of trees [JWZ95]. An improved version of the tree alignment method with the extension to
global and local forest alignments is given by Höchsmann et al. (RNAforester) [HTGK03].
Two general drawbacks of tree alignment methods are discussed in section 2.3.2.

Local Comparison Methods and Related Approaches

Local comparison approaches are suitable for the search of sequence-structure motifs in
RNA. A local alignment-based method is the local sequence-structure alignment algo-
rithm (LSSA), with a scoring scheme comparable to the general edit distance [BW04].
The approach from Gorodkin et al. identifies common stem loops in different RNA struc-
tures [GSS01]. The RNAforester algorithm handles local alignment by finding the most
similar subtree [HTGK03].

The problem of exact sequence-structure patterns is handled by the maximum common
substructure algorithm from Siebert and Backofen [SB07]. This method identifies all
exact common substructures for two given nested RNA secondary structures. The main
advantage of this approach is that the algorithm needs only O(nm) time to compute all
substructures for two RNAs.

In general, protein structure alignment is related to RNA structure alignment if the three-
dimensional structure is known. These are for example methods as from Gerstein et al.
[GL98]. Further, protein contact maps are a structural representation which is related to
crossing secondary structures [LCWI01].

10 Chapter 1 Introduction

1.3 Contribution

Like mentioned above, the maximum common substructure (MCS) algorithm from Siebert
and Backofen [SB07] aims at exact matching substructures between two RNA secondary
structures. Moreover, its fast O(nm) running time is at least two magnitudes faster than
most sequence-structure comparison methods.

With the motivated importance of sequence-structure motifs for the large variety of RNA
functions, the question arises if the found substructures from the MCS algorithm can
be used for a pairwise RNA comparison method. The fact that these substructures can
represent parts of sequence-structure motifs like for SECIS elements [WSPB97] (see figure
1.1) and that each substructure comprises at least two nucleotides, encourages their usage
for a motif-based comparison [SB07]. In addition, the running times of related methods
demand for faster algorithms which still yield reasonable results.

In this thesis we present two approaches which are based solely on a precomputed set of
exact sequence-structure patterns from two given nested RNA secondary structures. We
call these exact substructures exact pattern matches (EPMs). Although the MCS algorithm
is able to compute all exact pattern matches, the matchings itself overlap and cross each
other. Algorithms are needed in order to find meaningful subsets of EPMs which represent
pairwise similarities between the considered RNAs. For this goal we have developed a
suitable Non-Crossing notion for exact pattern matches.

In relation to the LAPCS problem, our first method identifies the best global subset
of exact pattern matches for two RNAs. We call this problem the Longest Common
Subsequence of Exact RNA Patterns (LCS-ERP) and propose an O(n2m2) time
and O(nm) space dynamic programming algorithm to solve it.

The second approach tries to identify clusters of EPMs. A cluster is defined as an arrange-
ment of exact pattern matches with a distance constraint, i.e. the distance between two
EPMs is below a given threshold value. This opens the possibility of differently defined
distance functions. The proposed algorithm uses a greedy strategy to find such clusters
in a fast way [Cor01].

Both methods were applied to two pairs of RNA molecules and the results are compared to
the solutions found by state-of-the-art approaches RNA align and RNAforester [JLMZ02,
HTGK03].

1.4 Overview

In chapter 2 we give some preliminaries for the later developed methods. We introduce
different formalisms for the representation of RNA structures and explain two sequence-
structure motifs in detail. In the following we explain basics about related comparison
methods like sequence comparison methods as well as sequence-structure comparison
methods. In chapter 3 we introduce all notions about exact pattern matches and how
they are obtained by the MCS algorithm. We give all necessary definitions on exact pattern
matches needed for their algorithmic usage.

1.4 Overview 11

Chapter 4 and 5 now present the two developed approaches. The LCS-ERP problem
as well as the dynamic programming algorithm to solve it is explained in chapter 4.
The proposed clustering algorithm with the different clustering strategies and distance
functions is presented in chapter 5.

Chapter 6 shows the achieved results for both methods applied to two pairs of RNA
molecules. The solution obtained by the LCS-ERP algorithm is also compared to two
existing methods. At the end of this chapter follows a discussion of the results. Chapter
7 concludes this thesis with an outlook for future work.

Chapter 2

Preliminaries

This chapter gives at first an overview of the biopolymer ribonucleic acid (RNA). Starting
with its biochemical properties in section 2.1, we explain next the different levels of
abstraction needed for RNA comparison methods. In section 2.2 we describe two motifs
as examples for functional sequence-structure motifs in RNA. In the following section
2.3 we give basic aspects of pairwise sequence structure comparison. Finally we review
in section 2.4 the general edit distance algorithm from Jiang et al. as the most general
method for this task.

2.1 Ribonucleic Acid (RNA)

Nucleic acids are biopolymers which consist of covalently linked nucleotides. In the case
of ribonucleic acid (RNA) a nucleotide is composed of a heterocyclic base, a ribose and a
phosphate group. The nucleotides are linked together by a phosphodiester bond between
the 3’ carbon and the 5’ carbon of adjacent ribose rings. This chain forms the backbone of
each RNA molecule. Additionally, each ribose is linked with either a purine or pyrimidine
base. Possible purine bases are adenine (A) and guanine (G) and possible pyrimidine
bases are cytosine (C) and uracil (U). DNA in comparison to RNA uses thymine instead
of uracil as well as a deoxyribose. Uracil is very similar to thymine, but energetically less
expensive to produce. Figure 2.1 below illustrates the backbone linkage and the chemical
structure of the four bases. In the following we define different levels of abstraction for
the structure of RNA molecules and give examples for their representation.

Primary Structure

The asymmetric linkage of the nucleotides induces a direction on the strand. By con-
vention, the 5’ end denotes the starting point and determines therewith the order of the
linked bases as well. This sequence of nucleotides is called primary structure and is de-
fined as follows. We assume throughout this work for every RNA the four letter alphabet
Σ = {A,C,G,U} as abbreviation for the above mentioned bases.

Definition 2.1.1 (Primary Structure)
Let Σ be a finite alphabet of nucleotides. A primary structure S is a sequence of nucleotides
S = 〈s1, s2, ..., sn〉, where n ∈ N and si ∈ Σ, for 1 ≤ i ≤ n.

14 Chapter 2 Preliminaries

Figure 2.1: The left image shows the linkage between the nucleotides. The right
image shows the four standard bases with the two standard Watson-Crick pairs.

With |S| we denote the length of the sequence S and S[i] denotes the nucleotide at position
i in sequence S. With S[i...j] we indicate a substring from S[i] to S[j] for 1 ≤ i < j ≤ |S|.
Please note that it is unimportant at this level of abstraction to distinguish between bases
and nucleotides. Therefore we refer to both terms equally.

Due to the fact that the primary structure determines the three-dimensional shape to a
large extend for many kinds of biopolymers, it is often sufficient to compare RNAs on this
data. From a sequence with a known structure one can infer the structure of homologous
sequence. In the first place the primary structure enables to find homologous sequences
and provide therewith the basis for many alignment methods given in section 2.3. An
example for a primary sequence is shown in figure 2.2.

Secondary Structure

Most RNAs occur as single stranded molecules that fold back onto itself. The formed
structure is stabilized by hydrogen bonds between certain pairs of bases and stacking
interactions between neighbouring base pairs. The most prominent base pairs are formed
between G-C, A-U and G-U bases, ordered by their strength. The first two are usually
called canonical base pairs and are shown in figure 2.1, the G-U pair is a wobble base
pair. In fact, in nature exist a vast variety of base pairs and nearly all combinations
occur even base triplets. But their contribution to the overall stability is minor. For
more information see books like ”The RNA world“ [GCA06].

The following definition formalizes the structural interactions between bases. We call a
set of base pairs secondary structure. It is assumed that only pairs of bases are allowed
and that each base take part in at most one base pair.

Definition 2.1.2 (Secondary Structure)
Given a primary structure S, a secondary structure B over S is a set of pairs B =
{(i, i′) | 1 ≤ i < i′ ≤ |S|}, where the tupel (i, i′) represents positions in S and indicate

2.1 Ribonucleic Acid (RNA) 15

a hydrogen bond between S[i] and S[i′]. Further it is required that no two base pairs
(i, i′), (j, j′) ∈ B share an endpoint, i.e.

∀(i, i′), (j, j′) ∈ B : i 6= j′, i′ 6= j and i = j ⇐⇒ i′ = j′ .

Figure 2.2 shows an example of a secondary structure with indicated base pairs.

Tertiary Structure

The tertiary structure of an RNA describes the three-dimensional arrangement of its
atoms and further structural motifs like helical regions. Although the previous abstraction
levels are reasonable, the tertiary structure is the key to understand all biological functions
and activities of the considered molecule. The main problem is to acquire this data. Our
knowledge of exact tertiary structure information is mainly obtained from methods like
X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy [GCA06].
These methods are still expensive and time consuming.

Approaches exist which try to predict the secondary and tertiary structure information
from the primary structure alone. Methods like RNAfold try to predict the thermody-
namically most stable secondary structure [HFS+94]. However, the process of folding in
vivo is influenced by different parameters and factors as well. Figure 2.2 shows a tertiary
structure model for a yeast PHE-tRNA obtained from X-ray diffraction (Protein Data
Bank accession id: 1EHZ [BWF+00]).

10 20 30 40 50 60 70

5' GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACAA 3'

Primary Structure

Secondary Structure Tertiary Structure

Figure 2.2: Three levels of structural information for a yeast PHE-tRNA. The
tertiary structure is taken from the Protein Data Bank, PDB id: 1EHZ.

16 Chapter 2 Preliminaries

Nested RNAs

The increased degrees of freedom in a tertiary structure are computationally hard to treat.
Therefore we focus in this thesis on the secondary structure as additional information.
Depending on a given set of base pairs according to definition 2.1.2, one can distinguish
different classes of secondary structures. This is necessary because even on the basis of
the secondary structure comparison problems become easily NP-hard.

Definition 2.1.3 (Classes of Secondary Structures)
Given a primary structure S and a secondary structure B over S. Then the secondary
structure B is called

Crossing : if there is at least one crossing base pair in B, i.e.
∃(i, i′), (j, j′) ∈ B with i < j < i′ < j′,

Nested : if any two base pairs (i, i′), (j, j′) ∈ B are either independent, i.e.
i < i′ < j < j′, or nested, i.e. i < j < j′ < i′,

Plain : if there are no base pairs at all, i.e. B = ∅.

Note, that the term tertiary structure is also associated to a Crossing secondary struc-
ture. Specific crossing base pairs are also called pseudoknots [SB05]. Figure 2.4 d) shows
a secondary structure which contains crossing base pairs.

For the pairwise comparison of RNAs these classes determine the complexity of the align-
ment or edit distance problem. For example, it is shown by Jiang et al. that even the edit
distance for Edit(Crossing,Plain) is MAX-SNP-hard [JLMZ02]. With a restriction to
the scoring scheme it exists a polynomial time algorithm for Edit(Nested,Nested).
Details on these problems are given in sections 2.3 and 2.4.

The two approaches we develop in this thesis require nested RNA secondary structures.
If it is not mentioned differently, we assume throughout this work RNAs given with a
nested secondary structure. For example, figure 2.2 shows a nested secondary structure.
We define an RNA molecule with a nested secondary structure as follows.

Definition 2.1.4 (RNA)
Given a primary sequence S and a nested secondary structure B over S. The according
RNA R is denoted by the pair

R = (S,B)

Structural Elements

Due to the fact that we consider only single stranded RNA molecules, each base pair
(i, j) ∈ B encloses a chain of nucleotides from S(i+ 1) to S(j− 1). Such a chain is called
loop and bases from this loop can form base pairs as well. The resulting structure can be
discriminated in six different structural elements. Normally such a loop decomposition
is used to determine the energy contributions for the different elements. We use it espe-
cially as reference for different shapes of pattern. Figure 2.3 summarizes the structural
elements.

2.1 Ribonucleic Acid (RNA) 17

Figure 2.3: Loop decomposition for a nested RNA secondary structure. Figure
taken from [Sie06]

Considering a base pair (i, j) ∈ B. If all nucleotides within S[i+ 1 . . . j − 1] are not part
of a base pair, this element is called hairpin loop. Now we consider a second base pair
(h, l) ∈ B such that i < h < l < j. Depending on the number of nucleotides between
i and h as well as between l and j, we distinguish the following elements. If there is at
least one nucleotide between i and h and l = j + 1, then this is a left bulge and if there
is at least one nucleotide between l and j and h = i + 1, then this is a right bulge. If
both pairs are not adjacent, this is called internal loop. The case of two adjacent base
pairs is called stack. A several number of stacking base pairs is called stem. If there are
several stems which branch inside base pair (i, j), this is called multi-loop.

Representations of Secondary Structures

Different approaches for the comparison of secondary structures require alternative ways
of representation. In figure 2.2 we have already used the two-dimensional structure plot.
This is the most convenient way of representation and is the best approximation of the
underlying tertiary structure. We use this format especially to indicate the found solutions
from our approaches.

Another widespread format is the dot-bracket notion for secondary structures shown in
figure 2.4 a). Here a sequence is simply annotated with a sequence of dot and bracket
symbols for the representation of the secondary structure. Dots indicate unbound bases
and brackets indicate an outgoing hydrogen bond. This text-based format is often used
as input format for programs like RNAfold. Our implementation uses this format as well.
The tree representation from figure 2.4 c) is necessary for tree based algorithms like the
tree edit distance algorithm [ZS89].

Figure 2.4 d) shows an arc-annotated sequence. Here arcs represent base pairs. This
representation is beneficial to indicate edit operations on single bases and base pairs in
one figure. For example see figure 2.7. Arc-annotated sequences are also used to indicate
common subsequences.

18 Chapter 2 Preliminaries

(((((((..((((........)))).((((.........)))).....(((((.......))))))))))))....

5' GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACAA 3'

a) dot-bracket representation

b) circular representation c) tree representation

d) arc-annotated sequence (Crossing)

Figure 2.4: Different possibilities to represent an RNA secondary structure. All
figures show a yeast tRNA. Please note that figure c) is a slight different tRNA
and figure d) includes crossing base pairs. Figures b) and d) are generated with
jViz.RNA [WG06], figure c) is taken from [Sie06].

2.2 Motifs and Locality

Motif is a widely used term in biology with different meanings. In terms of RNA a motif
is often a three-dimensional part of the RNA molecule with a known or implied function
in several RNA molecules. Well known examples are iron-responsive elements (IRE),
selenocysteine insertion sequences (SECIS), internal ribosomal entry sites (IRES) and
different riboswitches. A good resource for different kinds of motifs is the Rfam database
[GJMM+05].

The IRE motif is a small stem with a hairpin. The function of IREs is to bound to iron-
responsive proteins (IRP) which are involved in the iron metabolism. For example, the
mRNA of ferritin (an iron storage protein) contains an IRE in the 5’ UTR. When the iron
concentration is low, other IRPs bind to the IRE which leads to translation repression.

A SECIS element is a structural motif that directs the cell to translate the UGA codon
as selenocysteine. Normally the UGA codon is the stop codon. This is fundamental for
selenoproteins which contain one or more selenocysteine residues. Figure 2.5 shows a set
of mammalian SECIS elements occurring in different 3’ UTR mRNA regions.

IRES elements occur often in viral genomes. They allow the translation of the virus’
RNA in a cap-independent manner. IRES elements bind to the 40S ribosomal subunit

2.2 Motifs and Locality 19

Figure 2.5: A sample set of mammalian SECIS elements with the consensus motif
AUGA-AA-GA. Figure according to [KCN+03].

and initiate the translation of the viral mRNA. A riboswitch is a structural motif in
mRNAs that can bind a target molecule. The absence or presence of this target molecule
affects the gene’s activity.

These mentioned motifs provide a classification based on their function. A different
classification is based on their structure. According to the introduced structural levels in
section 2.1 we can distinguish sequence based motifs and sequence-structure based motifs.
This leads to the following view of locality.

Note on Locality

The comparison of RNAs reveal that motifs have a sharp locality, i.e some parts of
the molecules share a great similarity, whereas other parts are unrelated. Considering
the primary structure alone, motifs can be described as pairs of subsequences. The
nucleotides of these subsequences are connected via backbone bonds which constitutes
their dependency. Local sequence alignment methods find local motifs in this way.

However, considering motifs like shown in figure 1.1 as well as the given examples above,
these motifs express a different locality. Here the indicated motif is not local if only
the primary structure is considered. The apparent similarity and locality is given by
sequential and structural features together, notably the included base pairs. Biologically
this is meaningful because sequence and structure is conserved during evolution.

This view imply the definition of a motif as (connected) substructure and provide the
basis for the developed methods in this thesis. The maximum common substructure al-
gorithm from Siebert and Backofen [SB07] described in section 3.4 is able to find such
local sequence-structure relationships. This algorithm identifies all exact matching sub-
structures between two RNAs. For example. the substructure shown in figure 1.1 can
be found with this algorithm. With the same view on locality but with the focus on
inexact matchings, the local sequence-structure alignment (LSSA) algorithm can be used
[BW04].

20 Chapter 2 Preliminaries

2.3 Pairwise Sequence-Structure Comparison

Pairwise comparison of RNA or DNA sequences is an essential task in biological sequence
analysis with two main goals. According to the theory of evolution, sequences are derived
from common ancestral sequences. First, it is interesting to trace the evolutionary history
of mutations and other evolutionary changes. Sequence comparison in this context is
understood as a measure of the evolutionary relatedness, called homology. The second line
tries to figure out similar sequences or regions with putative similar functions. Due to the
fact that a biological function in RNAs often coincides with similar structural properties
as shown in section 2.2, the incorporation of structural information is mandatory. The
approaches developed in this thesis follow this line of research.

From a theoretical point of view the similarity or homology of two sequences can be mea-
sured with the number of mutations, insertions and deletions of bases which are necessary
to transform one sequence into the other. First, we introduce this concept for sequences
alone and afterwards we give an overview in which way secondary structure information
can be incorporated. A different measure for similarity are common subsequences. We
introduce this concept for sequences and sequences with additional structural informa-
tion.

2.3.1 Sequence-Based Comparison

The comparison of sequences can bee seen under two different aspects. The first tries to
quantify the similarity between two sequences whereas the other focus on their distance.
A similarity measure associates a numeric value with a pair of sequences with the idea that
a higher value indicates greater similarity. In biology similarity measures are associated
with alignments which shows the conserved regions. The concept of distance is dual to
this with the idea that a larger distance imply a smaller similarity and vice versa.

The simplest notion of distance is the so-called Hamming Distance [Gus97]. For two
sequences of equal length the number of different characters is count. A more general
distance measure is defined as the minimum number of edit operations to transform one
sequence into the other. In order to compare sequences with different lengths, an addi-
tional gap symbol “-” is needed. The permitted edit operations are defined as follows.

Definition 2.3.1 (Edit Operation)
Given an finite alphabet Σ, we define an edit operation as pair

(x, y) ∈ (Σ ∪ {−})× (Σ ∪ {−}).

Further we call an edit operation (x, y)

insertion, if x = − and y ∈ Σ,
deletion, if x ∈ Σ and y = −,

substitution, if x, y ∈ Σ with x 6= y.

2.3 Pairwise Sequence-Structure Comparison 21

In the following we assume two given sequences a, b over a finite alphabet Σ. Then we
write a →(x,y) b if sequence b can be obtained from sequence a by a replacing of one
occurrence of x by y, or by deleting one occurrence of x (if y = −), or by inserting one
occurrence of y (if x = −). Usually a single edit operation is not sufficient to transform
one sequence into the other. Then we need a sequence of edit operations E = e1, . . . , er
with a = a(0) →e1 a

(1) →e2 · · · →er a
(r) = b. In short we will write this as

a⇒E b .

The edit operations insertion and deletion can be seen as symmetric cases and in biology
they often combined as indel operation. With these definitions it is possible to formulate
optimization problems on edit distances. The edit transcript that comprises the minimal
number of edit operations is the so-called Levenshtein Distance [Gus97]. More general
approaches assign a weight ω(x, y) to edit operations and score the cost of a sequence of
edit operations E = e1, . . . , er as

ω(E) =
r∑

i=1

ω(ei) .

Such a weight-based cost function allows a good adaptation to different problems and
scenarios in biology. Now we can formulate the general optimization problem for edit
distances as follows.

Definition 2.3.2 (Edit Distance)
Let Σ a finite alphabet and a, b two sequences over Σ. Further let ω : (Σ ∪ {−}) × (Σ ∪
{−}) → R a cost function and E a sequence of edit operations. Then we define the edit
distance of a, b as

dω(a, b) = min{ω(E) | a⇒E b}.

Obviously the solution depends mainly on the chosen cost function. A reasonable class of
cost functions is defined as metric. This imply that equal sequences have no distance, i.e.
if a = b then d(a, b) = 0, as well as the cost function is symmetric, i.e. d(a, b) = d(b, a).
Further, a metric holds the triangle inequality, i.e. d(a, c) ≤ d(a, b) + d(b, c).

Sequence Alignment

Like introduced above, alignments are strongly related to the problem of edit distances.
Therefore it is possible to solve both problems with a similar method. In the following
we first define alignments in general. Second we show in short their relationship to edit
distances. Then we describe a standard method to solve both problems.

Definition 2.3.3
Let Σ be a finite alphabet without the gap symbol, i.e. − 6∈ Σ, and a, b two sequences over
Σ. Further let ΣA the alignment alphabet (Σ∪ {−}). Two sequences â, b̂ over ΣA denote
a pairwise alignment A if

1. The aligned sequences have equal length, i.e. |â| = |b̂|,

22 Chapter 2 Preliminaries

2. Sequence â gives a and sequence b̂ gives b if all gaps are removed,

3. There is no position i such that âi = − = b̂i.

For example suppose two sequences a =AUGCACAGAA and b =AUCCGACGAC. A possible
alignment is

â = AU--GCACAGAA
b̂ = AUCCG-AC-GAC

Similar to the cost of an edit transcript, we can define the cost of an alignment as
ωA(â, b̂) =

∑|â|
i=1 ω(âi, b̂i). Now we can measure the distance of an alignment similar to

the edit distance as

dAω (a, b) = min{ωA(â, b̂) | (â, b̂) is alignment of (a, b)}.

In other words, the alignment (â, b̂) is optimal if dAω (a, b) = ωA(â, b̂). The important
implication is that for every alignment (â, b̂) of (a, b) there exists a sequence of edit
operations E such that a ⇒E b and ω(E) = ωA(â, b̂) for a metric cost function ω.
Second, for every sequence E such that a⇒E b, there exists an alignment (â, b̂) of (a, b)
that hold ω(â, b̂) ≤ ω(E).

For more details on sequence alignments and edit distances we refer to standard liter-
ature like [Gus97, CB00]. Summarizing, there are three important implications as a
consequence from cost models for sequence alignment:

1. The cost of an alignment of two sequences a and b is the sum of the costs of all edit
operations that lead from a to b.

2. An optimal alignment of a and b is an alignment which has minimal cost among all
possible alignments.

3. The edit distance of a and b is the cost of an optimal alignment of a and b under a
cost function ω.

Global Sequence Alignment Methods

Due to the strong relation between edit distances and optimal alignments it is possible to
solve both problems with similar methods. Today exists a vast variety of algorithms for
sequence alignment with different approaches. Most of them use dynamic programming
(DP) techniques for finding optimal solutions in an efficient manner. The main idea of DP
is constructing the overall optimal solution from optimal subproblems. Richard Bellman
introduced this technique in the 1940s. The central result of dynamic programming is a
single recursion formula for the optimization problem.

Basically, one can distinguish between methods which find alignments covering the whole
sequence and methods which calculate optimal local alignments covering only subse-
quences. Global methods are useful for comparing sequences of a functional family of

2.3 Pairwise Sequence-Structure Comparison 23

different species whereas local methods are used to find particular domains or functional
subunits. First methods for global sequence alignment were given by Needlemann and
Wunsch [NW70] and Gotoh (affine gap cost) [Got82]. First local methods were developed
by Smith and Waterman [SW81] and Altschul et al. (BLAST) [AGM+90].

In the following we give some details for the Needleman-Wunsch algorithm as one of the
first approaches for global sequence alignment. Given a metric cost function ω and two
sequences S1 and S2, the recursion formula to obtain an optimal alignment is given as

D(i, j) = min

D(i− 1, j − 1) + ω(S1[i], S2[j])
D(i− 1, j) + ω(S1[i],−)
D(i, j − 1) + ω(−, S2[j])

(2.1)

with 1 ≤ i ≤ |S1| and 1 ≤ j ≤ |S2|. The three cases indicate in which way a sin-
gle field in a 2-D matrix is filled. The matrix needs an appropriate initialization of
D(0, 0), D(i, 0), D(0, j) with the indel costs up to position i and j. The algorithm fills the
matrix from D(1, 1) at the upper left corner to the lower right corner D(|S1|, |S2|). This
position contains the alignment distance of both sequences. The corresponding alignment
is obtained from a traceback through the filled matrix. With a constant cost model, this
algorithm needs O(nm) time and O(nm) space. The traceback needs additional O(n+m)
time [Gus97].

In general, the term ”cost“ implies typically positive values which have to be minimized
for the overall task. Terms like ”scores“ or ”weights“ are positive or negative and they
are used for similarity measures, which means they have to be maximized. Moreover, gap
costs can be modeled separately in order to adopt the alignment to biological processes like
the intron/exon structure of cDNA. For a good summary we refer to standard literature
[Gus97].

Longest Common Subsequence

A special case of optimal sequence similarity is the longest common subsequence (LCS)
[Hir77]. With an adopted scoring scheme, the LCS problem can be solved with methods
for normal sequence alignment.

Definition 2.3.4 (Subsequence)
Given two Sequences S and S′ over some alphabet Σ, S is a subsequence of S′, if S can
be obtained from S′ by deleting some letters from S′.

Note that the subsequence S need not consist of consecutive letters in S′. That is the
main difference to a substring. As a common subsequence one denotes a subsequence
shared by two or more sequences. For the pairwise case we can formulate the problem as
follows.

Definition 2.3.5 (Longest Common Subsequence)
Given two Sequences S1 and S2 over some alphabet Σ. The longest common subsequence
is a sequence T which is a subsequence of both S1 and S2 and has maximal length.

24 Chapter 2 Preliminaries

The problem LCS can be computed with a recursion given in formula (2.1), if one uses
a maximization together with a scoring scheme that scores a match with one and all
mismatches with zero. Given two RNAs with their sequence lengths n = |S1| and m =
|S2|, the problem LCS for two RNAs is solvable in O(nm) time and O(nm) space.

2.3.2 Sequence-Structure Comparison

According to the edit distances for plain sequences one can define edit distances for
sequences given with their primary and secondary structures. The main problem for
the design of algorithms is that the problem becomes easily NP-hard. Zhang et al.
have shown that for Edit(Crossing,Crossing) [ZWM00] and Jiang et al. [JLMZ02]
showed that already the case Edit(Crossing,Plain) is MAX SNP-hard under arbi-
trary scoring schemes. Recently the most interesting problem for molecular biology
EDIT(Nested,Nested) was proven to be NP-hard as well [BFRS03]. These findings im-
ply that there exists no polynomial time algorithms to solve these problems efficiently.

Here we focus on nested structures because our approaches are based on nested RNAs as
well. Although the general problem is NP-hard, there exist polynomial time algorithms
which compare sequential information along with structural information. In the case that
two RNAs are given with their primary and nested secondary structure several methods
exist like from Zhang and Shasha [ZS89], Eddy [Edd02], Bafna et al. [BMR95], Jiang et
al. [JWZ95, JLMZ02].

The proposed methods for nested structures differ in general in the representation of the
secondary structure. Visualized in figure 2.4 c), Zhang and Shasha [ZS89] and Jiang et al.
[JWZ95] use ordered labeled trees with base pairs as internal nodes. The Zhang/Shasha
algorithm needs O(|T1| |T2| min(depth(T1), leaves(T1))min(depth(T2), leaves(T2))) time
to compute the minimum edit distance between two trees T1 and T2.

Although tree alignments achieve good results, there are two general drawbacks for using
trees in the context of alignments. First, edit distance and alignment distance can be
different for two trees. Like for plain sequences the edit distance of trees describes a
sequence of predefined edit operations (deletion, insertion, relabeling) on nodes and leaves
to transform one tree into the other. However, the alignment of two trees consists of
inserting nodes with gap symbols in order to get two identical trees except for their
labels. See figure 2.6 for this difference.

Figure 2.6: (a) and (b) show two different trees. (c) shows the alignment of both
trees. Figure according to Jiang et al. [JWZ95].

2.3 Pairwise Sequence-Structure Comparison 25

For example, assume a cost function with cost 1 for all edit operations. The optimal
sequence of edit operations is obtained by deleting node e and inserting the node labeled
f . Hence, the edit distance is 2. The optimal alignment however is the tree shown in
2.6 c) with a value of 4. In contrast, as stated in point three for the general results
of sequence alignment in section 2.3.1, edit and alignment distance are equal for plain
sequences.

Second, and that is the most decisive point against tree alignment, an arbitrary sequence
alignment is not necessarily a valid tree alignment. This is the case, if a base pair is
aligned with one or two gap symbols. This case is not recognized as change operation
and hence it is not an allowed tree edit operation.

Better suiteable for arbitrary alignments are methods based on arc-annotated sequences
like the works from Bafna et al. [BMR95] and Jiang et al. [JLMZ02]. An example of
an arc-annotated sequence is shown in figure 2.4 d). The algorithm from Bafna et al.
[BMR95] was already capable to align a base pair as whole or not within a time complexity
of O(n2m2). Jiang et al. [JLMZ02] proposed an algorithm which needs O(n3m) time
to handle any arbitrary alignment but with a specific scoring scheme. This is the most
important work in the context of sequence-structure comparison and is reviewed in section
2.4.

Local sequence-structure comparison methods exists as well. Notably is the local sequence-
structure alignment algorithm from Backofen and Will [BW04]. This approach uses
a scoring scheme comparable to the general edit distance scheme from Jiang et al.
[JLMZ02]. The algorithm has a time complexity of O(n2m2 max(n,m)) and a space
complexity of O(nm).

Longest Arc-Preserving Common Subsequence (LAPCS)

According to the LCS problem for primary structures, the Longest Arc-Preserving
Common Subsequence Problem (LAPCS) describes the extension to higher structural
levels. This model for sequence similarity was introduced by Evans [Eva99] and received
much attention in literature in the last years [JLMZ00, LCJW02, GGN02]. In biology the
LAPCS problem is useful as a similarity measure for comparing sequence with secondary
structure information. The problem can be defined as follows.

Definition 2.3.6 (Longest Arc-Preserving Common Subsequence (LAPCS))
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2). LAPCS is the problem to find the
longest common subsequence of S1 and S2 which preserves the arcs, i.e. to find a mapping
MLAPCS ⊆ {1, ..., |S1|} × {1, ..., |S2|} of maximal size such that:

1. MLAPCS is a bijective mapping and preserves the order of the subsequence:
∀(i, j), (i′, j′) ∈MLAPCS : i = i′ ⇐⇒ j = j′, i < i′ ⇐⇒ j < j′

2. the base pairs induced by MLAPCS are preserved:
∀(i, j), (i′, j′) ∈MLAPCS : (i, i′) ∈ B1 ⇐⇒ (j, j′) ∈ B2

3. MLAPCS produces a common subsequence:
∀(i, j) ∈MLAPCS : S1[i] = S2[j]

26 Chapter 2 Preliminaries

Depending on the complexity of the arc set B, the complexity to solve the problem varies.
Similar to the edit distance problem, it is shown by Jiang et al. that LAPCS(Nested,
Nested) is NP-hard [LCJW02]. If the complexity of the second structural type is Plain
or Chain, which means all (i, i′) ∈ B hold only the independence condition, LAPCS can
be solved in polynomial time [JLMZ00].

2.4 General Edit Distance of RNA Structures

In order to handle any arbitrary pairwise alignment from primary and secondary struc-
tures, Jiang et al. introduced a method for generally scoring alignments [JLMZ02]. The
main idea from Jiang et al. is to define the edit distance for arc-annotated sequences
via sequence alignment instead of an edit transcript. Arcs are treated as basic unit of
comparison and they could be aligned to single bases as well as to gaps. Tree alignments
and also the covariance model lack this generality as they focus on local structures and
treat them as subunits.

According to Jiang et al. and the notions from section 2.1, an RNA is defined with its
primary and secondary structure, denoted as pair (S,B). Further any (i, i′) ∈ B is drawn
as arc in addition to the straight sequence. A picture of such an arc-annotated sequence
is given in figure 2.4 d). Consequently edit operations from sequence alignment (see def.
2.3.1) have to be extended with structural edit operations performed on arcs.

In the following we describe the general problem and in section 2.4.2 we describe in detail
the proposed polynomial time algorithm for EDIT(Nested,Nested).

2.4.1 Edit Operations and Problem Description

Considering two arc-annotated sequences (S1, B1) and (S2, B2) and a specific sequence
alignment A. The performed edit operations given by A can be distinguished between
operations on arcs and its incident bases and operations on bases. A base without an
incident arc is called free base.

Base Operations: Possible edit operations for bases are the same as for standard se-
quence alignment, i.e. base match, base mismatch and base deletion/base insertion. If a
base S1[i] is aligned to S2[j] and S1[i] = S2[j] then 〈S1[i], S2[j]〉 is a base-match if it is
not involved in any arc operation. If S1[i] 6= S2[j], then 〈S1[i], S2[j]〉 is a base-mismatch.
Aligning a base S1[i] with a gap, this is a base-insertion in S1 and a base-deletion in S2.
If there is an alignment of a base S2[j] with a gap in S1, this holds vice versa. Note that
the bases in these mutation operations are not necessarily free. An example is given after
the arc operations.

Arc Operations: Suppose two arcs (i, i′) ∈ B1 and (j, j′) ∈ B2 such that S1[i] is aligned
to S2[j] and S1[i′] is aligned to S2[j′]. If S1[i] = S2[j] and S1[i′] = S2[j′], this is an arc-
match operation and if S1[i] 6= S2[j] or S1[i′] 6= S2[j′], then they form an arc-mismatch.
An arc-breaking occurs if the bases are aligned as above but (j, j′) /∈ B2. If an arc
(i, i′) ∈ B1 is aligned with one base, say j, and with one gap, this is an arc-altering
operation, as the arc from B1 is broken. Further an arc-removing occurs if an arc is

2.4 General Edit Distance of RNA Structures 27

aligned with two gaps. This completely removes the arc as the two bases are deleted.
The last three operations can be summarized as arc-deletion operation, as they have
a break of an arc in common. Biologically these arc operations can be interpreted as
evolutionary events like changing or removing bases on base pairs. A summery of the
edit operations shows figure 2.7. Further a distance measure requires a cost associated
to each edit operation.

Figure 2.7: The allowed edit operations for an alignment of two arc-annotated
sequences. Figure according to [JLMZ02].

Cost Scheme: The main idea is to separate costs for arc operations and that for base
operations and computing costs for arcs first. For example, suppose an alignment of an
arc (i, i′) ∈ B1 with a base j ∈ S2, S1[i] 6= S2[j] and a gap. Then the costs are composed
from an arc-altering operation plus a base-mismatch operation. An arc-match and a
base-match cost nothing as a distance measure is used. Further a base-mismatch has
cost ωm and a base deletion ωd. An arc-mismatch has cost wam

2 or ωam depending on the
bases of the two arcs involved. Suppose again two arcs with S1[i] is aligned to S2[j] and
S1[i′] is aligned to S2[j′]. If S1[i] 6= S2[j] or S1[i′] 6= S2[j′], then the arc-altering cost is
wam

2 , whereas if both pairs of aligned bases are unequal, the cost is ωam. An arc-breaking
has cost ωb, an arc-altering has cost ωa and an arc-removing has cost ωr which is usually
ωr ≥ ωd.

Problem Description

With these six edit operations (ωm, ωd, ωam, ωb, ωa, ωr) it is possible to form a legal series
of edit operation for any alignment. Recall now the three results for alignment and edit
distances from section 2.3. Similar to the edit distance of two sequences, the edit distance
of two arc-annotated sequences is defined as the minimum cost of the alignments of the two
sequences. Equivalently the problem is to compute the optimal series of edit operations
which transforms the first sequence into the second one along with an optimal sequence
alignment. Jiang et al. called this the Edit Distance Problem for Arc-Annotated
Sequences under a fixed scoring scheme for the six parameters. The complexity of
this problem depends mainly on the complexity of the given arc structures of the two
input sequences, denoted as Edit(Type1,Type2). Jiang et al. showed that the problem
Edit(Nested, Plain) is MAX-SNP-hard for an arbitrary scoring scheme. But with

28 Chapter 2 Preliminaries

some restrictions to the scoring scheme, they were able to formulate a polynomial time
algorithm for the case Edit(Crossing, Nested) and Edit(Nested, Nested).

2.4.2 A polynomial time algorithm for EDIT(Nested, Nested)

Jiang et al. proposed an algorithm which solves the case Edit(Crossing, Nested) in
O(n3m) time and O(n2m) space. In addition they give an improved algorithm which
needs O(n2m2) time and only O(nm) space. Here we focus on the case Edit(Nested,
Nested) for which the same bounds hold and go into detail to the improved space
version.

The reduction in complexity is achieved with a class of scoring schemes satisfying the
condition 2ωa = ωb + ωr. Now it is possible to omit the explicit calculation of the
operations arc-altering and arc-removing as they could be incorporated in the remaining
operations. Every arc-altering operation is handled as an arc-breaking operation plus a
base-deletion which has cost ωr−ωb

2 . Further any arc-removing operation is handled as an
arc-breaking operation plus two base-deletions each of which has cost ωr−ωb

2 . In addition,
Jiang et al. introduced two functions to simplify the algorithmic writing:

ψk(l) =
{

1, if Sk[l] is not a free base
0, otherwise

(2.2)

χ(i, j) =
{

1, if S1[i] 6= S2[j] (base-mismatch)
0, otherwise

(2.3)

With formula 2.2 the cost of deleting a base S1[i] is (1 − ψ1(i))ωd + ψ1(i)ω′d = ωd +
ψ1(i)(ωr−ωb

2 − ωd), with ω′d = ωr−ωb
2 as stated above as cost for deleting a base with an

incident arc. The key idea to discard also the arc-breaking operation is to split its costs
equally among its two incident bases and charge an additional cost of ψ1(i)ωb

2 for base
S1[i] if the arc is broken. The improvement in space complexity is achieved with the
same idea of splitting costs applied to base-match and base-mismatch operations. The
remaining arc operations arc-match and arc-mismatch can be handled by using formula
2.3. Consequently, the following formulas handle all arc and base operations:

base-deletion: ωd + ψk(l)(ωr
2 − ωd) (2.4)

base-match/ base-mismatch: χ(i, j)ωm + (ψ1(i) + ψ2(j)) ωb
2 (2.5)

arc-match/ arc-mismatch:
(
χ(i′, j′) + χ(i′, j′)

)
ωam

2 (2.6)

According to formula 2.5, the cost of a base-match with two free bases is zero; if one base
is free, the cost is ωb

2 and if both bases are not free, the cost is 2 · ωb
2 = ωb. Applied to

a base-mismatch, formula 2.5 yields for two free bases the cost ωm; if one base is free,
the the cost is ωw + ωb

2 and if both bases are not free, the cost is ωm + 2 · ωb
2 = ωm + ωb.

Using formula 2.6, an arc-match costs zero and an arc-mismatch costs either ωam
2 or ωam,

depending on the number of mismatches.

2.4 General Edit Distance of RNA Structures 29

The recurrence relation for a dynamic programming algorithm to solve Edit(Nested,
Nested) is given as follows. Note that (i, i′) and (j, j′) are not necessarily base pairs.

For any 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ m,

DP (i, i′, j, j′) = min

DP (i, i′ − 1, j, j′) + ωd + ψ1(i′)(ωr
2 − ωd),

DP (i, i′, j, j′ − 1) + ωd + ψ2(j′)(ωr
2 − ωd),

DP (i, i′ − 1, j, j′ − 1) + χ(i′, j′)ωm + (ψ1(i′) + ψ2(j′))ωb
2 ,

DP (i, r − 1, j, s− 1) +DP (r + 1, i′ − 1, s+ 1, j′ − 1)
+(χ(r, s) + χ(i′, j′))ωam

2

if i ≤ r, j ≤ s, (r, i′) ∈ B1, (s, j′) ∈ B2.
(2.7)

To compute all combinations, the algorithm needs O(n2m2) time. To store all entries, one
could expect the same space complexity. However, the reduction to O(nm) is achieved as
it is sufficient to maintain DP (i+1, i′−1, j+1, j′−1) only if (i, i′) ∈ B1 and (j, j′) ∈ B2.
This could be clarified as follows. There are maximal O(n) arcs for the first sequence
and maximal O(m) arcs for the second sequence. If the arcs are computed from inside
to outside and taking arcs with minimal size first, this needs only O(nm) space to store
for all combinations of arcs their minimum costs. Another O(nm) matrix is now filled
in the manner of classical alignment while using the stored minimum costs for the arc
intervals. With this analysis we can give the following conclusion according to Jiang et al.
2002. Under any scoring scheme satisfying 2ωa = ωb + ωr, the problem Edit(Nested,
Nested) is solvable in O(n2m2) time and O(nm) space.

A reasonable cost scheme for (ωm, ωd, ωam, ωb, ωa, ωr) was also given by Jiang et al. with
the values (1, 1, 1.8, 1.5, 1.75, 2).

Chapter 3

Exact Matchings in RNA Structures

In this chapter we give prerequisites needed to use common substructures in RNA molecules
for the pairwise comparison approaches in chapter 4 and 5. Section 3.1 introduces our
concept of exact pattern matches (EPMs) as common substructures with exact sequential
and structural properties of two RNA secondary structures. Considering two RNAs with
a known secondary structure, there exist maximal n ·m different EPMs which cross and
overlap each other. However, this limited set imply additional properties which are useful
for the algorithmic usage of exact pattern matches. These features are summarized in
section 3.2.

The main goal is to find a good arrangement of a selection of non-crossing and non-
overlapping exact pattern matches. Therefore notions and definitions are introduced
in section 3.3 to handle the sequential and structural properties of EPMs as well as
the relationships of different exact pattern matches in an algorithmic manner. A fast
detection of exact pattern matches is an important precondition. Therefore, we review
in section 3.4 the maximum common substructure algorithm (MCS) from Siebert and
Backofen [BS04, SB07] which identifies all crossing and overlapping EPMs for two nested
RNA secondary structures.

3.1 Basic Definitions for Matchings

In the following we give notions for exact patterns in two nested RNA secondary struc-
tures. Our terms are based on the articles for the MCS-algorithm [BS04, SB07]. First we
define a substructure as a connected pattern in a single RNA secondary structure. In the
following we extend this to an exact matching pattern in two RNAs. This is achieved with
an exact matching path of nucleotides with identical sequential and structural properties
in both RNAs. We call this the exact pattern match (EPM) problem.

Patterns in one RNA

Here we focus on exact sequence-structure patterns in a single RNA in contrast to approx-
imate patterns. In addition to pure sequential patterns, the crucial point for sequence-
structure patterns is the incorporated structural context of each single nucleotide part of
the pattern. Clearly, the structural context of a nucleotide is formed by structural ad-
jacent nucleotides. Considering a single RNA secondary structure, this is achieved with

32 Chapter 3 Exact Matchings in RNA Structures

either a backbone bond (phosphodiester bond) or an hydrogen bond. A set of nucleotides
connected by these bonds is a primitive pattern. We call this path and it is defined as fol-
lows. Note, it doesn’t matter how often a nucleotide is taken into the path. The function
S[i] returns the nucleotide for position i.

Definition 3.1.1 (Path)
Let R = (S,B) be a given RNA. A path in R from a nucleotide at position i to a nucleotide
at position j is a sequence of positions 〈p1, p2, .., pk〉 such that p1 = i and pk = j and there
exist either a backbone bond or a hydrogen bond between S[pl−1] and S[pl], for l = 2, ..., k,.

A pattern in a single RNA is defined as a set of positions which holds the path condition.
Each nucleotide position in a pattern is connected via a path with every other nucleotide
position in the same pattern. With other words, the locality of a pattern ends with the
”borders” of the pattern. We denote such borders as bounds. Different definitions on
bounds are given in section 3.3.

Definition 3.1.2 (Pattern)
Let R = (S,B) be a given RNA. A pattern P of size k in R is a set of positions P =
{p1, p2, ..., pk} such that for any two nucleotides S[pi] and S[pj], pi, pj ∈ P, there exists a
path from pi to pj completely lying in P.

Figure 3.1: The figure shows two patterns P1 and P2 with P1 = {11, 12, 13, 14, 15}
and P2 = {2, 3, 4, 17, 18, 19}.

Figure 3.1 shows a simple example of two patterns. For later it is important to show,
if two patterns have one nucleotide position in common, then these two patterns are
connected.

Proposition 3.1.1 (Connected Pattern)
Given two patterns P1 = {p1, p2, ..., pi} and P2 = {q1, q2, ..., qj} for an RNA R = (S,B).
If there exists at least one nucleotide position nc such that nc ∈ P1 and nc ∈ P2, then the
union of the two patterns is connected, i.e. it is a pattern.

Proof. Suppose there exists a position nc with nc ∈ P1 and nc ∈ P2. For any nucleotide
at position np ∈ P1, there exists a path 〈np, ..., pc〉 such that each nucleotide on the path
is lying in the first pattern. The same holds for any nucleotide position nq ∈ P2. Hence,
there exists a path from any nucleotide at position np ∈ P1 to nc to any nucleotide at
position nq ∈ P2.

3.1 Basic Definitions for Matchings 33

Matchings Over Two RNAs

Given the definition of a pattern in a single RNA, we extend this definition to two RNAs.
This requires for each nucleotide position of an exact matching identical sequential and
structural properties as well as an identical structural context.

Clearly, the smallest matching between two RNAs is an identical nucleotide with an iden-
tical structural property. In contrast to pure sequence alignment, our approach implies
looking at the structural type of a nucleotide.

Consider two arbitrary RNAs with R1 = (S1, B1) and R2 = (S2, B2). Further let V1 with
V1 = {r | 1 ≤ r ≤ |S1|} the set of positions for R1 and V2 with V2 = {s | 1 ≤ s ≤ |S2|}
the set of positions for R2. Si[j] denotes the nucleotide at position j in sequence i. The
function STRUCTi(j) yields the structural type for a nucleotide at position j in structure
i. For a secondary RNA structure, three structural types for any single nucleotide are
feasible: single stranded (ss), left paired (lp) or right paired (rp). If the nucleotide is not
involved in any base-pairing interaction, then this is called single stranded or unbound.
If the nucleotide is left paired, then the base-pair partner has a higher position in the
sequence. If a nucleotide is right paired, then the base-pair partner has a lower position.

The set of nucleotides identical with their primary and secondary structure in two RNAs
is called partial matching and is defined as follows.

Definition 3.1.3 (Partial Matching)
The partial matching M between two RNAs R1 and R2 is a set of pairs M ⊆ V1 × V2.
M describes a partial mapping between V1 and V2 with the following conditions:

1. ∀(r, s) ∈M : S1[r] = S2[s] (nucleotide condition)

2. ∀(r, s) ∈M : STRUCT1(r) = STRUCT2(s) (structure condition)

The first two conditions apply to single nucleotides only, but single bases can be further
part of a base pair. This case is already given with both conditions, because for any
two partial matchings (r, s), (r′, s′) ∈ M with (r, r′) ∈ B1 and (s, s′) ∈ B2 follows that
S1[r] = S2[s] and S1[r′] = S2[s′]. Note that it is not implicated that always the whole
bond has to be part of the matching. Here, we refer to one or a set of pairs (r, s) ∈ M
as a single partial matching or some partial matchings, if we are in the context of two
specific RNAs with their partial matchingM.

Figure 3.2: The figure shows three arbitrary partial matchings between the left
and right RNA. The pairs (13, 9), (16, 19), (18, 19) are elements from the setM.

34 Chapter 3 Exact Matchings in RNA Structures

Now we want to combine these partial matchings in a way that ensures the same structural
context in both secondary structures. Clearly, a pattern in the first RNA is matched with
a pattern in the second RNA and vice versa. In our context, a match is always an exact
match which means that the connected condition is not sufficient for a set of partial
matchings. Further on, such a set have to guarantee the same sequential and structural
context of the partial matchings, i.e. there is a backbone bond with a similar orientation
or a hydrogen bond between two partial matchings. According to the original article
[BS04], we make use of the transition type function:

τR(i, i′) =

+1, if i = i′ + 1
−1, if i = i′ − 1

0, if (i, i′) ∈ B
undefined, otherwise

(3.1)

for a given RNA R = (S,B) and two nucleotide positions i, i′. The three transition types
describe the relative order of two adjacent sequence positions. The cases +1 and −1
denote two consecutive nucleotides in the sequence strand. The third case denotes two
structural adjacent nucleotides in form of a base pair. According to the path and pattern
definitions, two partial matchings with the same transition type in the respective RNA
form a pattern and therefore a path as well. Analogously the definitions for one RNA,
we first define a matching path and then a matching pattern.

Definition 3.1.4 (Matching Path)
Given two RNAs R1 = (S1, B1), R2 = (S2, B2) and the partial matching M over R1

and R2. A matching path is a sequence of pairs 〈(r1, s1), ..., (rk, sk)〉 with (ri, si) ∈ M,
1 ≤ i ≤ k, such that:

1. 〈r1, ..., rk〉 is a path in R1,

2. 〈s1, ..., sk〉 is a path in R2,

3. the transition types are defined and equal: τR1
(ri, ri+1) = τR2

(si, si+1) for each
1 ≤ i < k.

The definition of a matching pattern is now straightforward, as it is only necessary to
ensure that for any two positions of the matching pattern the matching path is completely
part of the pattern.

Definition 3.1.5 (Matching Pattern)
Given two RNAs R1 = (S1, B1), R2 = (S2, B2) and the partial matchingM over R1 and
R2. A matching pattern of size k is a set of pairs MP ⊆ M with k = |MP | such that
for any two pairs (ri, si), (rj , sj) ∈ MP there exists a matching path completely lying in
MP , i.e. (r, s) ∈ 〈(r1, s1), . . . , (rk, sk)〉 ←→ (r, s) ∈MP

Obviously the sets {r | (r, s) ∈MP} ⊆ V1 and {s | (r, s) ∈MP} ⊆ V2 are patterns ac-
cording to definition 3.1.2. Therefore we can call a matching pattern also connected
matching. For later definitions and algorithmic usage is is necessary to verify that a
matching pattern preserves the backbone order.

3.1 Basic Definitions for Matchings 35

Proposition 3.1.2 (Backbone Order)
Let MP be a matching pattern over two nested RNAs R1 = (S1, B1), R2 = (S2, B2).
Further let (r, s), (r′, s′) ∈MP . Then it follows r < r′ if and only if s < s′.

Proof. Suppose two pairs (r, s), (r′, s′) with r > r′ and s < s′. Further suppose two paths,
one from r to r′ in R1 and the other from s to s′ in R2.

First, we suppose (r, s), (r′, s′) are connected by one backbone bond which imply that
they form a path completely lying in {(r, s), (r′, s′)}. As r > r′, the transition type is
τB1 = +1 on the path in R1. For the path in R2 the type is τB2 = −1 as s < s′. But this
contradicts the condition of equal transitions types.

Second, suppose (r, s), (r′, s′) form a base pair, i.e (r, r′) ∈ B1 and (s, s′) ∈ B2. The
transitions types are equal (both 0), but from r > r′ it follows that r is right paired and
r′ is left paired. For s and s′ the types are vice versa. But that contradicts the condition
of equal structure types for partial matchings.

Third, suppose equal structure types for both pairs, but (r, s), (r′, s′) are not directly
adjacent. Then there are at least two nucleotides on each path which are adjacent but
violate either the condition for equal transition types or equal structure types according
to first or second case. Note that there is no base pair on each path which violates the
nested condition.

Definition 3.1.5 is already capable to describe the highlighted substructure in the putative
SECIS elements in figure 1.1. However, a matching pattern do not necessarily preserves
bonds. Figure 3.3 a) shows a correct matching pattern, but the base pair from the
stem in the left RNA is matched to different stems from a multi-loop in the right RNA.
Such a mutational event could happen, but in general structural properties are conserved
during evolution and therefore we want to prefer bond-preserving matchings. Note that
backbone bonds are not necessarily preserved in a matching pattern as shown in figure
3.3 b). Here the matching pattern is connected via an alternative matching path.

Figure 3.3: Matchings which do not preserve bonds. a) The hydrogen bond (i, i′)
is not preserved. This case is excluded for an exact pattern match. b) Here the
backbone bond between i and i − 1 is not preserved. This is unimportant for an
exact pattern match. Figure according to [BS04].

As a second restriction we exclude all sub-optimal matching patterns, because no addi-
tional information is obtained from these matchings. Only matching patterns with the
largest possible size are considered. We call such patterns maximal extended. This leads
to the following definition for the final object for our later approaches.

36 Chapter 3 Exact Matchings in RNA Structures

Definition 3.1.6 (Exact Pattern Match)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2). Further letMP ⊆ P1×P2 a matching
pattern of size k over two patterns P1 = {r1, ..., rk} ⊆ V1 and P2 = {s1, ..., sk} ⊆ V2. An
exact pattern match E is defined as E ⊆MP , such that:

1. for any two pairs (r, s), (r′, s′) ∈ E: (r, r′) ∈ B1 ⇔ (s, s′) ∈ B2 (bond-preserving
condition) and

2. E is maximally extended, i.e. ∀E ′ : E ⊆ E ′ ⇒ E ′ = E.

An example for an exact pattern match is given in figure 3.4. The maximal extension
of that match can be verified as well. Every extension leads to a mismatch and every
exclusion of one position from the match leads to an sub-optimal match.

Figure 3.4: The green nucleotides denote a maximally extended exact pattern
match between the left and the right RNA.

As the size of the patterns is |P1| = |P2| = k, we can denote the size of an exact pattern
match with |E| = k, as well. Note again that the minimal size of an exact pattern match
is 2, as we are interested in relationships higher than single base matches. This follows
also from the definition of a pattern. Note that we refer with the term matching to an
exact pattern match.

The algorithm in section 3.4 follows the maximal extension condition and exclude all sub-
patterns from the output set. Moreover this condition has some important consequences
on the set of all exact pattern matches for two RNAs. See section 3.2 for details. Never-
theless, we are left with some cases with an unclear situation how to define a maximally
extended match. See figure 3.11 b) on page 47 for such a case. The algorithm given in
3.4 solve these cases correct and returns only one maximally extended match for each
matching pattern. See section 3.4 for details.

3.2 Properties of the Set of Exact Pattern Matches

An exact pattern match E describes an exact matching substructure between two RNAs.
Usually, there are many EPMs between two RNAs. The algorithm in section 3.4 deals
with this task and returns matchings for two RNAs according to definition 3.1.6. With
an appropriate traceback it is possible to retrieve all exact pattern matches in O(nm)
time and O(nm) space. As the discussed approaches in chapter 4 and 5 are based on this
set, here some general properties are given.

3.2 Properties of the Set of Exact Pattern Matches 37

Definition 3.2.1 (Set of Exact Pattern Matches)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2). The set of all exact pattern matches
E over R1 and R2 is defined as

E1,2
γ =

{
{E} | E is EPM ∧ |E| ≥ γ

}
.

Assuming that smaller motives are less meaningful, γ denotes the lower bound for the
size of the exact pattern matches included in E1,2

γ . This can be also useful for complexity
reasons of the used comparison method. If no value is given, this refers to all possible
exact pattern matches between the two RNAs. Clearly, the smallest possible size of an
exact pattern match is 2.

Uniqueness of EPMs

Recall that any sub-matching pattern E ′ ⊆ E of an exact pattern match E is not contained
in E1,2

γ . The important implication is that any two exact pattern matches do not share
the same partial matchings, i.e. for any two Ei, Ej ∈ E1,2

γ follows Ei ∩ Ej = ∅. With other
words, any single exact matching base (r, s) ∈ E with E ∈ E1,2

γ , (r, s) ∈ M ⊆ V1 × V2, is
part of exactly one E and therefore this partial matching is unique in E1,2

γ .

Proposition 3.2.1 (Unique EPM)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2) with their set of exact pattern matches
E1,2

γ . Then it follows ∀Ei, Ej ∈ E1,2
γ , Ei 6= Ej =⇒ Ei ∩ Ej = ∅.

Suppose the case that two exact pattern matches contain the same exact partial matching.
Then it follows that they are either identical or one of them is not maximally extended.
Of course, two exact pattern matches can overlap, even in both RNAs. But this case
imply that one exact pattern match has to match to another region of the other exact
pattern match.

Maximal Number of EPM

From proposition 3.2.1 it is possible to determine the maximal size of E1,2
γ .

Proposition 3.2.2 (Maximal Number of EPMs)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2) with their set of exact pattern matches
E1,2

γ . Further the lengths of the sequences are given with |S1| = n, |S2| = m. Then then
there are maximal (n ·m) different exact pattern matches within E1,2

γ .

There are maximal V1 × V2 different combinations for a partial matching. Thus, the size
of the set is 0 ≤ |E1,2

γ | ≤ (n ·m), as the set can be also empty. The size of each exact
pattern match is limited as well. Obviously, the maximal size is bounded by the RNA
with the minimal sequence length.

Library of EPMs

The set E1,2
γ can be seen as a library of all similarities between two given RNAs. Finding

a simple, but unique representation for each exact pattern match is straightforward from

38 Chapter 3 Exact Matchings in RNA Structures

above. According to proposition 3.2.1, a single partial matching (r, s) ∈ E is sufficient
to identify the whole exact pattern match. Using always a specific partial matching
out of the whole EPM, this can be advantageous in algorithmic usage. For example, we
select always the partial matching with the maximal indices to simplify the exclusion of
overlapping cases.

The following lemma summarizes the given properties of the set E1,2
γ .

Lemma 3.2.1 (Properties of a Set of Exact Pattern Matches)
Given two RNAs R1 and R2 with their sequence lengths |S1| = n and |S2| = m. Further
Vj = {i | 1 ≤ i ≤ |Sj |} denote the set of positions for RNA j. Providing there is a method
to find exact pattern matches E over two RNAs, the properties of the set of discovered
exact pattern matches, written as E1,2

γ , are summarized as follows:

1. The set E1,2
γ contains |E1,2

γ | = k exact pattern matches over R1 and R2, with
0 ≤ k ≤ (n ·m).

2. The set E1,2
γ comprises all possible exact pattern matches over R1 and R2.

3. Each exact pattern match E ∈ E1,2
γ is of size 2 ≤ γ ≤ |E| ≤ MIN(n,m).

4. Any two exact pattern matches are disjoint: ∀Ei, Ej ∈ E1,2
γ : Ei ∩ Ej = ∅.

Similar is that for all (r, s) ∈ M ⊆ V1 × V2, there exists exactly one E ∈ E1,2
γ with

(r, s) ∈ E or (r, s) is not part of any E ∈ E1,2
γ .

Visualization of Exact Pattern Matches

Within the scope of this thesis, it has been a task to find a way for visualizing exact pattern
matches as well as sets of exact pattern matches E1,2

γ . For applications in biology it is
very helpful to have a more convenient representation of the underlying objects. With the
above given properties a matrix representations seems predetermined. In bioinformatics
and biology such dot plots are often used to visualize pairwise information.

Suppose a matrix with the positions of sequence S1 at the x-axis and the positions of S2

at the y-axis. According to point 4 from lemma 3.2.1 above, it is possible to mark all
exact pattern matches for the given RNAs in a plain way, i.e. there are no overlapping
entries in this matrix. Here we just give a short example of such a dot plot of exact
pattern matches.

Figure 3.5 below shows the set E1,2
γ for two Hepatitis C virus IRES RNAs (see section 6.3

for details). Each exact pattern match is indicated in a different color. All dots belonging
to the same exact pattern match are either diagonal adjacent or connected with a small
additional line. This line indicates further that a base pair is part of the exact pattern
match. Such an illustration is also helpful to visualize compatible arrangements of exact
pattern matches. See section 3.3 for details.

The shown dot-plot in figure 3.5 is the output of a Java program which was written
during this thesis. The input file is a structured XML file with all data about the exact
pattern matches. This file can be generated with our implementation for the algorithms
of chapter 4 and 5.

3.3 Structural Definitions on Exact Pattern Matches 39

Figure 3.5: A dot-plot of exact pattern matches for two Hepatitis C virus IRES
RNAs (bases 1-96). Each EPM has a different color. Grey lines indicate that a
base pair is part of the EPM.

3.3 Structural Definitions on Exact Pattern Matches

The exact pattern matches included in E1,2
γ differ in their size and shape as well as in

their structural positions in both RNA. Considering for example the maximum common
substructure, i.e. the EPM with the largest size, or a special found EPM like the indi-
cated substructure in figure 1.1, this can be sufficient information from an analytic or
biologically point of view. Considering two or several exact pattern matches, then they
probably overlap or cross each other as well as they can be “near” in the first RNA, but
“far” away in the other structure.

The main goal of the approach treated in this thesis is to identify sets of exact pattern
matches for two RNAs which can be used for a pairwise comparison. This means, such a
set should exclude overlapping and crossing patterns in general. For example, see figure
C.1 in the appendix which was taken from the article for the MCS algorithm. The five
highlighted EPMs satisfy this condition. If one follows the backbone in both RNAs, the
EPMs appear in the same order. For a comparative analysis it is obviously important,
if two or more substructures occur in such a way. Suppose for example a motif which
needs some correct arranged substructures for its working. Therefore we also speak about
arrangements of exact pattern matches. In the following we give basic definitions for exact
pattern matches in their structural context.

40 Chapter 3 Exact Matchings in RNA Structures

Non-Crossing

In order to maintain the structural order of exact pattern matches in two RNAs, we define
an invariant condition for any arrangement of exact pattern matches. Consequently, we
are able to check if two EPMs are compatible or not. Suppose a set E1,2

γ of EPMs as
shown in figure 3.6 below. For example, a good subset comprises the exact pattern
matches {E1, E2, E3, E4}, but we want to exclude E5 and E6. The match E5 is crossing E2
and E3 whereas E6 is overlapping with E3 in R1 and with E4 in R2. Note that not all
possible EPMs are indicated in the figure.

Figure 3.6: A set of possible exact pattern matches between the left RNA (R1)
and the right RNA (R2). The set {E1, E2, E3, E4} can be used for a comparison,
whereas {E5, E6} should be excluded. E5 crosses E2 and E3. E6 is overlapping with
E3 in R1 and with E4 in R2 .

From the viewpoint of a fixed EPM, we distinguish the following relative structural order-
ings. According to definition 2.1.4, any two base pairs (i, i′), (j, j′) ∈ B are either nested
or independent. Following the nesting condition i < j < j′ < i′, we denote a base pair
(j, j′) as inside of base pair (i, i′) and analogously is (i, i′) outside of (j, j′). Further, any
nucleotide or base pair within 〈1, .., i− 1〉 is located before base pair (i, i′) and similarly
the positions 〈i′ + 1, ..., |S|〉 are located after base pair (i, i′).

Now we apply these orderings to EPMs. This is possible, because an exact pattern
match is connected. See figure 3.7 below for an illustration of these cases. Consequently,
we define two EPMs as structural compatible, if they preserve the structural ordering
for any two positions in both RNAs. We denote structural compatible matchings as
Non-Crossing and they are defined as follows.

Definition 3.3.1 (Non-Crossing)
Given two RNAs R1 and R2 and further two exact pattern matches E1, E2 over R1, R2.
Two exact pattern matches E1, E2 are Non-Crossing if either

1. ∀(ri, si) ∈ E1,
∀(rj , sj) ∈ E2 with ri < rj : si < sj (E1 before E2) or

2. ∀(ri, si), (ri′ , si′) ∈ E1,
∀(rj , sj) ∈ E2 with ri < rj < ri′ : si < sj < si′ (E1 outside E2).

3.3 Structural Definitions on Exact Pattern Matches 41

Figure 3.7: Ordering of exact pattern matches relative to EPM E1. The cases
before, inside and after do not violate the Non-Crossing condition. Only EPM
E3 crosses E1. Note that an arc denote a connected matching via base pairs.

Note that the orderings after and inside are symmetric cases of the given ones. Further we
define the following short forms for the structural ordering of two exact pattern matches
over two RNAs:

E1 crossing E2 : E1 G E2
E1 before E2 : E1 E2 (3.2)
E1 outside E2 : E1 b E2

The Non-Crossing condition is only satisfied, if an exact pattern match is located com-
pletely before, after or inside the other connected matchings. Therefore it is not necessary
to treat Non-Overlapping in an extra condition, because it is already included in Non-
Crossing. Note that definition 3.3.1 is given in a general form. From figure 3.7 it is
evident that checking the start and end from consecutive nucleotide positions is sufficient
for verifying Non-Crossing.

With proposition 3.1.2 we have already shown, that a single EPM preserves the backbone
order. According to other pairwise comparison methods like the general edit distance
approach or the LAPCS problem, we want to find a subset of EPMs which is a plain
mapping as well as an arc-preserving subsequence.

Proposition 3.3.1 (Non-Crossing Preserves Backbone Order)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2) and two Non-Crossing exact pattern
matches E1, E2 from a set E1,2

γ over R1 and R2 . Further let (r1, s1), (r′1, s
′
1) ∈ E1 and

(r2, s2), (r′2, s
′
2) ∈ E2. Then it follows either (1) r1 < r2 if and only if s1 < s2 or (2)

r1 > r2 if and only if s1 > s2 or (3) r1 < r2 < r′1 if and only if s1 < s2 < s′1 or (4)
r2 < r1 < r′2 if and only if s2 < s1 < s′2, i.e. E1 and E2 preserve the backbone order in S1

and S2.

Clearly, two Non-Crossing EPMs preserve the backbone order as well. This is achieved
in definition 3.3.1 with the similar nucleotide orderings (before/outside) for both EPMs
in both RNAs. This can be also verified in figure 3.7 above.

42 Chapter 3 Exact Matchings in RNA Structures

Matching Bounds

Each exact pattern match is embedded into the secondary structure at an specific point.
Clearly, there exist nucleotide positions which limit the substructure from the structure
around. For example, if an exact pattern match is part of a multi-loop, then it can
be part of different stems. Here we give some definitions and notions to describe these
boundaries.

First, we focus on patterns according to definition 3.1.2, i.e. patterns in a single RNA.
Writing the nucleotide positions of a pattern as an increasing sequence, there exists a
minimum and maximum position. In the view of the secondary structure, these two
position determine the outside borders of the pattern. Therefore we call them outside-
bounds. In the view of an arc-annotated sequence, we denote the minimum as left bound
and the maximum as right bound.

If a pattern contains a base pair, the structural shape is more complex and the outside-
bounds are not sufficient to describe all structural borders of a pattern. Suppose a
base pair (i, j) ∈ B within a pattern. Then the pattern not necessarily contains all
nucleotides from S[i+ 1] to S[j − 1]. With other words, there exist two positions (i′, j′)
with i ≤ i′ < j′ ≤ j that form an additional structural border, lying inside the range of
the outside-bounds. Clearly, if a pattern contains several independent base pairs, there
can be several inside borders. The set of all such borders is called inside-bounds. The
following definition summarizes all bounds for a pattern.

Definition 3.3.2 (Pattern Bounds)
Let R = (S,B) a given RNA and P be a pattern of size k. Further let P = 〈p1, p2, ..., pk〉
be an increasing sequence of positions of P for that hold: ∀ i, j : i < j ⇔ pi < pj, then
the following bounds are defined:

outside-bound-left : LEFT = p1

outside-bound-right : RIGHT = pk

outside-bounds : OUT = (p1, pk)

inside-bounds : IN = { (pi, pi+1) | pi+1 > pi + 1}

Note again that outside-bounds always exists, whereas the set inside-bounds can be empty.
If a pattern comprises only unbound nucleotides or a complete hairpin inclusive the
closing bond, this results in a complete consecutive sequence. In contrast, an inside-
bound (pi, pi+1) represent two non consecutive positions of a pattern. All nucleotides
between S[pi +1] and S[pi+1−1] are not part of the pattern. If a pattern consists of only
one base pair, then inside and outside bounds are identical.

Next, we apply these notions for a pattern in one RNA to an exact pattern match over
two RNAs. We have shown in section 3.1 that a single EPM preserves the backbone
order. This implies an ordering on the included partial matchings, i.e. ∀(r, s), (r′, s′) ∈
E : r < r′ ⇔ s < s′. Now we can define the matching bounds for an exact pattern match
as follows.

3.3 Structural Definitions on Exact Pattern Matches 43

Figure 3.8: The green nucleotides denote a pattern of an exact pattern match in
one RNA. The indicated positions represent the different pattern bounds.

Definition 3.3.3 (Matching Bounds)
Given an exact pattern match E of size k over two RNAs R1 and R2 with its corresponding
pattern positions P1 in R1 and P2 in R2. Further the two patterns are given with their
increasing sequences. For pattern P1 the sequence is 〈r1, r2, ..., rk〉, ∀ri, rj ∈ P1,∀ i, j :
i < j ⇔ ri < rj and for pattern P2 the sequence 〈s1, s2, ..., sk〉 is defined similarly. Then
we define the following matching bounds:

outside-bounds-left : LEFTE = (r1, s1)

outside-bounds-right : RIGHTE = (rk, sk)

outside-bounds : OUTE =
〈
(r1, rk), (s1, sk)

〉
inside-bounds : INE =

{〈
(ri, ri+1), (sj , sj+1)

〉
|

ri+1 > ri + 1⇔ sj+1 > sj + 1}

Note the slight difference to the pattern bounds. Each element in INE represents a loop
excluded in R1 and R2 if and only if in both patterns two positions are not consecutive.
An EPM can be consecutive in one RNA, but not in the other RNA. For example, imagine
two hairpins of different size and an exact pattern match between these hairpins. One
pattern comprise the whole hairpin, whereas the other comprise only a part. In this case
the set INE is empty.

Further we define for all different matching bounds a notion to retrieve the bounds from a
single RNA. For example, we denote the matching bounds for RNA R1 with LEFT1

E = r1,
RIGHT1

E = rk and OUT1
E = (r1, rk). For clarity we give the definition for the inside-

bounds. Suppose the two pattern sequences 〈r1, r2, ..., rk〉 and 〈s1, s2, ..., sk〉 given as
above. Then we define for RNA R1:

IN1
E = {(ri, ri+1) | ∃ 〈(ri, ri+1), (sj , sj+1)〉 ∈ INE :

ri+1 > ri + 1⇔ sj+1 > sj + 1}
(3.3)

44 Chapter 3 Exact Matchings in RNA Structures

Matching Closure

In the following we introduce our notion of a matching closure. A closure is depicted by
filling up the two corresponding patterns of an EPM with all positions from base pair
partners not included in the original matching.

Definition 3.3.4 (Matching Closure)
Given an exact pattern match E over two RNAs R1 and R2 with the corresponding pattern
positions P1 in R1 and P2 in R2. Then we define the matching closure E as:

E = E ∪
{

(r′, s′) | ∃r ∈ P1,∃s ∈ P2 :(r, r′) ∈ B1 ⇔ (s, s′) ∈ B2 ∨

(r′, r) ∈ B1 ⇔ (s′, s) ∈ B2

}
Due to the maximal extension condition of an EPM, the additional pairs of nucleotide
positions do not represent partial matchings. This case occur for exact pattern matches
with different base pair partners in the different structures, i.e. there is a non-canonical
base pair like G-U in one structure and a standard pair in the second. Otherwise the
pattern is not maximally extended. Figure 3.9 shows an example of a matching closure.

Figure 3.9: Additional nucleotides in a matching closure. Suppose the green
nucleotides denote an exact pattern match. Then the red-marked nucleotide
positions are additional pairs in E . The given matching bounds are INE =
{〈(6, 13), (6, 17)〉 , 〈(24, 31), (28, 34)〉} and OUTE = 〈(3, 36), (3, 39)〉.

The clustering approach in chapter 5 uses always a matching closure E instead of the
original E to determine the matching bounds. Due to the additional nucleotide positions,
we can rewrite the patterns from a matching closure E as P1 = {r1, r2, ..., rk′} and
P2 = {s1, s2, ..., sk′} with k′ ≥ k. The resulting matching bounds INE , OUTE , LEFTE and
RIGHTE are now determined via the increasing sequences based on P1 and P2. We omit
an extra definition for that case.

3.4 A Fast Method to Detect Exact Pattern Matches

In this section we review the fast algorithm from Siebert and Backofen [SB07] to obtain the
set E1,2

γ of all maximally extended and bond-preserving substructures between two nested
RNA secondary structures. The developed dynamic programming algorithm detects these
substructures in form of exact pattern matches in O(nm) time and O(nm) space. In this

3.4 A Fast Method to Detect Exact Pattern Matches 45

thesis we usually refer to this approach as the maximum common substructure (MCS)
algorithm. In the following we describe the main algorithmic steps of the MCS algorithm
according to the notions from Siebert and Backofen [SB07].

Basic Notions for the Algorithm

The input of the MCS algorithm consists of two nested RNAs R1 = (S1, B1) and R1 =
(S2, B2) with their lengths |S1| = n and |S2| = m. In order to find an exact pattern
match for each combination of nucleotide position i from the first RNA and j from the
second RNA, the key idea of the algorithm is to maintain three n × m matrices M eb,
Mnb and M loop. These matrices correspond to the different cases of matchings: M eb

handles complete base-pair matchings, Mnb handles matchings of only left or right paired
nucleotides and M loop handles matchings of inner loops.

Inner loops are all loops which are enclosed by a base pair. All inlying nucleotides of an
inner loop are simply numbered consecutively. The resulting sequence of positions for
an inner loop enclosed by a base pair (i, i′) ∈ B is given as 〈l1, l2, . . . , lsize〉 and is called
loop-walk. This scheme is applied to all loops like hairpins, bulges, internal loops and
multi-loops. Figure 3.10 shows the nucleotide numbering. The global position of a loop
position is accessed via the function pos(li). For example, pos(lsize) = i′− 1, if (i, i′) ∈ B
encloses a loop from l1, . . . , lsize.

Figure 3.10: Numbering of nucleotide position for an inner loop. The figure shows
an inner loop with lsize = 11. The loop is enclosed by base pair (i, i′).

The algorithm works from inside to outside. Suppose an internal loop closed by a base
pair (i, i′). Then all base pairs (j, j′) that hold i < j < j′ < i′ are treated before (i, i′).
We start with a description of the subfunctions which handle the loop-walk, base-pair
matchings and none base-pair matchings. For the loop-walk an additional function is
needed which combines the matrices M eb and Mnb and returns the size of a maximally
extended pattern found so far for a inner loop position in the first and second RNA. This
function is called max-matching. Function loop-walking(i, j)

This function is called from the main function with LoopWalking(i, j) to determine exact
pattern matches in inner loops. Here i and j correspond to positions from the first and
second RNA. The pseudocode is given in algorithm C.1 on the appendix.

The function Loop-walking iterates through all combinations of inner loop positions.
The necessary values lisize and ljsize for the loop sizes can be determined in advance.
First, the while loop from line 8 to line 11 determines the number of matching inner
loop nucleotides for a pair (k, l) of loop positions clockwise. The index r denotes this

46 Chapter 3 Exact Matchings in RNA Structures

number and the maximally extended matching for a pair (k, l) of loop positions is then
determined with a call to the function max-matching(i, j, r). Note that each pair (k, l)
is only considered once (line 7). This means that if the size of the matching nucleotide
array is at least 2, then the value of M loop need not be recomputed. This information
can be stored in a binary n×m matrix.

Auxiliary Function max-matching(i, j, r)

This function is invoked with max-matching(i, j, r) from the loop-walking function,
whereby i and j denote inner loop positions from the first and second RNA. The number
of matching loop positions is given with r. max-matching returns the size of the new
common substructure found up to the given positions. The pseudo code for max-matching
is given in algorithm C.2 in the appendix.

This function operates on loop positions as well. The size of the current substructure
is found with the help of M eb and Mnb. The necessary entries are already determined
due to the inside to outside scheme. Starting in line 3, the function checks whether the
nucleotides are equal. If not, the current size is returned. If yes, both nucleotides have
to be tested for a equal structure type (line 4: single stranded, line 6: left paired, line
11: right paired). Clearly, if both nucleotides are unpaired, the size is increased with
one. If also both nucleotides with their base pair partner are equal, the size for this
base-pair match is found in M eb. If the base-pair partner are not equal, the size is found
in Mnb. This implies that the matching cannot be further extended and the current size
is returned.

Function base-pair-match(i, j)

This function determines the value M eb, i.e. a base pair (i, i′) ∈ B1 in the first RNA is
matched with a base pair (j, j′) ∈ B2 in the second RNA. The function have to distinguish
two cases, because the nucleotides of a matching path in the inner loop to the right can
overlap or not with the nucleotides of a matching path to the left. Both cases are shown
in figure 3.11 below. The pseudocode is omitted.

Case 1: The matching paths to the right of i and j do not overlap with the matching
paths to the left of i′ and j′. Then the entry for the matching base pair is M eb(i, j) =
M loop(i + 1, j + 1) +M loop(i′r, j

′
r) + 2, i.e. the length of the left matching path plus the

length of the right matching path plus the matching base pair. The ends of the right
matching paths are denoted with i′r and j′r. See figure 3.11 a) for this case. After M eb(i, j)
is computed, M loop(i+1, j+1) and M loop(i′r, j

′
r) are set to 0, because these values are now

included in M eb(i, j). This prevents the output of not maximally extended matchings.

Case 2: In this case the matching path to the left and to the right overlap. This
case is shown in figure 3.11 b). The two “A”s before the cutting line in the left RNA
can be part of a matching path to the left or to the right in the right RNA. This is
the only situation where the assignment of an exact pattern match becomes ambiguous.
To avoid an exponential number of solutions, only one maximal extended matching can
be considered. This can be easily extracted by looking at a subarray which contains the
overlapping nucleotides. For this array, the algorithm add and subtract the corresponding
max-matching values. Then the cut which provides a maximum value is chosen, whereby

3.4 A Fast Method to Detect Exact Pattern Matches 47

Figure 3.11: Two cases for a base-pair matching (i, i′) with (j, j′). a) The match-
ing path to the left and to the right from (i, i′) and (j, j′) do not overlap (case 1).
b) Here the matching path overlap in the left RNA (case 2). The cut determines a
single maximally extended exact pattern match for the matching base pairs. Figure
taken from [BS04]

i′c and j′c denote the positions directly after the cut. Note that base pairs are preserved
in this step. The value M eb(i, j) is similar to case 1 and also the M loop entries are set to
0 afterwards.

Function none-base-pair(i, j)

This function handles the case if a left paired or a right paired nucleotide in the first
RNA is matched to a nucleotide of the same structure type, but the base pair partners
are different. Consequently, an overlapping of such nucleotides is not possible and each
entry of Mnb can be computed independently. The algorithmic code is omitted, but the
structure is simply. The function is called only on left-paired nucleotides and checks
either i and j are matching left-paired nucleotides or i′ and j′ are matching right-paired
nucleotides. If this succeeds, the entry Mnb(i, j) is computed from the corresponding
M loop entries.

Main Function, Traceback and Complexity

The main function determines exact pattern matches from inner to outer loop. This is
achieved with a list of base pairs (i, bp(i)) from the first RNA and base pairs (j, bp(j))
from the second RNA ordered from inside to outside. For each loop, the function loop-
walking(i + 1, j + 1) is called. The functions base-pair-match(i, j) and none-base-
pair(i, j) are called according to the current matching cases. Note that a virtual base
pair is assumed which closes the external loop (1, |S1|) and (1, |S2|).

The sizes of all exact pattern matched are stored in M loop. With a traceback through
this matrix according the given matching cases, all matchings can be extracted. If also
the cut positions are stored, the traceback is possible in linear time for each exact pattern
match.

The time complexity is given with O(nm), because for each (i, j) combination the loop-
walking function is executed. All subfunctions do not increase the time complexity,
because inner loops do not overlap each other in one RNA. Further, all considered nu-
cleotides are marked by the function max-matching. Therefore, each combination of inner
loop positions is considered almost twice. The function base-pair-match works also on
inner loop positions. Finding the cutting line costs not more than the size of the inner

48 Chapter 3 Exact Matchings in RNA Structures

loop. The function none-base-pair has only the cost of finding the matching path to
the right of the right base-pair partner.

The space complexity is O(nm), because the necessary marices M eb, Mnb and M loop are
of size n×m. Additional matrices for the storage of the cut positions as well as to save
already considered nucleotides do not exceeds the given space complexity.

Results

According to the article [SB07], the MCS algorithm was performed in a first test on two
Hepatitis C virus IRES sites. The GenBank codes are AF165050 and D45172. The
optimal secondary structures have been determined with RNAfold [HFS+94]. Figure C.1
on page 109 in the appendix shows both RNAs. The five largest exact pattern matches
are highlighted. We have tested our methods we the same RNAs. For example, the
LCS-ERP approach is able to combine these five exact pattern matches in one solution.
For example, see figure 6.1 in chapter 6 as well as section 6.3.1.

In a second test, the MCS algorithm was performed on putative SECIS elements in non-
coding regions of Methanococcus jannaschii. Figure 1.1 shows a strongly conserved region
in different RNAs found with the MCS algorithm by pairwise comparison. The RNAs for
the putative SECIS elements were chosen according to [WSPB97].

Chapter 4

The Longest Common Subsequence of
Exact RNA Patterns

The problems LCS and LAPCS analyse pairwise similarities of RNAs at a sequence and
sequence-structure level, respectively. In this chapter, we present a related, but new
problem of finding the Longest Common Subsequence of Exact RNA Patterns
(LCS-ERP). It respects the secondary structure in form of exact matchings obtained by the
approach from Siebert and Backofen [SB07] given in the last chapter. In section 4.1, we
give a formal description of LCS-ERP. In section 4.2 we develop a dynamic programming
algorithm solving the LCS-ERP problem. This problem is solvable in O(n2m2) time
and O(nm) space (section 4.3), in contrast to the LAPCS problem which is in general
NP-hard. However, the obtained arc-preserving subsequence for the LCS-ERP problem is
based exclusively on exact pattern matches, which excludes single nucleotide matchings.

4.1 Problem Description for LCS-ERP

Recall from the last chapter, the set E1,2
γ contains all exact pattern matches for two

RNAs and can be computed in O(nm) time and O(nm) space [SB07]. Relating to the
LCS and LAPCS problems, we introduce the problem Longest Common Subsequence
of Exact RNA Patterns (LCS-ERP).

The formulation of LCS-ERP is motivated by the fact that different RNA secondary struc-
tures share the same complex sequence-structure patterns. For example, the SECIS motif
shown in figure 2.5 on page 19 includes two necessary substructures. The two consecu-
tive unbound alanine nucleotides are separated by helix II from the quartet substructure.
Another example is the comparison of experimentally verified secondary structures. For
biology, it would be interesting to know a “common core” of identical substructures in
two rRNAs to identify relationships between different species. Such an example is shown
in figure 6.5 on page 84.

Here, we are interested in the maximal arrangement of substructures shared by two RNAs.
If the motives are given in the form of exact pattern matches according to definition 3.1.6,
we call this the LCS-ERP problem. Note that we make use of the properties of the set
E1,2

γ of all exact pattern matches given in lemma 3.2.1 as well as the fact that a single
exact pattern match preserves the backbone order.

50 Chapter 4 The Longest Common Subsequence of Exact RNA Patterns

Definition 4.1.1 (Longest Common Subsequence of Exact RNA Patterns)
Given two nested RNAs R1 = (S1, B1) and R2 = (S2, B2) and a set of exact pattern
matches E1,2

γ over these two RNAs. LCS-ERP is the problem of finding the longest common
subsequence of S1 and S2 which preserves the exact pattern matches in E1,2

γ ; i.e. finding
a mapping MERP ⊆ {1, ..., |S1|} × {1, ..., |S2|} of maximal length such that:

1. for each pair (r, s) ∈MERP there exists one exact pattern match in E1,2
γ :

∀(r, s) ∈MERP : ∃E ∈ E1,2
γ with (r, s) ∈ E and E ⊆MERP

2. MERP is a bijective mapping and preserves the order of the nucleotides:
∀(r, s), (r′, s′) ∈MERP : r = r′ ⇐⇒ s = s′, r < r′ ⇐⇒ s < s′

The definition follows the LAPCS problem given in definition 2.3.6 on page 25. In condi-
tion one we claim that for each pair (r, s) ∈MERP, i.e. for any exact matching nucleotide,
there exists one exact pattern match in E1,2

γ . In addition, condition one includes that
the complete EPM is part of MERP. The second condition ensures that the found sub-
sequence is a common subsequence, i.e. a sequence which preserves the backbone order.
Arcs or base pairs are induced by the EPMs itself. In contrast to the LAPCS problem,
an isolated nucleotide is not part of any solution for LCS-ERP due to the fact that the set
E1,2

γ contains only exact matchings with comprise at least two connected nucleotides.

With the idea that each EPM has a size according to the matched bases, we search for a
subset of maximal size out of E1,2

γ .

Proposition 4.1.1 (Maximal Subset)
A subset E1,2

LCS =⊆ E1,2
γ of Non-Crossing exact pattern matches with maximal size

s =
∑

E∈E1,2
LCS
|E| yields a solution for LCS-ERP.

Proof. The proof is straightforward, because each pair (r, s) ∈ MERP can be seen as
partial matching fromM and all EPMs are defined on these partial matchings. Further,
each EPM itself preserves the backbone order and any two EPMs preserve the backbone
order via the Non-Crossing condition. This holds for any induced base pairs as well.
Any two EPMs with base pairs are either nested (inside/outside condition) or independent
(before/after condition) by the Non-Crossing demand. Thus, a maximal subset is a
longest common subsequence of exact RNA patterns.

Recall from section 3.2 that we operate on a limited set of only n ·m possible matchings in
form of exact pattern matches. Further, there is also only a limited number of matchings
which fulfil the Non-Crossing condition for each matching, both for EPMs with base
pairs and for EPMs without base pairs. This reduces the overall complexity and enables
a polynomial-time algorithm.

In the next section we propose an algorithm to solve LCS-ERP in polynomial time.

4.2 Dynamic Programming Algorithm for LCS-ERP 51

4.2 Dynamic Programming Algorithm for LCS-ERP

Here, we develop a dynamic programming algorithm solving the LCS-ERP problem in
O(n2m2) time and O(nm) space. For the rest of this section we consider two nested
RNAs given as R1 = (S1, B1) and R2 = (S2, B2). With the notion Si[m,n] we refer
to a substring from Si[m] to Si[n] which denotes a consecutive part out of the complete
sequence Si. Further we denote the set of nucleotide positions for a sequence Sj with
Vj = { i | 1 ≤ i ≤ |Sj |}.

The proposed algorithm combines ideas from sequence and sequence-structure comparison
methods. Sequence alignment methods such as the Needleman-Wunsch recursion scheme
shown in formula 2.1 uses a two-dimensional matrix to compute the optimal alignment.
The incorporation of the secondary structure requires a comparison of substructures, i.e.
of the subsequences enclosed by a base pair. This leads to a four-dimensional matrix,
denoted as D(i, j, k, l), because all pairs of possible subsequences have to be treated.
The indices i, j refer to a substring S1[i, j] and the indices k, l to a substring S2[k, l],
respectively. Methods such as the simultaneous folding algorithm from Sankoff [San85]
as well as the alignment of base pair probability matrices from Hofacker et al. [HBS04]
uses such four-dimensional matrices.

In a first version of the algorithm, we use a similar four-dimensional matrix D(i, j, k, l)
to save the best partial solution for LCS-ERP for any pair of substrings over S1 and S2.
In the following, we propose an improved algorithm, which only needs a two-dimensional
matrix in each step and reduces therewith the space complexity to O(nm).

Recursion Formula

In relation to alignment-based methods, we use a similar bottom-up approach to construct
the overall solution for the complete sequences S1 and S2 from subsequences S1[1, i]
and S2[1, l]. However, we have to treat an exact pattern match as whole unit, whereas
alignment approaches are based on single nucleotides or base pairs. Moreover, we have
to find a Non-Crossing subset of exact pattern matches.

A solution is achieved with the different notions of bounds for an exact pattern match
E introduced in section 3.3. We make use of these bounds to easily find Non-Crossing
regions relative to an EPM as well as to find the start and end of an EPM. For ex-
ample, all nucleotides before the left-outside-bounds LEFTE , i.e Si[1, LEFTi

E − 1], fulfil
the Non-Crossing condition. Similar all nucleotides after the right-outside-bounds, i.e.
Si[RIGHTi

E +1, |Si|]. With other words, any EPM with its outside-bounds OUTE in these
region is Non-Crossing relative to the considered EPM.

Similar we handle EPMs that contain base pairs. For example consider an EPM as
shown in figure 3.8. Here the indicated pattern exclude two subsequences given through
the inside-bounds. Consequently, any pair of inside-bounds {(ri, ri+1), (sj , sj+1)} ∈ INE
describe the borders of a “hole” in the covered sequence. All nucleotides inside these
bounds are Non-Crossing, i.e. all EPMs which have outside-bounds within these regions
satisfy the inside condition. The set of all holes for an EPM E is given as follows.

52 Chapter 4 The Longest Common Subsequence of Exact RNA Patterns

Definition 4.2.1 (Holes of an Exact Pattern Match)
Given a exact pattern match E over two RNAs R1 = (S1, B1) and R2 = (S2, B2) with
their inside-bounds INE . Then, the set of holes with minimal size γ for this EPM is defined
as:

HOLESE =
{ 〈

(l1, r1), (l2, r2)
〉
| r1 ≥ l1 + γ ∧ r2 ≥ l2 + γ ∧ ri, li ∈ Vi

}
for that hold:

∀
〈
(l1, r1), (l2, r2)

〉
∈ HOLESE : ∃

〈
(l1 − 1, r1 + 1), (l2 − 1, r2 + 1)

〉
∈ INE .

Clearly, a hole
〈
(l1, r1), (l2, r2)

〉
∈ HOLESE defines a substring S1[l1, r1] in the first RNA

and a substring S2[l2, r2] in the second RNA. With γ we refer to the same size as indicated
by E1,2

γ . This is important, as γ should denote the minimal size of an EPM included in
E1,2

γ . For example, consider a set which comprises only EPMs with minimal size γ = 4
and a specific EPM with an inside-bound that encloses three nucleotides. The resulting
hole needs not to be considered, because there exists no EPM which fits into this hole.
The same holds for holes of size one in the case of the complete set E1,2

γ .

Further we need a scheme that treats each E ∈ E1,2
γ at a helpful position. Here we can

benefit from the properties of E1,2
γ . For any pair (r, s) ∈ V1 × V2 of nucleotide positions,

there exists exactly one E or there exists none. The Non-Crossing demand is achieved
with the correct usage of the different bounds as motivated above. Any E is handled only
one time at its maximal sequence position, given by its right-outside-bound RIGHTE . The
score for E is clearly composed of the score before E , given at the position LEFTE − 1,
plus the size of E itself, denoted by the function ω, plus possible scores of inside-bounds,
given recursively by the computation of HOLESE .

This leads to the following recursion formula for any 1 ≤ i < j ≤ |S1| and 1 ≤ k < l ≤
|S2|:

D(i, j, k, l) = max

D(i, j − 1, k, l)
D(i, j, k, l − 1)
D(i, i′ − 1, k, k′ − 1) + ω(E) +

∑
h∈HOLESE

Dh

if ∃E ∈ E1,2
γ with RIGHTE = (j, l), LEFTE = (i′, k′),

i′ > i, k′ > k

(4.1)

The first two cases indicate the best found LCS-ERP for the subsequences S1[i, j− 1] and
S2[k, l− 1]. The third case indicate a matched EPM, i.e. there is an exact pattern match
E in E1,2

γ with its right end RIGHTE = (j, l) in both RNAs. The function ω(E) denotes
the score for the EPM itself and is clearly the size |E|. Furthermore we add the score for
each enclosed substructure. For any existing hole h ∈ HOLESE we access a submatrix
Dh from D as follows:

Dh = D(l1, r1, l2, r2) with h =
〈
(l1, r1), (l2, r2)

〉
(4.2)

4.2 Dynamic Programming Algorithm for LCS-ERP 53

This calculates recursively the best score for a given hole h from position l1 to position r1

in S1 and from position l2 to position r2 in S2. Therefore, the score ω(E)+
∑

h∈HOLESE
Dh

denotes the total score of E . At last, this score is combined with the already computed
score D(i, i′−1, k, k′−1) before the left-outside-bounds, given by LEFTE = (i′, k′), and is
saved at the entry D(i, j, k, l), given by the right-outside-bounds RIGHTE = (j, l). Figure
4.1 shows an example for the case of an EPM with two holes.

Figure 4.1: The score composition for an EPM E with two holes and right-outside-
bounds RIGHTE = (j, l). The score ω(E) is combined with the score before E and
the score inside E . A hole h =

〈
(l1, r1), (l2, r2)

〉
is fixed by the inside-bounds (not

shown).

The score for the global best LCS-ERP can be calculated from D(1, |S1|, 1, |S2|). With
a traceback the sequence of EPMs can be determined. The matrix D is initialized with
zero values.

Improved Recursion Formula

From the recursion formula 4.1 one can see that the left ends for the subsequences are
fixed to the first position in both sequences. Only the recursion for a hole can start at
an arbitrary position (l1, l2) in both sequences, determined by the inside-bounds. The
question arise, whether we can order all holes in a way such that all necessary matrix
entries are already computed if an EPM with holes is considered. If this is possible, we
can omit the recursion for each hole in the general formula 4.1.

This goal is achieved with an ordering of all holes according to their size in one RNA for
a given set E1,2

γ . Although we cannot improve the overall running time, we can improve
the space complexity. With such an ordering it is possible to reduce the recursion to a
two dimensional version. We define a partial ordering on holes in one RNA as follows:

Definition 4.2.2 (�HOLES)
Given a set E1,2

γ of exact pattern matches over two RNAs R1 = (S1, B1) and R2 =
(S2, B2). Further let hi =

〈
(l1i , r

1
i), (l

2
i , r

2
i)

〉
∈ HOLESEi and hj = 〈(l1j , r1j), (l2j , r2j)〉 ∈

HOLESEj two holes for any two Ei, Ej ∈ E1,2
γ . Then we can define a partial ordering

hi �HOLES1 hj in R1 if and only if hi is smaller than hj or of equal size in R1, i.e.

hi �HOLES1 hj ⇐⇒ (r1i − l1i) ≤ (r1j − l1j)

Now we can order all holes in one RNA according to their size. Starting the recursion with
the smallest holes, for case three in formula 4.1 it is only necessary to consider the score of

54 Chapter 4 The Longest Common Subsequence of Exact RNA Patterns

the EPM itself, i.e. ω(E). Any EPM with its right and left outside-bounds inside this hole
cannot contain a hole not computed because all smaller holes are already treated. The
best score for the hole is finally added to the EPM to which the hole belongs. This implies
that for an EPM the overall score SE already exists if it is considered during a recursion
from a larger hole. The new two dimensional recursion scheme for any 1 ≤ j ≤ (r1−l1+1)
and 1 ≤ l ≤ (r2 − l2 + 1) for a hole with h =

〈
(l1, r1), (l2, r2)

〉
is given as follows.

SE = ω(E) +
∑

h∈HOLESE

D(r1, r2) with h =
〈
(l1, r1), (l2, r2)

〉
(4.3)

D(j, l) = max

D(j − 1, l)
D(j, l − 1)
D(i− 1, k − 1) + SE ,

if ∃E ∈ E1,2
γ with RIGHTE = (j, l), LEFTE = (i, k), i ≥ 1, k ≥ 1

(4.4)

Note that i, j, k, l denote relative hole positions. They need to be transformed into global
positions for the access of exact pattern matches from E1,2

γ . Formula 4.3 and 4.4 are
valid if it is guaranteed that the holes are computed according the ordering �HOLES. This
ensures that for each accessed hole h the overall score SE for any E contained in D(r1, r2)
is completely determined. Thus, we need only a two-dimensional matrix to compute the
score D(j, l) of each hole. The space complexity of recursion formula 4.4 is therefore only
O(nm).

Algorithm and Implementation

Algorithmically, we need a precomputing of all existing holes. The pseudocode is given
below. The algorithm 4.1 (precompute-holes) iterates through all holes from the small-
est to the largest for a given set E1,2

γ . The function compute-hole-D given in algorithm
4.2 represents the recursion according to formula 4.4. Note that the given pseudocode
iterates directly over global positions instead of relative hole positions. For the sake of
clarity, we do not show the data structure to access each EPM by its right-outside-bounds
as well as the set E1,2

γ itself. The function scoreEPM(E) gives the overall score SE for each
E ∈ E1,2

γ . The data structure HOLESET contains all holes and maintains moreover the
ordering �HOLES. In our implementation this is achieved with the data type multimap
from the standard template library for C++.

After the precomputing, the best score for the complete sequences can be obtained from
the calculation of D(|S1|, |S2|), i.e. treating the whole sequence as hole. With a standard
traceback technique through this filled matrix, the set E1,2

LCS can be generated which de-
notes the LCS-ERP. Results and examples which we produced with our implementation
are given in chapter 6. For a discussion of the problem LCS-ERP see section 6.4.

4.3 Correctness and Complexity 55

Algorithm 4.1: precompute-holes

Data: HOLESET�HOLES
= {h | h =

〈
(l1, r1), (l2, r2)

〉
∈ HOLESE , ∀E ∈ E1,2

γ }

Output: scoreEPM(E), ∀E ∈ E1,2
γ

forall E ∈ E1,2
γ do scoreEPM(E) = |E|;

forall hE ∈ HOLESET do
scoreHole = compute-hole-D([l1hE . . . r

1
hE

], [l2hE . . . r
2
hE

]);
scoreEPM(E) = scoreEPM(E) + scoreHole;

end

Algorithm 4.2: compute-hole-D

Function compute-hole-D([l1 . . . r1], [l2 . . . r2])

Data: Set E1,2
γ

Init: D[l1 − 1 . . . r1][l2 − 1 . . . r2] = 0;

for j = l1 to r1 do
for l = l2 to r2 do

if ∃ E ∈ E1,2
γ with RIGHTE = (j, l) ∧ LEFTE = (i′, k′) ∧ (i′ > l1) ∧ (k′ > l2)

then
score E = D[i′ − 1][k′ − 1] + scoreEPM(E);

else score E = 0;

D[j][l] = max {score E , D[j − 1][l], D[j][l − 1]};
end

end
return D[r1][r2];

4.3 Correctness and Complexity

Here we show that both recursion schemes give a correct solution for the problem LCS-
ERP from definition 4.1.1. Suppose a set E1,2

γ of several overlapping and crossing EPMs.
First, we consider that there exists no holes at all. The left indices i, k therefore are fixed
in formula 4.1 and can be set to one, i.e. we consider a matrix D(j, l) similar to formula
4.4.
Proposition 4.3.1
Given a set E1,2

γ of exact pattern matches over two RNAs R1 = (S1, B1) and R2 =
(S2, B2). Further suppose ∀Ei ∈ E1,2

γ : HOLESEi = ∅. Then the entry D(j, l) contains the
length of the LCS-ERP for the subsequences S1[1, j] and S2[1, l], if each entry is computed
from the maximum of D(j−1, l), D(j, l−1) or D(i′−1, k′−1)+ω(E), with LEFTE = (i′, k′),
RIGHTE = (j, l).

Proof. For any (j, l) there exists exactly one E ∈ E1,2
γ . We reduce from the left, i.e.

suppose the leftmost Em for the subsequences S1[1, j] and S2[1, l] with the left-outside-

56 Chapter 4 The Longest Common Subsequence of Exact RNA Patterns

bounds LEFTEm = (i′m, k
′
m) and the right-outside-bounds RIGHTEm = (j′m, l

′
m). The score

before is D(i′m − 1, k′m − 1) = 0 and the score at D(j′m, l
′
m) is therefore |Em|. This is the

maximal possible length of the LCS-ERP for the subsequences S1[1, j′m] and S2[1, l′m].
Clearly, a single EPM holds the Non-Crossing condition.

Any following entries are filled with the maximum of D(j−1, l), D(j, l−1) or D(i′−1, k′−
1)+ω(En), i.e. there is an EPM En with LEFTEn = (i′n, k

′
n), RIGHTEn = (j′n, l

′
n). The score

at D(i′n − 1, k′n − 1) contains the maximal LCS-ERP before En and is now extended with
the score from the Non-Crossing EPM En. If there is no EPM for a pair of positions
(j, l), the cases D(j − 1, l), D(j, l − 1) simply transfer the score from the position before
which ensures that any pair (j, l) contains a score of the maximal LCS-ERP.

Now we show that the solution is correct, if the set E1,2
γ contains holes, as well.

Proposition 4.3.2
Given a set E1,2

γ of exact pattern matches over two RNAs R1 = (S1, B1) and R2 =
(S2, B2). Then a hole for an EPM E is correctly computed with

∑
h∈HOLESE

D(l1, r1, l2, r2)
or

∑
h∈HOLESE

D(r1, r2) with h =
〈
(l1, r1), (l2, r2)

〉
.

Proof. A hole h =
〈
(l1, r1), (l2, r2)

〉
is given with its indices for the corresponding subse-

quences S1[l1, r1] and S2[l2, r2]. The difference between formula 4.1 and 4.4 is only the
point when the submatrix of D is filled. Formula 4.1 recursively computes it for any
found hole, whereas in formula 4.4 it is assumed that each EPM with a hole is already
computed if it is treated.

The scheme for a hole h follows exactly the scheme without holes. The difference is
that a found EPM Eh with its right-outside-bounds have to fit also with its left-outside
bounds LEFTEh

= (i′h, k
′
h) in the considered hole, i.e. i′h > l1 and k′h > l2 or i′h ≥ 1 and

k′h ≥ 1. Consequently, all treated EPMs satisfy the Non-Crossing condition relative to
that hole, because they lying completely inside a hole h. Therefore it is possible to add
the score of a hole to the score of the according EPM which contains hole h. In formula
4.4 this is achieved with the defined ordering on holes �HOLES. If the computation starts
with the smallest hole, all compatible EPMs during the computation of D(r1, r2) have a
score inclusive their holes.

Thus, we have shown that the scores D(i, j, k, l) for recursion formula 4.1 and D(j, l)
for recursion formula 4.4 represent the length of a longest common subsequence of exact
RNA patterns.

Complexity Analysis

Here we give an analysis of the improved version according to formula 4.4 and 4.3. The
input for the algorithm are two nested RNAs R1 = (S1, B1) and R2 = (S2, B2) and a
given set E1,2

γ . The lengths of the sequences are |S1| = n, |S2| = m.

The time and space complexity depends primarily on the number of exact pattern matches
and the number of holes. We emphasized already the uniqueness of each single partial

4.3 Correctness and Complexity 57

matching (r, s) ∈ M ⊆ V1 × V2 in the set E1,2
γ . Hence we can give the following two

statements:

• The set E1,2
γ contain maximal n ·m different EPMs and we can estimate this with

O(nm).

• The set E1,2
γ contain maximal n ·m different holes according to definition 4.2.1. This

applies for a complexity of O(nm) as well.

The first statement is given according to section 3.2. The second statement is proven
next. In algorithm 4.1 we indicate the ordered set of all holes with HOLESET. We use
this term in the same way for the following proof.

Proposition 4.3.3
Given a set E1,2

γ and the ordered set HOLESET of all holes contained in E1,2
γ . Then there

are maximal (n ·m) different holes in HOLESET, i.e. it can be estimated with O(nm).

Proof. Given two nested RNAs R1 and R2, there are maximal |B1| ≤ n
2 base pairs in

B1 and maximal |B2| ≤ m
2 base pairs in B2. An EPM can contain a hole if and only

if it contains at least one base pair to hold the matching pattern condition. As the set
E1,2

γ contains only unique partial matchings, also any base pair part of a hole in the first
RNA is matched by at most one base pair part of a hole in the other RNA. This means,
if an EPM contains a hole and therefore a base pair matching, this base pair cannot be
matched in the same way from another EPM. Thus, there are at most n · m holes in
HOLESET from a set E1,2

γ .

With that proof we can estimate the running time for the given recursion scheme 4.4
as follows. Each hole from HOLESET is treated one time. To obtain a score for a hole,
we fill a two dimensional matrix. The size is determined by the hole and is at most
|S1[l1, r1]| ≤ |S1| = n and |S2[l2, r2]| ≤ |S2| = m. Therefore, the time to determine the
score of a single hole is O(nm) and consequently for all holes we need O(n2m2) time.
The overall score is obtained from D(|S1|, |S2|) with all EPM scores precomputed. With
a traceback the underlying LCS-ERP or the set E1,2

LCS can be obtained in O(nm). For each
hole part of the LCS-ERP a matrix has to be re-filled to find the best trace of EPMs.

The space complexity of the improved version can be estimated with only O(nm). After
the computation of each hole, the score is added to the overall score for the corresponding
EPM and there is no need to maintain the hole matrix anymore. This is the difference
to the first version given in formula 4.1. There we have to maintain a O(n2m2) matrix.
Clearly, we have to save the score for each EPM and the set E1,2

γ itself. However, this not
exceeds the previous space complexity of O(nm).

Together with the fact from section 3.4 that we can determine the set E1,2
γ in O(nm),

we can summarize the complexity to solve the problem LCS-ERP with the following the-
orem.
Theorem 4.3.1 (LCS-ERP)
Given two nested RNAs R1 = (S1, B1) and R2 = (S2, B2). The problem to determine the
longest common subsequence of exact RNA patterns (LCS-ERP) is solvable in O(n2m2)
time and O(nm) space.

Chapter 5

A Local Clustering Strategy for Exact
Pattern Matches

Chapter 4 deals with a global method for exact pattern matches. In this chapter, we
describe our approach for local pairwise comparison of nested RNA secondary structures
on the basis of exact pattern matches. Local comparison might better exhibit active sites
which are responsible for biological function. Further one can find stable substructures
in the considered secondary structures.

In section 5.1, we define a (local) cluster of EPMs via a distance constraint. Clusters
are constructed from EPMs and this constraint in form of a threshold value describes
the maximally allowed distance between different exact pattern matches. In section 5.2,
we define different distance functions. To benefit from the fast detection of EPMs in
O(nm), we develop a fast clustering algorithm to find such clusters of exact pattern
matches. Section 5.3 describes two clustering strategies for this algorithm. Details of
our implementation for these strategies are presented in section 5.4. We end with a
complexity estimation and define parameters to achieve a fast detection of clusters.

5.1 Local Clusters of Exact Pattern Matches

The local alignment methods mentioned in section 2.3 provide more compact results for
less related sequences, because a local alignment do not have to span over the entire
sequence. Mostly, this is achieved with setting negative scores to zero and therefore a
“new“ alignment could start at any other point. In relation to theses methods, we want
to find local arrangements of EPMs. Following the global method from the last chapter,
we want to discover local subsets of EPMs. Clearly, a found subset should be a plain
mapping as well as an arc-preserving subsequence. In addition to a similar structural
ordering, the identified EPMs have to hold a distance constraint in both RNAs.

We define this constraint via a distance function δ, i.e. two neighbouring EPMs have a
distance less than a threshold value. An EPM above the threshold is not a neighbour
and therefore these two EPMs build no local arrangement of exact pattern matches. The
usage of a general distance function allows the definition of different functions, which
makes the approach flexible for different purposes. Further, two EPMs are only neighbors
if they hold the Non-Crossing condition from definition 3.3.1. The difficulties are how

60 Chapter 5 A Local Clustering Strategy for Exact Pattern Matches

to measure the distance and in which way we find fast a good local arrangement common
to both RNAs.

The usage of distances instead of gaps and the local view in principle applies more to the
domain of data classification and analysis. Therefore we speak of local clusters or simply
clusters for local arrangements of exact pattern matches.

Definition 5.1.1 (Cluster)
Given a set of exact pattern matches E1,2

γ over two RNAs R1 and R2 and a threshold
value τ . A Cluster is a set Cδ,τ ⊆ E1,2

γ of exact pattern matches for which hold:

1. ∀Ei Ej ∈ Cδ,τ : Ei and Ej are Non-Crossing in R1 and R2

2. ∀Ei ∃Ej ∈ Cδ,τ : δ(Ei, Ej) ≤ τ

The size of a cluster is equal to the number of matched nucleotides, i.e. |Cδ,τ | =∑
E∈Cδ,τ |E|. Further, the distance function δ(Ei, Ej) needs an explicit definition. Pos-

sible definitions are given in the following section. For example, we define a distance
function which uses the number of nucleotides between two exact pattern matches.

5.2 Distance Methods

The following defined distance functions δ(Ei, Ej) are based on the number of nucleotides
between two exact pattern matches. The Non-Crossing condition is a precondition on
all clusters and we can make use of this for the different distance functions. If two exact
pattern matches are Crossing, then their distance is set to infinity. Further we have to
treat the fact that the distance between two EPMs is different in R1 and R2. Therefore
we determine in a first step the distance in each RNA separately and then we combine
them in a second step.

5.2.1 DISTANCE-SEQUENCE

A simple and intuitive distance measure is based on the minimal length of the primary
structure between two neighbouring exact pattern matches. To determine the distance,
we make use of the matching bound definition 3.3.3. The following definition is given for
a single RNA. For example, for RNA R1 we define δ 1

SEQ as follows.

δ 1
SEQ(Ei, Ej) =

∞, Ei G Ej
r − RIGHT1

Ej
, Ei b Ej , ∃ (l, r) ∈ IN1

Ei
:

l < LEFTEj ∧ RIGHTEj < r

LEFT1
Ej
− RIGHT1

Ei
, Ei Ej

(5.1)

The distance function δ 1
SEQ for a cluster is given as the length of the sequence between

the right-outside-bounds and the left-outside-bounds, if the considered EPMs satisfy the

5.2 Distance Methods 61

before/after condition for Non-Crossing (third case). In the case of nested EPMs, the
distance function for a cluster is defined as the length of the sequence between the inside-
bound and the right-outside-bound (second case). This is necessary because the later
clustering algorithm works from the left to the right over a given sequence.

Figure 5.1: Illustration for distance function δ 1
SEQ. If Ej′ is before Ei, then the

distance δ 1
SEQ(Ei, Ej′) is determined by the outside-bounds. If Ej is inside Ei, then

δ 1
SEQ(Ei, Ej) is determined between the inside-bound and the outside-bound.

Now we can combine the distances of each RNA to the distance function δSEQ which we
call DISTANCE-SEQUENCE.

δSEQ(Ei, Ej) = δ 1
SEQ(Ei, Ej) + δ 2

SEQ(Ei, Ej) (5.2)

With formula 5.2 we can calculate the distance between two arbitrary EPMs. To identify
a cluster with this distance function, a threshold value τ is needed. Here τ can be
interpreted as the maximal number of nucleotides allowed between two exact pattern
matches.

For the clustering strategy we need a slightly different version of δSEQ which is better in
an algorithmic manner. We simply change that both distances have to be below a given
threshold τ . Then we write the distance function for a cluster as:

δSEQ1(Ei, Ej) =

{
TRUE, δ 1

SEQ(Ei, Ej) ≤ τ ∧ δ 2
SEQ(Ei, Ej) ≤ τ

FALSE, otherwise
(5.3)

If the length of the sequences are notably different, it is possible to use relative distances
as well as relative thresholds instead of absolute values.

5.2.2 DISTANCE-SEQUENCE-EQUAL

The distance function δSEQ1 handles all exact pattern matches within a given threshold
equally. Finding clusters with more similar distances, we can incorporate a constraint on
the differences of the distances. Such a distance can be useful to detect motives in RNAs
which need a certain distance in their tertiary structure for functionality.

With the following distance function we define two EPMs as local, if they have similar
distances in both RNAs. For example, suppose a given threshold τ = 50 and two EPMs
with a distance δ 1

SEQ(Ei, Ej) = 5 and δ 2
SEQ(Ei, Ej) = 45. Then both EPMs can be combined

with δSEQ1, although the large difference of 40 nucleotides. An additional constraint could
restrict the allowed difference for example to 10 nucleotides. Look at figure 5.2 below for

62 Chapter 5 A Local Clustering Strategy for Exact Pattern Matches

an illustration of that distance function. We call such a distance function DISTANCE-
SEQUENCE-EQUAL.

δEQL(Ei, Ej) =

{
TRUE, δSEQ(Ei, Ej) ≤ τ ∧

∣∣ δ 1
SEQ(Ei, Ej)− δ 2

SEQ(Ei, Ej)
∣∣ ≤ ∆DT

FALSE, otherwise
(5.4)

The threshold τ is used here as the general threshold for the allowed distance of two
EPMs. In addition, the δEQL function needs a second parameter ∆DT which denotes the
threshold for the allowed differences between the distances in the first and second RNA.

Figure 5.2: Illustration for distance function δEQL. The grey shaded region denotes
the allowed difference between the distances δ 1

SEQ(Ei, Ej) and δ 2
SEQ(Ei, Ej), determined

by ∆DT. The black line denotes the distance δ 1
SEQ(Ei, Ej).

5.2.3 DISTANCE-STRUCTURE-SHORTESTPATH

In contrast to the distance functions above which are based on the sequence length be-
tween two exact pattern matches, we want to define here a function which is based on the
secondary structure. Suppose two RNA structures and one of them has a large stem-loop
inserted in a common multi-loop. Then two exact pattern matches in the multi-loop
with that hairpin in between are not local with the above functions based on the primary
sequence. However, in a structural sense they are near if the hairpin is excluded. This
means if one can “walk” over hydrogen bonds and count the passed nucleotides in that
way, the resulting distance reflects better the given local structural properties of the RNA
molecule. Figure 5.3 shows such an example.

Figure 5.3: Illustration for distance function δPATH. The blue lines denote the
shortest paths between the indicated EPMs Ei and Ej . The distance is independent
of the size of the stem in the middle of R2.

According to our path definition 3.1.1, we therefore search for the minimal path between
two EPMs to determine their distance. We call this function DISTANCE-STRUCTURE-
SHORTESTPATH and is given for a single RNA as follows.

5.3 Clustering Strategies 63

δ 1
PATH(Ei, Ej) = min

{
∞, Ei G Ej
SHORTEST-PATH1(Ei, Ej), Ei, Ej Non-Crossing

(5.5)

The problem for an algorithm is the complexity of the path finding problem, denoted
here with the function SHORTEST-PATH. It depends on the structural elements of the
RNAs. A precomputation of the structural elements could be helpful, but still the path
between two arbitrary EPMs have to be determined separately. This probably exceeds the
desired overall complexity of an algorithm. With an inside-to-outside algorithm we are
already capable to access a specific structural path in one RNA in O(1). But it remains
incomplete and therefore the path finding problem needs further investigation.

5.3 Clustering Strategies

In this section we describe the algorithmic approach to find local clusters of exact pat-
tern matches. In contrast to the global case from chapter 4, no method is actually
known to find optimal local clusters of exact pattern matches. Methods like the LSSA-
algorithm from Backofen and Will [BW04] solves the related, but different local sequence-
structure alignment problem optimal. However, this approach with its time complexity
of O(n2m2 max(n,m)) is not applicable to large RNA structures. We recall here again
that the MCS algorithm [SB07] described in section 3.4 determines the set E1,2

γ in only
O(nm). This is fast and opens its application to large RNA structures with even several
thousands of nucleotides. For such large RNAs the comparison is rather limited by find-
ing the secondary structure with methods like RNAfold [HFS+94]. Moreover, an optimal
local method has probably a complexity comparable to the global case. In the following
we develop an algorithm which finds arrangements of exact pattern matches in form of
clusters within a reasonable and scaleable time.

The Clustering Principle

Our approach follows a greedy strategy to find local clusters. In general, a greedy strategy
chooses at any point the most profitable solution. Here, in each clustering step the best
solution, i.e. the cluster with the largest size, is chosen. Consequently, we follow for the
local approach a strategy which maximizes the size of a cluster |Cδ,τ |, i.e. the number of
matching nucleotides.

The basic idea is to maintain a set CANDSET of not fully extended clusters. Then for
each new considered EPM a set of clusters which hold the distance and Non-Crossing
constraints, called candidate clusters, is determined. In order to expand a candidate
cluster with a new EPM according to a chosen strategy, the best candidate cluster is
removed from CANDSET. Next, the solution is built and finally it is inserted in CANDSET.
Thus, each clustering step consists of three stages, independent from the chosen distance
function and clustering strategy. For any exact pattern match E ∈ E1,2

γ , the following
steps are processed.

64 Chapter 5 A Local Clustering Strategy for Exact Pattern Matches

1. Determine all candidate clusters Cδ,τ
cand for E from CANDSET,

i.e. ∃E ′ ∈ Cδ,τ
cand : δ(E , E ′) ≤ τ .

2. Find the Non-Crossing cluster Cδ,τ
max with max(|Cδ,τ

cand|), remove Cδ,τ
max from

CANDSET and build solution from Cδ,τ
max with E according to chosen strategy.

3. Add the solution to the pool of all candidates in CANDSET.

The first step comprises the necessary conditions to build a valid cluster according to
definition 5.1.1. A candidate denotes a cluster which is already found and satisfying the
distance constraint. The third step is necessary to increase the pool of candidate clusters.
Hence, alternative strategies can be build only around step two. In the following we define
two clustering strategies, differing in the way the solution is built. Both strategies use as
“seed” a cluster which comprises only a single EPM.

CLUSTER-MAX-1

The scheme for that strategy is as follows. Suppose a currently treated exact pattern
match E and further a candidate cluster Cδ,τ

max with maximal size |Cδ,τ
max|. First, the

cluster |Cδ,τ
max| is removed from CANDSET, i.e CANDSET \ Cδ,τ

max. Then we build the
solution with:

SMAX1 =
{
Cδ,τ

max ∪ {E}
}

(5.6)

This means, that the best candidate cluster Cδ,τ
max is extended with the current EPM E

and the former candidate cluster is replaced. With other words, any existing cluster is
clustered only once. This imply that a cluster is not independent from the ordering of
the treated EPMs. Finally, the solution is inserted in the set of candidate clusters, i.e.
CANDSET ∪ SMAX1.

CLUSTER-MAX-2

This strategy is similar to the first clustering strategy except that the candidate cluster
remains a candidate. Therefore, the solution for step two of the clustering principle
comprise two clusters. The new cluster is build from the candidate and the current
treated exact pattern match. Formally, this is as follows:

SMAX2 =
{
Cδ,τ

max ∪ {E}, Cδ,τ
max

}
(5.7)

This clustering strategy can be interpreted as a compensation strategy. A candidate
cluster can be combined with different exact pattern matches as long as the candidate
is within the threshold for the distance function. Here a cluster is less dependent from
the ordering of the treated EPMs. Finally, the solution is inserted in the set of candidate
clusters, i.e. CANDSET ∪ SMAX2

5.4 The Pairwise Pattern Clustering Algorithm 65

5.4 The Pairwise Pattern Clustering Algorithm

In the following we realize a fast clustering strategy of the introduced clustering princi-
ple. The algorithm proceeds an inside-to-outside scheme in general with all loop regions
treated first. This means that a base pair (i, i′) ∈ B is only processed, if all base pairs
(j, j′) ∈ B with i < j < j′ < i′ are processed before.

To achieve a clustering method which preserves the fast detection of the set E1,2
γ , we

iterate only through one RNA and handle each nucleotide only once. A preprocessing
step is needed to modify and order the given exact pattern matches for later clustering. In
the following we describe the preprocessing step and the clustering step of our algorithm
in detail. By convention, we always process the first RNA and determine all dependencies
within the second RNA simultaneously.

5.4.1 Preprocessing

Matching Closures: This step determines the matching closure E according to definition
3.3.4 for all exact pattern matches E ∈ E1,2

γ . We denote the set of all matching closures as
E1,2

γ and all following operations like the determination of the matching bounds or the test
for Non-Crossing are based on this set. The usage of the matching closure is necessary
to ensure that the ordering according to the right-outside-bound in one RNA excludes
all cases of overlapping and crossing EPMs correctly. The matching closure enforces
that all right-outside-bound positions are either unbound or right-paired. This allows
in stem regions the algorithmic checking of Non-Crossing with one specific sequence
position. In consequence of matching closures, specific pairs of EPMs are treated as
Crossing, although the underlying matchings are Non-Crossing. Figure 5.4 shows
such an example.

Figure 5.4: An arrangement of two EPMs which do not satisfy Non-Crossing,
if the check is based on matching closures. The problem occurs in R1. Here the
inside-bounds of E1 and the outside-bounds of E2 covering the same base pair (i, i′).

Ordering: Further, an ordering for all E ∈ E1,2
γ along the primary structure of the

first RNA is needed. This ensures that each EPM is treated only once in the clustering
algorithm. Similar to the LCS-ERP algorithm, we order all EPMs E ∈ E1,2

γ according to
the right-outside-bounds. Due to the fact that the input is ordered along R1, we separate
all EPMs by the RIGHT1

E value. Clearly, this position is not assigned to a unique EPM.
The resulting set of EPMs assigned to nucleotide position k is denoted as

EPMORDERk = { E | RIGHT1
E = k } ⊆ E1,2

γ .

66 Chapter 5 A Local Clustering Strategy for Exact Pattern Matches

5.4.2 Clustering

In order to realize the introduced clustering strategies from section 5.3, a set of candidate
clusters for each exact pattern match is needed. We call this set CANDSET and it is
best composed with an inside-to-outside scheme, because each innermost substructure
contains only a small number of EPMs. This reduces the number of possible candidate
clusters in general and the best chosen candidate cluster is propably a nearly optimal
clusters. In the following we assume a given ordering EPMORDERk for any position k
with 1 ≤ k ≤ |S1|.

The outline for this section is as follows. At first, we describe the data structure for the
set of candidate clusters. Next, we explain in which way a single EPM with its different
shapes is clustered. Then we give details on the handling of loops and finally we give the
overall algorithm using pseudocode notation.

Data Structure for the Set of Candidate Clusters

The set of candidate clusters for each nucleotide position k is maintained in the set
CANDSETk. This set contains all clusters Cδ,τ ∈ CANDSETk ⊆ CANDSET, which are
within the given threshold τ from sequence position k for the chosen distance function δ
in R1. As we process all positions k from inside to outside, any new inner loop starts with
an empty set CANDSETk. Hence, if a nucleotide S[k] is part of a base pair (k′, k) ∈ B,
CANDSETk contains only clusters with EPMs inside from position k. Second, if S[k] is
a nucleotide within a loop, all EPMs from clusters in CANDSETk have outside-bounds
between the beginning of the loop and position k. Note that we only treat right-paired
nucleotides in consequence of matching closures. Therefore, any left-paired nucleotide k
contains an empty set CANDSETk. In order to have all clusters within threshold τ in
CANDSETk, each CANDSETk needs an update from a position k′ inside or before k. The
update inserts all clusters from CANDSETk′ in CANDSETk which still hold the distance
constraint. During the algorithm, we then can simply iterate through each CANDSETk

to access all candidates for further treatment.

Clustering of Different Shapes of Matchings

Depending on the shape, an exact pattern match has to be tested against different and
moreover independent sets of candidate clusters. Due to the inside-to-outside scheme,
all these candidate clusters are lying inside or before the treated EPM. The necessary
positions k to access CANDSETk are determined by the inside-bounds and outside-bounds
and are identified as follows.

First, suppose an EPM E with a non empty set of inside bounds IN1
E . For any (ri, ri+1) ∈

IN1
E , the set CANDSETk with k = ri+1 − 1 contains the candidate clusters inside the

treated inside-bound (ri, ri+1) of E in R1. Clearly, all candidate clusters have to be
tested for the cluster constraints in R2, but this can be reduced to a single test between
E and a specific EPM from the candidate cluster.

5.4 The Pairwise Pattern Clustering Algorithm 67

The set of candidate clusters before E depends on the structure type of the nucleotide
before the left-outside-bound at position LEFT1

E − 1. If the nucleotide S1[LEFT1
E − 1] is

unpaired or right-paired (!), then the set CANDSETk with k = LEFT1
E − 1 contains all

candidate clusters before E but within the current inner loop in R1. Similarly to the case
above, each candidate cluster has to be tested for the cluster constraints in R2. If the
nucleotide S1[LEFT1

E−1] is left-paired (!), we cannot cluster anything, because E is inside
or at the end of a stem.

These given schemes for the handling of EPMs from EPMORDERk are combined in func-
tion clusterEPM. For the algorithm we denote the set of positions k with nonempty
candidate cluster sets for an EPM E with

CANDPOSE = {k | CANDSETk contains candidate clusters for E}.

In figure 5.5 all position from CANDPOSE for the shown EPM are red colored. Suppose a
base pair between S[i− 1] and the last U nucleotide. Then position i− 1 is not contained
in CANDPOSE .

Figure 5.5: An exact pattern match E (green nucleotides) and positions which
contain candidate clusters. The positions CANDPOSE = {i− 1, rj+1 − 1, rk+1 − 1}
are red marked, necessary bounds are blue marked.

Clustering of Loops and Multi-Loops

According to the loop decomposition for an RNA secondary structure shown in figure 2.3
on page 17, each loop region is limited by a closing base pair. We denote this base pair
with (r0, r′0). In the case of internal loops, bulges and multi-loops, there exist base pairs
(ri, r′i) with r0 < ri < r′i < r′0, which limit branching substructures.

Suppose a base pair (r0, r′0) which closes a loop. According to the used inside-to-outside
scheme, the loop region is traversed from the left to the right, i.e. from S1[r0 + 1] to
S[r′0 − 1]. If a base pair (ri, r′i) is found, this substructure is traversed first from inside
to outside and the loop-walk is continued afterwards. For such base pairs (ri, r′i) we
need an additional clustering operation which combines clusters inside base pair (ri, r′i)
and clusters produced between S1[r0 + 1] and S1[ri − 1]. If a position r′i is processed
during the algorithm, these clusters are already produced. Therefore we can simply add
a clustering operation between the sets CANDSETr′i

and CANDSETri−1. We call this
function clusterSTEM and it is invoked for all nucleotide positions r′i, if (ri, r′i) ∈ B is
base pair in the described manner.

68 Chapter 5 A Local Clustering Strategy for Exact Pattern Matches

The function clusterSTEM combines clusters with clusters in a fixed manner. Each clus-
ter from CANDSETr′i

is combined with the best cluster, i.e. the largest cluster, from
CANDSETri−1. The best cluster remains a candidate cluster. Clearly, two combined
clusters have to fulfil the cluster constraints, i.e Non-Crossing and the distance thresh-
old. With a clever ordering of the EPMs part of a cluster, the last added EPM is either
the most outside or the last before EPM. Therefore this check can be done in O(1) for
each cluster from CANDSETr′i

.

Figure 5.6 below illustrates the loop walk. The positions for clusterSTEM are red marked.
With this given scheme for loops, any loop closing base pair (r0, r′0) needs no special
treatment. All EPMs in EPMORDERr′0

are clustered with clusterEPM.

Figure 5.6: Clustering of a multi-loop closed by base pair (r0, r′0). The blue
circled base pairs delimit stem 1 and stem 2. For the red marked nucleotides
the clusterSTEM operation is applied. This function combines the green marked
sets CANDSETr′

i−1 and CANDSETri−1. The loop-walk starts with an empty set
CANDSETr0+1 = ∅ (blue nucleotide).

Complete Algorithm

Now we can give the complete algorithm. We separate it into two parts: (1) For each
nucleotide position 1 ≤ k ≤ |S1| the function clusterEPM(k) clusters all exact pattern
matches found at position k, i.e in EPMORDERk. (2) The function clusterSTEM(r′)
handles base pairs (r, r′) which delimit a substructure within a loop.

Note that RNA R1 is processed from inside to outside with loop positions first. Further,
each loop starts with an empty set CANDSETk = ∅. Dangling ends of R1 are treated as
loop positions as well. The pseudocode for clusterEPM is given in algorithm 5.2 below.

clusterEPM(k) // 1 ≤ k ≤ |S1|

1. For all EPMs E ∈ EPMORDERk determine set CANDPOSE .

2. Find best cluster Cδ,τ
max for each k′ ∈ CANDPOSE , i.e. find best cluster from

CANDSETk′ , for which {Cδ,τ
max ∪ {E}} is a valid cluster in R2.

3. Build solution SMAX for each E with Cδ,τ
max according to chosen strategy.

5.4 The Pairwise Pattern Clustering Algorithm 69

4. Insert solution in CANDSETk for each E , i.e. E ,CANDSETk ∪ SMAX.

During a loop walk, the following function clusterSTEM(r′) is applied to any position
r′, with (r, r′) ∈ B1 and (r, r′) delimits a substructure. The additional condition for the
right-outside-bound in step one is needed because all EPMs in EPMORDERr′ are already
treated during the clusterEPM function.

clusterSTEM(r, r′) // (r, r′) ∈ B1 is delimiting base pair

1. ∀Cδ,τ ∈ CANDSETr′ , ∀E ∈ Cδ,τ that hold RIGHT1
E < r′, find best cluster

Cδ,τ
max ∈ CANDSETr−1 for which {Cδ,τ ∪ Cδ,τ

max} is a valid cluster in R2.

2. Build solution SSTEM =
{
{Cδ,τ ∪ Cδ,τ

max}
}

for each Cδ,τ

3. Insert solution in CANDSETr′ for each Cδ,τ , i.e. CANDSETr′ ∪ SSTEM

Note that in both functions the verification of a valid cluster in R2 can be reduced to
a single Non-Crossing test with an appropriate data structure for the clusters itself.
Additionally, for each position k, the set CANDSETk has to be updated with all clusters
from CANDSETk−1, which are within threshold τ for the chosen distance function δ.
Further, if k is right paired and delimits a stem, the update is also necessary from the
set CANDSETr−1, if (r, r′) is the limiting bond in B1. At the end we have to insert
all current EPMs in CANDSETk as seed cluster. Seed clusters as generated as follows:
∀E ∈ EPMORDERk, Cδ,τ

SEED = {E}. Then each seed cluster is inserted in CANDSET, i.e.
CANDSETk ∪ {Cδ,τ

SEED}.

With a traceback through the set CANDSET, clusters with different properties can be
retrieved. If only the best cluster should be obtained, no traceback is needed. In the
pseudocode below the largest cluster from CANDSET is denoted as Cδ,τ

BEST. The other
clusters can be used for further analysis. For example, one can ask for the best cluster
inside an arbitrary base pair (i, i′). Such requests are supported by the data structure
CANDSET.

Next we give the pseudocode for the clustering algorithm. We omit the function clusterSTEM
and give instead the main loop of the clustering algorithm.

70 Chapter 5 A Local Clustering Strategy for Exact Pattern Matches

Algorithm 5.1: clusterAll (main loop)

Output: cluster Cδ,τ
BEST, with |Cδ,τ

BEST| is maximal in CANDSET

Preprocessing(E1,2
γ , EPMORDER);

foreach 1 ≤ k ≤ |S1| from inside to outside in B1 do

CANDSETk = ∅;
clusterEPM(k);

if ∃(r, r′) ∈ B1 with k = r′ and (r, r′) limits a stem then

clusterStem(r, r′);
update CANDSETk from CANDSETr−1;

end
if STRUCT1(k − 1) 6= left-paired then update CANDSETk from CANDSETk−1

end
Traceback(CANDSET)

Algorithm 5.2: clusterEPM

Procedure clusterEPM(k)

forall Ej ∈ EPMORDERk do

Cδ,τ
S := {Ej}; SMAX = ∅;

forall k′ ∈ CANDPOSEj do

maxSize := 0;

forall Cδ,τ
i ∈ CANDSETk′ do

if Cδ,τ
i ∪ {Ej} is cluster in R2 and maxSize ≤ |Cδ,τ

i | then

maxSize :=|Cδ,τ
i |;

Cδ,τ
max = Cδ,τ

i ;
end

end
Cδ,τ

S := Cδ,τ
S ∪ C

δ,τ
max;

CANDSETk′ \ Cδ,τ
max;

if CLUSTER-MAX-2 then SMAX ∪ {Cδ,τ
max}

end
SMAX ∪ {Cδ,τ

S }; /* CLUSTER-MAX-1 and CLUSTER-MAX-2 */

CANDSETk := CANDSETk ∪ SMAX;

CANDSETk := CANDSETk ∪ {Cδ,τ
SEEDj
}; /* Cδ,τ

SEEDj
is seed cluster for Ej */

if |Cδ,τ
BEST| ≤ |Cδ,τ

S | then Cδ,τ
BEST := Cδ,τ

S ;
end

5.4 The Pairwise Pattern Clustering Algorithm 71

5.4.3 Complexity Analysis

In contrast to optimal algorithms, a worst case analysis is difficult for greedy techniques.
Nevertheless, an estimation of the average number of performed operation is possible.
Therefore we analyse the clustering strategy under specific parameters.

Due to the fact that the threshold value τ is fixed and determines how long a cluster
is “active” in the set CANDSET, this provides a basis for an analysis. In the following
we estimate the performed number of operations for the strategy CLUSTER-MAX-2 and
distance function δSEQ1.

For the analysis we suppose two given RNAs with their sequence lengths |S1| = n and
|S2| = m. Further there are p = |E1,2

γ | exact pattern matches given. Then we can assume
on average

aE =
p

n
(5.8)

exact pattern matches for each nucleotide k. This equals the average number of EPMs
for each EPMORDERk. Starting with a set CANDSET = ∅, there are at first aE clusters
and then for each following position the size increases with 2 ·aE maximal. After τ steps,
aE clusters are out of the threshold and then with each following step there are 2 · aE
clusters out of the threshold. Consequently there are

candk = 2 · aE · (τ + 1) · c (5.9)

candidate clusters for each CANDSETk with some constant c for the secondary structure.
With an iteration over the first sequence, there are together 2 · p · (τ + 1) · c generated
clusters. Hence we have to test on average candk clusters to find for each exact pattern
match the best cluster. This reveals

candk · p = 2 · aE · p · (τ + 1) · c =
2 · p2 · (τ + 1) · c

n
(5.10)

as an estimation of the needed overall operations. Note that each clusterSTEM operation
produces some c ·candk additional clusters for some positions. Further the update of each
CANDSETk needs on average candk operations. We assume these factors included in the
constant c. The test for Non-Crossing in R2 can be done in O(1) for both clustering
operations.

For real applications it is interesting to determine the input parameters against an ex-
pected average time complexity. For example, to perform not more than O(nm) opera-
tions, we can estimate the size |E1,2

γ | and threshold τ with

τ̂ ≤ n2m

2 · P 2 · c
P̂ ≤

√
n2 ·m

2 · c · (τ + 1)
(5.11)

72 Chapter 5 A Local Clustering Strategy for Exact Pattern Matches

The correctness for the clustering algorithm follows from the fact that each cluster is
build up from a seed cluster with a single EPM. Any extension is only done with an
EPM lying outside or after, which satisfies the Non-Crossing condition. This holds
as well for the clusterSTEM operation. Further any EPM is clustered to a cluster from
CANDSETk which satisfies the distance condition. Thus, all clusters in CANDSET are
clusters according to definition 5.1.1.

Summarizing, the clustering algorithm is able to find clusters according to definition 5.1.1.
Experimental results for two pairs of RNAs are given in chapter 6.

Theorem 5.4.1 (Clustering Algorithm)
Given two nested RNAs R1 = (S1, B1) and R2 = (S2, B2) with n = |S1|, m = |S2|, n ≤ m.
Further a set of exact pattern matches E1,2

γ with p = |E1,2
γ |. Under a given distance

threshold τ and a distance function δ, the proposed clustering algorithm determines correct
a maximal cluster Cδ,τ

MAX of exact pattern matches for a chosen clustering strategy. The
number of performed operation can be estimated with (2·p2 ·(τ+1)·c)/n for some constant
c.

Chapter 6

Results

On the basis of a predetermined set of exact pattern matches (EPMs), we have developed
two methods for pairwise comparison of RNA secondary structures. EPMs describe exact
sequential and structural similarities between two RNA secondary structures. However,
such a precomputed set contains both overlapping and crossing exact pattern matches
and approaches are needed to combine EPMs in a meaningful way.

The first method described in chapter 4 deals with the task to find the best global subset
of EPMs, i.e. the subset which forms a longest common subsequence. We call this prob-
lem LCS-ERP and proposed an O(n2m2) time and O(nm) space dynamic programming
algorithm to solve it. This approach can be used to describe a global similarity between
two RNAs. The clustering strategy described in chapter 5 follows a more local approach
to combine different EPMs. Although our proposed strategy does not ensure optimal
clusters, it is flexible enough to find reasonable clusters in a reasonable time.

In the following we apply both methods to two Hepatitis C virus internal ribosomal entry
site RNAs as well as to two bacterial 16S ribosomal RNAs to demonstrate their usabil-
ity. For a validation of our results, we compare them to RNA align and RNAforester.
This chapter starts with a description of our implementation as basis for the later given
experimental results.

6.1 Implementation of LCS-ERP and Clustering

In order to verify the functioning and usability, we implemented both the algorithm for
finding the longest common subsequence of exact RNA pattern and the clustering strat-
egy. This program was developed during this thesis and all below given results were
obtained from this program. Our C++ implementation combines all necessary steps in a
modular and object oriented way. The core of the program builds the object EPMensemble
for the storage of all overlapping and crossing exact pattern matches (EPMs). The neces-
sary EPMs are discovered according to the fast maximum common substructure algorithm
from section 3.4 within the object EPMfinding. An implementation of this algorithm was
obtained from [SB07]. The algorithm for the problem LCS-ERP is implemented in the
object EPMlcserp and the clustering strategy is given in EPMclustering.

The input data can be provided in two ways. First, the two RNAs can be given with
their sequences and structures in standard dot-bracket format. If no secondary struc-
ture is available, the program interacts with the Vienna RNA package library [HFS+94]

74 Chapter 6 Results

and calculates the minimum free energy (mfe) structure with RNAfold automatically
[HFS+94]. The mfe-program uses the DP-algorithm from Zuker and Stiegler [ZS81]
in combination with the equilibrium partition function to calculate base pair binding
probabilities from McCaskill [McC90]. The thermodynamic parameters are taken from
[MSZT99, WTK+94].

As it is an additional goal of this thesis to find a visualization for the exact pattern
matches itself and of course for the resulting sequences of EPMs, we developed two ways
to achieve this. First, it is possible to indicate a certain set of EPMs within a secondary
structure. The plot for the structure is obtained as well from the Vienna package with
the interface for the postscript output. An additional annotation script was implemented
to highlight all EPMs in the structure plot with a different color. See for example figure
6.1 for such an output. Second, a dot plot is useful to illustrate pairwise EPMs within
a single plot. Such an example was already given in figure 3.5 which shows a complete
set of EPMs for two RNAs. For the ease of programming, we implemented this dot-plot
view by means of a JAVA program. We choose an structured XML file to exchange all
necessary data between the programs.

The LCS-ERP algorithm is completely implemented and the clustering strategy is able
to calculate clusters with both clustering strategies CLUSTER-MAX-1 and CLUSTER-
MAX-2. As distance function we have already implemented δSEQ1 and δEQL. In order to
determine the set E1,2

γ with the given properties, one can provide for example the option
-s# to indicate the minimal size γ.

6.2 Comparison to other Methods

For the comparison of the results we have chosen RNA align and RNAforester. The first
method computes sequence structure alignments according to the general edit distance al-
gorithm described in section 2.4 [JLMZ02]. An implementation is available at the website
http://www.csd.uwo.ca/~bma/rna align/. For both applications we have computed
the alignment with the scoring scheme (ωm, ωd, ωam, ωb, ωa, ωr) = (1, 1, 1.8, 1.5, 1.75, 2).

Second, the RNAforester program from [HTGK03] is selected. This approach is build
upon the tree alignment algorithm for ordered trees from [JWZ95] and extends it to
calculate forest alignments. The time complexity is O(|F1| · |F2| · deg(F1) · deg(F2) ·
(deg(F1) + deg(F2))) where |Fi| is the number of nodes in forest Fi and deg(Fi) is the
degree of Fi. An implementation is available together with the Vienna RNA package.
As input parameter the algorithm needs the scores for the different edit operations. We
have chosen bm = 4 (base-match), br = −2 (base-mismatch), bd = −2 (base-deletion),
pm = −4 (base pair replacement) and pd = −4 (base pair bond deletion) to compute the
tree alignment for both applications.

It is important to note that a direct comparison with these methods is not possible due
to the fact that our approach contains only exact matchings, whereas alignments contain
additional gaps and mismatches. Nevertheless, a comparison is possible on the base of the
exact matchings. After the computation of the alignments with the mentioned methods,
we extract all positions with exact sequence structure matchings. The comparison is now

6.3 Application of LCS-ERP and Clustering 75

achieved via the intersections and differences with our approach. This enables further a
similar visualization technique for the alignments to our results. Clearly, a validation of
global alignments is only reasonable with the solution determined by LCS-ERP. Although
the clustering approach yields more local solutions, a comparison to local alignments is
not possible due to the nature of this approach. However, we can show that the obtained
clusters are reasonable as well. The comparison can be found at the end of section 6.3.1
and 6.3.2.

6.3 Application of LCS-ERP and Clustering

In the following we analyse both methods with two test cases. We have chosen at first
two RNAs with a length of around 400 nucleotides and the second pair comprise RNAs
with about 1550 nucleotides. In detail, the analysis was carried out with the following
RNAs:

• App. 1: Two RNAs from different Hepatitis C viruses, which belong both to
the Rfam family HCV IRES for internal ribosomal entry sites (IRES) [GJMM+05].
IRES elements binds to the 40S ribosomal subunit and initiate the translation of
the viral mRNA. Specific structural properties are necessary for their functioning.
Between different IRES elements one could expect several similarities. The first
RNA comprises bases 1-379 (GenBank code: AF165050) and the second comprises
the bases 1-391 (GenBank code: D45172). The secondary structures were found
via RNAfold.

• App. 2: Two 16S ribosomal RNAs from different organisms. The first RNA is
from Eschericia coli and is 1541 bases long (GenBank code: J01859). The second
RNA is from Dictyostelium discoideum and is 1551 bases long (GenBank code
D16466). This organism is an eukaryotic slime mould, whereas E. coli belongs to
the prokaryotic proteobacteria. This imply that both organisms evolved a long
time separately. Nevertheless one could expect significant similarities between both
RNAs due to the fact that the RNAs are ribosomal RNAs. The secondary structures
were taken from the Comparative RNA Web (CRW) site [CSS+02].

Note, that the first pair was chosen according to the paper from Siebert and Backofen
[SB07]. All computations were carried out on a Pentium M with 1.4 GHz and 768Mb
RAM.

76 Chapter 6 Results

6.3.1 Hepatitis C Virus IRES RNAs

For this case, the algorithm EPMfinding identified 3284 exact pattern matches in 0.44
seconds. We use the complete set E1,2

γ as input for both pairwise comparison methods.

LCS-ERP applied to Hepatitis C Virus IRES RNA

Our LCS-ERP algorithm obtained a set of 26 exact pattern matches with a sequence of
175 nucleotides as longest common subsequence of exact RNA patterns. The LCS-ERP
corresponds to a sequence coverage of about 45%. The calculation was performed in 0.53
seconds.

The structures with the indicated LCS-ERP can be seen in figure 6.1 below. Although the
structures differ significantly in their shape, the algorithm detects several similar regions
between both structures. The numbers mark the five largest EPMs from the set E1,2

γ .
These are the same as the manually marked EPMs shown in figure C.1 in the appendix
on page 109. The solution for LCS-ERP includes all of them automatically. An intersting
detail is for example the included small blue hairpin in the left structure between number
three and four. In the right RNA, this hairpin is opposite to the small yellow stem
with number five, whereas in the left structure this stem is situated in another region.
Nevertheless, all indicated EPMs are Non-Crossing in order to build the LCS-ERP.

Appl. 1 length #EPMs time

LCS-ERP 175 26 0.53s

6.3 Application of LCS-ERP and Clustering 77

Figure 6.1: LCS-ERP approach applied to two Hepatitis C virus internal ribosomal
entry sites (IRES) RNAs. The colored nucleotides represent the found LCS-ERP
with an overall length of 175 bases. Each EPM is shown in a different color. The
numbers indicate the five marked EPMs from figure C.1. GenBank codes: D45172
(left RNA), AF165050 (right RNA)

78 Chapter 6 Results

Clustering applied to Hepatitis C Virus IRES RNAs

Due to the different clustering strategies and distance functions, the solutions for this
approach depends on the chosen parameters. Therefore we show for the first application
the differences between the clustering strategies CLUSTER-MAX-1 and CLUSTER-MAX-2.
For comparability, we focus always on the best cluster Cδ,τ

max ∈ CANDSET, i.e. the cluster
with the largest size, in the analysis. Furthermore we change the threshold value τ for
both strategies in the same way. The threshold determines the maximal allowed distance
between exact pattern matches from a cluster. The used distance function is δSEQ1.

CLUSTER-MAX-1 vs. CLUSTER-MAX-2

To assess the general abilities as well as the differences of both strategies, we analyse this
test case with a series of different threshold values τ . The results are summarized in table
6.1. The corresponding structures for CLUSTER-MAX-1 are shown in figure 6.2 and B.4.
The structures for CLUSTER-MAX-2 can be found in figure 6.3 and B.5.

The data show that with an increasing search range by the threshold value τ the size of
the cluster Cδ,τ

max increases as well. For larger values than τ = 80 the largest clusters do
not change anymore in this case. Further one can see that both strategies are able to find
significant clusters. For example, the lower stem with the two large EPMs is matched for
nearly all τ values. For small values of τ , the best cluster is a proper local cluster for
both strategies, for larger τ the cluster spans nearly the whole structure.

By comparison of both clustering strategies differences in size and shape of the found
clusters emerge. For larger values of τ clearly CLUSTER-MAX-2 yield larger and bet-
ter clusters. Compare the pictures for τ = 80 in the figures 6.2 and 6.3. The large
green matching part of the best CLUSTER-MAX-2 solution is completely skipped in the
best CLUSTER-MAX-1 solution. An notable difference to the global solution occurs for
CLUSTER-MAX-2 with τ = 80. The small pink hairpin is not part of the global solution.
From figure 6.3 one can verify that this is an reasonable matching as well. A summary
of all clustering parameters as well as remarks to the running time can be found at the
end of this chapter in section 6.3.3.

threshold τ size Cδ,τ
MAX1 time in s size Cδ,τ

MAX2 time in s

5 48 0.08 48 0.49
10 48 0.38 63 0.53
20 72 0.41 89 0.58
40 73 0.49 112 0.63
60 74 0.55 116 0.71
80 74 0.59 119 0.73

Table 6.1: Comparison of the clustering strategies CLUSTER-MAX-1 and
CLUSTER-MAX-2 for two Hepatitis C virus IRES RNAs. For larger thresholds
τ , the cluster size increases for both strategies. CLUSTER-MAX-2 reveal larger
clusters in general. The running times are comparable of both strategies.

6.3 Application of LCS-ERP and Clustering 79

τ = 5 τ = 20

τ = 40 τ = 80

Figure 6.2: Analysis for two Hepatitis C virus IRES RNAs with clustering strat-
egy CLUSTER-MAX-1. The pictures show the largest found cluster for the given
distance threshold τ value. Each EPM is shown in a different color. The arrows
indicate regions with large matchings. For example look at the figure for τ = 40.
The arrow indicates a large EPM which is not part of the other solutions.

80 Chapter 6 Results

τ = 5 τ = 10

τ = 40 τ = 80

Figure 6.3: Analysis for two Hepatitis C virus IRES RNAs with clustering strat-
egy CLUSTER-MAX-2. The pictures show the largest found cluster for the given
distance threshold τ value. Each EPM is shown in a different color. The arrows
indicate regions with interesting matchings. For example, look at the figure for
τ = 10. The multi-loop with the green and blue EPMs is matched completely dif-
ferent to the other solutions. Second, look at the figure for τ = 80. The small red
stem-loop is neither part of other clusters nor part of the LCS-ERP solution.

6.3 Application of LCS-ERP and Clustering 81

Comparison with RNAforester and RNA align

For the comparison of our results to RNA align and RNAforester, we have first computed
the alignments for both Hepatitis C virus IRES RNAs. The obtained alignments for the
Hepatitis C virus IRES RNAs can be found in the appendix in figure A.1 for RNA align
and in figure A.3 for RNAforester. Next, we have extracted from these alignments all
positions with exact sequence structure matchings.

RNA align has found an alignment with 192 exact matchings in which 159 matchings
intersect with the solution from LCS-ERP. This means that about 9% of our matchings
are different to RNA align and the LCS-ERP solution covers 82.8% of the exact matchings
from RNA align. Figure 6.4 below shows the structural comparison between RNA align
and LCS-ERP. One can see that all important regions are blue colored which means
identical exact matchings. Further, there are several light blue colored nucleotides. These
positions are part of exact matchings in both methods, but the positions in the other RNA
are different. With a sharp view one can see that these are mainly shifted matchings in
a loop region. The red colored nucleotides indicate additional exact matchings found by
RNA align. These are mainly single nucleotides or regions which have to be excluded in
LCS-ERP due to the Non-Crossing constraint.

The RNAforester approach obtained an alignment with 128 exact matchings. In compar-
ison to our LCS-ERP approach, we cover the included exact matchings with a similar rate
of 80.5%. However, our method finds much more exact matches in general. The struc-
tural comparsion of our approach with the alignment found by RNAforester is shown
in figure A.2 in the appendix. One can see that our approach additionally matches one
stem region and several loop regions (green colored positions). Further there are only a
few different matches found by RNAforester. These are mainly single nucleotides, which
cannot be part of our solution.

The following table 6.2 summarizes the comparison. The comparison of the running
times yields good results for our approach as well. Please note that the running time for
LCS-ERP includes the time additionally needed to determine all exact pattern matches.

exact matches RNA align RNAforester LCS-ERP time

RNA align 192 - - 62s
RNAforester - 128 - 5.4s

LCS-ERP 159 (82.8%) 103 (80.5%) 175 0.97s

Table 6.2: Comparison of the number of found exact matchings by LCS-ERP
and two alignment methods. For this application, the LCS-ERP approach yields
good results in comparison to RNA align. Further, the LCS-ERP approach finds
significantly more exact matchings than RNAforester. The rate of about 80%
identical matchings supports the significance of the LCS-ERP method. The running
time is faster as well.

82 Chapter 6 Results

Figure 6.4: Comparison between LCS-ERP and RNA align for two Hepatitis C
virus IRES RNAs. The blue colored nucleotides denote exact matches in both
methods. The light blue nucleotides denote matched nucleotides in both meth-
ods, but with different positions in the other RNA. The green colored nucleotides
occur only in LCS-ERP and the red colored nucleotides occur only in RNA align.
The picture shows that the LCS-ERP solution is comparable to the solution from
RNA align. GenBank codes: D45172 (left RNA), AF165050 (right RNA)

6.3 Application of LCS-ERP and Clustering 83

6.3.2 16S Ribosomal RNAs

For this case, the algorithm EPMfinding identified 50322 exact pattern matches in 1.21
seconds. We use the complete set E1,2

γ as input for both pairwise comparison methods.

LCS-ERP applied to two 16S ribosomal RNAs

The LCS-ERP algorithm obtained a set of 159 exact pattern matches with a sequence of
875 nucleotides as longest common subsequence of exact RNA patterns. This corresponds
to a sequence coverage of about 57%. The calculation was performed in 15.7 seconds.

The structures with the indicated LCS-ERP can be seen in figure 6.5. One could see
that our approach is capable to identify a large number of exact similarities between
both RNAs. See especially the high number of matched hairpins and internal loops.
Due to the fact that ribosomes are one of the best conserved functional units in living
organisms, the overall shape of both secondary structures is very similar. However, in
detail one could recognize differences in stem and loop regions. The matched regions
could therefore reflect conserved functional units. Unbound nucleotides within loops can
clearly easier interact with other molecules than paired nucleotides.

Appl. 2 length #EPMs time

LCS-ERP 875 159 15.7s

Clustering applied to 16S ribosomal RNAs

According to the first application, we show at first differences between the clustering
strategies CLUSTER-MAX-1 and CLUSTER-MAX-2. Further we focus here on differences
between the distance functions δSEQ1 and δEQL. For comparability, we use always the best
cluster Cδ,τ

MAX in the analysis. Due to the larger structures, we show in some cases only
cutouts to illustrate properties of the found clusters.

Clustering Strategies CLUSTER-MAX-1 and CLUSTER-MAX-2

First we have applied both clustering strategies in combination with distance function
δSEQ1 for different distance threshold values τ . For the differences between both strategies
we focus on the case with τ = 50. The according structures with the highlighted cluster
is shown in figure B.1 for CLUSTER-MAX-1 and in B.2 for CLUSTER-MAX-2 in appendix
B. Table 6.3 below summarizes the results.

First, one can see from figures B.1 and B.2 that both strategies are able to identify signifi-
cant similarities between both RNAs. Further the data exhibit similar differences between
the strategies like for the first application. CLUSTER-MAX-2 produces larger and better
clusters than CLUSTER-MAX-1. Besides their size, the cluster from CLUSTER-MAX-2
also contains more exact pattern matches in a specific region. Compare for example the
right branched stem region for both strategies in figure B.1 and B.2. The EPMs are

84 Chapter 6 Results

Figure 6.5: LCS-ERP approach applied two 16S ribosomal RNAs. The colored
nucleotides represent the found LCS-ERP with an overall length of 875 bases. Each
exact pattern match is shown in a different color. One could recognize several
regions of similarity. Although the structures vary, nearly all stems and hairpins
can be found with significant matches in both RNA. (a) E. coli 16S rRNA (J01859),
(b) D. discoideum 16S rRNA (D16466)

6.3 Application of LCS-ERP and Clustering 85

more dense and the cluster for CLUSTER-MAX-2 contains more matched hairpins in this
region. CLUSTER-MAX-1 tends to match base pairs only in the main branch and ignore
small branched stems.

One can see from the table that higher distance thresholds τ not necessarily increase
the size of the largest found cluster. Further the table shows that the running time
increases with higher distance thresholds τ , but the running time of CLUSTER-MAX-1
scales better than CLUSTER-MAX-2. For small τ values the differences are negligible
which supports the choice of CLUSTER-MAX-2 as the better strategy. Moreover, this
strategy finds reasonable clusters for small distance thresholds with a fast running time.
See the already large cluster obtained for τ = 10 shown in figure B.3.

threshold τ size Cδ,τ
CMAX1 time in s size Cδ,τ

CMAX2 time in s

10 155 4.22 403 4.92
50 183 9.24 555 12.64
100 286 18.63 483 29.41

Table 6.3: Comparison of the clustering strategies CLUSTER-MAX-1 and
CLUSTER-MAX-2 for two 16S rRNAs. CLUSTER-MAX-2 revels significant larger
clusters than CLUSTER-MAX-1. The running time of CLUSTER-MAX-2 is little
slower than CLUSTER-MAX-1.

Distance Functions δSEQ1 and δEQL

In section 5.2, we introduce the distance function δEQL as modification of δSEQ1 in order to
obtain more similar clusters. This function needs in addition to the distance threshold
τ the second parameter ∆DT as the threshold of the allowed distance differences for two
EPMs in the considered RNAs.

The analysis is carried out with clustering strategy CLUSTER-MAX-2 and a fixed distance
threshold τ = 10. The largest cluster with the unmodified distance function δSEQ1 is shown
in figure B.3 in the appendix. The cluster has a size of 403 matched nucleotides. One
can see that this cluster exhibits already a better locality in comparison to the cluster
obtained with τ = 50 shown in figure B.2. Further the cluster includes significant matches
like the green colored stem.

The application of distance function δEQL to this case reveals some differences. Figure 6.6
shows the results for two different values ∆DT. In both cases one can see some effects.
Especially for ∆DT = 2 the best found cluster decreases in size with the result of a more
local cluster. However, one can see from the picture that already for ∆DT = 5 the effect
decreases with higher thresholds.

The best cluster for ∆DT = 2 has a size of 172 nucleotides and the cluster for ∆DT = 5
comprises 368 nucleotides. This is a clear reduction in comparison to the best cluster for
δSEQ1 with τ = 10 and a size of 403 nucleotides.

86 Chapter 6 Results

τ = 10,∆DT = 2 τ = 10,∆DT = 5

τ = 10,∆DT = 2 τ = 10,∆DT = 5

Figure 6.6: Clustering with distance function δEQL. The pictures show the largest
found cluster for the given distance threshold τ value. ∆DT is the allowed difference
threshold. In comparison to δSEQ1, the clusters are more local. For smaller values of
∆DT the effect is higher than for larger values. (a-1,2) E. coli 16S rRNA (J01859),
(b-1,2) D. discoideum 16S rRNA

∆DT size Cδ,τ
CMAX2 time in s

2 172 4.2
5 368 4.8

Table 6.4: Results for two 16S rRNAs with distance function δEQL for τ = 10 and
two different values for ∆DT. The best found clusters for ∆DT = 2 is smaller, but
exhibits a better locality in comparison to ∆DT = 5 and to δSEQ1 with τ = 10.

6.3 Application of LCS-ERP and Clustering 87

Comparison with RNAforester and RNA align

Similar to the first application, we have first computed the alignments for both 16S
rRNAs. The obtained alignment for RNA align can be found in figure A.5 and for
RNAforester in figure A.6 in the appendix. Next we have extracted from these alignments
all positions with exact sequence structure matchings.

The alignment from RNA align contains 861 exact sequence structure matchings. In
comparison, our approach obtained 875 exact matchings and of these are 688 or 79.9%
equal to the alignment. In contrast to the first application, our method finds in fact
some more matchings than RNA align. The structural comparison of both methods is
shown in figure A.4 in the appendix. The blue colored nucleotides show that our method
conforms very well with the alignment. In addition, there are about 70 nucleotides in both
structures which are covered by both methods, but mapped only to different positions.

The RNAforester approach obtained an alignment with 847 exact matchings. In com-
parison to our LCS-ERP approach, we cover the included exact matchings with a rate
of 82.6% (700). Similar to the first application, our method finds several more exact
matches in general. The structural comparsion of our approach with the alignment found
by RNAforester is shown in figure 6.7. It shows that large parts are matched similar
by both methods (blue colored nucleotides). Further there are 61 nucleotides in the E.
coli RNA and 49 nucleotides in the D. discoideum RNA which are matched to different
positions. These are often only shifted matchings. The number of unique matchings for
the LCS-ERP methods is as well higher than for RNAforester.

The following table 6.5 summarizes the comparison. For the used 16S rRNA we achieved a
slight better result with RNAforester. The comparison of the running times yields really
good results for our approach as well and emphasizes its application to large RNAs.
Please note that the running time for LCS-ERP includes the time to determine all exact
pattern matches. Due to the high memory usage of the RNA align implementation for
long RNA sequences, we used a compute server for this computation. Nevertheless, the
computation needs more than 1.5 hours.

exact matches RNA align RNAforester LCS-ERP time

RNA align 861 - - 1h 35m∗

RNAforester - 847 - 7m 25s
LCS-ERP 688 (79.9%) 700 (82.6%) 875 16.9s

Table 6.5: Comparison of the number of exact matches found by LCS-ERP and two
alignment methods. For this application, the LCS-ERP approach yields good results
in comparison to both methods. Further, the LCS-ERP approach finds the most
number of exact matchings. The rate of about 80% identical matchings supports
the significance of the LCS-ERP method. The running time is remarkable faster
than both methods. ∗AMD Opteron 275/875, 2.2 GHz, 20 Gb RAM

88 Chapter 6 Results

Figure 6.7: Comparison between LCS-ERP and RNAforester for two 16S rRNAs.
The blue colored nucleotides (700) are exact matches in both methods. The light
blue nucleotides denote matched nucleotides by both methods but with differ-
ent positions in the other RNA (61 in (a), 49 in (b)). The green colored nu-
cleotides occur only in LCS-ERP and the red colored nucleotides occur only in
RNAforester. The picture shows that the LCS-ERP solution is comparable to the
solution from RNAforester.(a) E. coli 16S rRNA (J01859), (b) D. discoideum 16S
rRNA (D16466)

6.4 Discussion of Results 89

6.3.3 Summary for the Clustering Parameters

From both applications arise some aspects which parameters are useful or not for the
clustering approach. First, if one is interested in a high number of matches, clearly the
CLUSTER-MAX-2 strategy reveals the larger clusters. Furthermore, these clusters include
more significant matches of stem and loop regions. The CLUSTER-MAX-2 strategy en-
ables that an already produced cluster can be extended in different ways. This advantage
leads at the end to larger clusters.

Second, the choice of the distance threshold τ has a great influence on the resulting
clusters as well. With small values one can achieve more local clusters, whereas clusters
from higher values tend to span large parts of the secondary structure. These clusters are
more similar to the solution from the global LCS-ERP approach. Moreover, the data show
that too high distance thresholds are nearly useless. Over a certain value, the overall size
of the largest cluster is not increasing. Depending on the RNA secondary structure, the
size can also decrease again.

The choice of the distance function clearly depends on the application. Normally, we
recommend the standard function δSEQ1. The data show that this function is already
capable to detect large and significant clusters of exact pattern matches. Further, we
suggest the usage of function δEQL for the search of specific formed clusters.

The running time with strategy CLUSTER-MAX-1 is slightly better than for CLUSTER-
MAX-2. This is obvious, as this strategy produces fewer candidate clusters. The highest
influence on the running time is given by the choice of the distance threshold τ . Therefore
we propose the choice of a sufficiently small τ value with the balance between running
time and cluster size. Nevertheless, the data show that already small values of τ produce
good and large clusters with a fast running time even for large RNAs.

6.4 Discussion of Results

In this thesis we have developed the LCS-ERP approach and the clustering approach for
pairwise sequence structure comparison of RNAs on the basis of exact pattern matches.
In the previous sections we have applied both methods to two different pairs of RNAs
and presented the corresponding results. This section discusses the achieved results and
gives pros and cons for both developed methods.

6.4.1 The LCS-ERP Approach

This approach was developed to utilize exact pattern matches for the detection of global
similarities between two RNAs. In order to show the potential of this method for pairwise
comparison, we have applied the presented dynamic programming algorithm from chapter
4 to two Hepatitis C virus IRES RNAs and two 16S ribosomal RNAs.

According to the shown results for the LCS-ERP approach, one can state for both ap-
plications that the found solutions express global similarities due to the high number of
included exact matchings. Although the secondary structures differ, the found subsets

90 Chapter 6 Results

of EPMs unveil similar regions for both pairs of RNAs (see figure 6.1 on page 77 and
figure 6.5 on page 84). The high significance is achieved due to the matched loop and
stem regions in both applications. These regions are presumable necessary for the correct
functioning of the considered RNAs. In the case of the two Hepatitis C virus IRES RNAs,
they could represent probable binding sites for the 40S ribosomal subunit. For the two
16S ribosomal RNAs the matchings could represent conserved structural elements in the
ribosome during evolution. The high coverage of 57% of our solution in this case is also
explained by the fact that both rRNAs are experimental verified. The high significance
of the solution for the two Hepatitis C virus IRES RNAs is supported by the fact that
the five largest exact pattern matches are included in the LCS-ERP solution.

The comparison with the standard alignment approaches RNA align and RNAforester
confirms the results. Counting only the equivalent matchings, the data show that for
both applications our solution has an accuracy of about 80% in comparsion to the used
alignment methods. This is a high rate, if one takes into consideration that all single
nucleotide matchings are not part of our solution. Further, there are in both applications
a high number of matchings which differ only in one RNA. This occurs especially in loop
regions with similar consecutive bases and therefore the matchings can be easily shifted.

Comparing the overall number of exact matched nucleotides, the LCS-ERP approach
achieves for both applications better results than the RNAforester algorithm. In the
case of the LCS-ERP method applied to two Hepatitis C virus IRES RNAs our approach
finds more similar regions than the RNAforester algorithm. For both applications the
number of exact matched nucleotides is comparable to the RNA align algorithm. This
is definitely a good result, because the general edit distance algorithm from [JLMZ02] is
the most general method for pairwise sequence structure comparison of RNAs. Clearly,
the alignments can be possibly improved with a different scoring scheme, but we have
already chosen a scheme with the focus on exact matches.

Discussing the running time, the LCS-ERP algorithm is fast for both applications. Even
for long RNAs the global solution was found within seconds. In particular, one has to
compare the running times between the LCS-ERP method and the alignment methods for
the two long 16S rRNAs. The data emphasize the preference of our approach especially
for long RNA sequences to alignment methods. Our approach is able to give much faster
reasonable assertions about the global similarity for two RNAs.

Nevertheless, there are some drawbacks of this method as well as the proposed algorithm.
First, besides the theoretical complexity of O(n2m2) for the LCS-ERP algorithm, the
precomputed input comprises only about 50000 exact pattern matches for a real scenario
with long RNAs like in the second application. This is much lower than the theoretical
maximal number of |S1| · |S2| and the number of holes is about the same as the number
of EPMs. Therefore it is more realistic to estimate the running time with O(H nm),
whereby H denotes the number of holes. This corresponds better to the fast running
times as well. Moreover, the presented formal description of the LCS-ERP algorithm
is not based on exact pattern matches. The recursion formula can be changed to a
version which really operates on EPMs instead of sequence positions. Such an algorithm
would really benefit from the reduction of complexity given with the set of exact pattern
matches. Third, the approach was not tested with unrelated RNAs. For this case our

6.4 Discussion of Results 91

approach would also find a solution but without a high biologically meaning. However,
this is a general drawback of global comparison methods.

6.4.2 The Clustering Approach

This approach was mainly developed under the aspect that the detection of all exact
sequence structure similarities between RNAs is possible in O(nm). In order to profit
from the fast algorithm according to the method from [SB07], our approach uses a greedy
technique to reduce the overall complexity. In contrast to our global method, a goal was
to detect pairwise similarities with more local properties in form of clusters of EPMs. The
usage of a fast greedy strategy in favour of an optimal method is also supported by the
fact that no optimal algorithm in known which detects the best cluster with a distance
threshold τ . In addition, such an optimal algorithm would have had presumably at least
the complexity of the optimal global algorithm. Further a greedy technique is flexible
and its adoption to a different questioning is often easier.

Similar to the LCS-ERP approach, we have analyzed the performance of the clustering
algorithm presented in chapter 5 with two Hepatitis C virus IRES RNAs and two 16S
ribosomal RNAs. The data show that this method is able to identify significant simi-
larities between two RNAs. The found clusters exhibit similarities between the treated
RNAs. For example see the found cluster in figure 6.3 with τ = 80 as well as the cluster
in figure B.2.

In order to make the best of the greedy strategy, we proposed two different clustering
strategies. With the focus on the cluster size as well as the significance of the matches,
clearly the CLUSTER-MAX-2 strategy reveals the better clusters. The CLUSTER-MAX-2
strategy enables that an already produced cluster can be extended in different ways. This
advantage compared to the CLUSTER-MAX-1 strategy leads at the end to more significant
clusters.

The flexibility of the clustering approach is mainly achieved due to the different distance
functions as well as the choice of the distance threshold τ . This threshold can be con-
sidered as the decisive parameter for the clustering approach. With a sufficiently small
threshold the found clusters represent local similarties. For example see figure 6.3 on page
80 for τ = 5 and figure B.3 on page 105. With higher thresholds, the clusters span over a
large part of the structure and the solutions are more similar to the LCS-ERP approach.
However, the higher the distance threshold the less changes the found cluster. Therefore,
the exact choice of the distance threshold τ is important and depends on the application.
The range of interesting τ values again depend on the RNAs itself. For the search of local
clusters this can be assumed as disadvantage.

As an alternative distance function we proposed δEQL. This function needs a second thresh-
old which determines the allowed differences between the distances for two EPMs. From
figure 6.6 one can see that the locality is improved, but the overall cluster size is decreased
as well. Similar results may be obtained with smaller distance thresholds. As a structural
distance function we have proposed DISTANCE-STRUCTURE-SHORTESTPATH, but the

92 Chapter 6 Results

path finding problem needs further investigation to use this distance function. The pro-
posed distance functions can be considered as a starting point for more sophisticated
distance functions which improve both the locality and the significance of the clusters.

Concerning the running time, the data show that the algorithm finds clusters in a fast
way. Especially for small distance thresholds τ the solution is found within seconds for
both applications. For higher thresholds τ the running time increases and the outcomes
differ sparsely. The reason is that higher distance thresholds cause that a cluster is
updated to more positions in the data structure CANDSETk. A different data structure
could avoid the large overhead of update operations. This aspect supports the choice of
a small threshold in favour of a high threshold with a higher running time. Especially for
large RNAs the usage of the clustering approach is therefore promising.

A comparison to other methods is pending. However, a comparison to this approach with
the results obtained by the LCS-ERP approach shows that the clusters are feasible and the
LCS-ERP solution can be considered as a global cluster of exact pattern matches. Further,
a comparison to local alignment methods is not possible, because it is not guaranteed
that the largest cluster and the local alignment cover a similar region in the RNA.

Due to the structure of the algorithm there are two general drawbacks. First, it iterates in
loop regions from the left to the right which limits the structure of the distance functions.
The distance in δSEQ is determined only to the right outside bound of the second EPM
in order to maintain the invariant of each set of candidate clusters CANDSETk. The
incorporation of the left outside bound can improve the results, but changes the structure
of the algorithm. Second, the algorithm operates only on the first RNA. Clearly, one
would select the smaller RNA as the first, but the results can be different if the order is
changed.

Chapter 7

Discussion

7.1 Conclusion

In this thesis we have investigated two approaches in order to detect similarities between
RNAs given with their primary and secondary structures. According to recent discoveries,
RNAs accomplish with their wide range of biological functions a major role for living
organisms. Similar functions are often associated with similar sequential and structural
properties of the considered RNAs.

In contrast to other pairwise comparison methods, the developed methods in this the-
sis base solely on exact sequence-structure properties between the given RNAs. These
exact substructures were obtained from the fast maximum common substructure (MCS)
algorithm from [SB07] in form of exact pattern matches (EPMs). The identified EPMs
comprise both a sequential and structural similarity. In biology, EPMs can represent
necessary substructures of important functional motives like SECIS elements. Thus, it is
interesting to know, if two RNAs have several motives in common.

Although the MCS algorithm is able to compute all exact pattern matches, the matchings
itself overlap and cross each other. Approaches are needed which find meaningful subsets
of EPMs representing pairwise similarities between the considered RNAs. Therefore, we
have introduced the Non-Crossing notion as the general condition for exact pattern
matches in nested RNAs. With regard to other pairwise sequence-structure comparison
methods, a Non-Crossing subset of EPMs is both a plain mapping and an arc-preserving
subsequence. The fact that each EPM comprises at least two nucleotides encourages their
usage for a motif-based comparison.

Both methods were developed in order to show the potential of such motif based pairwise
comparison methods. Second, due to the fact that the MCS algorithm detects all EPMs
in O(nm), the developed methods should benefit from this fast algorithm. These goals
are achieved with the discussed drawbacks. The first method can be used to detect
global similarities between two RNAs. Besides its theoretical complexity, the LCS-ERP
algorithm is fast for real scenarios with long RNAs. The second method follows a different
algorithmic approach. The clustering method is flexible enough for different applications.
With the right choice of the parameters, the found clusters represent more local or more
global similarities of the considered RNAs.

94 Chapter 7 Discussion

In general one can conclude that it seems a promising approach especially for large RNAs
to precompute certain types of relationships between the considered RNAs. Such a pre-
computing can be used to reduce the complexity of the following comparison method.
This opens the application of our approach for multiple comparison methods.

7.2 Open Problems and Future Work

Concerning the global LCS-ERP approach, the algorithm could be changed to a version
which operates solely on exact pattern matches. This could improve the running time
for real applications. The accuracy of the LCS-ERP approach can be increased with the
incorporation of single nucleotide matchings. This could result in a third algorithmic
step which aligns the regions between two consecutive exact pattern matches. Further,
there are open questions in relation to the LAPCS problem. First, is it possible that
algorithms for the general NP-hard LAPCS(Nested, Nested) problem can benefit
from a fast precomputed set of exact pattern matches and their incorporation according
to our LCS-ERP algorithm. Second, is it possible to use the LCS-ERP solution as an
approximation of the LAPCS solution.

The clustering approach can be used for the improvement of local sequence structure
alignment methods. For example, a cluster can be used as starting or anchor point for
methods like the LSSA algorithm from [BW04]. A good “hint” can reduce its running
time. Concerning the problem of local clusters in general, a first advancement is the
formulation of an optimal local algorithm. The problem for this case is the definition
of an optimal local common subsequence which consists only of exact pattern matches.
One possibility is the search of optimal clusters according to our definition of clusters.
A second approach would be the usage of scores instead of distances. This enables the
incorporation of normalized scores according to [BHLW05] or other arbitrary scoring
schemes [BHLW06].

Appendix A

Comparative Alignments

A.1 RNA align applied to two Hepatitis C Virus IRES RNAs

AF165050(..(......(.(....((((...((.(((((....((((.((((((.(........)))))))))..)).(((((((.....((.....
D45172((((((....))))))...((((.......((.(((((.......(.((((((.(........))))))))........(((((......(.....

AF165050 ----------U--U------G-G----GGGC---GA-CAUUCCACCAUAGAUAAUUC-C-CCUGUGAGGAAUUACU--GUUUUAACGCAGAAAGCGUUUA
D45172 GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUAGAUCACUCC-CC-U-G-UGAGGAACUACU----GUCUUCACGCAGAA--AGCGU------C-U--A

AF165050))....)))))))...))))))))).........((((.....((((...((((....(..(.(((((((.(((((((((...(((.(.((((..((...
D45172)))))).....)))))))..((.((((((.(((.........)))....)))).))......(((..((((((((..((((((.....))..)))

AF165050 GCCAUGGCGUUAGUAUGAGUGUCGUGCAGCUUCCAGGACCCCCCCUC---CCGG---GA--GAGCCAUAGUGGUCUGCGGAACCGGUGAGUAC-ACC---
D45172 GCCAUGGCGUUAGUAUGAGUGUCGUGCAGCCUCCAGGACCCCC-C-CUCCC--GGGAGAGCCA----UAGUGGUCUGCGGAACCGGUGAGUA-CA--CCG

AF165050 .((((..(((((.(((.(((((((......)))....)))).)))...)))))..)))).)).)))).))))(((.((((((.....)))))).)))..)
D45172)......(((((..((.(((((((......)))....)))).))....)))))...................(((...................)))..)

AF165050 GGAAUUGCCAGGAUGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUGGAGAUUUGGGCGUGCCCCCGCGAGACUGCUAGCCGAGUAGUGUUGGGU
D45172 G-AAUUGCCAGGACGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUGGAGAUU------U-------GGG---------C-G--U---GCCC--C

AF165050)))...))))).)))..)).)).).).......)).....((....(........((.....)).......).....)).)))...)))...........
D45172)))...))))..))))).))))..(.(((((((..((...(((((((((((((..((.....)))))).)))))).)))....(((...((((.....))

AF165050 CGCGAAAGGCC-UUG--UG-GUAC-UG------CCUGAUAGG----G------UGCUUGCG-AG----U-GC-----CCCGGG---AGG--UCUCGUAGA
D45172 CGCG--AGACUGCUAGCCGAGUA-GUGUUGGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCC--GGGA--GGUCUCGUAGA

AF165050 ..((((.......))))...))))...))))...))..........................
D45172))((((.......))))..............)))..............))..)).)))))).

AF165050 CCGUGCAUCAUGAGCACAAAUCCUAAACCCC---AAAGAAAAACCAAACGUAACACCAACCG
D45172 CCGUGCAUCAUGAGCACAAAUCCAAAA---CCCCAAAGAAAAAUCAAACGUAACACCAACCG

Figure A.1: Alignment of two Hepatitis C virus IRES RNAs with RNA align.
The alignment contains 192 exact sequence structure matches, which 168 are in
common with the solution of LCS-ERP.

96 Appendix A Comparative Alignments

A.2 RNAforester applied to two Hepatitis C Virus IRES RNAs

Figure A.2: Comparison between LCS-ERP and RNAforester for two Hepatitis C
virus IRES RNAs. The blue colored nucleotides are exact matches in both methods.
The light blue nucleotides denote matched nucleotides in both methods but with
different positions in the other RNA. The green colored nucleotides occur only in
LCS-ERP and the red colored nucleotides occur only in RNAforester. The LCS-ERP
solution has 103 exact sequence structure matchings in common with RNAforester.
The green colored nucleotides show that the LCS-ERP solution include additional
stem and loop regions. (D45172 left RNA, AF165050 right RNA)

A.2 RNAforester applied to two Hepatitis C Virus IRES RNAs 97

AF165050 ----------U------------UGGGGGC----GA-CAUUCCACCAUAGAUAAU
D45172 GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUAGAUCACUCC-CC-U-G-UGAG

* * ** ** *** ** * * * *

AF165050 UCCCCUG-UGAGGAAUUACUGUUUUAA-CGCAGAAAGCGUUUAGCCAUGGCGUUA
D45172 GAA-CUACUG--UCUUCAC-GCAGAAAGCGU------C-U--AGCCAUGGCGUUA

** ** * ** * ** ** * * *************

AF165050 GUAUGAGUGUCGUGCAGCUUCCAGG------A---C-------CCC-------CC
D45172 GUAUGAGUGUCGU---G----CA--GCCUCCAGGACCCCCCCUCCCGGGAGAGCC

************* * ** * * *** **

AF165050 CUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGGUGAGUACACC-----------
D45172 AU--------AG---U-G--GUCUGCGGAA-------------CCGGUGAGUACA

* ** * * ********** *

AF165050 ---GGAAUUGCCAGGAUGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUG
D45172 CCGG-AAUUGCCAGGACGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUG

* *********** **************************************

AF165050 GAGAUUUGGGCGUGCCCCCGCGAGACUGCUAGCCGAGUAGUGUUGGGUCGCGAAA
D45172 GAGA-UU-----U-------GG-G-C-G-U-GC----------CC--CCGCGA--

**** ** * * * * * * ** *****

AF165050 GGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGGAGGUCUCGUAG
D45172 GAC----U-G--CU-----A-------------------------------G---

* * * * ** * *

AF165050 ACCGUGCAUCAUGAGCACAAAUCCUAAACCCCAA-------------A-------
D45172 -------------------------C--CGAGUAGUGUUGGGUCGCGAAAGGCCU

* * *

AF165050 ------------------------------------G--A---------------
D45172 UGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGGAGGUCUCGUAGACCGU

* *

AF165050 -------------AAA---A------C----------CAAACGUAACACCAACCG
D45172 GCAUCAUGAGCACAAAUCCAAAACCCCAAAGAAAAAUCAAACGUAACACCAACCG

*** * * ******************

AF165050 ----------(------------(((((((----((-(((((....((((.((((
D45172((((((....))))))...((((.......((.(((((.-..-.-(-((((

**** ** ****** ** * ****

AF165050 (((....-...))))))))))).((((-(((.....((.....))....))))))
D45172 ((.-(....)--)))))))-......(((((------(-.--......)))))).

** ** * ******* * * *** * * * *** *****

AF165050)...))))))))).........(((------(---.-------...-------.(
D45172)))))))..---(----(.--((((((.(((.......)))..)))).)).

********** * *

AF165050 (((((((.((.(((((((.(((((((((...(((.(.((((.((-----------
D45172 .(--------((---.-.--((((((((..-------------((((((....))

* * ********** *

AF165050 ---.((((..(((((.(((.(((((((......)))....)))).)))...))))
D45172))))-.....(((((..((.(((((((......)))....)))).))....))))

******** ****************************** *******

AF165050)..)))).)).)))).))))(((.((((((.....)))))).)))..))))...)
D45172)...-..-----.-------((-(-.-.-.-.)----------))--)))).)--

*** ** * ** *****

AF165050))))))))))).)).)).....(((..((....))..))).))))))........
D45172)))----.-.--))-----)-------------------------------)---

*** **

AF165050 ...((((.......))))...))))...))))))-------------.-------
D45172 -------------------------)--.)))).(.(((((((..((...(((((

**** *

AF165050 ------------------------------------.--.---------------
D45172 ((((((((..((.....)))))).)))))).)))..(((.((((.....))))((

*

AF165050 -------------...---.------.----------..................
D45172 ((.......))))...........)))..............))..)).)))))).

*** * **** ** * *

Figure A.3: Alignment of two Hepatitis C virus IRES RNAs with RNAforester.
The alignment contains 128 exact sequence structure matches, which 113 are in
common with the solution of LCS-ERP.

98 Appendix A Comparative Alignments

A.3 RNA align applied to two 16S rRNAs

Figure A.4: Comparison between LCS-ERP and RNA align for two 16S rRNAs.
The blue colored nucleotides are exact matches in both methods. The light blue
nucleotides denote matched nucleotides in both methods but with different posi-
tions in the other RNA. The green colored nucleotides occur only in LCS-ERP and
the red colored nucleotides occur only in RNA align. The LCS-ERP solution has
688 exact sequence structure matchings in common with RNA align. (a) E. coli
16S rRNA (J01859), (b) D. discoideum 16S rRNA (D16466)

A.3 RNA align applied to two 16S rRNAs 99

J01859(((((........))))).((((.((((((.(((((((((....(((.(((..(((..(((((..((((((((((....))))))).))
D16466(((((........))))).((((.((((((.((((((((.....(((.(((..(((..(((((...(((................).))
J01859 -A-AAUUGAA-GAGUUUGAU-CAUGGCUCAGAUUGAACGCUGGCGGCAGGCCUAACACAUGCAAGUCGAACGGUAACAGGAAGAAGCUUGCUUCUUUGCU
D16466 AAGAAAAAAAUGAGUUUGAUUC-UGGCUCCGAAUGAAUGCUAUCAGUGGGCUUUAUACAUGCAAGUUGAACGCU---AUU---------GAAA---A-AU

J01859))).))))))......(((......((((((((.((...(((((((...((((....(((((((....))))))).....)))).......(((....))
D16466 .)).))))))......(((......(((((((..((...(((((((.((((((...........................))))))..............
J01859 GACGAGUGGCGGACGGGUGAGUAAUGUCUGGGAAACUGCCUGAUGGA--GGGGGAUAACUACUGGAAACGGUAGCUAAUACCGC--AUAACGUCGCAAGA
D16466 -AG-AGUAGCAAAAAGGUGAGUAAUGCAUAUGAAUUUUAAUAAUAAUUUUGGGAAUA--------AAA-GA-AG--AA-AUCCAGAAUAAA-AAGAAAGA

J01859)....(((.(((..((....)))))))).)))))))..))))))))))(((..(.(((..((((((((.......)))))))))))......))))..((
D16466)))))))..)).)))))))(((..(.(((..((((((((.......)))))))))))......))))..((
J01859 CCAAAGAG-GGGGACCUUCGGGCCUCUUGCCAUCGGAUGUGCCCAGAUGGGAUUAGCUAGUAGGUGGGGUAACGGCUCACCUAGGC-GACGAUCCCUAGC
D16466 GGAACUUGAAA-AACAGUAA-GACUC--GUUAUUAUAAAAGCGUAUGUCGAAUUAGGCAGUUGGUGGGGUAAAGGCUUACCAAACCUGA-GAUUCGUAGG

J01859 ((((((....))))...))))))).((((((...........)))))).((((....).)))...)))))).).....(.(((...(((((....)))))
D16466 ((((((....))))...))))))).(((((((........).)))))).(((.......)))...)))))).......(.(((...(((((....)))))
J01859 UGGUCUGAGAGGAUGACCAGCCACACUGGAACUGAGACA-CGGUCCAGACUCCUACGG-GAGGCAGCAGUGGGGAAUAUUGCACAAUGGGCGCAAGCCUG
D16466 UGGUUCGAGAGAAUGAUCAUCCACAUUGGUAUUGAAAGAAC-GACCAAACUC-U--GAAGAGGCUGCAGUAAGGAAUAUUGGACAAUGAGCGCAAGCUUG

J01859 .)))).)).))))))..((((......((((....)))).....)))).....((((((...(....((((((((.......)))))))).....)....
D16466 .)))).)).))))))..((((......((........)).....)))).(.....((((........(.....................)..........
J01859 AUGCAGCCAUGCCGCGUGUAUGAAGAAGGCCUUCGGGUUGUAAAGUACU-UUCAGCGGGGAGGAAGGGAGUAAAGUUAAUACCUUUGCUCAUUGACGUUA
D16466 AUCCAGCUACACUGAGUGAGGGAAGAAGU--AAA---GCGUAAACCUCUUUUAA-UAAGG---AA--G-----A-U-AAU------GA-CAA--A----A

J01859))))))......(((((......(((((.....((....)).......)))))))))).))))))))))..........(((.....(.((((.(.(((.
D16466))))....)...(((((......(((((.....((....)).......)))))))))).))))))))))..........(((.......((((...((((
J01859 CCCGCAGAAGAAGCACCGGCUAACUCCGUGCCAGCAGCCGCGGUAAUACGGAGGGUGCAAGCGUUAAUCGGAAUUACUGGGCGUAAAGCGCACGCAGGCG
D16466 AUUAAAGAAGAAGUCCCGGCUAAUUUCGUGCCAGCCGCCGCGGUAAUACGGAGGGGGCAAGCAUUAUUCGUAAGGAUUGGGCGUAAAGGGUGCGUAGGCU

J01859 (((((((..((.(((((((((....(((((((.....)).)))))..)))))))))..))...)))).)))...(((((((((..(((((((((..((((
D16466 (((((((..(((((((((((.....(((((..........)))))...)))))))).)))...)))).)))...((((((((...(((((((((((((((
J01859 GUUUGUU-AAG-UCAGAUGUGAAAUCCCCGGGCUCAACC-UGGGAACUGCAUCUGAUACU---GGCA-AGCUUGAGUCUCGUAGAGGGGGGUAGAAUUCC
D16466 GGUUCUCAAAGGUAUUAUAUGAAAAACACUGAAAAAA-GAGGUGUGG-GUAUAAAA-ACAAACAAAGAACCUAGAGUAAAGAUGAUGUAUUUAGAAGAAC

J01859 ((((...(((......))).......))))))))..)).....(..((....)))))))))).))))).))))...))))...))))....((((((...
D16466 ((((...(((......))).......)))))))))))).....(..((....))))))))))..)))).))))..))))....))))....(((((((..
J01859 AGGUGUAGCGGUGAAAUGCG-UAGAGAUCUGGAGGAAU-ACCGGUGGCGAAGGCGGCCCCCUGGACGAAGACUGACGCUCAG-GUGCGAAAGCGUGGGGA
D16466 UAAUCUAGAGGUAAAAUUCAAUUUAGAUUAGUUUGACUGACAGUUGGCGAAGGCAAAAUACAA-GCAA-UACUGACGCU-AAAGCACGAAGGUUCAGGGA

J01859 ((...((((.........))))...))))))))..........((((((..((((((((((((.....))))))))))))...((....)).....))))
D16466 .(...((((.........))))...))))))))..........(((((((.......((((.........)))).........((....))....)))))
J01859 GCAAACAGGAUUAGAUACCCUGGUAGUCCACGCCGUAAACGAUGUCGACUUGGAGGUUGUGCCCUUGAGGCGUGGCUUCCGGAGCUAACGCGUUAAGUCG
D16466 GCAAAUCGGAUUAGAGACCCGAGUAGUCUGAACAGUAAACGAUGAGUGUU--CA-A-UAUU--CUAAAA-AGUAU-UU--G-AGUUAACACGUUAAACAC

J01859)))))).(((......((((....))))....))).........(((((.(((((((.((..(((((((((((((((((....((((........)))).
D16466)).))).(((......((((....))))....))).........(((((.(((((((....((((((.(((((((((((....((((........)))).
J01859 ACCGCCUGGGGAGUACGGCCGCAAGGUUAAAACUCAAAUG-AAUUGACGGGGGCCCGCACAAGCGGUGGAGCAUGUGGUUUAAUUCGAUGCAACGCGAAG
D16466 UCCGCCUGAGUAGUACGAUCGCAAGAUUGAAACUCAAG-GUAAUUGACGGAACUUUGCGCAAGCAGUGGAUUAUGUUCAUUAAUUUGAUACAACACGAAA

J01859(((((((.....((((((((...((......(..(((..(.........).)).).).))...((((....)).))))...))).)))....(
D16466(((((((.....((((((...))).)))...((
J01859 AACCUUACCUGGUCUUGACAUCCACGGA-AGU------U--UUC--A---GA-GA-U-GA-G-A-AU--GUGCCUUCGGG-AACC---GUGAGACA---G
D16466 AAUCUUACCCUCCAUUGAAUGACAU--AUA-UAAAACAUGAAACAAAUGUGAAGAAUAGAAGCAGACAAG-G--UUCUAUUAAAAUAAAUG-UCUAACAG

Figure A.5: Alignment of two 16S rRNAs with RNA align. The alignment con-
tains 861 exact sequence structure matches and of these are 688 equal to the solution
of LCS-ERP. (continued next page)

100 Appendix A Comparative Alignments

J01859 (.((((..(((((((((...(((((((((....)))..((((......))))..)))))).....((((..(((((((....((..(((.....))))).
D16466 (.(((..(((((((((((..(((((((((....)))...(((......)))...)))))).....(((((...(((((....((..((.......)))).
J01859 GUGCUGCAUGGCUGUCGUCAGCUCGUGUUGUGAAAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCCUU-AUCCUUUG-UUGCCAGCGGUCCGGCCGGGA
D16466 GUGUUGCAUGGCUGUCGUCAGUUCGUGCUGUGAGGUGUAACAUUAAGUUGUGAAACGAACGAAAUCCUUAA--GUUCAAUUACG--AUAUAUA--AUCGA

J01859))))).))...((((((.((.......))))))))........))))....)))).)))...))))))))....)))))))...)).)))))))))
D16466))))).....(((((((............)))))))......)))))...))))).)))...)))))))))...)))))))...)).)))))))))
J01859 -ACUCAAAG-GA-GACUGCCA-GU-GAU-AAACUGGAGGAAG--GU-GGGGAUGACGUCAAGUCAUCAUGGCCCUUACGACCAGGGCUACACACGUGCUA
D16466 GAAAUGGACAGAAGAGUGUGACAUAAAUUAAA-UCACAUUGGUAGUUGAGGAAGAUGUCAAGUCAGUAUGGCCCUUAUAGGAGGGGCUUGAAAUGUAAUA

J01859)...(((((((.....(((..((...(((....)))...))....))).....)))))))......(...((((((((........))))))))...)..
D16466(((((((.....(((..((...(((....)))...))....))).....)))))))......(...((((((((........))))))))...)..
J01859 CAAUGGCGCAUACAAAGAGAAGCGACCUCGCGAGAGCAAGCGGACCUCAUAAAGUGCGUCGUAGUCCGGAUUGGAGUCUGCAACUCGACUCCAUGAAGUC
D16466 CAAUGGUUUCUACAAAAGGAAGCGAAAGUGCAAGCUGGAGCAAAACCUA-AAAAGAAAUCUUAGUUUGGAUUUAUUUCUGCAACUCGAAAUAAUGAAAGC

J01859 ...))))).....((((((((.......))))))))......))...)))))))))).))..(.((.((.(.((((((((........(((((((..(.(
D16466 ...))))))....((((((((.......))))))))...........)))))))))).))....((.((.(.((((((((....................
J01859 GGAAUCGCUAGUAAUCGUGGAUCAGAAUGCCACGGUGAAUACGUUCCCGGGCCUUGUACACACCGCCCGUCACACCAUGG-----GA-GUGGGUU--G-C
D16466 GGAAUUGCUAGUAAUCGUAGAUCAUAAGGCUUCGGUGAAUA-GUUGUCAAAGUUAGUACAUACCGCCCGUCACACCACGGAAAUCAAUCUUU-UUCAGAU

J01859 (.(..(.............((..((...((..(((.(......(.(....................)).)).))))))))...).)))..)....)))))
D16466 ..
J01859 A-A--A--A-G--AA----GU--AG---GUA-GCU-U-A-A--C-C--UU------C-----G---GGAGG-GCGCUUACCACU-UUG--U----GAUUC
D16466 ACAUUAUUAUGUUAAUUAUCUAAAGUUCUUAGGGUAUAACAGUCUCUUUUGAAGAGCAAUUAGAAUGGAGGAG-G-UUA--AUUGUU-AAUUAUCGAA-C

J01859).)..........))))))))..).))..))..).((((((((((....)))))))))).............
D16466))))))))..).))..))....((((((((((....)))))))))).............
J01859 A-U-GA-------CUGGGGUGAAGUCGUAACAAGGUAACCGUAGGGGAACCUGCGGUUGGAUCACCUCCUUA
D16466 AAUAGAGGGGUAACUGGGGUAAAGUCGUAACACGGUAGCUGUUGGGGAACCAGUAGCUGGA--AG-U----A

Figure A.5: (continued) Alignment of two 16S rRNAs with RNA align. The
alignment contains 861 exact sequence structure matches and of these are 688
equal to the solution of LCS-ERP.

A.4 RNAforester applied to two 16S rRNAs

J01859 ..-......--(((((....-...))))).((((.((((((.(((((((((....(((.(((..(((..(((((..((((((((((....))))))).))
D16466(((((......-.))))).((((.((((((.((((((((.....(((.(((..(((..(((((--(((...-.--------------))
J01859 aa-auugaa--gaguuugau-cauggcucagauugaacgcuggcggcaggccuaacacaugcaagucgaacgguaacaggaagaagcuugcuucuuugcu
D16466 aagaaaaaaaugaguuugauuc-uggcuccgaaugaaugcuaucagugggcuuuauacaugcaaguugaacgcu--auugaa-a--------------aa

J01859))).))))))......(((......((((((((.((...(((((((.((((....(((((((....))))))).....)))).....(((....)))...
D16466)))-))))))......(((......(((((((..((...(((((((.(((((-(..-..----...--....-...)))))).....-----...---..
J01859 gacgaguggcggacgggugaguaaugucugggaaacugccugauggagggggauaacuacuggaaacgguagcuaauaccgcauaacgucgcaagaccaa
D16466 uag-aguagcaaaaaggugaguaaugcauaugaauuuuaauaauaauuuugg-gaa-ua----aaa--gaag-aaauccagaauaaa-----aag---aa

J01859 .((((((..((..------..)---))))))).)))))))..))))))))))(((..(.(((..((((((((.......)))))))))))-.....))))
D16466--..-...................--.)))))))..)).)))))))(((..(.(((..((((((((.......)))))))))))...-..))))
J01859 agagggggaccuu------cgg---gccucuugccaucggaugugcccagaugggauuagcuaguaggugggguaacggcucaccuaggc-gacgauccc
D16466 agagga--ac-uugaaaaacaguaagacuc--guuauuauaaaagcguaugucgaauuaggcaguuggugggguaaaggcuuaccaaaccuga-gauucg

J01859 ..((((((((....))))...))))))).((((((....--......)))))).((((.-...))))...)))))).).....(.(((...(((((....
D16466 ..((((((((....))))...))))))).(((((((.......-.))-))))).((-(....)--))...)))))).......(.(((...(((((....
J01859 uagcuggucugagaggaugaccagccacacuggaacuga--gacacgguccagacuccu-acgggaggcagcaguggggaauauugcacaaugggcgcaa
D16466 uaggugguucgagagaaugaucauccacauugguauugaaaga-acg-accaaacu-cugaag--aggcugcaguaaggaauauuggacaaugagcgcaa

J01859))))).)))).)).))))))..((((......((((....)))).....))))....((((((...(....((((((((.......)))))))).....)
D16466))))).)))).)).))))))..((((......(---(...)--).....)))).(....((((..--.-----(-.---.-..------..-.).---.-
J01859 gccugaugcagccaugccgcguguaugaagaaggccuucggguuguaaaguacuuucagcggggaggaagggaguaaaguuaauaccuuugcucauugac
D16466 gcuugauccagcuacacugagugagggaagaag---uaaag--cguaaaccucuuuuaauaagga--a-----g-a---u-aa------ug-aca---a-

Figure A.6: Alignment of two 16S rRNAs with RNAforester. The alignment
contains 847 exact sequence structure matches and of these are 700 equal with the
solution of LCS-ERP. (continued next page)

A.4 RNAforester applied to two 16S rRNAs 101

J01859))))))......(((((......(((((.....((....)).......)))))))))).))))))))))..........(((.....(.((((.(.
D16466 .--.))))....)...(((((......(((((.....((....)).......)))))))))).))))))))))..........(((.......((((...
J01859 guuacccgcagaagaagcaccggcuaacuccgugccagcagccgcgguaauacggagggugcaagcguuaaucggaauuacugggcguaaagcgcacgca
D16466 a--aauuaaagaagaagucccggcuaauuucgugccagccgccgcgguaauacggagggggcaagcauuauucguaaggauugggcguaaagggugcgua

J01859 (((.(((((((.-((-(((((((((....(((((((.....)))))))..)))))))))..))---)))-))))...((((-(((((..(((((((((..
D16466 (((((((((((..(((((((((((.....(((((.........)))))..-))))))))-)))...)))).)))...((((((((.-..(((((((((((
J01859 ggcgguuuguua-ag-ucagaugugaaauccccgggcucaaccugggaacugcaucugauacu---ggc-aagcuugaguc-ucguagagggggguagaa
D16466 ggcugguucucaaagguauuauaugaaaaacacugaaaaaagaggugugg-guauaaaa-acaaacaaagaaccuagaguaaagau-gauguauuuagaa

J01859 ((((((((...(((......))).-.....))))))))..))-....(..((....)))))))))).))))).))))...))))..))))....((((((
D16466 ((((((((...(((......))).......)))))))))))).....(..((....))))))))))--.))))))))..))))...))))....((((((
J01859 uuccagguguagcggugaaaugcg-uagagaucuggaggaau-accgguggcgaaggcggcccccuggacgaagacugacgcucaggugcgaaagcgugg
D16466 gaacuaaucuagagguaaaauucaauuuagauuaguuugacugacaguuggcgaaggcaaaauaca--agcaauacugacgcuaaagcacgaagguucag

J01859 ...((...((((.........))))...))))))))..........((((((..((((((((((((.....))))))))))))...((....)).....)
D16466 (...(...((((.........))))...))))))))..........((((((-(...-((--((.--....-.))--))..--...((....))....))
J01859 ggagcaaacaggauuagauacccugguaguccacgccguaaacgaugucgacuuggagguugugcccuugaggcguggcuuccggagcuaacgcguuaag
D16466 ggagcaaaucggauuagagacccgaguagucugaacaguaaacgaugagugu-ucaa-ua--uuc--uaaa-aag--uauu--ugaguuaacacguuaaa

J01859))))))))).(((......((((....))))....))).....-...(((((.(((((((.((..(((((((((((((((((....((((........))
D16466))))).))).(((......((((....))))....)))...-.....(((((.(((((((....((((((.(((((((((((....((((........))
J01859 ucgaccgccuggggaguacggccgcaagguuaaaacucaaaug-aauugacgggggcccgcacaagcgguggagcaugugguuuaauucgaugcaacgcg
D16466 cacuccgccugaguaguacgaucgcaagauugaaacucaag-guaauugacggaacuuugcgcaagcaguggauuauguucauuaauuugauacaacacg

J01859))........(((((((.....((((((((.-.(((((-((-....----))--)-))))-.(-((---(----....))-))-----))))).))-).(
D16466))........(((((((....-.-((((((...-..)))))-)...((
J01859 aagaaccuuaccuggucuugacauccacgga-aguuuu-ca-gaga----ug--a-gaau-gu-gc---c----uucggg-aa-----ccgugaga-cag
D16466 aaaaaucuuacccuccauuga-a-ugacauaua-uaaaacaugaaacaaaugugaagaauagaagcagacaagguucuauuaaaauaaauguc-uaacag

J01859 (.((((..(((((((((...(((((((((....)))..((((......))))..)))))).....((((.(((((((-...((..(((.....--)))))
D16466 (.(((..(((((((((((..(((((((((....)))...(((......)))...)))))).....(((((.-(((((...---.-((((.....))))..
J01859 gugcugcauggcugucgucagcucguguugugaaauguuggguuaagucccgcaacgagcgcaacccuuauccuuug-uugccagcgguccgg--ccggg
D16466 guguugcauggcugucgucaguucgugcugugagguguaacauuaaguugugaaacgaacgaaauccuuaa-guucaauu---a-cgauauauaaucgag

J01859)))))-))-..(((((((-(..-.-..)))))))).....-)--)-))....)))).)))..-.))))))))....)))))))...)).)))))))
D16466 ...-))))).....(((((((...........-)))))))-......)))))...))))).)))...)-))))))))...)))))))...)).)))))))
J01859 aacucaaag-ga-gacugccag-uga-u-aaacuggaggaaggu-g--g-ggaugacgucaaguca-ucauggcccuuacgaccagggcuacacacgugc
D16466 aaa-uggacagaagagugugacauaaauuaaa-ucacauu-gguaguugaggaagaugucaagucagu-auggcccuuauaggaggggcuugaaauguaa

J01859)))...(((((((.....(((..((...(((....)))...))....))).....)))))))......(...((((((((........))))))))...)
D16466))....(((((((.....(((..((...(((....)))...))....))).-...)))))))......(...((((((((........))))))))...)
J01859 uacaauggcgcauacaaagagaagcgaccucgcgagagcaagcggaccucauaaagugcgucguaguccggauuggagucugcaacucgacuccaugaag
D16466 uacaaugguuucuacaaaaggaagcgaaagugcaagcuggagcaaaaccua-aaaagaaaucuuaguuuggauuuauuucugcaacucgaaauaaugaaa

J01859))))).....((((((((.......))))))))......))...)))))))))).))..(.((.((.(.((((((((..((((((-((---((-(
D16466))))))....((((((((.......)))))))).....-.....)))))))))).))....((.((.(.((((((((..................
J01859 ucggaaucgcuaguaaucguggaucagaaugccacggugaauacguucccgggccuuguacacaccgcccgucacaccaugggagugggu-ug---ca-a
D16466 gcggaauugcuaguaaucguagaucauaaggcuucggugaaua-guugucaaaguuaguacauaccgcccgucacaccacggaaaucaaucuuuuucaga

J01859 -(-.-------.--..---------((----(((-(.-----(-((-(----..(--(--....---)).))-))))))))...)))))))-))--)-)-
D16466 ..-.-...--.--...............
J01859 -a-a-------g--aa---------gu----agg-ua-----g-cu-u----aac--c--uucg---ggagg-gcgcuuaccacuuuguga-uu--c-a-
D16466 uacauuauuauguuaauuaucuaaaguucuuaggguauaacagucucuuuugaagagcaauuagaauggaggag-g-uua--a--uuguuaauuaucgaa

J01859 ---)-..-------))))))))..).))..))..).((((((((((....)))))))))).............
D16466))))))))..).))..))....((((((((((....))))))))))..--..-.----.
J01859 ---u-ga-------cuggggugaagucguaacaagguaaccguaggggaaccugcgguuggaucaccuccuua
D16466 caauagagggguaacugggguaaagucguaacacgguagcuguuggggaaccaguagcugga--ag-u----a

Figure A.6: (continued) Alignment of two 16S rRNAs with RNAforester. The
alignment contains 847 exact sequence structure matches and of these are 700 equal
with the solution of LCS-ERP.

Appendix B

Additional Results

B.1 Clustering applied to two 16S rRNA

Cδ,τ
CMAX1, δSEQ1, τ = 50

Cδ,τ
CMAX1, δSEQ1, τ = 50

Figure B.1: CLUSTER-MAX-1 strategy applied to two 16S rRNA. The figure
shows the largest found clusters for the given parameters. Please see figure B.2 in
comparison. (a) E. coli 16S rRNA (J01859), (b) D. discoideum 16S rRNA (D16466)

104 Appendix B Additional Results

Cδ,τ
CMAX2, δSEQ1, τ = 50

Figure B.2: CLUSTER-MAX-2 strategy applied to two 16S rRNA. The figure
shows the largest found clusters for the given parameters. Please see figure B.1 in
comparison. (a) E. coli 16S rRNA (J01859), (b) D. discoideum 16S rRNA (D16466)

B.1 Clustering applied to two 16S rRNA 105

Cδ,τ
CMAX2, δSEQ1, τ = 10

Figure B.3: CLUSTER-MAX-2 strategy applied to two 16S rRNA. The figure
shows the largest found clusters for the given parameters. (a) E. coli 16S rRNA
(J01859), (b) D. discoideum 16S rRNA (D16466)

106 Appendix B Additional Results

B.2 Clustering applied to two Hepatitis C virus IRES RNAs

τ = 10 τ = 60

Figure B.4: Additional clusters not shown in figure 6.2. Analysis for Hepatitis C
virus IRES RNAs with clustering strategy CLUSTER-MAX-1. The pictures show
the largest found cluster for the given distance threshold τ value. Each EPM is
shown in a different color. The arrows indicate regions with large matchings.

τ = 10 τ = 60

Figure B.5: Additional clusters not shown in figure 6.3. Analysis for two Hepatitis
C virus IRES RNAs with clustering strategy CLUSTER-MAX-2. The pictures show
the largest found cluster for the given distance threshold τ value. Each EPM is
shown in a different color. The arrows indicate regions with large matchings.

Appendix C

MCS algorithm

C.1 Pseudocode for the MCS-algorithm

Algorithm C.1: loop-walking

Function loop-Walking(i, j)1

Init: li1 = 1 ; // global position i2

Init: lj1 = 1 ; // global position j3

for k = li1 to lisize do4

for l = lj1 to ljsize do5

r = 0;6

if (k, l) not yet considered then7

while k + r < lisize ∧ l + r < ljsize8

S1[k + r] = S2[l + r] ∧9

STRUCT1[k + r] = STRUCT2[l + r]10

do r = r + 1;11

M loop(pos(l), pos(k)) = maxMatching(k,l,r);12

108 Appendix C MCS algorithm

Algorithm C.2: max-matching

Function maxMatching(i, j, r)1

Init: size = 0, m = 0;2

3 while m ≤ r and S1[i+m] = S2(j +m) do3

if STRUCT1(i+m) = ss and STRUCT2(j +m) = ss then4

size = size+ 1;5

else if STRUCT1(i+m) = lp and STRUCT2(j +m) = lp then6

if S1[i+m+ 1] = S2[j +m+ 1] then7

size = size+M eb(pos(i+m), pos(j +m));8

m = m+ 1;9

else return size+Mnb(pos(i+m), pos(j +m));10

else if STRUCT1(i+m) = rp and STRUCT2(j +m) = rp then11

size = size+Mnb(pos(i+m), pos(j +m));12

m = m+ 113

return size;14

C.2 MCS-algorithm applied to two Hepatitis C virus IRES RNAs 109

C.2 MCS-algorithm applied to two Hepatitis C virus IRES RNAs

Figure C.1: Two Hepatitis C virus IRES RNAs. The five largest exact pattern
matches are highlighted. EPM 1 is the largest found substructure which comprises
30 nucleotides. All marked EPMs hold the Non-Crossing condition. Figure taken
from [SB07]. GenBank codes: AF165050 (right RNA), D45172 (left RNA)

Bibliography

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–10,
1990.

[BFRS03] Guillaume Blin, Guillaume Fertin, Irena Rusu, and Christine Sinoquet.
RNA sequences and the edit(nested,nested) problem. Technical Report
RR-IRIN-03.07, IRIN, Université de Nantes, 2003.

[BHLW05] Rolf Backofen, Danny Hermelin, Gad M. Landau, and Oren Weimann. Nor-
malized similarity of RNA sequences. In Proc. 12th Symposium on String
Processing and Information Retrieval (SPIRE 2005), volume 3772 of Lecture
Notes in Computer Science, pages 360–369. Springer-Verlag, 2005.

[BHLW06] Rolf Backofen, Danny Hermelin, Gad M. Landau, and Oren Weimann. Local
alignment of RNA sequences with arbitrary scoring schemes. In Proc. 17th
Symp. Combinatorial Pattern Matching, volume 4009 of Lecture Notes in
Computer Science, pages 246–257. Springer, 2006.

[BMR95] V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between
RNA strings. In Proc. 6th Symp. Combinatorial Pattern Matching, pages
1–16, 1995.

[BS04] Rolf Backofen and Sven Siebert. Fast detection of common sequence struc-
ture patterns in RNAs. In Symposium on String Processing and Information
Retrieval 2004 (SPIRE 2004), pages 79–92, 2004.

[BW04] Rolf Backofen and Sebastian Will. Local sequence-structure motifs in RNA.
Journal of Bioinformatics and Computational Biology (JBCB), 2(4):681–
698, 2004.

[BWF+00] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids
Research, 28(1):235–42, 2000.

[CB00] Peter Clote and Rolf Backofen. Computational Molecular Biology: An In-
troduction. Mathematical and Computational Biology. Jon Wiley & Sons,
Chichester, August 2000. series editor S. Levin. 290 pages.

[Cor01] Thomas H. Cormen. Introduction to Algorithms. MIT Press, 2. edition,
2001.

[Cou02] Jennifer Couzin. Breakthrough of the year. Small RNAs make big splash.
Science, 298(5602):2296–7, 2002.

112 Bibliography

[CSS+02] J. J. Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D’Souza,
Y. Du, B. Feng, N. Lin, L. V. Madabusi, K. M. Muller, N. Pande, Z. Shang,
N. Yu, and R. R. Gutell. The Comparative RNA Web (CRW) Site: an online
database of comparative sequence and structure information for ribosomal,
intron, and other RNAs: Correction. BMC Bioinformatics, 3(1):15, 2002.

[Edd02] S. R. Eddy. A memory-efficient dynamic programming algorithm for optimal
alignment of a sequence to an RNA secondary structure. BMC Bioinfor-
matics, 3(1):18, 2002.

[Eva99] Patricia Anne Evans. Algorithms and Complexity for Annotated Sequence
Analysis. PhD thesis, University of Alberta, 1999.

[FCDK01] J. E. Fletcher, P. R. Copeland, D. M. Driscoll, and A. Krol. The selenocys-
teine incorporation machinery: interactions between the SECIS RNA and
the SECIS-binding protein SBP2. RNA, 7(10):1442–53, 2001.

[GCA06] Raymond F. Gesteland, Thomas R. Cech, and John F. Atkins. The RNA
World. Cold Spring Harbor Laboratory Press, 3. edition, 2006.

[GGN02] J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated
sequences. In Proc. of the 22nd Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2002), 2002.

[GJMM+05] Sam Griffiths-Jones, Simon Moxon, Mhairi Marshall, Ajay Khanna, Sean R.
Eddy, and Alex Bateman. Rfam: annotating non-coding RNAs in complete
genomes. Nucleic Acids Res., 33:D121–D124, 2005.

[GL98] M. Gerstein and M. Levitt. Comprehensive assessment of automatic struc-
tural alignment against a manual standard, the scop classification of pro-
teins. Protein Science, 7(2):445–56, 1998.

[Got82] O. Gotoh. An improved algorithm for matching biological sequences. Jour-
nal of Molecular Biology, 162:705–708, 1982.

[GSS01] J. Gorodkin, S. L. Stricklin, and G. D. Stormo. Discovering common
stem-loop motifs in unaligned RNA sequences. Nucleic Acids Research,
29(10):2135–44, 2001.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

[HBS04] I. L. Hofacker, S. H. Bernhart, and P. F. Stadler. Alignment of RNA base
pairing probability matrices. Bioinformatics, 20(14):2222–2227, 2004.

[HFS+94] Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer,
Manfred Tacker, and Peter Schuster. Fast folding and comparison of RNA
secondary structures. Monatshefte Chemie, 125:167–188, 1994.

[Hir77] Daniel S. Hirschberg. Complexity of common subsequence problems. In
FCT, pages 393–398, 1977.

Bibliography 113

[HTGK03] Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz.
Local similarity in RNA secondary structures. In Proceedings of Computa-
tional Systems Bioinformatics (CSB 2003), 2003.

[JLMZ00] T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence
problem for arc-annotated sequences. In Proceedings of the 11th Annual
Symposium on Combinatorial Pattern Matching, volume 1848 of Lecture
Notes in Computer Science, pages 154–165. Springer-Verlag, Berlin, 2000.

[JLMZ02] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit dis-
tance between RNA structures. Journal of Computational Biology, 9(2):371–
88, 2002.

[JWZ95] T. Jiang, J. Wang, and K. Zhang. Alignment of trees - an alternative to
tree edit. Theoretical Computer Science, 143(1):137–148, 1995.

[KCN+03] Gregory V. Kryukov, Sergi Castellano, Sergey V. Novoselov, Alexey V.
Lobanov, Omid Zehtab, Roderic Guigo, and Vadim N. Gladyshev. Char-
acterization of mammalian selenoproteomes. Science, 300(5624):1439–43,
2003.

[LCJW02] Guohui Lin, Zhi-Zhong Chen, Tao Jiang, and Jianjun Wen. The longest
common subsequence problem for sequences with nested arc annotations.
J. Comput. Syst. Sci., 65(3):465–480, 2002.

[LCWI01] Giuseppe Lancia, Robert Carr, Brian Walenz, and Sorin Istrail. 101 optimal
PDB structure alignments: a branch-and-cut algorithm for the maximum
contact map overlap problem. In Proc. of the Fifth Annual International
Conferences on Compututational Molecular Biology (RECOMB01). ACM
Press, 2001.

[LRV98] H.P. Lenhof, K. Reinert, and M. Vingron. A polyhedral approach to RNA
sequence structure alignment. In Proc. of the Second Annual Interna-
tional Conferences on Compututational Molecular Biology (RECOMB98),
volume 5, pages 517–30. ACM Press, 1998.

[McC90] J. S. McCaskill. The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers, 29(6-7):1105–19,
1990.

[MSZT99] D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence
dependence of thermodynamic parameters improves prediction of RNA sec-
ondary structure. Journal of Molecular Biology, 288(5):911–40, 1999.

[NW70] S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443–53, 1970.

[San85] David Sankoff. Simultaneous solution of the RNA folding, alignment and
protosequence problems. SIAM J. Appl. Math., 45(5):810–825, 1985.

[SB05] David W. Staple and Samuel E. Butcher. Pseudoknots: RNA structures
with diverse functions. PLoS Biology, 3(6):e213, 2005.

114 Bibliography

[SB07] Sven Siebert and Rolf Backofen. A dynamic programming approach for find-
ing common patterns in RNAs. Journal of Computational Biology, 14(1):34–
45, 2007.

[Sie06] Sven Siebert. Common Sequence Structure Properties and Stable Regions
in RNA Secondary Structures. PhD thesis, Albert-Ludwigs-University
Freiburg, Institute of Computer Science, 2006.

[SW81] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195–197, 1981.

[WG06] Kay C. Wiese and Edward Glen. jviz.RNA - an interactive graphical tool for
visualizing RNA secondary structure including pseudoknots. In Proceedings
of the 19th International Symposium on Computer Based Medical Systems
(IEEE/CBMS-2006), pages 659–664, 2006.

[WSPB97] R. Wilting, S. Schorling, B. C. Persson, and A. Böck. Selenoprotein syn-
thesis in archaea: Identification of an mRNA element of Methanococcus
jannaschii probably directing selenocysteine insertion. Journal of Molecular
Biology, 266(4):637–41, 1997.

[WTK+94] A. E. Walter, D. H. Turner, J. Kim, M. H. Lyttle, P. Muller, D. H. Mathews,
and M. Zuker. Coaxial stacking of helixes enhances binding of oligoribonu-
cleotides and improves predictions of RNA folding. Proc. Natl. Acad. Sci.
USA, 91(20):9218–22, 1994.

[ZS81] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Research,
9(1):133–48, 1981.

[ZS89] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing
distance between trees and related problems. SIAM Journal on Computing,
18(6):1245–1262, 1989.

[ZWM00] Kaizhong Zhang, Lusheng Wang, and Bin Ma. Computing similarity be-
tween RNA structures. unpublished, 2000.

List of Figures

1.1 Putative SECIS elements in non-coding regions of M. jannaschii 8

2.1 RNA backbone and standard base pairs 14
2.2 Three levels of structural information for a yeast PHE-tRNA 15
2.3 Loop decomposition for a nested RNA secondary structure 17
2.4 RNA secondary structure representations 18
2.5 Set of mammalian SECIS elements . 19
2.6 Two trees and a tree alignment of both trees 24
2.7 Allowed edit operations for an alignment of two arc-annotated sequences . 27

3.1 Two patterns P1 and P2 . 32
3.2 Three arbitrary partial matchings between the left and right RNA 33
3.3 Matchings which do not preserve bonds 35
3.4 Maximally extended EPM between the left and the right RNA 36
3.5 Dot-plot of exact pattern matches for two Hepatitis C virus IRES RNAs . 39
3.6 Set of possible exact pattern matches between two RNAs 40
3.7 Ordering of exact pattern matches relative to an EPM for Non-Crossing. 41
3.8 Pattern bounds for a pattern in one RNA 43
3.9 Additional nucleotides in a matching closure 44
3.10 MCS algorithm, Numbering of nucleotide position for an inner loop 45
3.11 MCS algorithm, two cases for a base-pair matching (i, i′) with (j, j′) 47

4.1 LCS-ERP, score composition for an EPM E with two holes 53

5.1 Illustration for distance function δ 1
SEQ . 61

5.2 Illustration for distance function δEQL . 62
5.3 Illustration for distance function δPATH . 62
5.4 Two EPMs which do not satisfy Non-Crossing for matching closures . . 65
5.5 EPM E and positions in CANDPOSE . 67
5.6 Clustering of a multi-loop closed by base pair (r0, r′0) 68

6.1 Two Hepatitis C virus IRES RNAs, LCS-ERP approach 77
6.2 Two Hepatitis C virus IRES RNAs, clustering with CLUSTER-MAX-1 . . 79
6.3 Two Hepatitis C virus IRES RNAs, clustering with CLUSTER-MAX-2 . . 80
6.4 Comparison LCS-ERP and RNA align for two Hep. C virus IRES RNAs . 82
6.5 Two 16S rRNAs, LCS-ERP approach . 84
6.6 Two 16S rRNAs, clustering with distance function δEQL 86
6.7 Comparison between LCS-ERP and RNAforester for two 16S rRNAs . . . 88

A.1 Alignment of two Hepatitis C virus IRES RNAs with RNA align 95

116 List of Figures

A.2 Comparison LCS-ERP and RNAforester for two Hep. C virus IRES RNAs 96
A.3 Alignment of two Hepatitis C virus IRES RNAs with RNAforester 97
A.4 Comparison between LCS-ERP and RNA align for two 16S rRNAs 98
A.5 Alignment of two 16S rRNAs with RNA align 99
A.5 Alignment of two 16S rRNAs with RNA align 100
A.6 Alignment of two 16S rRNAs with RNAforester 100
A.6 Alignment of two 16S rRNAs with RNAforester 101

B.1 Two 16s rRNAs, clustering with CLUSTER-MAX-1, δSEQ1, τ = 50 103
B.2 Two 16s rRNAs, clustering with CLUSTER-MAX-2, δSEQ1, τ = 50 104
B.3 Two 16s rRNAs, clustering with CLUSTER-MAX-2, δSEQ1, τ = 10 105
B.4 Two Hepatitis C virus IRES RNAs, clustering with CLUSTER-MAX-1 . . 106
B.5 Two Hepatitis C virus IRES RNAs, clustering with CLUSTER-MAX-2 . . 106

C.1 Two Hepatitis C virus IRES RNAs, Result from MCS algorithm 109

List of Tables

6.1 Comparison of the clustering strategies CLUSTER-MAX-1 and CLUSTER-
MAX-2 for two Hepatitis C virus IRES RNAs 78

6.2 Comparison of the number of found exact matchings by LCS-ERP and
RNA align and RNAforester . 81

6.3 Comparison of the clustering strategies CLUSTER-MAX-1 and CLUSTER-
MAX-2 for two 16S rRNAs . 85

6.4 Results for two 16S rRNAs with distance function δEQL for τ = 10 and two
different values for ∆DT . 86

6.5 Comparison of the number of exact matches found by LCS-ERP and RNA align
and RNAforester . 87

List of Algorithms

4.1 LCS-ERP, precompute-holes . 55

4.2 LCS-ERP, compute-hole-D . 55

5.1 Clustering Strategy, clusterAll (main loop) 70

5.2 Clustering strategy, clusterEPM . 70

C.1 MCS algorithm, loop-walking . 107

C.2 MCS algorithm, max-matching . 108

Selbständigkeitserklärung

Hiermit erkläre ich, dass die hier vorliegende Diplomarbeit von mir selbständig und nur
unter Verwendung der angegebenen Hilfsmittel und Quellen erstellt wurde.

Jena, den

Unterschrift

