Albert-Ludwigs-Universität Freiburg

Diploma Thesis

Efficient solving of alignment-problems with side conditions using constraint techniques

Sebastian Barth

May 10, 2007

Fakultät für Angewandte Wissenschaften
Institut für Informatik
Lehrstuhl für Bioinformatik
Gutachter Prof. Dr. Rolf Backofen
Prof. Dr. Christoph Scholl

ERKLÄRUNG

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

Danksagung

An dieser Stelle möchte ich all jenen danken, die durch ihre fachliche und persönliche Unterstützung zum Gelingen dieser Diplomarbeit beigetragen haben.

Prof. Dr. Rolf Backofen danke ich für die Vergabe einer herausfordernden und überaus interessanten Themenstellung, die mir einen tieferen Einblick in die Bioinformatik ermöglichte.

Prof. Dr. Christoph Scholl danke ich für seine Bemühungen.
Meinem Betreuer Dr. Sebastian Will danke ich ganz herzlich für zahlreiche fruchtbare Diskussionen und viele Anregungen.

Große Dankbarkeit empfinde ich gegenüber meiner geliebten Frau, meiner Mutter und meinem Großvater für ihre liebevolle Unterstützung.

Contents

1 Introduction 7
1.1 Motivation 7
1.2 Related Works 9
1.3 Overview 9
2 Fundamentals 11
2.1 Definition of an alignment 11
2.2 Further constraints for alignments 12
2.2.1 Anchor constraints 12
2.2.2 Precedence constraints 12
2.2.3 Aligned segments 13
2.2.4 Sequence structure alignment 13
3 The approach of dynamic programming 15
3.1 Alignment using dynamic programming 15
3.2 Extended alignment problems 19
3.2.1 Anchor constraints 19
3.2.2 Precedence constraints 20
3.2.3 Aligned segments 21
4 Cluster tree decomposition, elimination 27
4.1 A constraint model for sequence alignment 27
4.2 Definition of a cluster tree 29
4.3 Cluster tree elimination 29
4.4 Using CTD/CTE for solving alignments 30
4.5 Extended alignment problems 33
4.5.1 Anchor constraints 34
4.5.2 Precedence constraints 34
4.5.3 Aligned segments 34
4.6 Sequence structure alignment 36
4.6.1 Cluster-tree decomposition for a sequence structure align- ment 37
4.6.2 Attributes of the decomposition 39
4.6.3 Cluster-tree elimination for sequence structure align- ments 39
4.6.4 Construction of a cluster tree for sequence structure alignment 41
4.7 Combining several constraints 42
4.7.1 Multiple constraints of one type 42
4.7.2 Different multiple constraints combined 45
5 Progressive alignment 47
5.1 Aligning three sequences 47
5.1.1 Aligning an alignment of two sequences with a sequence 48
5.2 Progressive alignment 49
5.2.1 How to align alignments using CTD and CTE 50
5.3 Combining with constraints 51
5.3.1 Induced constraints 52
5.3.2 Following the guide tree 54
6 Multiple alignments using CTD/CTE 55
6.1 Aligning three sequences 55
6.1.1 A constraint model for three sequences alignment 55
6.1.2 Cluster tree decomposition 58
6.1.3 Cluster tree elimination 58
6.2 Aligning m sequences 59
6.3 Adding constraints 60
6.3.1 Anchor constraints 60
6.3.2 Precedence constraints 60
7 Conclusion 61
7.1 Further perspectives 62

Chapter 1

Introduction

1.1 Motivation

Since the discovery of the structure of the genome, RNA and DNA, we try to understand its code. A DNA consists of two sequences bound together by base pairs of the nitrogenous bases cytosine, guanine, adenine and thymine forming hydrogen bounds. RNA is a single sequence of the nitrogenous bases cytosine, guanine, adenine and uracil (see fig. 1.1^{1}). A RNA sequence can form hydrogen bounds with itself. This forms the secondary structure, a general three dimensional structure. Proteins also exist as sequences.

Many problems and open questions of modern microbiology demand the comparison of RNA, DNA or protein sequences. The computational effort in performing these calculations is high and microbiology urges the development of efficient tools. An important requirement is the capability of these tools to deal with certain constraints. Examples might be a specified number of matches of two compared sequences within certain regions or a consideration of the secondary structure of a proteine $[3,13,15,22,19]$.

Subject of this thesis is the efficient alignment of sequences, where we focus especially on different constraints on the alignment and how to combine these constraints, even in multiple alignments.

[^0]

Figure 1.1: RNA compared to DNA

1.2 Related Works

A short overview of a computation of an alignment using dynamic programming can be found at [8]. The method of cluster tree decomposition and elimination is described in detail by [17]. [21] extends this approach to solve alignments and to handle with constraints. Multiple alignments are discussed in $[7,4,14,18,20,6]$, many of them use progressive alignment.

1.3 Overview

With a short theoretical introduction in chapter 2, we will start with standard dynamic programming approach for computing alignments inspired by [8] (chapter 3). Even though dynamic programming is an important method in bioinformatics it is hard to find an enlargement that can deal with constraints. We will show some possibilities for computing alignments with anchor, precedence and aligned segments constraints by using dynamic programming.

Chapter 4 is about cluster tree decomposition and elimination. The chapters 4.1 to 4.5 are based a lot on the the work [21]. In these chapters a constraint model for sequence alignments and the cluster tree decomposition, elimination are developed, as well as anchor, precedence and aligned segments constraints are added. [21] describes briefly how to deal with secondary structure alignments. This description is extended, formalised and a method to construct a decomposition for secondary structure alignment of a cluster tree decomposition for an alignment without any secondary structure is shown. Then we will concentrate on how to deal with combinations of several constraints, even if these are of a different type.

Chapter 5 gives an heuristic approach for solving multiple alignments using cluster tree decomposition and elimination. At the beginning we will compute an alignment on three sequences. After a short introduction on progressive alignment we show how to compute a multiple alignment using progressive alignment and continue by handling with anchor and precedence constraints on multiple alignments.

After computing the optimal alignment between three sequences, we show in chapter 6 an approach for finding an optimal multiple alignment. This approach is exponential in the number of sequences that should be aligned
and uses cluster tree decomposition and elimination. We close this work on adding anchor and precedence constraints on multiple alignments.

Chapter 2

Fundamentals

2.1 Definition of an alignment

Considering two strings we are interested in the degree of similarity if we compare them. An important term in the comparison of strings is the alignment.

Definition 2.1.1 An alignment \mathcal{A} of two strings \mathcal{S}_{1} and \mathcal{S}_{2} over the alphabet Σ is a subset of $\{1, \ldots, n\} \cup\{-\} \times\{1, \ldots, m\} \cup\{-\}$, where n is the number of characters in \mathcal{S}_{1} and m the one in \mathcal{S}_{2} (see [1]). \mathcal{A} has to satisfy the following conditions:

- $(-,-) \notin \mathcal{A}$
- $\forall(i, j) \in \mathcal{A} \cap\{1, \ldots, n\} \times\{1, \ldots, m\}: i$ and j appear only once in \mathcal{A}.
- $\forall\left(i^{\prime}, j^{\prime}\right),(i, j) \in \mathcal{A} \cap\{1, \ldots, n\} \times\{1, \ldots, m\}: i^{\prime}<i \Leftrightarrow j^{\prime}<j$. Any pairs in \mathcal{A} are non crossing.

In an alignment each character of both strings is allocated to an other character in the other string or to a gap, represented by ${ }^{\prime}{ }^{\prime}$. If aligning DNA-, resp. RNA-sequences, we can define Σ as: $\Sigma=\{a, c, g, t\} \cup\{-\}$, resp. $\Sigma=\{a, c, t, u\} \cup\{-\}$.

In order to be able to measure the similarity we need a scoring scheme: Let $\delta(x) \rightarrow \mathbb{R}$ be a cost-function, where $x=\left(x_{1}, x_{2}\right) \in \Sigma \times \Sigma$. δ measures the quality of aligning an element of \mathcal{S}_{1} with an element of $\mathcal{S}_{2}{ }^{1}$. The score of \mathcal{A} is:

[^1]Definition 2.1.2 Score of an alignment

$$
\operatorname{score}(\mathcal{A})=\sum_{x \in \Sigma \times \Sigma} \delta(x)
$$

For example, we can allocate a positive value for δ if the two characters differ and 0 otherwise. This way we receive $\operatorname{score}(\mathcal{A})=0$ for equivalent strings a, low value for similar strings and a high value for different ones.

Example 2.1.1 Editing distance
As an other interpretation, we consider min score (\mathcal{A}), where \mathcal{A} is any alignment of \mathcal{S}_{1} and \mathcal{S}_{2}, equal to the editing distance. If we determine $\delta\left(s_{1}, s_{2}\right)=1$, where s_{1} is a character of \mathcal{S}_{1} and s_{2} one of \mathcal{S}_{2}, as the costs of a conversion of s_{1} into s_{2} if $s_{1} \neq s_{2}$ and $\delta\left(s_{1}, s_{2}\right)=0$ if $s_{1}=s_{1}$ and $\delta\left(s_{1},-\right)=1$ resp. $\delta\left(-, s_{2}\right)=1$ as the costs of deletion of s_{1} in \mathcal{S}_{1} resp. a insertion of s_{2} into \mathcal{S}_{1}, the editing distance of \mathcal{S}_{1} and \mathcal{S}_{2} expresses the minimal costs, with respect to δ and the number of operations to transform \mathcal{S}_{1} into \mathcal{S}_{2}.

With a high value of δ for matchings and lower, possibly negative, for mismatches, we can formulate the following definition.
Definition 2.1.3 Optimal alignments
Let \mathcal{A}^{*}, resp $\mathcal{A}^{*}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ denote the optimal alignments of two strings regarding the score. I.e. the alignments \mathcal{A}^{*} have to fulfill the following equation:

$$
\operatorname{score}\left(\mathcal{A}^{*}\right)=\max _{\mathcal{A} \text { of } \mathcal{S}_{1}, \mathcal{S}_{2}} \operatorname{score}(\mathcal{A})
$$

Definition 2.1.4 Optimal alignment of subsequences
$\mathcal{A}^{*}\left(x_{i}, y_{j}\right)$, where $x_{1} \ldots x_{i}$ and $y_{1} \ldots y_{j}$ are substrings of \mathcal{S}_{1} and \mathcal{S}_{2} beginning at the first position and ending at position i, resp. j, denote the optimal alignments of the substrings $x_{1} \ldots x_{i}$ and $y_{1} \ldots y_{j}$.

2.2 Further constraints for alignments

2.2.1 Anchor constraints

This simple constraint forces the element at position i in the first sequence to be aligned with an element at a position less or equal to j in the second one.

2.2.2 Precedence constraints

Here an element at position i in the first sequence has to be aligned left (resp. right) to the position of j 'th element in the second sequence.

2.2.3 Aligned segments

The aligned segments extend the normal alignments by the following constraint: Given two sequences a and b and the segments k, \ldots, k^{\prime} of sequence a, l, \ldots, l^{\prime} of sequence b. A certain percentage of the elements in segment k, \ldots, k^{\prime} have to be matched with elements of segment l, \ldots, l^{\prime}.

2.2.4 Sequence structure alignment

In contrast to the other problems observed so far, we now also consider the secondary structure of our sequences [21].

Let two structures P_{a} and P_{b} be given with $P_{a} \subset\{1, \ldots, n\} \times\{1, \ldots, n\}$ over a sequence $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $P_{b} \subset\{1, \ldots, m\} \times\{1, \ldots, m\}$ over the sequence $B=\left\{b_{1}, \ldots, b_{m}\right\}$. A pair $\left(i_{l}, i_{r}\right) \in P_{a}$ (resp. $\left(j_{l}, j_{r}\right) \in P_{b}$), $l<r$, expresses dependencies in sequence A between the bases a_{l} and a_{r} (resp. b_{l}, b_{r} in B), as for instance in the case of base pairings. For any two pairs $\left(i_{l_{1}}, i_{r_{1}}\right),\left(i_{l_{2}}, i_{r_{2}}\right) \in P_{a}$ (resp. $\left.\left(j_{l_{1}}, j_{r_{1}}\right),\left(j_{l_{2}}, j_{r_{2}}\right) \in P_{b}\right)$ it holds: $i_{l_{1}} \neq i_{l_{2}}$ and $i_{r_{1}} \neq i_{r_{2}}\left(\right.$ resp. $\left.j_{l_{1}} \neq j_{l_{2}}, j_{r_{1}} \neq j_{r_{2}}\right)$

Let $\omega:\{1, \ldots, n\} \times\{1, \ldots, n\} \times\{1, \ldots, m\} \times\{1, \ldots, m\} \rightarrow \mathbb{R}$ be a function that weights a structural element of P_{a} in comparison to one of P_{b}.

In extension to def. 2.1.2 we can define the score of two aligned structures as following:

Definition 2.2.1 The score of two aligned sequence structures Let P_{a} and P_{b} be two structures of the sequences A and B. Let \mathcal{A} be an alignment of A and B. The score of an alignment $\mathcal{A}_{P_{a}, P_{b}}$ of two structures is defined as

$$
\operatorname{score}\left(\mathcal{A}_{P_{a}, P_{b}}\right)=\operatorname{score}(\mathcal{A})+\sum_{\substack{\left(i_{l}, i_{r}\right) \in P_{a},\left(j_{l}, j_{r}\right) \in P_{b} \\\left(i_{l}, j_{l}\right) \in \mathcal{A},\left(i_{r}, j_{r}\right) \in \mathcal{A}}} \omega\left(i_{l}, i_{r} ; j_{l}, j_{r}\right)
$$

A special type of secondary structures are pseudoknots and pseudoknotfree structures.

Definition 2.2.2 Pseudoknot-free structure [5]
A structure P over a sequence is called pseudoknot-free iff for any two pairs $\left(i_{l}, i_{r}\right),\left(j_{l}, j_{r}\right) \in P$, with $i_{l}<j_{l}$, holds

- $i_{l}<i_{r}<j_{l}<j_{r}$ or

Figure 2.1: Example of a pseudoknot-free structure

- $i_{l}<j_{l}<j_{r}<i_{r}$

A visualisation of a pseudoknot-free structure is given in figure 2.1^{2}.

[^2]
Chapter 3

The approach of dynamic programming

Dynamic programming is one of the very basic programming principles in computer science. It often allows to solve combinatorial optimisation problems over a search space of exponential size in polynomial space and time [11]. Dynamic programming was formalised in the early 1950s by the mathematician Richard Bellman.

Definition 3.0.3 Dynamic algorithm
A dynamic algorithm is distinguished by four different parts [8]:

- A recursive definition of the optimal score of the corresponding optimisation problem.
- A dynamic programming matrix for remembering the optimal scores of subproblems in order to avoid multiple computation of the same values.
- A bottom-up approach for filling the matrix which contains the partial solutions. The smallest subproblems will be solved first, the others not until the needed values are accessible.
- A traceback algorithm that traverses the filled matrix in order to find the structure of the optimal solution that gave the optimal score.

3.1 Alignment using dynamic programming

If we want to receive an optimal alignment of the two segments \mathcal{S}_{1} and \mathcal{S}_{2} we have to consider how we can alter our four parts adequately. Let us assume,
we want to transform \mathcal{S}_{1} into \mathcal{S}_{2}.
Let $x_{i}, 1 \leq i \leq m$, be a character ${ }^{1}$ at position i of \mathcal{S}_{1} and $y_{j}, 1 \leq j \leq n$, one of \mathcal{S}_{2}, where m, n are the number of characters in \mathcal{S}_{1} resp. \mathcal{S}_{2}. If we want to receive the optimal score, $\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i}, y_{j}\right)\right)$ of an alignment of the subsequences $x_{1} \ldots x_{i}$ of \mathcal{S}_{1} and $y_{1} \ldots y_{j}$ of \mathcal{S}_{2} there are three different cases for a recursive definition to consider:

- x_{i} and y_{j} will be aligned, i.e. $x_{i}=y_{j}$ or we will replace x_{i} by x_{j}. The pair $\left(x_{i}, y_{j}\right)$ will appear in our alignment of the subsequences.
- x_{i} will be aligned with ${ }^{\prime}-^{\prime}$, i.e. x_{i} will be deleted in the subsequence of \mathcal{S}_{1}.The pair $\left(x_{i},-\right)$ will appear in our alignment of the subsequences.
- y_{j} will be aligned with ${ }^{\prime}-^{\prime}$, i.e. y_{j} will be inserted into the subsequence of \mathcal{S}_{1} The pair $\left(-, y_{j}\right)$ will appear in our alignment of the subsequences.

That leads to the following recursive equation

$$
\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i}, y_{j}\right)\right)=\max \left\{\begin{array}{l}
\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i-1}, y_{j-1}\right)\right)+\delta\left(x_{i}, y_{j}\right) \tag{3.1}\\
\text { for replacing } x_{i} \text { by } y_{j} \\
\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i-1}, y_{j}\right)\right)+\delta\left(x_{i},-\right) \\
\text { for deleting } x_{i} \text { in } \mathcal{S}_{1} \\
\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i}, y_{j-1}\right)\right)+\delta\left(-, y_{j}\right) \\
\text { for inserting } y_{j} \text { in } \mathcal{S}_{1}
\end{array} .\right.
$$

If we introduce constant gap costs γ, we receive

$$
\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i}, y_{j}\right)\right)=\max \left\{\begin{array}{l}
\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i-1}, y_{j-1}\right)\right)+\delta\left(x_{i}, y_{j}\right) \tag{3.2}\\
\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i-1}, y_{j}\right)\right)+\gamma \\
\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i}, y_{j-1}\right)\right)+\gamma
\end{array} .\right.
$$

Our dynamic programming matrix \mathcal{M} will store the scores. At position $\mathcal{M}(i, j)$ the $\operatorname{score}\left(\mathcal{A}^{*}\left(x_{i}, y_{j}\right)\right)$ will be stored. \mathcal{M} is of size $O(n m)$ since we need entries for every combination $i \times j$. In addition we need the column $\mathcal{M}(0, j)$ and the row $\mathcal{M}(i, 0)$. The matrix will be initialised with the values $\mathcal{M}(0,0)=0$ and $\mathcal{M}(i, 0)=\sum_{k=1}^{i} \delta\left(x_{i},-\right), \mathcal{M}(0, j)=\sum_{l=1}^{j} \delta\left(-, y_{j}\right)$ respectively $\mathcal{M}(i, 0)=i \gamma, \mathcal{M}(0, j)=j \gamma$ in case of constant gap costs.

[^3]Once we initialised \mathcal{M} we can fill the matrix bottom up by examining for each $\mathcal{M}(i, j)$ the three adjacent entries $\mathcal{M}(i-1, j-1), \mathcal{M}(i-1, j), \mathcal{M}(i, j-1)$ and choosing the maximal value. We can begin with $\mathcal{M}(1,1)$ and complete the first row, afterwards we do the same with the second one and so on.

Since each cell $\mathcal{M}(i, j)$ contains the optimal alignment score of the subsequences $x_{1} \ldots x_{i}$ and $y_{1} \ldots y_{j}$ of \mathcal{S}_{1} and \mathcal{S}_{2}, the score of the optimal alignment \mathcal{A}^{*} of \mathcal{S}_{1} and \mathcal{S}_{2} is $\operatorname{score}\left(\mathcal{A}^{*}\right)=\mathcal{M}(n, m)$.

Now we know the score of an optimal alignment, but we are interested in the structure, too. Due to our recursive equation, we can be sure that $\mathcal{M}(m, n)$ refers to at least one of the adjacent cells $\mathcal{M}(m-1, n), \mathcal{M}(m, n-1)$ or $\mathcal{M}(m-1, n-1)$. As seen in equation 3.1 these entries can be interpreted as a replacement, insertion or deletion of a character resp. a protein base in our sequence \mathcal{S}_{1}. Since $\forall i, j$, where $0<i, j \leq n, m$ the entry in $\mathcal{M}(i, j)$ is, due to equation 3.1, only influenced by one of the cells $\mathcal{M}(i-1, j), \mathcal{M}(i, j-1)$ or $\mathcal{M}(i-1, j-1)^{2}$ we only need to consider this tree adjacent cells to find the structure of the optimal alignment via traceback. If we recompute the entry in $(M)(i, j)$ we know which cell is responsible for $\mathcal{M}(i, j)$. This gives the traceback path. The corresponding structure of the alignment and the adequate action for transforming \mathcal{S}_{1} into \mathcal{S}_{2} is given by the traceback path. Figure 3.1^{3} shows an example. In this example a scoring scheme of +5 for a match, -2 for a mismatch and -6 for each insertion or deletion is used. The traceback path is shown red and the arrowheads are 'traceback pointers' indicating which of the three cases were optimal for reaching each cell.

The storage capacity needed for this algorithm is $O(m n)$ since this is the dimension of our dynamic programming matrix \mathcal{M}. The filling of one cell takes constant time, therefore the filling of the complete matrix is also in $O(m n)$ time. Since we do the same computation for the traceback as before when we filled \mathcal{M} and we consider each cell at most 2 times ${ }^{4}$ it is also in the time complexity $O(m n)$. Therefore the time complexity of the complete algorithm is in $O(m n)$.

[^4]

Optimum alignment scores 11:

$$
\begin{array}{rrrrrrrr}
\mathbf{T} & - & - & \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{T} & \mathbf{A} \\
\mathbf{T} & \mathbf{G} & \mathbf{C} & \mathbf{T} & \mathbf{C} & \mathbf{G} & \mathbf{T} & \mathbf{A} \\
+5 & -6 & -6 & +5 & +5 & -2 & +5 & +5
\end{array}
$$

Figure 3.1: Dynamic programming matrix of an alignment

Figure 3.2: Dynamic programming matrix with one anchor constraint Traceback path is marked red.

3.2 Extended alignment problems

In this chapter we will discuss, how we can deal with further constraints using algorithms based on the dynamic programming approach discussed before.

3.2.1 Anchor constraints

If we want to force character x_{i} in sequence \mathcal{S}_{1} to align with y_{j} in \mathcal{S}_{2} it suffices to have a look at the alignments of the subsequences $x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{j}$ and $x_{i+1}, \ldots, x_{m}, y_{j+1}, \ldots, y_{n}$.

Since the traceback path of our alignment has to pass $\mathcal{M}(i, j)$ (see figure 3.2) we fill our dynamic programming matrix as mentioned before for all cells $\mathcal{M}(k, l)$, with $0 \leq k \leq i$ and $0 \leq l \leq j$. We consider $\mathcal{M}(i, j)$ as if it would be a start point of a normal traceback path. In this way we obtain the dynamic programming matrix for the alignment of the first subsequences. For $i \leq k \leq m$ and $j \leq l \leq n$ we fill \mathcal{M} in the following way:

- $\mathcal{M}(i, l)=\mathcal{M}(i, j)+\sum_{o=i+1}^{l} \delta\left(-, y_{o}\right), j \leq l \leq n$
- $\mathcal{M}(k, j)=\mathcal{M}(i, j)+\sum_{p=j+1}^{k} \delta\left(x_{p},-\right), i \leq k \leq m$
- $\mathcal{M}(k, l)$, where $k \neq i$ and $l \neq j$, will be filled using the same bottom up mechanism like the standard alignment (equation 3.1).

For $0 \leq k \leq i$ and $j<l \leq n$ or $i<k \leq m$ and $0 \leq l \leq j$ we can fill $\mathcal{M}(k, l)$ with $-\infty$ because these areas are not of interest since our traceback path won't pass them.

Once we received $\mathcal{M}(m, n)$, we can compute our traceback path as we did in chapter 3.1. The time and space complexity of this approach is in $O(m n)$.

3.2.2 Precedence constraints

Here we distinguish two different cases depending on if the i 'th element in segment \mathcal{S}_{1} has to be aligned to an element in segment \mathcal{S}_{2} at a position smaller or bigger position j. Let x be the mentioned position of the element in \mathcal{S}_{2}.

1. Element i in \mathcal{S}_{1} is aligned left to element j in \mathcal{S}_{2}.
I.e. $0 \leq x<j$ (see figure 3.3). In this case, the traceback path can't pass the cells $\mathcal{M}(k, l)$ with $0 \leq k<i$ and $j \leq l \leq n$. These cells can be filled with $-\infty$. The rest of $\mathcal{M}(k, l)$ will be filled as following:

- For $0 \leq k \leq m$ and $0 \leq l<j$:

The cells of \mathcal{M} can be filled as if we compute a standard alignment for the subsequences x_{1}, \ldots, x_{m} of \mathcal{S}_{1} and y_{1}, \ldots, y_{m} of \mathcal{S}_{2}.

- For $k=i$ and $j \leq l \leq n$:
$\mathcal{M}(k, l)=\mathcal{M}(i, j-1)+\sum_{p=j}^{l} \delta\left(x_{p},-\right)$
- For $i<k \leq m$ and $j \leq l \leq n$:
$\mathcal{M}(k, l)$ can be computed convenient (formula 3.1) by using the boundary values $\mathcal{M}(k, j-1)$ and $\mathcal{M}(i, l)$.

2. Element i in \mathcal{S}_{1} is aligned right to element j in \mathcal{S}_{2}.
I.e. $j<x \leq n$ (see figure 3.4). Like above, we can fill certain cells of \mathcal{M} with $-\infty$. In this case they are the cells $\mathcal{M}(k, l)$ with $i<k \leq m$ and $0 \leq l \leq j$. For filling the rest of $\mathcal{M}(k, l)$ we have to consider the following cases:

- For $0 \leq k \leq i$ and $0 \leq l \leq n$:
$\mathcal{M}(k, l)$ can be computed as if we consider an alignment for the subsegments x_{1}, \ldots, x_{i} of \mathcal{S}_{1} and y_{1}, \ldots, y_{n} of \mathcal{S}_{2}.
- For $i<k \leq m$ and $l=j+1$:

$$
\mathcal{M}(k, l)=-\mathcal{M}(i, j+1)+\sum_{o=i+1}^{k} \delta\left(-, y_{o}\right)
$$

Figure 3.3: Dynamic programming matrix with one precedence constraint, 'left'

Traceback path is marked red.

- For $i<k \leq m$ and $j+1<l \leq n$:

In this case we can compute $\mathcal{M}(k, l)$ using the recursive formula 3.1 and the starting values at the boundary given by the two cases above.

It is quite obvious that these approaches take $O(m n)$ time and space complexity.

3.2.3 Aligned segments

Let $|k|$ be the number of elements in the segment $x_{k}, \ldots, x_{k^{\prime}}$ of \mathcal{S}_{1} and $|l|$ be the number of elements in $y_{l}, \ldots, y_{l^{\prime}}$ of \mathcal{S}_{2}. Let x be the number of characters in the segment $x_{k}, \ldots, x_{k^{\prime}}$ of \mathcal{S}_{1} which have to be aligned with characters in the segment $y_{l}, \ldots, y_{l^{\prime}}$ of \mathcal{S}_{2} in order to satisfy the constraint in chapter 2.2.3. Let $|l| \geq x$, i.e. $y_{l}, \ldots, y_{l^{\prime}}$ contains enough elements to fulfill the constraint. Due to the recursive equations 3.1 we need at least x diagonal steps in the traceback path. A closer look on the square $\mathcal{M}^{\prime}=\left(\mathcal{M}(k, l), \mathcal{M}\left(k^{\prime}, l\right), \mathcal{M}\left(k^{\prime}, l^{\prime}\right), \mathcal{M}\left(k, l^{\prime}\right)\right)$ shows that a possible traceback path can't pass all cells of \mathcal{M} within this square. We can only legally enter the square at positions in $\left\{\mathcal{M}(k, l), \mathcal{M}(k+1, l), \ldots, \mathcal{M}\left(k^{\prime}-x, l\right)\right\}$ or $\left\{\mathcal{M}(k, l), \mathcal{M}(k, l+1), \ldots, \mathcal{M}\left(k, l^{\prime}-x\right)\right\}$ and leave it at $\left\{\mathcal{M}\left(k+x, l^{\prime}\right), \mathcal{M}(k+\right.$ $\left.\left.x+1, l^{\prime}\right), \ldots, \mathcal{M}\left(k^{\prime}, l^{\prime}\right)\right\}$ or $\left\{\mathcal{M}\left(k^{\prime}, l+x\right), \mathcal{M}\left(k^{\prime}, l+x+1\right), \ldots, \mathcal{M}\left(k^{\prime}, l^{\prime}\right)\right\}$ (see

Figure 3.4: Dynamic programming matrix with one precedence constraint, 'right'

Traceback path is marked red.
figure 3.5). Let $\mathcal{I}_{1}^{\prime}, \ldots \mathcal{I}_{4}^{\prime}$ be coordinates of cells of \mathcal{M} lying on the border of \mathcal{M}^{\prime}. Let them be defined as following.

- $\mathcal{I}_{1}^{\prime}=\left(k^{\prime}-x, l\right)$
- $\mathcal{I}_{2}^{\prime}=\left(k^{\prime}, l+x\right)$
- $\mathcal{I}_{3}^{\prime}=\left(k+x, l^{\prime}\right)$
- $\mathcal{I}_{4}^{\prime}=\left(k, l^{\prime}-x\right)$

Let \mathcal{L}_{1} be the straight line passing $\mathcal{M}\left(\mathcal{I}_{1}^{\prime}\right), \mathcal{M}\left(\mathcal{I}_{2}^{\prime}\right)$ and \mathcal{L}_{2} the one passing $\mathcal{M}\left(\mathcal{I}_{3}^{\prime}\right), \mathcal{M}\left(\mathcal{I}_{4}^{\prime}\right)$. It holds that \mathcal{L}_{1} and \mathcal{L}_{2} pass exactly x cells within the square \mathcal{M}^{\prime}. If \mathcal{L}_{1} or \mathcal{L}_{2} is part of the traceback path, this path has exactly x parts on the diagonal and no part parallel to the borders of \mathcal{M}. I.e. exactly x elements of the considered segments are aligned. A legal traceback path can't pass cells within \mathcal{M}^{\prime} but below \mathcal{L}_{1} or above \mathcal{L}_{2} : such a path wouldn't consist of enough diagonal elements.

Let $\mathcal{I}_{1}, \ldots, \mathcal{I}_{4}$ be the projection of $\mathcal{I}_{1}^{\prime}, \ldots, \mathcal{I}_{4}^{\prime}$ on the margin of $\mathcal{M} . \mathcal{I}_{1}, \ldots, \mathcal{I}_{4}$ represent the following coordinates:

- $\mathcal{I}_{1}=\left(k^{\prime}-x, 0\right)$
- $\mathcal{I}_{2}=(m, l+x)$

Figure 3.5: Dynamic programming matrix with aligned segment constraint Traceback path is marked red.

- $\mathcal{I}_{3}=(k+x, n)$
- $\mathcal{I}_{4}=\left(0, l^{\prime}-x\right)$

Let \mathcal{P} be the area limited by the polygon

$$
\left((0,0), \mathcal{I}_{1}, \mathcal{I}_{1}^{\prime}, \mathcal{I}_{2}^{\prime}, \mathcal{I}_{2},(m, n), \mathcal{I}_{3}, \mathcal{I}_{3}^{\prime}, \mathcal{I}_{4}^{\prime}, \mathcal{I}_{4}\right) .
$$

For geometrical reasons, due to our recursive definition (eq. 3.1), a possible tracebackpath can't pass cells outside \mathcal{P}. The value of these cells can be set to $-\infty$.

We will initialise $\mathcal{M}(i, j)$ as following.

- $\mathcal{M}(0,0)=0$
- $\mathcal{M}(i, 0)=i \delta\left(x_{i},-\right), 0<i \leq k^{\prime}-x$
- $\mathcal{M}(0, j)=j \delta\left(-, y_{j}\right), j<j \leq l^{\prime}-x$
- $\mathcal{M}\left(k^{\prime}-x, j\right)=\mathcal{M}\left(k^{\prime}-x, 0\right)+\sum_{j} \delta\left(-, y_{j}\right), 0<j \leq l$
- $\mathcal{M}\left(i, l^{\prime}-x\right)=\mathcal{M}\left(0, l^{\prime}-x\right)+\sum_{i} \delta\left(x_{i},-\right), 0<i \leq k$
- $\mathcal{M}\left(k^{\prime}-x+a, l+a\right)=\mathcal{M}\left(k^{\prime}-x+a-1, l+a-1\right)+\delta\left(k^{\prime}-x+a, l+a\right)=$ $\mathcal{M}\left(k^{\prime}-x, l\right)+\sum_{b=1}^{a} \delta\left(k^{\prime}-x+b, l+b\right), 0<a \leq x$
- $\mathcal{M}\left(k+a, l^{\prime}-x+a\right)=\mathcal{M}\left(k+a-1, l^{\prime}-x+a-1\right)+\delta\left(k+a, l^{\prime}-x+a\right)=$ $\mathcal{M}\left(k^{\prime}-x, l\right)+\sum_{b=1}^{a} \delta\left(k+b, l^{\prime}-x+b\right), 0<a \leq x$
- $\mathcal{M}(i, l+x)=\mathcal{M}\left(k^{\prime}, l+x\right)+\sum_{i} \delta\left(x_{i},-\right), k^{\prime}<i \leq m$
- $\mathcal{M}(k+x, j)=\mathcal{M}\left(k+x, l^{\prime}\right)+\sum_{j} \delta\left(-, y_{j}\right), l^{\prime}<j \leq n$

The initialisation can be done in linear time according to the size of the sequences.

Let \mathcal{P}^{\prime} be the area limited by the polygon

$$
\left((0,0), \mathcal{I}_{1}, \mathcal{I}_{1}^{\prime}, \mathcal{I}_{2}^{\prime},\left(k^{\prime}, l^{\prime}\right), \mathcal{I}_{3}^{\prime}, \mathcal{I}_{4}^{\prime}, \mathcal{I}_{4}\right)
$$

Initially we can compute the cells of \mathcal{M} that are covered by \mathcal{P}^{\prime} as we did before for the simple alignment. Due to the constraints we have to fulfill, we have to take a closer look on the values of the cells in \mathcal{M}^{\prime}.

Let \mathcal{M}^{\prime} be represented by an additional matrix. We keep the coordinates of \mathcal{M} to identify the cells of \mathcal{M}^{\prime}. We are interested in the scores saved at the margins $\mathcal{M}^{\prime}(i, j)$, where $i=k^{\prime}, j>l+x$ or $i>k+x, j=l^{\prime}$, and the corresponding traceback paths. Let \mathcal{T} be an adequate datastructure for storing all traceback paths, like a list of lists. Let P be a cell on the mentioned area on the margin (fig. 3.6). We will compute for each P a tracebackpath. Let d be the diagonal straight line passing P within \mathcal{M}^{\prime}, let $|d|$ be the number of cells within \mathcal{M}^{\prime} passed by d. Let $g=|d|-x$ be the number of gaps allowed in an alignment aligning the elements corresponding to P in \mathcal{S}_{1} and \mathcal{S}_{2}, resp. the maximal number non-diagonal steps in the traceback path in order to fulfill our constraint. $d-g$ and $d+g$ denote parallels of d in such a distance to d that $d-g, d+g$ can be reached from d in g horizontal or vertical steps. It holds that all possible traceback paths through P in \mathcal{M}^{\prime} lie in the area limited by the margin of $\mathcal{M}^{\prime}, d-g$ and $d+g$ containing d. Let \mathcal{A} denote that area.

The initial values of the considered area can be taken from \mathcal{M} which values are already computed for the cells covered by \mathcal{P}^{\prime}. All other cells of \mathcal{M}^{\prime} can be initialised by $-\infty$. The cells within \mathcal{A} have to store g values, e.g in an array, since we need to know how many non-diagonal steps are contained in a traceback path passing the corresponding cells. The value stored at position 0 of one cell corresponds to a traceback path with 0 non-diagonal elements and the value stored at position h with h non-diagonal elements. Let $\mathcal{M}_{h}^{\prime}(i, j)$ denote the h th value stored at position (i, j) in the matrix \mathcal{M}^{\prime}.

Figure 3.6: Closer look on \mathcal{M}^{\prime} for segment constraint Traceback path is marked red.

The recursive formula (eq. 3.1) will alter as following:

$$
\mathcal{M}_{h}^{\prime}(i, j)=\max \left\{\begin{array}{l}
\mathcal{M}_{h}^{\prime}(i-1, j-1)+\delta\left(x_{i}, y_{j}\right), \text { for } 0 \leq h \leq g \tag{3.3}\\
\mathcal{M}_{h-1}^{\prime}(i-1, j)+\delta\left(x_{i},-\right), \text { for } 0<h \leq g \\
\mathcal{M}_{h-1}^{\prime}(i, j-1)+\delta\left(-, y_{j}\right), \text { for } 0<h \leq g
\end{array}\right.
$$

We begin our traceback path at the cell corresponding to P. When we reached the cell $\mathcal{M}_{h}(i, j)^{\prime}$ the next cell on our path will be:

- $\mathcal{M}_{0}(i, j)^{\prime}$ if $h=0$.
- The cell of \mathcal{M}^{\prime} with the according h corresponding to the value which was used for the computation of $\mathcal{M}_{h}(i, j)^{\prime}$.

The traceback path will be stored in \mathcal{T}.
For filling \mathcal{M} at the area $\mathcal{P} \backslash \mathcal{P}^{\prime}$ we use the already computed initial values and the maximal values stored in \mathcal{M}_{h}^{\prime} limiting $\mathcal{P} \backslash \mathcal{P}^{\prime}$. Beside these initial values, we can continue using the standard algorithm (eq. 3.1).

The complete traceback path will start at $\mathcal{M}(m, n)$. It will be computed as used until it enters the cells corresponding to \mathcal{M}^{\prime} at the cell named P. The next part of the path will looked up in \mathcal{P}. When leaving \mathcal{M}^{\prime}, we can compute the traceback path using the standard approach and the values stored in \mathcal{M}.
\mathcal{M} requires $O(m n)$ storage and \mathcal{M}^{\prime} needs $O(|k||l| g) . \mathcal{T}$ stores $O(|k|+|l|)$ traceback paths of the length $O(|d|+g)$, i.e. \mathcal{T} needs $O((|k|+|l|)(|d|+g))$
storage. For the worst case we will assume $g=|d|=O(|k|)^{5}$, without any restrictions, that leads to $O\left(m n+|k|^{2}|l|\right)$ total storage complexity. Since we have to consider at most three adjacent cells for filling our matrices and computing the traceback paths the time complexity is also $O\left(m n+|k|^{2}|l|\right)$.

[^5]
Chapter 4

Cluster tree decomposition, elimination

4.1 A constraint model for sequence alignment

In contrast to chapter 2.1 we treat the gaps in an alignment separately and introduce a new scoring scheme.

We are interested in aligning two sequences $a=a_{1}, \ldots, a_{n}$ and $b=$ $b_{1} \ldots b_{m}$, both consist of letters of the alphabet Σ. According to [21] an alignment \mathcal{A} of a and b can be defined as an ordered matching of positions in a and b, i.e. as a subset of $\{1, \ldots, n\} \times\{1, \ldots, m\}$, with the following constraints:

1. $i=i^{\prime}$ if and only if $j=j^{\prime}$ and
2. $i<i^{\prime}$ implies $j<j^{\prime}$
for all $(i, j),\left(i^{\prime}, j^{\prime}\right) \in \mathcal{A}$.
i and j are called matched by \mathcal{A} if and only if $(i, j) \in \mathcal{A}$.
With the similarity function $\sigma:\{1, \ldots, n\} \times\{1, \ldots, m\} \Rightarrow \mathbb{R}$ and the gap costs γ one can define the score of an alignment \mathcal{A} :

Definition 4.1.1 The scoring scheme for cluster tree decomposition

$$
\operatorname{score}(\mathcal{A})=(n+m-2|\mathcal{A}|) \gamma+\sum_{(i, j) \in \mathcal{A}} \sigma(i, j)
$$

The first part of this equation are the total gap costs, the second one represents the similarity of all matches in an alignment. By maximising score (\mathcal{A}) we receive a measure for the similarity of the sequences a and b according to σ and γ. Definition 4.1.1 is equivalent to def. 2.1.2 considering

$$
\delta= \begin{cases}\sigma & \text { for aligning two bases } \\ \gamma & \text { for a gap }\end{cases}
$$

Definition 4.1.2 Representation of an alignment as valuation.
Here an alignment of a and b will be represented as a valuation of finite domain variables $X_{i}, 1 \leq i \leq n$ with the domains $\operatorname{dom}\left(X_{i}\right)=\{0, \ldots, m\}$. X_{0} and X_{n+1}, being fixed values, are introduced for technical reasons: $X_{0}=0$ and $X_{n+1}=m+1 . \sigma$ is extended by $\sigma(n+1, m+1)=0$. Now an alignment can be uniquely represented by a valuation $\left(X_{0}=0, \ldots, X_{n+1}=X_{n}+1\right)$ of the variables X_{0}, \ldots, X_{n+1}. Furthermore is:

1. $x_{i}=j$ if $(i, j) \in \mathcal{A}$ and
2. $x_{i}=x_{i-1}$, for every i that is not matched in \mathcal{A}

It holds, that i and j are matched if and only if $x_{i}=j$ and $x_{i}>x_{i-1}$.
Example 4.1. 1 The valuation $\mathbf{x}=(0,1,2,5,6,6,6,7,8)$ of X_{0}, \ldots, X_{8} corresponds to the alignment $\{(1,1),(2,2),(3,5),(4,6),(7,7)\}$ with, as already mentioned $X_{0}=0$ and $X_{8}=8$. The same alignment can also be represented by aligning the elements of pairs one upon the other. Gaps are represented by a bar aligned with an element of one sequence.

$$
\begin{aligned}
& a_{1} a_{2}--a_{3} a_{4} a_{5} a_{6} a_{7} \\
& b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}--b_{7}
\end{aligned}
$$

We have to take care of the following hard constraints on the the variables; it holds, that $X_{i-1} \leq X_{i}$ for $1 \leq i \leq n+1$. They are modeled by the functions:

$$
\begin{equation*}
l e q_{i}: \operatorname{dom}\left(X_{i-1}\right) \times \operatorname{dom}\left(X_{i}\right) \rightarrow\{-\infty, 0\} \tag{4.1}
\end{equation*}
$$

If these constraints are broken $l e q_{i}$ assigns $-\infty$ otherwise 0 .
We can express the score by functions $f_{i}\left(X_{i-1}, X_{i}\right)$ for $1 \leq i \leq n+1$ that considers two adjacent variables in our variable valuation by the following scoring scheme.

$$
f_{i}\left(j^{\prime}, j\right)= \begin{cases}\sigma(i, j)+\left(j-j^{\prime}-1\right) \gamma & \text { if } j^{\prime}<j \tag{4.2}\\ \gamma & \text { otherwise }\end{cases}
$$

Where $\left(j-j^{\prime}-1\right) \gamma$ in the first case counts the gaps in sequence a caused by the alignment and weights them by γ directly in front of a_{i}. The second case occurs if $j^{\prime}=j$ i.e. there is a gap in sequence b at the position of a_{j} in alignment \mathcal{A}. Note that f_{i} correctly models the score of an alignment. The valuation $\left(X_{0}=x_{0}, \ldots, X_{n+1}=x_{n+1}\right)$ represents an alignment \mathcal{A} of a and b if and only if $\sum_{1 \leq i \leq n+1} f_{i}\left(x_{i-1}, x_{i}\right)+l e q_{i}\left(x_{i-1}, x_{i}\right)$ is not $-\infty$. In that case

$$
\begin{equation*}
\sum_{1 \leq i \leq n+1} f_{i}\left(x_{i-1}, x_{i}\right)=\operatorname{score}(\mathcal{A}) \tag{4.3}
\end{equation*}
$$

(see Def. 4.1.1) [21].

4.2 Definition of a cluster tree

Definition 4.2.1 Cluster tree decomposition
According to [16, 17, 21] a cluster tree decomposition (CTD) consists of a triple $<T, \chi, \psi>$, with $T=(V, E)$ with vertices V and edges $E=$ $\left\{\left(v_{i}, v_{j}\right) \mid v_{i}, v_{j} \in V\right\} . \chi$ and ψ are labeling functions. Each vertex $v \in V$ can be classified to the two sets $\chi(v) \subseteq X$ and $\psi(v) \subseteq F . X$ is the set of variables and F the set of functions of a reasoning problem. For a cluster tree the following conditions must be satisfied:

1. For each function $f_{i} \in F$, there is exactly one vertex $v \in V$ such that $f_{i} \in \psi(v)$.
2. If $f_{i} \in \psi(v)$ then for every variable x of F it holds, that $x \in \chi(v)$
3. For each variable $x \in X$, the set of vertices labeled by $x\{v \in V \mid x \in$ $\chi(v)\}$ induces a connected subtree.
4. $\forall i Z_{i} \subseteq \chi(v)$ for some $v \in T$.

According to [21] vertices are called cluster. Variables which are shared by two clusters that are connected by an edge, are called separator variables.

4.3 Cluster tree elimination

A reasoning problem represented by a CTD is solved by using the method of cluster tree elimination (CTE). First the functions of each cluster are combined to one function that marginalise them to the separator variables.

Figure 4.1: Cluster tree of a sequence alignment

Secondly the values of these functions are exchanged repeatedly by messages ${ }^{1}$ between two clusters that share a common edge. Each message becomes a new message of the receiving cluster. According to the problem, the CTE maximises or minimises the functions. [21]

4.4 Using cluster tree decomposition and elimination for solving the alignment problem

For a simple sequence alignment the cluster tree degenerates to a linear list (Figure 4.1^{2}). The cluster containing f_{i}, X_{i-1}, X_{i} and $l e q_{i}$ (equation 4.2 and 4.1) is called cluster i. The clusters i and $i-1$ share the separator variable X_{i-1}. The messages sent between cluster i and cluster $i+1$ are called g_{i}, where g_{i} are functions over the separator variables X_{i}.

Beginning with cluster 1 (the leave of our degenerated tree), the messages are sent upwards to the root. Cluster i can only send its message g_{i} to cluster $i+1$ when it received g_{i-1} since g_{i} depends on the results of g_{i-1}. The procedure finishes when cluster $n+1$ receives its message g_{n}.

The marginalisation of the functions in cluster $n+1$ to the empty set of variables is $\max _{1 \leq j \leq m}\left(g_{n}(j)+f_{n+1}(j, m+1)\right)$. According to [21] it can be

[^6]shown, that this marginalisation is the maximal alignment score due to the correctness of the method of cluster-tree decomposition and elimination

Here we show an alternative proof that $\max _{1 \leq j \leq m}\left(g_{n}+f_{n+1}(j, m+1)\right)$ is equal to the maximal alignment score of the two sequences $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{m}\right)$. Let max $\operatorname{score}\left(\mathcal{A}_{i, j}\right)$ denote the maximal alignment score of the sequences $\left(a_{1}, \ldots, a_{i}\right)$ and $\left(b_{1}, \ldots, b_{j}\right)$. We only consider legal alignments, i.e. $l e q_{i}\left(j^{\prime}, j\right)=0$ since illegal alignments would lead to a values equal to $-\infty$ and won't be the maximal value chosen by our maximisations. This proof uses induction.

- We suppose

$$
\max _{1 \leq j \leq m}\left(g_{i}(j)+f_{n+1}(j, m+1)\right)=\max \operatorname{score}\left(\mathcal{A}_{n, m}\right)
$$

holds for all $0 \leq i \leq n$.

- It holds

$$
\begin{aligned}
& \max _{1 \leq j \leq m}\left(g_{1}(j)+f_{2}(j, m+1)\right) \\
& \quad=\max _{1 \leq j \leq m}\left(\max _{0 \leq j^{\prime} \leq m}\left(g_{0}\left(j^{\prime}\right)+f_{1}\left(j^{\prime}, j\right)\right)+f_{2}(j, m+1)\right) \\
& =\max _{1 \leq j \leq m}\left(\max _{0 \leq j^{\prime}<j}\left(f_{i}\left(j^{\prime}, j\right)\right)+f_{i+1}(j, m+1)\right) \\
& \stackrel{\text { eq. 4.3 }}{=} \quad \max \operatorname{score}\left(\mathcal{A}_{1, m}\right)
\end{aligned}
$$

since $X_{n+1}=m+1$ in our valuation.

- $i-1 \rightarrow i$

$$
\begin{aligned}
& \max _{1 \leq j \leq m}\left(g_{i}(j)+f_{i+1}(j, m+1)\right) \\
& =\max _{1 \leq j \leq m}\left(\max _{0 \leq j^{\prime} \leq m}\left(g_{i-1}\left(j^{\prime}\right)+f_{i}\left(j^{\prime}, j\right)\right)+f_{i+1}(j, m+1)\right) \\
& =\max _{1 \leq j \leq m}\left(\max \operatorname{score}\left(\mathcal{A}_{i-1, m}\right)+f_{i+1}(j, m+1)\right) \\
& =\max \operatorname{score}\left(\mathcal{A}_{i, m}\right)
\end{aligned}
$$

Note that $0 \leq j^{\prime} \leq m$ can be replaced by $1 \leq j^{\prime}<j$ due to our constraints and since $g_{i-1}(0)=0$.

According to the CTE algorithm the message $g_{i}, 0 \leq j \leq m$ is defined as:

$$
\begin{equation*}
g_{i}(j)=\max _{0 \leq j^{\prime} \leq m}\left(g_{i-1}\left(j^{\prime}\right)+f_{i}\left(j^{\prime}, j\right)+l e q_{i}\left(j^{\prime}, j\right)\right) \tag{4.4}
\end{equation*}
$$

$g_{i}(j)$ is the maximal alignment score of the subsequences a_{1}, \ldots, a_{i} and b_{1}, \ldots, b_{j} of the two sequences a and b. The initial values $g_{0}(j)$ and $g_{i}(0)$ are set to 0 . For computing g_{i} this approach takes $O\left(m^{2}\right)$ time and space. Since $O(n)$ messages are sent while traversing the tree this approach takes $O\left(n m^{2}\right)$.

In the following way Will, Busch and Backofen improved this complexity in their paper [21] to $O(n m)$, the same complexity as the dynamic programming approach:

By inserting the equation 4.2 for the f_{i} and using the definition 4.1 of $l e q_{i}$ we receive

$$
g_{i}(j)=\max _{0 \leq j^{\prime} \leq j}\left(g_{i-1}\left(j^{\prime}\right)+\left\{\begin{array}{ll}
\sigma(i, j)+\left(j-j^{\prime}-1\right) \gamma & \text { if } j^{\prime}<j \tag{4.5}\\
\gamma & \text { otherwise }
\end{array}\right) .\right.
$$

Since $l e q_{i}$ is mapped to $-\infty$ iff $j^{\prime}>j$, we can adjust the index of max to $0 \leq j^{\prime} \leq j$.

Now, we can resolve the case distinction of f_{i} and move the constant $\sigma(i, j)$ out of the maximisation.

$$
g_{i}(j)=\max \left\{\begin{array}{l}
\sigma(i, j)+\max _{0 \leq j^{\prime}<j}\left(g_{i-1}\left(j^{\prime}\right)+\left(j-j^{\prime}-1\right) \gamma\right) \tag{4.6}\\
g_{i-1}(j)+\gamma
\end{array}\right.
$$

Now we only have to select the maximum of both equations.
The inner maximisation can be replaced by a helper function

$$
\begin{equation*}
g^{m}(j)=\max _{0 \leq j^{\prime}<j}\left(g_{i-1}\left(j^{\prime}\right)+\left(j-j^{\prime}-1\right) \gamma\right), \tag{4.7}
\end{equation*}
$$

which is the maximal alignment score of all subsequences a_{1}, \ldots, a_{i-1} and $b_{1}, \ldots, b_{j^{\prime}}$ with $0 \leq j^{\prime}<j$ to sum with the gap costs in the subsequence of a. $g^{m}(j)$ can be defined recursively by

$$
g^{m}(0)=-\infty, g^{m}(1)=g_{i-1}(0),
$$

and for

$$
j>1: g^{m}(j)=\max \left\{\begin{array}{l}
g^{m}(j-1)+\gamma \\
g_{i-1}(j-1)
\end{array}\right.
$$

This definition makes sense, since $g^{m}(0)$ is the beginning of the recursive function and the constraint $0 \leq j^{\prime}<j=0$ can't be fulfilled, furthermore

$$
\begin{aligned}
g^{m}(j-1) & =\max _{0 \leq j^{\prime}<j-1}\left(g_{i-2}\left(j^{\prime}\right)+\left(j-j^{\prime}-2\right) \gamma\right) \\
& \Rightarrow \\
g^{m}(j) & =\max _{0 \leq j^{\prime}<j} \begin{cases}\left(g_{i-2}\left(j^{\prime}\right)+\left(j-j^{\prime}-2\right) \gamma\right)+\gamma & \text { for } j^{\prime}<j-1 \\
g_{i-1}(j-1) & \text { for } j^{\prime}=j-1\end{cases} \\
& =\max \begin{cases}g^{m}(j-1)+\gamma & \\
g_{i-1}(j-1) & \end{cases}
\end{aligned}
$$

therefore

$$
g^{m}(1)=\max \left\{\begin{array}{l}
g^{m}(0)+\gamma \\
g_{i-1}(0)
\end{array}=\max \left\{\begin{array}{l}
-\infty \\
g_{i-1}(0)
\end{array}=g_{i-1}(0)\right.\right.
$$

Finally the $g_{i}(j)$ can be evaluated with the following function:

$$
g_{i}(j)=\max \left\{\begin{array}{l}
\sigma(i, j)+g^{m}(j) \tag{4.8}\\
g_{i-1}(j)+\gamma
\end{array}\right.
$$

With its simple recursive definition of the helper function $g^{m}(j), g_{i}(j)$ can be calculated in $O(m)$. Using this improved approach the algorithm for computation of the alignment score finishes in time $O(n m)$ like the approaches using dynamic programming.

4.5 Extended alignment problems

We regarded possibilities to extend alignments in dynamic programming to compute alignments with anchor, precedence or aligned segments constraints. This chapter focuses on the question if the approach of modeling sequence alignments with cluster trees, as described above, can be extended easily to further problems and how these extensions look like. The simple anchor and precedence constraints as well as alignment segments were discussed by Will, Busch and Backofen in their paper [21].

For example, if we want to force that position k in sequence a to be aligned to position l_{1}, or l_{2}, or \ldots, or l_{i}, in sequence b, where $i \leq m$ with m being the number of elements in b, it is sufficient to adjust the domains of our valuation (4.1, page 27):

$$
X_{k} \in\left\{l_{1}, l_{2}, \ldots, l_{i}\right\} \text { and } X_{k-1}<X_{k}
$$

4.5.1 Anchor constraints

If we want to apply anchor constraints ${ }^{3}$ to our model, it is sufficient to add the following constraints to our valuation:

$$
\begin{equation*}
X_{i-1}<j, X_{i+1}>j, \text { and } X_{i}=j \vee X_{i}=X_{i-1} \tag{4.9}
\end{equation*}
$$

In this case we want to align a_{i} in sequence a with b_{j} in sequence b. The first constraints imply that the elements left (resp. right) to a_{i} in sequence a have to be matched with elements left (resp. right) to b_{j} in sequence b. The second ones ensure, that a_{i} is matched with b_{j} or with a gap.

4.5.2 Precedence constraints

Similar to the anchor constraints problem we can reduce the precedence constraints ${ }^{4}$ to an adjustment of the domains of our cluster tree decomposition.

The following constraints are adequate for adjusting the domains:

$$
\begin{equation*}
X_{i}<j\left(\text { resp. } X_{i}>j\right) \tag{4.10}
\end{equation*}
$$

This ensures that a_{i} in sequence a will be matched left (resp. right) to b_{i} in sequence b.

4.5.3 Aligned segments

For this problem it is not enough to alter the domains, we will need to introduce new variables and functions which have to be added to our cluster tree decomposition. We also have to adjust the functions g_{i}. A graphical representation is shown in Figure 4.2^{5}.

[^7]

Figure 4.2: CTD of an alignment with segment constraints

For ensuring that at least $x \%$ of the positions in the segment $\left\{k, \ldots, k^{\prime}\right\}$ in sequence a match with the positions $\left\{l, \ldots, l^{\prime}\right\}$ in sequence b, we add the variables $A_{k-1}, \ldots, A_{k^{\prime}}$. The additional functions $c_{i}\left(A_{i-1}, A_{i}, X_{i-1}, X_{i}\right)$ encode the hard constraint

$$
A_{i}=A_{i-1}+ \begin{cases}1 & \text { if } X_{i-1}<X_{i} \text { and } l \leq X_{i} \leq l^{\prime} \tag{4.11}\\ 0 & \text { otherwise } .\end{cases}
$$

A_{k-1} is fixed to 0 . It holds, that A_{i} counts the number of proper matches in the segment $\{k, \ldots i\}$. Now we restrict the domains of A_{i} to $\left\{\max \left(0,\left\lceil\frac{x}{100}\left(k^{\prime}-\right.\right.\right.\right.$ $\left.\left.k+1)\rceil-\left(k^{\prime}-i\right)\right), \ldots, i-k+1\right\}$ for expressing our constraint. $i-k+1$ is the maximal number of matches at position i. The minimal number of this interval is the maximum of 0 and the minimal number of matches needed $\left(\frac{x}{100}\left(k^{\prime}-k+1\right)\right)$ without the matches we can still achieve $\left(k^{\prime}-i\right)$, if positive.
c_{i}, with $k \leq i \leq k^{\prime}, A_{i-1}$ and A_{i} will be added to cluster i in our cluster tree decomposition. We now have to adjust our equations g_{i} to our new constraints. For $g_{i}\left(X_{i}, A_{i}\right)$ we receive according to the CTE algorithm and the definition of A_{i} :

$$
g_{i}(j, a)=\max _{0 \leq j^{\prime} \leq j} \begin{cases}g_{i-1}\left(j^{\prime}, a-1\right)+f_{i}\left(j^{\prime}, j\right) & \text { if } j^{\prime}<j \text { and } l \leq j \leq l^{\prime} \tag{4.12}\\ g_{i-1}\left(j^{\prime}, a\right)+f_{i}\left(j^{\prime}, j\right) & \text { otherwise }\end{cases}
$$

Like before our functions $l e q_{i}$ disappear due to the index of our maximisation function. Using the definition of our scoring scheme 4.2 we receive

$$
g_{i}(j, a)=\max \left\{\begin{array}{l}
\sigma(i, j)+g^{m}(j, a) \\
\gamma+g_{i-1}(j)
\end{array}\right.
$$

Where

$$
g^{m}(j, a)=\max _{0 \leq j^{\prime}<j}\left(\left(j-j^{\prime}-1\right) \gamma+g_{i-1}\left(j^{\prime}, a^{\prime}\right)\right)
$$

with

$$
a^{\prime}= \begin{cases}a & \text { if } l \leq j \leq l^{\prime} \\ a-1 & \text { otherwise }\end{cases}
$$

Finally, as in the previous section, we define g^{m} recursively like in the previous section.

$$
\begin{aligned}
g^{m}(0, a) & =-\infty \\
g^{m}(1, a) & =g\left(1, a^{\prime}\right) \\
\text { and for } j>1, g^{m}(j, a) & =\max \left\{\begin{array}{l}
g^{m}\left(j-1, a^{\prime \prime}\right)+\gamma \\
g_{i-1}\left(j-1, a^{\prime \prime}\right)
\end{array}\right.
\end{aligned}
$$

with $a^{\prime \prime}=a$ if $l \leq j \leq j^{\prime}$ and $a^{\prime \prime}=a-1$ otherwise. One can derive this equation equivalent to the derivation of 4.7. Again, this approach can be computed in $O(n m)$.

4.6 Sequence structure alignment

The sequence structure problem, as described in chapter 2.2.4, can be solved very elegant using cluster tree decomposition and elimination [21].

For given structures P_{a} and P_{b}, with P_{a} is pseudoknot-free (def. 2.2.2), we first we extend our alignment model by adding for each $\left(i_{l}, i_{r}\right)$ functions $h_{i_{l}, i_{r}}\left(X_{i_{l}-1}, X_{i_{l}}, X_{i_{r}-1}, X_{i_{r}}\right)$ that are defined as following:

$$
h_{i_{l}, i_{r}}\left(j_{l}^{\prime}, j_{l}, j_{r}^{\prime}, j_{r}\right)= \begin{cases}\omega\left(i_{l}, i_{r} ; j_{l}, j_{r}\right) & \text { if } j_{l}^{\prime}<j_{l}, j_{r}^{\prime}<j_{r} \text { and }\left(j_{l}, j_{r}\right) \in P_{b} \\ 0 & \text { otherwise }\end{cases}
$$

In contrast to the known cluster trees our decomposition won't degenerate to a linear list, this tree will contain unary and binary nodes. An example cluster tree structure for an sequence structure alignment with two structural bindings $\left(k_{l}, k_{r}\right),\left(l_{l}, l_{r}\right) \in P_{a}$ is shown in figure 4.3^{6}.

[^8]
4.6.1 Cluster-tree decomposition for a sequence structure alignment

A decomposition for a sequence a with m bases and a given structure P_{a} with $p \in \mathbb{N}$ base pairings will look as following. Let $j_{l}, j_{r}, 1 \leq j \leq p$ denote the left and the right position of the j^{\prime} 'th structural element in sequence a and the corresponding index of the variable valuation. It holds that $0<j_{l}<j_{r} \leq m$. As before, an unary cluster containing $X_{i}, X_{i-i}, f_{i}, l e q_{i}$ will be called cluster i, $0<i \leq m$, a binary cluster containing $X_{k_{r}}, X_{k_{r-1}}, f_{k_{r}}, l e q_{k_{r}}, X_{k_{l}}, X_{k_{l-1}}, l e q_{k_{l}}, h_{k_{l} k_{r}}$ will be called cluster k_{r}. Binary clusters will refer the right endpoints of a base binding in sequence a in our variable valuation, unary clusters all other valuations except X_{0} and X_{n+1}. Therefore the indeces of all nodes, unary or binary, are unique and for every index $0<i \leq m$ exists exactly one cluster.

- Cluster i is a unary vertex iff it holds for all j_{r} that $i \neq j_{r}, 1 \leq j \leq p$.
- Cluster i is a binary vertex iff there exists a j_{r} that $i=j_{r}, 1 \leq j \leq p$.
- Let $c_{i_{1}}$ and $c_{i_{2}}$ be two clusters of the cluster tree. Let $c_{i_{1}}$ be part of the path from $c_{i_{2}}$ to the root of the cluster tree. It holds: $i_{1}>i_{2}$.
- The left subtree of a binary cluster j_{r} contains the clusters j_{l}, \ldots, j_{r-1}.
- The right subtree of the cluster j_{r} contains the clusters $1, \ldots, j_{l-1}$ iff j_{r} is not part of a left subtree of another binary cluster.
- Let $c_{a_{r}}$ denote the nearest binary cluster above j_{r} on the path to the root of the cluster tree under the condition that j_{r} is part of the left subtree of $c_{a_{r}}$.
- If j_{r} is part of the left subtree of $c_{a_{r}}$, it holds that the right subtree of the cluster j_{r} contains the clusters $c_{a_{l}}, \ldots, j_{l-1} . c_{a_{l}}$ is a leaf since it refers to the element at the smallest position.
- Let $c_{\text {min }}$ denote the cluster with the minimal index in the right subtree of $c_{a_{r}}$ and j_{r} be element of this subtree. The right subtree of j_{r} contains the clusters $c_{m i n}, \ldots, j_{l-1}$.

If no binary cluster above j_{r} exists, the right subtree contains the clusters $1, \ldots, j_{l-1}$.

- Let c_{a} be a binary cluster above a cluster c. Let c be element of the left subtree of c_{a} on the path from the leaf c_{l}. It holds: $X_{c_{l}} \in c$

Figure 4.3: Sequence structure alignment CTD

- For an unary cluster c_{u} that is a leaf node it holds: $X_{u-1}, X_{u}, f_{u}, l e q_{u} \in$ c_{u}
- For a binary cluster $c_{b_{r}}$ it holds:
$h_{b_{l} b_{r}}, c_{b_{r}}, c_{b_{r-1}}, c_{b_{l}}, c_{b_{l-1}}, f_{b_{r}}, f_{b_{l}}, l e q_{b_{r}}, l e q_{b_{l}} \in c_{b_{r}}$
- A leaf node is either cluster 1 or a cluster referring to the 'left' base of a pairing in a since this position refers to the smallest index of the clusters of the subtrees, due to the construction of this tree.

As a small summary one could assume, that a binary cluster $c_{i_{r}}$ stands for the right endpoint i_{r} of a binding in sequence a. Let T_{s} be a subtree representing the interval $T_{s_{1}}, \ldots, T_{s_{2}}$ where $T_{s_{1}}$ is either 1 or the next smaller index than $c_{i_{l}}$ in the structural binding ${ }^{7}$ and $T_{s_{2}}$ analogously the next bigger index of a binding or n. The right subtree of $c_{i_{r}}$ contains the clusters $T_{s_{1}}, \ldots, c_{i_{l-1}}$, the left $c_{i_{l}}, \ldots, c_{i_{r-1}}$. Above $c_{i_{r}}$ within T_{s} lie the clusters $c_{i_{r}}, \ldots, T_{s_{2}}$.

[^9]
4.6.2 Attributes of the decomposition

The structure of the obtained cluster tree can be reduced to a binary tree by only considering the binary nodes, therefore a cluster tree for the sequence structure alignment with n binary clusters contains $n+1$ leaves. n leaves contain variables referring to the left endpoints of a binding, the last leaf is the cluster 0 due to the construction of our cluster tree. Each edge e contains only one or two separator variables since:

- If e is not part of the left subtree of a binary cluster and the only variable shared by the clusters x_{i}, x_{i+1} connected by e is x_{i} due to the construction of the cluster tree.
- If e is part of a left subtree of a binary cluster and $c_{b_{r}}$ denotes the nearest binary cluster above e with e is part of the left subtree of $c_{b_{r}}$. Let c_{1} and c_{2} denote the clusters connected by e. c_{1} refers to an element at position i_{1} and c_{2} at i_{2}, let $i_{1}>i_{2}$. e lies either on the path from the leaf $c_{b_{l}}$ to $c_{b_{r}}$ or not.
Let T_{s} denote the subtree below e with the root cluster c_{2}. Let T_{s} contain n binary clusters i.e. T_{s} contains $n+1$ leaves. Every binary cluster c_{r} in our subtree induces exactly one leaf cluster c_{l} in the same subtree.
- If e isn't on the path, than it won't contain a separator variable $X_{b_{l}}$ but it only contains $X_{i_{2}}$.
- If e is part of the path, than n leaves of T_{s} belong to the different binary clusters in our subtree, the last leaf is $c_{b_{l}}$. All leaves except $c_{b_{l}}$ belong to a binary cluster below e, therefore the only path between a leaf and a binary cluster, c_{1} and c_{2} can lie on, is the path between $c_{b_{l}}$ and $c_{b_{r}}$, this means that the separator variables which c_{1} and c_{2} share are $X_{i_{2}}$ and $X_{b_{l}}$.

4.6.3 Cluster-tree elimination for sequence structure alignments

Finally we have to define the functions $g_{s s a}$ marginalising the functions of two connected clusters on the separator variables. Let $g_{i_{s s a}}, 0 \leq i \leq m$ a function sent from cluster i to cluster $i+1$ over the separator variables. There are several different cases to be regarded, dependent on if edge $(i, i+1)$ contains one or two separator variables and if i is a unary or binary cluster. According to the CTE algorithm we receive:

- Edge $(i, i+1)$ contains one separator variable, $j \neq 0$, cluster i is no leaf:

$$
g_{i_{s s a}}(j)=\left\{\begin{array}{l}
\max _{0 \leq j^{\prime} \leq m}\left(g_{i-1_{s s a}}\left(j^{\prime}\right)+f_{i}\left(j^{\prime}, j\right)+l e q_{i}\left(j^{\prime}, j\right)\right) \tag{4.13}\\
\text { if } i \text { is an unary cluster } \\
\max _{0 \leq j_{l}^{\prime}, j_{l}^{\prime \prime}, j_{r}^{\prime} \leq m}\left(g_{i-1_{s s a}}\left(j_{l}^{\prime}, j_{r}^{\prime}\right)+f_{i}\left(j_{r}^{\prime}, j\right)+l e q_{i}\left(j_{r}^{\prime}, j\right)+\right. \\
\left.g_{i_{l}-1}\left(j_{l-1}^{\prime}\right)+f_{i_{l}}\left(j_{l}^{\prime}, j_{l}^{\prime \prime}\right)+l e q_{i_{l}}\left(j_{l}^{\prime}, j_{l}^{\prime \prime}\right)+h_{i_{l} i}\left(j_{l}^{\prime}, j_{l}^{\prime \prime}, j_{r}^{\prime}, j\right)\right) \\
\text { if } i \text { is a binary cluster }
\end{array}\right.
$$

- Edge $(i, i+1)$ contains two separator variables, cluster i is no leaf:

$$
g_{i_{s s a}}\left(j_{l}, j_{r}\right)=\left\{\begin{array}{l}
\max _{j_{l} \leq j^{\prime} \leq j_{r}}\left(g_{i-1_{s s a}}\left(j_{l}, j^{\prime}\right)+f_{i}\left(j^{\prime}, j\right)+l e q_{i}\left(j^{\prime}, j\right)\right) \tag{4.14}\\
\text { if } i \text { is an unary cluster } \\
\max _{j_{l} \leq j_{l}^{\prime}, j_{l}^{\prime \prime}, j_{r} \leq j_{r}}\left(g_{i-1_{s s a}}\left(j_{l}^{\prime}, j_{r}^{\prime}\right)+f_{i}\left(j_{r}^{\prime}, j_{r}\right)+l e q_{i}\left(j_{r}^{\prime}, j\right)+\right. \\
g_{i_{l}-1}\left(j_{l^{\prime \prime}}^{\prime}, j_{l}-1^{\prime}\right)+f_{i_{l}}\left(j_{l}^{\prime}, j_{l}^{\prime \prime}\right)+l e q_{i_{l}}\left(j_{l}^{\prime}, j_{l}^{\prime \prime}\right)+ \\
h_{\left.i_{l i}\left(j_{l}^{\prime}, j_{l}, j_{r}^{\prime}, j\right)\right)}^{\text {if } i \text { is a binary cluster }}
\end{array}\right.
$$

The initial values and the messages from leave nodes can be formulated as following:

- $g_{0_{s s a}}=0$
- $g_{i_{s s a}}(0)=0$
- Cluster i is a leaf

Exploiting the fact that the initial values are 0 we can formulate $g_{i_{s s a}}$ over one separator variable as following:

$$
g_{1_{s s a}}(j)=\max _{0 \leq j^{\prime} \leq m}\left(f_{1}\left(j^{\prime}, j\right)+l e q_{1}\left(j^{\prime}, j\right)\right)
$$

In the case $g_{i_{s s a}}$ is defined over two variables we omit the recursive call:

$$
g_{i_{s s a}}\left(j_{l}, j_{r}\right)=\max _{j_{l} \leq j^{\prime} \leq j_{r}}\left(f_{i}\left(j^{\prime}, j\right)+l e q_{i} j^{\prime}, j\right)
$$

It holds, that $\max _{1 \leq j \leq m} g_{n_{s s a}}(j)+f_{n+1}(j, m+1)$ is equal to the maximal alignment score, due to the correctness of the cluster tree elimination.

Supposing the size of the sequences is $O(n)$, we need $O\left(n^{3}\right)$ for computing one message $g_{i_{s s a}}\left(j_{l}, j_{r}\right)$. Since $O\left(n^{2}\right)$ messages are exchanged the total time complexity is in $O\left(n^{5}\right)$.

Note, if we use this method for aligning two sequences without any structural information, we receive the same algorithm as in chapter 4.4.

4.6.4 Construction of a cluster tree for sequence structure alignment

We can obtain a cluster tree for sequence structure alignments starting with the CTD of a standard alignment and changing its structure by adding the structural elements sequentially.

Let P_{a} denote the set of structural elements of sequence a, P_{a} is pseudoknotfree. Let T_{i} denote a cluster tree after adding the i 'th structural element. Let $\left(l_{i+1}, r_{i+1}\right) \in P_{a}$ denote the $i+1$ 'th structural element. Note, since for any two structures of P_{a} it holds that the right and left endpoints are different (see 2.2.4), cluster r_{i+1} in T_{i} is unary. Let $T_{s u b_{i}}(v)$ denote the subtree of an unary node with cluster $v-1$ as root after adding the i^{\prime} th structural element. Let mincluster (T) be the minimal index of a cluster of the cluster tree T. Let $T_{s u b_{i_{l}}}(v), T_{s u b_{i_{r}}}(v)$ denote the left and right subtree of a binary cluster v after adding the i 'th structural element. Let $S_{T_{i}}(l, r)$ denote the subgraph of T containing the clusters l, \ldots, r after adding the i 'th structural element. Let $\chi_{i}(v)$ denote the set of variables of cluster v and $\psi_{i}(v)$ denote the set of functions of cluster v after adding the i 'th structural element.

When adding the structural element $i+1$ we have to:

1. Alter the elements of the clusters

- $\chi_{i+1}\left(r_{i+1}\right)=\chi_{i}\left(r_{i+1}\right) \cup \chi_{i}\left(l_{i+1}\right)$
- $\psi_{i+1}\left(r_{i+1}\right)=\psi_{i}\left(r_{i+1}\right) \cup \psi_{i}\left(l_{i+1}\right) \cup h_{l_{i+1} r_{i+1}}$
- $\chi_{i+1}(v)=\chi_{i}(v) \cup X_{l_{i+1}}$, where $v \in\left\{l_{i+1}+1, \ldots, r_{i+1}-1\right\}$

2. Change the structure of the CTD

Let $T_{\text {sub }}^{i}\left(r_{i+1}\right)$ be abbreviated by $T_{\text {sub }}$

- Cluster r_{i+1} becomes a binary cluster
- $T_{\text {sub } b_{i+1}}\left(r_{i+1}\right)=T_{\text {sub }} \backslash S_{T_{\text {sub }}}\left(\right.$ mincluster $\left.\left(T_{\text {sub }}\right), l_{i+1}-1\right)$
- $T_{\text {sub }_{r_{i+1}}}\left(r_{i+1}\right)=T_{\text {sub }} \backslash S_{T_{\text {sub }}}\left(l_{i+1}+1, r_{i+1}-1\right)$

Let $m=\left|P_{a}\right|$ and the size of sequence a be n. Constructing a CTD for a sequence structure alignment has the time complexity $O(m n)$ since we have to change for each structural element the set of variables for $O(n)$ clusters.

4.7 Combining several constraints

This chapter deals with the question what happens if several constraints of the same or of different type are combined. Since anchor and precedence constraints in CTD and CTE only affect the domains of our values X_{i} in the valuation and add some exra functions and doesn't affect the structure of the cluster tree or the messages g_{i} exchanged by the clusters, they can be simply added to the sequence structure alignment. Only the domains of the X_{i} have to be changed in the way mentioned in 4.5.1 and 4.5.2.

Let $\operatorname{dom}\left(X_{i}\right)$ denote the domain of the variable X_{i} in our valuation. Let a set C of constraints be called consistent according to two sequences iff an alignment of these two sequences exists, that fulfills all constraints of C.

4.7.1 Multiple constraints of one type

In this section we will discuss what happens if we consider several constraints but all of the same type.

Anchor constraints

Of corse, not every combination of different anchor constraints makes sense.
Example 4.7.1 An example for two anchor constraints on two sequences a and b that makes aligning a and b impossible:

Let c_{1} be a constraint that forces element a_{1} of sequence a to align with element b_{1} of b and c_{2} a constraint that a_{2} has to be aligned with b_{2}. It is obvious, that if $a_{1}<a_{2}$ and $b_{1}>b_{2}$ it is impossible to fulfill both constraints, c_{1} and c_{2}, when aligning a and $b .{ }^{8}$

Let $\left\{c_{1}, \ldots, c_{n}\right\}$ be a set C of n given constraints, that force elements in sequence a to be aligned with especial elements in sequence b. Each $c_{i}, c_{j} \in C$ force element a_{i} to be aligned with b_{i} and a_{j} to be aligned with $b_{j}{ }^{9}$.

[^10]C is consistent iff one of the following constraints is fulfilled for each pair of different constraints $c_{i}, c_{j} \in C$:

- $a_{i}=a_{j}$ and $b_{i}=b_{j}$
- $a_{i}<a_{j}$ and $b_{i}<b_{j}$
- $a_{i}>a_{j}$ and $b_{i}>b_{j}$

A consistency check can be done while adjusting the domains. We can add successively all constraints. Let $\operatorname{dom}_{k}\left(X_{i}\right)$ denote $\operatorname{dom}\left(X_{i}\right)$ after adding constraint c_{k}. At the beginning $\operatorname{dom}_{0}\left(X_{i}\right), X_{i} \in\left\{X_{0}, \ldots, X_{m+1}\right\}$ is $\{0, \ldots, m+$ $1\}$. When adding a constraint c_{k} which forces a_{i} to align with $b_{j}{ }^{10}$ the domains will change according to eq. (4.9), page 34, like followed:

- $\operatorname{dom}_{k}\left(X_{l}\right)=\operatorname{dom}_{k-1}\left(X_{l}\right) \backslash\{j, \ldots, m+1\}, l<i$
- $\operatorname{dom}_{k}\left(X_{l}\right)=\operatorname{dom}_{k-1}\left(X_{l}\right) \backslash\{0, \ldots, j\}, l>i$

We still have to add a function $\alpha_{k}\left(X_{i}, X_{i-1}\right)$ to cluster i encoding the constraint, that $X_{i}=X_{i-1}$.

$$
\alpha_{k}\left(X_{i}, X_{i-1}\right)= \begin{cases}0 & \text { if } X_{i}=X_{i-1} \vee X_{i}=j \\ -\infty & \text { else }\end{cases}
$$

$\alpha_{k}\left(X_{i}\right)$ will be accumulated to the message g_{i} or $g_{i_{s s a}}$.
An inconsistent set of constraints c would lead for at least one $X_{i} \in$ $\left\{X_{0}, \ldots, X_{m+1}\right\}$ that $\operatorname{dom}\left(X_{i}\right)=\emptyset$.

Precedence constraints

Let c_{r} resp. c_{l} denote a precedence constraint where element a_{i} of sequence a has to be aligned right resp. left to element b_{j} of sequence b^{11}. Let C_{r} be a set of precedence constraints 'right' and C_{l} a set of precedence constraints 'left'. Let $C=C_{r} \cup C_{r}$. C is consistent iff for each pair of different pair of constraints $c_{i}, c_{j} \in C$ one of the following conditions is fulfilled:

- $c_{i} \in C_{r} \vee c_{j} \in C_{r}$
- $c_{i} \in C_{l} \vee c_{j} \in C_{l}$

[^11]- $\left(c_{i} \in C_{r} \vee c_{j} \in C_{l}\right) \vee\left(a_{i}>a_{j} \vee b_{i}>b_{j}\right)$
- $\left(c_{i} \in C_{l} \vee c_{j} \in C_{r}\right) \vee\left(a_{i}<j_{j} \vee b_{i}<b_{j}\right)$

Again we iteratively restrict the domains of our variables $X_{i}, i \in\{0, \ldots, m+$ $1\}$ by adding one constraint after the other. $\operatorname{dom}_{0}\left(X_{i}\right)=0, \ldots, m+1$, after adding the k 'th constraint c_{k} the domains will be restricted like followed:

- If $c_{k} \in C_{r}$, i.e. a_{i} has to be aligned right to $b_{j}{ }^{12}$

$$
\begin{aligned}
& -\operatorname{dom}_{k}\left(X_{l}\right)=\operatorname{dom}_{k-1}\left(X_{l}\right) \backslash\{j+1, \ldots, m+1\}, l \leq i \\
& -\operatorname{dom}_{k}\left(X_{l}\right)=\operatorname{dom}_{k-1}\left(X_{l}\right) \backslash\{0, \ldots, j\}, l>i
\end{aligned}
$$

- If $c_{k} \in C_{l}$, i.e. a_{i} has to be aligned left to b_{j}

$$
\begin{aligned}
& -\operatorname{dom}_{k}\left(X_{l}\right)=\operatorname{dom}_{k-1\left(X_{l}\right) \backslash\{j+1, \ldots, m+1\}, l<i} \\
& -\operatorname{dom}_{k}\left(X_{l}\right)=\operatorname{dom}_{k-1\left(X_{l}\right)} \backslash\{0, \ldots, j\}, l \geq i
\end{aligned}
$$

If during the computation of the domains for any X_{i}, c_{k} the case occurs that $\operatorname{dom}_{k}\left(X_{i}\right)=\emptyset$ than we can conclude that C is inconsistent.

Aligned segments

Let C be a set of aligned segments constraints. Let $A_{z_{i}}, c_{z_{i}}\left(A_{z_{i-1}}, A_{z_{i}}, X_{i-1}, X_{i}\right)$ encode the counter of the matches in segments of sequences a, b according to $c_{z} \in C$ referring the segments $\left\{k_{c_{z}}, \ldots, k_{c_{z}}^{\prime}\right\},\left\{l_{c_{z}}, \ldots, l_{c_{z}}^{\prime}\right\}$ (see 4.5.3 eq. 4.11). Messages g_{i} that are only defined on the separator variable X_{i} are equal to eq. 4.4. Messages defined on X_{i} and one $A_{k_{i}}$ are equal to eq. 4.12.

Let g_{i} be defined on $\left(X_{i}, A_{r_{i}}, \ldots, A_{s_{i}}\right)$. Let A_{1}, \ldots, A_{h} denote the counters of all aligned segments constraints c_{1}, \ldots, c_{h} on cluster j. With $\Delta_{c}\left(j^{\prime}, j\right)$, $c \in C$ defined as

$$
\Delta_{c}\left(j^{\prime}, j\right)= \begin{cases}1 & \text { if } j^{\prime}<j \text { and } l_{c} \leq j \leq l_{c}^{\prime} \\ 0 & \text { else }\end{cases}
$$

our message g_{i} now modifies as following:

$$
\begin{aligned}
& g_{i}\left(j, a_{1} \ldots, a_{h}\right)= \\
& \max _{0 \leq j^{\prime} \leq j} g_{i-1}\left(j^{\prime}, a_{1}-\Delta c_{1}\left(j^{\prime}, j\right), \ldots, a_{h}-\Delta_{c_{h}}\left(j^{\prime}, j\right)\right)+f_{i}\left(j^{\prime}, j\right)
\end{aligned}
$$

Again the complexity can be improved equivalent to eq. 4.12 in 4.5.3.

[^12]
4.7.2 Different multiple constraints combined

Anchor and precedence constraints restrict the domain of the possible values of the elements X_{i} of our valuation and add new variables and functions. Aligned segment constraints change the messages g_{i} on the affected segments and introduce new variables and equations but they don't affect the domains of the variables X_{i}. The new variables of the different constraints don't affect each other. Even adding the counters of the aligned segments constraints to the messages of the sequence structure alignment only imply marginal changes that doesn't affect the structure of the tree or the equations of the messages but admitting the counters to recursive call of $g_{i_{s s a}}$.

Since we can simply add sequence structure information by changing the structure and the messages of a cluster tree with or without constraints and since we can add the constraints mentioned above to any cluster tree with or without sequence structure information or any other constraints, it is possible to add constraints and structures in any order and mix them.

46 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

Chapter 5

Multiple alignments using progressive alignment

Here, we try to enlarge the concept of cluster tree elimination and decomposition in order to align more then two sequences. We will use heuristic approaches to solve multiple alignments. For these approaches we will need to align sequences with alignments or even alignments with alignments. As an example we will first try to enlarge the concept of CTE and CTD discussed so far to align three sequences. Later progressive alignment will be used to align multiple sequences and combine them with constraints.

5.1 Aligning three sequences

In this part an alignment of three sequences will be solved using the known mechanism of cluster tree decomposition and elimination.

Definition 5.1.1 Alignment of three sequences

An alignment \mathcal{A}_{3} of three sequences $a=a_{1}, \ldots, a_{n}, b=b_{1}, \ldots, b_{m}$ and $c=$ c_{1}, \ldots, c_{o} is a subset of $\{1, \ldots, n\} \cup\{-\} \times\{1, \ldots, m\} \cup\{-\} \times\{1, \ldots, o\} \cup\{-\}$ with the following conditions:

- $(-,-,-) \notin \mathcal{A}_{3}$
- $\forall(i, j, k) \in \mathcal{A}_{3}: i, j$ and k appear exactly once in \mathcal{A}_{3}
- Any pairs in \mathcal{A}_{3} are non crossing, i.e.

$$
\begin{aligned}
& -\forall\left(i^{\prime}, j^{\prime}, k^{\prime}\right),(i, j, k) \in \mathcal{A}_{3} \cap\{1, \ldots, n\} \times\{1, \ldots, m\} \times\{1, \ldots, o\}: \\
& i^{\prime}<i \Leftrightarrow j^{\prime}<j \Leftrightarrow k^{\prime}<k
\end{aligned}
$$

$$
\begin{aligned}
- & \forall \\
& \left.i^{\prime}, j^{\prime}, k^{\prime}\right),(i, j, k) \in \mathcal{A}_{3} \cap\{1, \ldots, n\} \cup\{-\} \times\{1, \ldots, m\} \times\{1, \ldots, o\}: \\
& j^{\prime}<j \Leftrightarrow k^{\prime}<k, \text { with } i^{\prime}=^{\prime}-^{\prime} \text { or } i==^{\prime}-^{\prime} \\
- & \forall\left(i^{\prime}, j^{\prime}, k^{\prime}\right),(i, j, k) \in \mathcal{A}_{3} \cap\{1, \ldots, n\} \times\{1, \ldots, m\} \cup\{-\} \times\{1, \ldots, o\}: \\
& i^{\prime}<i \Leftrightarrow k^{\prime}<k, \text { with } j^{\prime}=^{\prime}-^{\prime} \text { or } j=^{\prime}-^{\prime} \\
- & \forall\left(i^{\prime}, j^{\prime}, k^{\prime}\right),(i, j, k) \in \mathcal{A}_{3} \cap\{1, \ldots, n\} \times\{1, \ldots, m\} \times\{1, \ldots, o\} \cup \\
& \{-\}: i^{\prime}<i \Leftrightarrow j^{\prime}<j, \text { with } k^{\prime}=^{\prime}-^{\prime} \text { or } k=^{\prime}-^{\prime}
\end{aligned}
$$

With the similarity function $\sigma:\{1, \ldots, n\} \cup\{-\} \times\{1, \ldots, m\} \cup\{-\} \times$ $\{1, \ldots, o\} \cup\{-\} \Rightarrow \mathbb{R}$ we can define the score of an alignment:

$$
\operatorname{score}(\mathcal{A})=\sum_{(i, j, k) \in \mathcal{A}} \sigma(i, j, k)
$$

Let $\mathcal{A}\left(s_{1}, s_{2}\right)$ denote the alignment of sequences s_{1}, s_{2}. We will now pairwise align all pairs $\left(s_{1}, s_{2}\right) \in\{a, b, c\}$, where $s_{1} \neq s_{2}$. Afterwards, we will compute for each pair $\left(s_{1}, s_{2}\right)$ the alignment $\mathcal{A}_{3}\left(s_{1}, s_{2}, s_{3}\right)$ by aligning $\mathcal{A}\left(s_{1}, s_{2}\right)$ with s_{3}, where $s_{3} \in\{a, b, c\} \backslash\left\{s_{1}, s_{2}\right\}$. We will choose the best alignment according to:

$$
\max _{\substack{s_{1}, s_{2}, s_{3} \in\{a, b, c\} \\ \text { where } \\ \text { wh } \\ \neq s_{2} \neq s_{3} \neq s_{1}}} \operatorname{sore}\left(\mathcal{A}_{3}\left(s_{1}, s_{2}, s_{3}\right)\right)
$$

Note that the received alignment mustn't be the optimal alignment of the sequences $s_{1}, s 2, s_{3}$.

5.1.1 Aligning an alignment of two sequences with a sequence

Let $\mathcal{A}_{2}\left(s_{1}, s_{2}\right)$ denote an alignment of the sequences s_{1}, s_{2} given by a set of pairs $A=\left\{\left(s_{1_{1}}, s_{2_{1}}\right), \ldots,\left(s_{1_{\omega}}, s_{2_{\omega}}\right)\right\}$ where maximal one element of each pair can be a gap. Let i denote the i 'th pair of A. Let j denote the j 'th element of sequence s_{3}. Note that $\sigma(i, j)=\sigma\left(s_{1_{i}}, s_{2_{i}}, s_{3_{j}}\right)$.

Definition 5.1.2 Valuation

An alignment of $\left(s_{1}, s_{2}\right)$ and s_{3} will be represented as a valuation of finite domain variables $X_{i}, 1 \leq i \leq \omega$ with the domains $\operatorname{dom}\left(X_{i}\right)=\{0, \ldots, o\}$. Additionally $X_{0}=0, X_{\omega+1}=o+1$. Furthermore is:

1. $x_{i}=j$ if $(i, j) \in \mathcal{A}_{3}\left(s_{1}, s_{2}, s_{3}\right)$ and
2. $x_{i}=x_{i-1}$ for every i that is not matched in $\mathcal{A}_{3}\left(s_{1}, s_{2}, s_{3}\right)$

Cluster tree decomposition

With the new definition of the valuation, we can maintain the functions $l e q_{i}, f_{i}\left(j, j^{\prime}\right)$ of 4.1 with the marginal difference, that $\sigma(i, j)$ in f_{i} is defined on a triple where one element of the pair i can be a gap. We can obtain the decomposition on the very same way than for an alignment of two sequences.

Cluster tree elimination

Again, we can use the very same messages g_{i} as in 4.4 for computing the alignment by adjusting σ.

It holds that \mathcal{A}_{2} has maximal $2 n$ pairs, since it can contain at most n gaps, therefore this approach is in $O\left(n^{2}\right)$ since we compute a constant number of alignments.

5.2 Progressive alignment

There exist several algorithms for computing an optimal alignment between two sequences. But finding an optimal alignment for multiple sequences is NP-hard [20]. Progressive alignment is an heuristic approach for finding a good multiple alignment. This will only be a rough description of progressive alignment according to [6]. It consists of three phases :

1. a pairwise alignment of all sequences
2. production of a guide tree using the alignment scores of step one
3. a progressive alignment of the sequences, guided by the tree

In phase one we align all sequences and remember their scores. We can use any preferred technique for aligning the sequences especially the one using cluster tree decomposition and elimination. According to the score, we construct the guide tree, hoping that close related sequences will be aligned at the beginning of the algorithm and that this leads to a nearly optimal solution. An example for an alignment of six sequences is shown in fig. 5.1. s_{1}, \ldots, s_{6} represent the sequences, a_{1}, \ldots, a_{4} intermediate result alignments and $M A$ is the final multiple alignment. Phase three computes the progressive alignment starting with the sequences at the bottom of the guide tree, ending at the root by obtaining the multiple alignment.

The quality of the result of a progressive alignment depends heavily on the starting order, which is influenced by the scores of the pairwise alignments.

Figure 5.1: Guide tree of a multiple alignment

5.2.1 How to align alignments using CTD and CTE

Let two Alignments $\mathcal{A}_{1}, \mathcal{A}_{2}$ over n, m sequences be given. Let \mathcal{A}_{1} be represented in the following way:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 x} \\
a_{21} & a_{22} & \cdots & a_{2 x} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n x}
\end{array}\right)
$$

Equivalently we will represent \mathcal{A}_{2} as

$$
\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 y} \\
b_{21} & b_{22} & \cdots & b_{2 x} \\
\vdots & \vdots & \vdots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m x}
\end{array}\right)
$$

Where $a_{i j}, b_{k l}$ are either elements of the sequences a_{i}, b_{k} or gaps. When \mathcal{A}_{1} or \mathcal{A}_{2} is only defined over one sequence, it will represent the sequence without any gaps.

Let $\mathcal{A}_{1 i}, \mathcal{A}_{2 j}$ denote the i, j 'th column of $\mathcal{A}_{1}, \mathcal{A}_{2}$. With $\sigma(i, j)$ denoting the score for aligning $\mathcal{A}_{1 i}$ and $\mathcal{A}_{2 j}$ and an adequate γ, representing a row only filled with gaps, we can use the very same algorithm for cluster tree decomposition/elimination as used.

5.3 Combining multiple alignments with constraints

In this section we consider what happens if alignments with constraints are aligned with other alignments. Constraints between sequences can induce new constraints between other sequences in multiple alignments which we have to consider when using e.g. progressive alignment. We will only consider anchor and precedence constraints.

Example 5.3.1 Constraints in multiple alignments

Given three sequences A, B, C with an anchor constraint between a_{i}, b_{j} and a precedence constraint between B and C that force c_{k} to be aligned with a position bigger than b_{l}. If $b_{j}<b_{l}$, a precedence constraint between A and C is induced, namely c_{k} has to be aligned to a position bigger than a_{i}.

Let $\mathcal{S}=\left\{s_{1}, \ldots, s_{g}\right\}$ be a set of sequences and $\mathcal{C}=\left\{c_{1}, \ldots, c_{h}\right\}$ a set of constraints. Let \sim_{1} be a relation symbol such that $s_{i} \sim_{1} s_{j} \Leftrightarrow \exists c_{k} \in \mathcal{C}: c_{k}$ is a constraint on the sequences s_{i}, s_{j}, where $s_{i}, s_{j} \in \mathcal{S}$. Let \sim be a transitive relation symbol with $s_{i} \sim s_{j}, s_{i}, s_{j} \in \mathcal{S}$ iff:

- $s_{i} \sim_{1} s_{j}$ or
- $\exists s_{l_{1}}, \ldots, s_{l_{e}} \in \mathcal{S}: s_{i} \sim_{1} s_{l_{1}} \sim_{1} \cdots \sim_{1} s_{l_{e}} \sim_{1} s_{j}$

We will restrict the set of constraints \mathcal{C} so far, that only constraints $c_{j} \in \mathcal{C}$ are allowed for all $s_{i}, s_{k}, s_{l} \in \mathcal{S}$ such that it is not possible to form a chain of relations \sim_{1} as following: $s_{i} \sim_{1} s_{k} \sim_{1} \cdots \sim_{1} s_{l} \sim_{1} s_{i}$ with $s_{k} \neq s_{l}{ }^{1}$

Now we have to compute a transitive closure of the constraints on the sequences and consider what happens with the constraints on other levels of the guide tree during progressive alignment when aligning alignments with sequences or other alignments.

Let \mathcal{G} be a graph with vertices $V=\mathcal{S}$ and undirected edges $E=\left\{\left(s_{i}, s_{j}\right) \in\right.$ $\left.\mathcal{S} \times \mathcal{S}: s_{i} \sim_{1} s_{j}\right\}$. For each $s_{i} \in \mathcal{S}$ the transitive closure of relation \sim is given by the connectivity component of s_{i}. Due to the restriction, \mathcal{G} is cycle free and a connectivity component is given by a spanning tree. We can now compute the transitive closure of each $s_{i} \in \mathcal{S}$ by using the spanning tree $T_{s_{i}}$ with the root s_{i}.

[^13]Let $\mathcal{C}_{i j}$ be the set of all constraints on s_{i} and s_{j}, with $s_{i} \sim_{1} s_{j}$. Let \mathcal{C}_{h} be the set of all constraints on s_{h} induced by any other sequence s_{g} below node s_{i} in the tree $T_{s_{i}}$, where $s_{h} \in T_{s_{i}}$. That means $s_{h} \sim s_{g}$.

Let $\operatorname{depth}\left(T_{s_{i}}\right)$ denote the depth of the tree $T_{s_{i}}$ and $\operatorname{depth}\left(T_{s_{i}}, n\right)$ the depth of node n in the tree $T_{s_{i}}$. With $\operatorname{nodes}\left(T_{s_{i}}, j\right)$, the set of all nodes of the tree $T_{s_{i}}$ at the depth j we can compute the set \mathcal{C}_{i}, i.e. all constraints on s_{i}. We begin computing \mathcal{C}_{j} for all nodes $n_{j} \in \operatorname{nodes}\left(T_{s_{i}}, \operatorname{depth}\left(T_{s_{i}}\right)-1\right)$. Next we will compute the set of all constraints of the nodes one level above n_{j}, successively until we reach the root s_{i} as below:

$$
\mathcal{C}_{n}=\bigcup_{n^{\prime} \in V} \mathcal{C}_{n n^{\prime}} \bigcup_{\substack{n^{\prime \prime} \in V \text {, where } \\ n^{\prime \prime} \text { is a child of } n}} \text { inducedconsts }\left(n, n^{\prime \prime}\right)
$$

With inducedconsts $\left(n, n^{\prime \prime}\right)$ gives the set of constraints that are induced by constraints $c_{n^{\prime \prime}, n^{\prime \prime \prime}}$ on the sequences $s_{n}, s_{n^{\prime \prime \prime}}$.

This gives us the set of all constraints on the sequence s_{i}. Let c_{j} be a constraint on the sequence s_{i}. Let s_{i} be already be aligned by the alignment \mathcal{A}_{k}. Let p be the set of positions that are affected by c_{j}. The set of rows of \mathcal{A}_{k} that are affected by c_{j} are all rows, that contain an element of p. The case, that an alignment with constraints is aligned is equivalent.

5.3.1 Induced constraints

Here we discuss the function inducedconsts (i, j) over $i, j \in V: \exists c_{i, j} \in \mathcal{C}$, where j is a child of i. Let $K=\left\{c_{j, k} \in \mathcal{C} \mid i \neq j \neq k\right\}$. Let Result $=\emptyset$. Let $\alpha, \beta, \gamma, \delta, \omega$ be positions in a sequence. For each pair $c_{i j} \in \mathcal{C}_{i j}, c_{j k} \in K$ we will do the following:

- If $c_{i j}$ is an anchor constraint:

Let $c_{i j}$ force $s_{i \alpha}$ of sequence s_{i} to match with $s_{j \beta}$ in sequence s_{j} or with an element at a smaller position than the one of $s_{j \beta}$.

- If $c_{j k}$ is an anchor constraint:

Let $c_{j k}$ force $s_{j \gamma}$ of sequence s_{j} to match with $s_{k \delta}$ in sequence s_{k} or with an element at a smaller position then the one of $s_{k \delta}$.

$$
\text { * If } \beta=\gamma:
$$

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is an anchor constraint between $s_{i \alpha}$ and $s_{k \delta}$.

* If $\beta>\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega>\delta$

* If $\beta<\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega<\delta$.

- If $c_{j k}$ is a precedence constraint:

Without loss of generality let $c_{j k}$ force $s_{j \gamma}$ with positions less than $s_{k \delta}$.

* If $\beta<\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega<\delta-1$.

* If $\beta=\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega<\delta$.

* If $\beta>\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega>\delta-1$.

- If $c_{i j}$ is a precedence constraint:

Without loss of generality let $c_{i j}$ force $s_{i \alpha}$ with positions less than $s_{j \beta}$.

- If $c_{j k}$ is an anchor constraint:

Let $c_{j k}$ force $s_{j \gamma}$ of sequence s_{j} to match with $s_{k \delta}$ in sequence s_{k} or with an element at a position smaller than the one of $s_{k_{\delta}}$.

* If $\beta>\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega>\delta-1$.

* If $\beta=\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega<\delta$.

* If $\beta<\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega<\delta-1$.

- If $c_{j k}$ is a precedence constraint:

Let $c_{j k}$ be a precedence constraint, that forces $s_{j \gamma}$ to match with positions less $s_{k \delta}$.

* If $\beta>\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega>\delta-1$.

* If $\beta=\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega<\delta$.

* If $\beta<\gamma$:

Result $=$ Result $\cup c_{i k}$, where $c_{i k}$ is a precedence constraint, that forces $s_{i \alpha}$ to align with $s_{k \omega}$, where $\omega<\delta-1$.

Note a precedence constraint that force $s_{i \alpha}$ to match with positions less that $s_{j \beta}$ is equal to a precedence constraint that force $s_{j \beta}$ to match with positions greater than $s_{i \alpha}$.

When computed the set Result for all pairs $c_{i j} \in \mathcal{C}_{i j}, c_{j k} \in K$ mentioned above it holds: inducedconsts $(i, j)=$ Result.

5.3.2 Following the guide tree

When we computed all constraints on all sequences $s_{i} \in \mathcal{S}$ we can start computing the multiple alignment aided by the guide tree.

Let b_{i} be either a sequence s_{i} or an alignment a_{i}. Let Γ_{i} denote the set of all constraints of b_{i}. Let

$$
\Sigma_{i}:=\left\{\begin{array}{l}
\text { the set of all sequences that form the alignment } a_{i} \\
\left\{s_{i}\right\} \text { for one sequence } s_{i}
\end{array}\right.
$$

After computing the alignment a_{i} of b_{i-1} and b_{i-2} we can compute Γ_{i} :
$\Gamma_{i}=\left(\Gamma_{i-1} \cup \Gamma_{i-2}\right) \backslash\left\{c_{x y} \in \mathcal{C} \mid\left(s_{x} \in \Sigma_{i-1} \wedge s_{y} \in \Sigma_{i-2}\right) \vee\left(s_{x} \in \Sigma_{i-2} \wedge s_{y} \in \Sigma_{i-1}\right)\right\}$
Now we can add the constraints of Γ_{i} to a_{i}.

Chapter 6

Multiple alignments using the method of cluster tree decomposisiton and elimination

Finding an optimal multiple alignment is NP-hard [20]. This chapter gives an approach for computing alignments using the method of cluster tree decomposition and elimination. This approach is exponential in the number of sequences.

We will assume constant gap costs γ and discuss an alignment over three sequences first. The obtained results will be extended in order to solve a multiple alignment.

6.1 Aligning three sequences

Let three sequences $a=a_{1} a_{2} \ldots a_{n}, b=b_{1} b_{2} \ldots b_{m}$ and $c=c_{1} c_{2} \ldots c_{o}$ be given. Let \mathcal{A}_{3} be an alignment on a, b, c according to definition 5.1.1. Let $\sigma(d)$ be a cost function, where $d \in \mathcal{A}_{3}$. Let $\sigma(-, x, y)=\sigma(x, y)+\gamma$. Let $\mathcal{A}_{2}(i, j, k, l)$ denote an alignment and $\mathcal{A}_{2}^{*}(i, j, k, l)$ denote the optimal alignment of the subsequences $b_{i} \ldots b_{j}$ and $c_{k} \ldots c_{l}$ with $1 \leq i<j \leq m$ and $1 \leq k<l \leq o$.

6.1.1 A constraint model for three sequences alignment

Definition 6.1.1 Valuation for three sequences alignment
The valuation of an alignment \mathcal{A}_{3} of the sequences $a=a_{1} a_{2} \ldots a_{n}, b=$
$b_{1} b_{2} \ldots b_{m}$ and $c=c_{1} c_{2} \ldots c_{o}$ is represented by the vectors

$$
X_{i}=\binom{X_{1_{i}}}{X_{2_{i}}}, 1 \leq i \leq n
$$

$X_{1_{i}}$ and $X_{2_{i}}$ are finite domain variables with $\operatorname{dom}\left(X_{1_{i}}\right)=\{0, \ldots, m\}$ and $\operatorname{dom}\left(X_{2_{i}}\right)=\{0, \ldots, o\}$. Again X_{0}, X_{n+1} are additional fixed values, introduced for technical reasons.

$$
X_{0}=\binom{0}{0}, \quad X_{n+1}=\binom{m+1}{o+1}
$$

For the variables $X_{1_{i}}, X_{2_{i}}, 1 \leq i \leq n$ it holds:

- 1. $X_{1_{i}}=j$, if $(i, j, \alpha) \in \mathcal{A}$, with $\alpha \in\left\{c_{1}, \ldots, c_{o}\right\} \cup\{-\}$

2. $X_{1_{i}}-1$ else

- 1. $X_{2_{i}}=k$. if $(i, \beta, k) \in \mathcal{A}$, with $\beta \in\left\{b_{1}, \ldots, b_{m}\right\} \cup\{-\}$

2. $X_{2_{i}}-1$ else

Unfortunately, a valuation according to definition 6.1.1 is ambiguous as we can see in example 6.1.1. For finding an optimal alignment we can trace back these ambiguities to an alignment of two sequences.

Example 6.1.1 Ambiguities in the valuation
Let an alignment \mathcal{A}_{3} over the sequences $a=a_{1} \ldots a_{4}, b=b_{1} \ldots b_{6}$ and $a=$ $c_{1} \ldots c_{7}$ be given as following:

$$
\begin{aligned}
& --a_{1} a_{2} a_{3}--a_{4}-- \\
& b_{1} b_{2} b_{3} b_{4}-b_{5}---b_{6} \\
& c_{1}--c_{2} c_{3} c_{4} c_{5}-c_{6} c_{7}
\end{aligned}
$$

The valuation for \mathcal{A} is given by $\mathbf{X}=\left(X_{0}, \ldots, X_{5}\right)$:

$$
\mathbf{X}=\left(\binom{0}{0},\binom{3}{0},\binom{4}{2},\binom{4}{3},\binom{4}{3},\binom{7}{8}\right)
$$

When we keep the matchings of the elements of a, every alignment of the subsequences $b_{1} b_{2}$ with c_{1} would lead to the same valuation. Even every other possible alignment $\mathcal{A}_{2}(5,6,4,7)$ extended by $\left(a_{4},-,-\right)$ at any position doesn't change our valuation. ${ }^{1}$

[^14]We still have to encode the hard constraints $X_{1_{i-1}} \leq X_{1_{i}}$ and $X_{2_{i-1}} \leq X_{2_{i}}$, for $1 \leq i \leq n+1$. Analogous to 4.1 this is done by the following function:

$$
\begin{equation*}
\operatorname{leq} q_{i}: \operatorname{dom}\left(X_{1_{i-1}}\right) \times \operatorname{dom}\left(X_{1_{i}}\right) \times \operatorname{dom}\left(X_{2_{i-1}}\right) \times \operatorname{dom}\left(X_{2_{i}}\right) \rightarrow\{-\infty, 0\} \tag{6.1}
\end{equation*}
$$

Again $-\infty$ will be assigned if these constraints are broken, 0 else.
Given the following part of an alignment \mathcal{A}_{\ni}

$$
\begin{array}{ccc}
a_{i} & a_{x} & a_{j} \\
\cdots & b_{k} & \cdots \\
c_{m} & - & -
\end{array} \begin{gathered}
c_{l}
\end{gathered} .
$$

with

- $a_{i}, a_{x}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}, i<x<j$
- $b_{k}, b_{l} \in\left\{b_{1}, \ldots, b_{m}\right\} \cup\{-\}, k<l$ if $b_{k} \neq-\wedge b_{l} \neq-$
- $c_{m}, c_{n} \in\left\{c_{1}, \ldots, c_{o}\right\} \cup\{-\}, m<n$ if $c_{m} \neq-\wedge c_{n} \neq-$
- Only one element of each pair $\left(b_{k}, c_{m}\right),\left(b_{l}, c_{n}\right)$ can represent a gap.
- For each $\left(a_{r}, b_{s}, c_{t}\right)$ between $\left(a_{i}, b_{k}, c_{m}\right)$ and $\left(a_{j}, b_{l}, c_{n}\right)$ it holds that $\left(a_{r}, b_{s}, c_{t}\right)$ is of the following form
- $\left(-, b_{s}, c_{t}\right)$ or
$-\left(a_{i},-,-\right)$.
Assuming constant gap costs γ we can place $\left(a_{x},-,-\right)$ anywhere between $\left(a_{i}, b_{k}, c_{m}\right)$ and $\left(a_{j}, b_{l}, c_{n}\right)$, especially direct after $\left(a_{i}, b_{k}, c_{m}\right)$, without changing the score of \mathcal{A}_{3} and the valuation.

Since we can move elements ($a_{x},-,-$) of an alignment \mathcal{A}_{3} up to a certain extend, we can define the scoring scheme of \mathcal{A}_{3} as $f_{i}\left(X_{1_{i-1}}, X_{1_{i}}, X_{2_{i-1}}, X_{2_{i}}\right)$, $1 \leq i \leq n+1$ as following:

$$
f_{i}\left(j^{\prime}, j, k^{\prime}, k\right)= \begin{cases}\sigma(i, j, k)+ & \tag{6.2}\\ \operatorname{score}\left(\mathcal{A}_{2}^{*}\left(j^{\prime}, j, k^{\prime}, k\right)\right)+ & \text { if } j^{\prime}<j \wedge k^{\prime}<k \\ \left|\mathcal{A}_{2}^{*}\left(j^{\prime}, j, k^{\prime}, k\right)\right| \gamma & \text { else },\end{cases}
$$

with $\left|\mathcal{A}_{2}^{*}\left(j^{\prime}, j, k^{\prime}, k\right)\right|$ denoting the number of elements in the alignment of the subsequences $b_{j}^{\prime} \ldots b_{j}, c_{k}^{\prime} \ldots c_{k}$ given by $\mathcal{A}_{2}^{*}\left(j^{\prime}, j, k^{\prime}, k\right)$.

It holds that

$$
\begin{equation*}
\sum_{1 \leq i \leq n+1} f_{i}\left(X_{1_{i-1}}, X_{1_{i}}, X_{2_{i-1}}, X_{2_{i}}\right)=\operatorname{score}(\mathcal{A}) \tag{6.3}
\end{equation*}
$$

6.1.2 Cluster tree decomposition

The cluster tree of an alignment of three sequences forms a list and consists of $n+1$ clusters. Cluster i is connected with cluster $i-1$ and cluster $i+1$, $1<i<n+1$. Cluster 1 is only connected with cluster 2 and cluster $n+1$ with cluster n. The elements contained by cluster i are the functions $f_{i}\left(X_{1_{i-1}}, X_{1_{i}}, X_{2_{i-1}}, X_{2_{i}}\right), l e q_{i}\left(X_{i-1}, X_{i}\right)$ and the vectors X_{i-1}, X_{i}. This forms the very same structure as visualised in figure 4.1, page 30^{2}.

6.1.3 Cluster tree elimination

According to the CTE algorithm, we will define the messages $g_{i}(j, k)$ exchanged by the clusters $i, i+1$ as following

$$
\begin{equation*}
g_{i}(j, k)=\max _{\substack{0 \leq j^{\prime} \leq m \\ 0 \leq k^{\prime} \leq o}}\left(g_{i-1}\left(j^{\prime}, k^{\prime}\right)+f_{i}\left(j^{\prime}, j, k^{\prime}, k\right)+l e q_{i}\left(j^{\prime}, j, k^{\prime}, k\right)\right) . \tag{6.4}
\end{equation*}
$$

The initial values are $g_{0}(j, k)=0$ and $g_{i}(0,0)=0$. For computing an optimal alignment \mathcal{A}_{3}^{*} we need $O\left(n m^{3} o^{3}\right)$ space and time. One factor mo is caused by the computation of the alignments of the subsequences of the sequences b and c.

Equation 6.4 can be improved by inserting equation 6.2 and adjusting the maximisation using equation 6.1.

$$
\begin{align*}
g_{i}(j, k)= & \max _{\substack{0 \leq j^{\prime} \leq j \\
0 \leq k \leq k}} g_{i-1}\left(j^{\prime}, k^{\prime}\right)+ \\
& \left\{\begin{array}{l}
\sigma(i, j, k)+\operatorname{score}\left(\mathcal{A}_{2}^{*}\left(j^{\prime}, j, k^{\prime}, k\right)\right)+\left|\mathcal{A}_{2}^{*}\left(j^{\prime}, j, k^{\prime}, k\right)\right| \gamma \\
\text { if } j^{\prime}<j \wedge k^{\prime}<k \\
2 \gamma \\
\text { else }
\end{array}\right. \\
= & \max \left\{\begin{array}{c}
\sigma(i, j, k)+\max _{0 \leq j^{\prime}<j}\left(g_{i-1}\left(j^{\prime}, k^{\prime}\right)+\right. \\
\left.\operatorname{score}\left(\mathcal{A}_{2}^{*}\left(j^{\prime}, j, k^{\prime}, k\right)\right)+\left|\mathcal{A}_{2}^{*}\left(j^{\prime}, j, k^{\prime}, k\right)\right| \gamma\right) \\
g_{i-1}(j, k)+2 \gamma
\end{array}\right. \tag{6.5}
\end{align*}
$$

[^15]These slight improvements don't change the order of the time and space complexity. Unfortunately, introducing functions $g^{m}(j, k)$ in a similar way than we did in chapter 4.4 doesn't induce any further improvements. This is due to the fact, that we can't eliminate the variables j^{\prime}, k^{\prime}. These variables are needed if we try to reduce $g^{m}(j, k)$ to its recursive ancestors, since we have to compute the alignments \mathcal{A}_{2}^{*} of the subsequences in the sequences b, c. These alignments need j^{\prime}, k^{\prime} as boundary for the subsequences.

6.2 Aligning m sequences

Given m sequences $s_{1}^{1} s_{2}^{1} \ldots s_{n_{1}}^{1}, s_{1}^{2} \ldots s_{n_{2}}^{2}, \ldots, s_{1}^{m} \ldots s_{n_{m}}^{m}$. The valuation according to an alignment \mathcal{A}_{m} of these sequences will be defined equivalently to definition 6.1.1, with some slight differences:

$$
\begin{gathered}
X_{i}=\left(\begin{array}{c}
X_{2_{i}} \\
X_{3_{i}} \\
\vdots \\
X_{m_{i}}
\end{array}\right), 1 \leq i \leq n_{1}, 1 \leq X_{2_{i}} \leq n_{2}, \ldots, 1 \leq X_{m_{i}} \leq n_{m} \\
X_{0}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right), X_{n_{1}+1}=\left(\begin{array}{c}
n_{2}+1 \\
n_{3}+1 \\
\vdots \\
n_{m}+1
\end{array}\right)
\end{gathered}
$$

The value assigned to the variables $X_{y_{i}}, 2 \leq y \leq m$ is equivalent to the values in definition 6.1.1.

The hard constraints $X_{y_{i-1}} \leq X_{y_{i}}, 2 \leq y \leq m$ are encoded by the functions:

$$
l e q_{i}: \operatorname{dom}\left(X_{2_{i-1}}\right) \times \operatorname{dom}\left(X_{2_{i}}\right) \times \cdots \times \operatorname{dom}\left(X_{m_{i-1}}\right) \times \operatorname{dom}\left(X_{m_{i}}\right) \rightarrow(-\infty, 0)
$$

Let $\mathcal{A}_{m-1}^{*}\left(j_{2}^{\prime}, j_{2}, \ldots, j_{m}^{\prime}, j_{m}\right)$ denote an optimal alignment of the subsequences $s_{j_{2}^{\prime}}^{2}, s_{j_{2}}^{2}, \ldots, s_{j_{m}^{\prime}}^{m}, s_{j_{m}}^{m}$. Let σ be a cost function on an alignment over m sequences.

The very same considerations as in chapter 6.1 lead to the scoring scheme:

$$
f_{i}\left(j_{2}^{\prime}, j_{2}, \ldots, j_{m}^{\prime}, j_{m}\right)=\left\{\begin{array}{l}
\sigma\left(j_{1}, j_{2} \ldots, j_{m}\right)+ \tag{6.6}\\
\operatorname{score}\left(\mathcal{A}_{m-1}^{*}\left(j_{2}^{\prime}, j_{2}, \ldots, j_{m}^{\prime}, j_{m}\right)\right)+ \\
\left|\mathcal{A}_{m-1}^{*}\left(j_{2}^{\prime}, j_{2}, \ldots, j_{m}^{\prime}, j_{m}\right)\right| \gamma \\
\text { if } j_{2}^{\prime}<j_{2} \wedge \cdots \wedge j_{m}^{\prime}<j_{m} \\
(m-1) \gamma \\
\text { else }
\end{array}\right.
$$

The cluster tree decomposition is equivalent to chapter 6.1.2.
Finally we obtain the following recursive function for the messages exchanged by the clusters

$$
\begin{align*}
g_{i}\left(j_{2}, \ldots, j_{m}\right)= & \max _{0 \leq j_{2}^{\prime} \leq n_{2}}\left(g_{i-1}\left(j_{2}^{\prime}, \ldots, j_{m}^{\prime}\right)\right. \tag{6.7}\\
& \vdots \\
& 0 \leq j_{m}^{\prime} \leq n_{m} \\
& \left.+f_{i}\left(j_{2}^{\prime}, j_{2}, \ldots, j_{m}^{\prime}, j_{m}\right)+l e q_{i}\left(j_{2}^{\prime}, j_{2}, j_{m}^{\prime}, j_{m}\right)\right)
\end{align*}
$$

Using this approach for computing an optimal alignment of m sequences we achieve a time and space complexity of $O\left(n_{1} n_{2}^{3} n_{3}^{5} \ldots n_{m-1}^{2 m-3} m_{m}^{2 m-3}\right)$.

6.3 Adding constraints

In this chapter, we will add constraints on an alignment over m sequences s^{1}, \ldots, s^{m}. We will focus on anchor and precedence constraints. We will only allow constraints between s^{1} and $s^{x}, 2 \leq x \leq m$. This is very similar to chapter 4.5.

6.3.1 Anchor constraints

When we add an anchor constraint between the elements s_{i}^{1} and s_{j}^{x} we have to add the following constraints to our valuation:

$$
X_{1_{i}-1}<j, X_{1_{i+1}}>j, \text { and } X_{1_{i}}=j \vee X_{1_{i}}=X_{1_{i-1}}
$$

6.3.2 Precedence constraints

When we want to force s_{i}^{1} to align left (resp. right) to s_{j}^{x} we have to adjust the domains of the valuation as following:

$$
X_{1_{i}}<j,\left(\text { resp. } X_{1_{i}}>j\right)
$$

Chapter 7

Conclusion

After a short intoduction on computing alignments using the method of dynamic programming, we discussed how to solve anchor, precedence and aligned segments constraints. Even though it is possible to compute alignments under anchor, precedence and aligned segments constraints using dynamic programming, it is difficult to adapt them to the standard approach especially the anchor constraints. Therefore it is hardly possible to combine them when computing the alignment with this approach.

In contrast to the approach mentioned above we regarded the approach using cluster tree decomposition and elimination. After a review of the article of Will, Busch and Backofen [21] about computing alignments using CTD, CTE and adding constraints, we formalised the mechanism of adding constraints. We also discussed the sequence structure constraints in detail and developed a mechanism that transforms a CTD without sequence structure constraints into a CTD that encodes these constraints. Sequence structure constraints were examined rather briefly in [21]. Later we have shown how to combine several constraints in an alignment. Though the theory behind cluster trees is a slightly more complicated, it is to a great extend easier to add constraints and mix them than with the approach of dynamic programming. Sequence structure alignments can be computed and combined with different constraints in a very elegant way - simply by changing tree structures, changing the messages exchanged by the clusters and restricting the domains of the variables in the clusters.

Furthermore we solved multiple alignments using the heuristic method of progressive alignment. Later on we added anchor and precedence constraints to our multiple alignments and we have shown how they influence each other. We discussed how to handle with constraints when we follow the guide tree
in order to solve the multiple alignment. It not surprising that it is possible to solve multiple alignments using the approach of progressive alignment with cluster trees. Due to the variability toward constraints of the cluster tree approach it is possible to add different constraints, such as anchor and precedence constraints.

We found an exponential approach to solve multiple alignments that uses cluster tree decomposition and elimination. For this approach we developed a new constraint model, related to the constraint model used in chapter 4 [21]. In contrast to the progressive alignment we were able to find an optimal alignment using this approach. Up to a certain extend, we were able to add some further constraints to this approach, namely anchor and precedence constraints.

7.1 Further perspectives

In chapter 5 we only discussed constraints for which the undirected graph that represents the relation ' \sim ' is cycle free. One could try to formulate the constraints and compute induced constraints using constraint handling rules [9]. With an inconsistency check using constraint handling rules, we would be able to enlarge our approach to constraints without any restriction. Another interesting task is to enlarge our approach in order to deal with aligned segments and segment structure constraints and to examine how they interact with other constraints.

We were able to find an exponential approach to solve an optimal multiple alignment. Sadly the order of the time and space complexity of this approach is much worse than the complexities of the that of dynamic programming ${ }^{1}$. We only added anchor and pecedence constraints on two sequences, where one sequence has to be the one that is represented by the structure of the cluster tree decomposition. It would be useful to find a constraint model for multiple alignments that admits to:

- solve multiple alignments more efficiently, perhaps in the same order than the method of dynamic programming
- add constraints between any sequences

Furthermore one coud try to add aligned segments and sequence structure constraints to the cluster tree decomposition of the multiple alignments as

[^16]well as mix several constraints and consider their influences on the cluster tree decomposition and elimination.

List of Figures

1.1 RNA compared to DNA 8
2.1 Example of a pseudoknot-free structure 14
3.1 Dynamic programming matrix of an alignment 18
3.2 Dynamic programming matrix with one anchor constraint 19
3.3 Dynamic programming matrix with one precedence constraint, 'left' 21
3.4 Dynamic programming matrix with one precedence constraint, 'right' 22
3.5 Dynamic programming matrix with aligned segment constraint 23
3.6 Closer look on \mathcal{M}^{\prime} for segment constraint 25
4.1 Cluster tree of a sequence alignment 30
4.2 CTD of an alignment with segment constraints 35
4.3 Sequence structure alignment CTD 38
5.1 Guide tree of a multiple alignment 50

Bibliography

[1] Rolf Backofen, Danny Hermelin, Gad M. Landau, and Oren Weimann. Local alignment of rna sequences with arbitrary scoring schemes. volume 4009 of Lecture Notes in Computer Science, pages 246-257. Springer, 2006.
[2] Rolf Backofen and Sven Siebert. Fast detection of common sequence structure patterns in RNAs. Journal of Discrete Algorithms, 2005. accepted.
[3] Rolf Backofen and Sebastian Will. Local sequence-structure motifs in RNA. Journal of Bioinformatics and Computational Biology (JBCB), 2(4):681-698, 2004.
[4] Michael Brudno, Alexander Poliakov, Asaf Salamov, Gregory M. Cooper, Arend Sidow, Edward M. Rubin, Victor Solovyev, Serafim Batzoglou, and Inna Dubchak. Automated whole-genome multiple alignment of rat, mouse, and human. Genome Res, 14(4):685-92, 2004.
[5] Anke Busch and Rolf Backofen. INFO-RNA-a fast approach to inverse RNA folding. Bioinformatics, 22(15):1823-31, 2006.
[6] Deniz Dalli, Andreas Wilm, Indra Mainz, and Gerhard Steger. STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time. Bioinformatics, 22(13):1593-9, 2006.
[7] Chuong B. Do, Mahathi S. P. Mahabhashyam, Michael Brudno, and Serafim Batzoglou. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res, 15(2):330-40, 2005.
[8] Sean R. Eddy. What is dynamic programming? Nat Biotechnol, 22(7):909-10, 2004.
[9] Thom Frühwirth. Theory and practice of constraint handling rules. The Journal Of Logic Programming, 19, 1994.
[10] Robert Giegerich. Lecture notes on algebraic dynamic programming. Technische Fakultät, Universität Bielefeld, 2002.
[11] Robert Giegerich, Carsten Meyer, and Peter Steffen. Towards a discipline of dynamic programming. Technical report, Faculty of Technology, Bielefeld University Postfach 1001 31, 33501 Bielefeld, Germany, 2002.
[12] J Gorodkin, LJ Heyer, and GD Stormo. Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nu cleic Acids Res, 25(18):3724-32, 1997.
[13] H. W. Hellinga and F. M. Richards. Optimal sequence selection in proteins of known structure by simulated evolution. 91(13):5803-7, 1994.
[14] Ian Holmes. Using guide trees to construct multiple-sequence evolutionary hmms. Bioinformatics, 19, 2003. Proceedings of the 11th International Conference on Intelligent Systems for Molecular Biology (ISMB 2003).
[15] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance between RNA structures. 9(2):371-88, 2002.
[16] Kalev Kask, Rina Dechter, and Javier Larossa. Unifying cluster-tree decompositions for automated reasoning. 2003.
[17] Kalev Kask, Rina Dechter, Javier Larossa, and Avi Dechter. Unifying cluster-tree decompositions for reasoning in graphical models. 2005.
[18] Arun Siddharth Konagurthu, James Whisstock, and Peter J. Stuckey. Progressive multiple alignment using sequence triplet optimizations and three-residue exchange costs. J Bioinform Comput Biol, 2(4):719-45, 2004.
[19] Giuseppe Lancia, Robert Carr, Brian Walenz, and Sorin Istrail. 101 optimal PDB structure alignments: a branch-and-cut algorithm for the maximum contact map overlap problem. ACM Press, 2001.
[20] Bin Ma, Zhuozhi Wang, and Kaizhong Zhang. Alignment between two multiple alignments. In Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocán, Mexico, June 25-27, 2003, Proceedings, 2003.
[21] Sebastian Will, Anke Busch, and Rolf Backofen. Efficient sequence alignment with side-constraints by cluster tree elimination. Constraints Journal, 2007. submitted.
[22] Sebastian Will, Kristin Reiche, Ivo L. Hofacker, Peter F. Stadler, and Rolf Backofen. Inferring non-coding rna families and classes by means of genome-scale structure-based clustering. PLOS Computational Biology, 2007. to appear.

[^0]: ${ }^{1}$ taken from http://de.wikipedia.org/wiki/Bild:RNA-comparedto-DNA.PNG

[^1]: ${ }^{1}$ if aligning RNA, it is a measure for the quality of aligning two unpaired nucleotides

[^2]: ${ }^{2}$ taken from [5]

[^3]: ${ }^{1}$ A protein base for RNA resp. DNA

[^4]: ${ }^{2}$ Of corse, the optimal score can be obtained by one, two or even all three adjacent cells, but an algorithm would only take one and we are only interested in one representative of all optimal alignments.
 ${ }^{3}$ taken from [8]
 ${ }^{4} \mathcal{M}(i-1, j-1)$ will be considered twice if we chose $\mathcal{M}(i-1, j)$ or $\mathcal{M}(i, j-1)$.

[^5]: ${ }^{5}$ We could also assume $g=|d|=O(|l|)$.

[^6]: ${ }^{1}$ different values of one message caused by different valuations can be expressed in tabular form e.g. by using arrays
 ${ }^{2}$ taken from [21]

[^7]: ${ }^{3}$ as described in 2.2.1, page 12
 ${ }^{4}$ as described in 2.2.2, page 12
 ${ }^{5}$ taken from [21]

[^8]: ${ }^{6}$ taken from [21]

[^9]: ${ }^{7}$ if such an index exists

[^10]: ${ }^{8}$ Note: In this case a_{1} does not mean the first element in sequence a but the element of sequence a according to constraint c_{1}.
 ${ }^{9}$ again a_{i}, b_{i} and a_{j}, b_{j} refer to the elements in the sequence according to c_{i}, c_{j}.

[^11]: ${ }^{10}$ In this case a_{i}, b_{j} refer to the i 'th and j 'th element in the sequences a, b
 ${ }^{11}$ Here a_{i}, b_{i} and a_{j}, b_{j} refer to the elements in the sequence according to c_{i}, c_{j}.

[^12]: ${ }^{12}$ Now a_{i}, b_{j} refer to the i 'th and j 'th element of a, b

[^13]: ${ }^{1}$ i.e. it is impossible for a constraint c on sequence s to induce further constraints on s

[^14]: ${ }^{1}$ Each pair of these alignments over two sequences will be aligned with ${ }^{\prime}-{ }^{\prime}$ to fit to the alignment of three sequences.

[^15]: ${ }^{2}$ Note that the functions $l e q_{i}$ are omitted in that representation

[^16]: ${ }^{1} O\left(n^{m}\right)$ for m sequences of the length n

