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1 Abstract 

 

Background: Prediction of targets of bacterial small RNAs (sRNAs) is a very challenging 

task, addressed by several approaches. Experimental testing and verification of sRNA 

targets is costly and labour-intensive. Therefore, the reliable algorithmic prediction of 

putative sRNA targets could vastly reduce the amount of wet lab work. However, due to 

very short and often imperfect complementarity between the sRNA and its target the 

prediction is not a trivial task. The int eracting RNA (IntaRNA) algorithm is one approach, 

which frequently, however, does not yield satisfying results yet and therefore demands 

improvement.  

Approach: It has been stated that small RNA targets should be predicted in a comparative 

manner. Even though this was originally stated for eukaryotic RNAs, the basic idea of this 

thesis also holds for bacteria. The task of improving the IntaRNA algorithm's prediction 

quality utilizes exactly this concept, also incorporating the individual phylogenetic distances 

between the analyzed organisms. For instance, it has been verified experimentally that the 

MicA and RybB sRNAs in E. coli and Salmonella each have homologous targets in both 

organisms, thus indicating conservation on the regulatory level. Here, the implementation of 

the idea that overlapping target predictions for distinct organisms yield stronger evidence of 

correct functional prediction is presented. IntaRNA target predictions are combined with 

phylogenetic information by transforming the IntaRNA energy scores into p-values and 

combining these in order to attain a combined score for a group of homologous genes.  

Results: A Benchmark on a dataset of 74 experimentally verified targets yielded promising 

results, improving 68.9% of all predictions compared to regular IntaRNA. 37.8% of the true 

positive predictions were in the top 10, six of these on rank one. Application of hIntaRNA 

to several sRNAs from bacteria as divergent as alpha-proteobacteria, enterobacteria, or 

cyanobacteria, suggested a multitude of novel yet unreported sRNA targets. The results hint 

at the Spot42 sRNA playing a major role in the regulation of citric acid cycle associated 

genes. Furthermore hIntaRNA analysis suggested the interaction of the RybB sRNA with 

the yet hardly studied outer membrane protein stm1530 in Salmonella, this was 

subsequently verified experimentally. Additionally, the Agrobacterium tumefaciens AbcR1 

sRNA seems to control more ABC-transporter related mRNAs than previously conceived. 

The program is implemented in Perl and R and can be readily used on Linux systems as 

command line tool. An easy to use webserver is planned for the future.  
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Zusammenfassung 

 

Hintergrund:  Die Vorhersage von Zielen bzw. Targets bakterieller kleiner RNAs (sRNAs) 

ist eine anspruchsvolle Aufgabe die bereits durch verschiedenste Lösungsansätze 

angegangen wurde. Experimentelle Überprüfung und Verifikation von sRNA Targets ist 

zeitlich und finanziell aufwendig. Folglich könnte die verlässliche algorithmische 

Vorhersage von sRNA Targets zu einer maßgeblichen Reduzierung der experimentellen 

Arbeit führen. Imperfekte und kurze Paarungen zwischen sRNAs und ihren Zielen 

erschweren verlässliche Vorhersagen. Der int eracting RNA (IntaRNA) Algorithmus ist 

einer der Ansätze zur Lösung des Problems, der aber oft keine verlässlichen Ergebnisse 

liefert und daher verbessert werden sollte. 

Ansatz: Es ist vorgeschlagen worden, die Ziele von kleinen RNAs komparativ 

vorherzusagen. Dies wurde ursprünglich für Eukaryoten in Erwägung gezogen, gilt aber 

auch für bakterielle sRNAs. Die hier verfolgte Absicht, IntaRNA Vorhersagen zu 

verbessern nutzt dieses Konzept und beinhaltet auch eine Betrachtung der individuellen 

phylogenetischen Abstände der verglichenen Organismen zueinander. Experimentell wurde 

bestätigt, dass die sRNAs MicA und RybB homologe Targets in E. coli und Salmonella 

haben. Dies bestätigt, dass es eine Konservierung auf der regulativen Ebene gibt. In diesem 

Projekt, wird die Implementierung der Idee, dass überlappende Targetvorheragen für 

unterschiedliche Organismen erhöhte Evidenz für tatsächlich funktionale Regulation 

darstellt, vorgestellt. IntaRNA Vorhersagen werden mit phylogenetischer Information 

kombiniert wobei IntaRNA Energiescores in p-Werte umgewandelt werden. Die p-Werte 

werden kombiniert um einen finalen Score für eine Gruppe homologer Gene zu erhalten. 

Ergebnisse: Ein Benchmark auf einen Datensatz von 74 experimentell bestätigten sRNA 

Targets, lieferte vielversprechende Resultate. 68.9% aller Vorhersagen verbesserten sich im 

Vergleich zu IntaRNA. 37.8% der wahr positiven Vorhersagen waren in den oberen 10 ihrer 

jeweiligen Vorhersage, wobei sich 6 von diesen auf Rang 1 befanden. Die Anwendung von 

hIntaRNA führte zur Identifikation von vielen putativen noch unbekannten sRNA Targets. 

Die Ergebnisse deuten auf eine globale Rolle der sRNA Spot42 in der Regulation von 

Genen des Citratcyklus hin. Des Weiteren wurde die Interaktion des von hIntaRNA 

vorgeschlagen Targets stm1530 aus Salmonella experimentall bestätigt. Das Programm ist 

in Perl und R implementiert und zurzeit auf Linux Systemen in der Command Line 

verfügbar. Ein Webserver ist in Planung.  
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2 Introduction  

 

2.1 Bacterial small RNAs 

Ribonucleic acid (RNA) is a key player in every living organism and it is also highly likely 

that RNA was the carrier of genetic information prior to the advent of deoxyribonucleic acid 

(DNA) (Gilbert, 1986). RNA can form secondary structures by pairing with other RNA 

elements in an intra- and/or intermolecular manner. Besides commonly known transfer 

RNA (tRNA), ribosomal RNA (rRNA), ribozymes and protein coding, messenger RNA 

(mRNA), recent studies suggest a significant presence of non coding RNAs (ncRNAs) in 

pro- and eukaryotic organisms, where they can participate in regulative processes, such as 

controlling translation of mRNA (Eddy, 2001).  

Bacterial small RNAs (sRNAs), which are functionally analogous to eukaryotic microRNAs 

(miRNAs), also belong to this group. They range from 50 ï 500 nucleotides (nt) in length, 

and can in many cases originate from individual genes, controlled by their own promoters 

and terminators (Waters and Storz, 2009). sRNAs supply an additional module for gene 

regulation, and are produced faster and ñcheaperò than proteins (Shimoni et al., 2007).  The 

Escherichia coli MicF RNA was the first reported member of the sRNA group, and was 

discovered long before the burst in sRNA research (Mizuno et al., 1984). MicF acts on 

trans. This means it is encoded at a locus distinct to its targets. Cis acting RNA elements are 

the counterpart to trans acting sRNAs, as they share the same locus with their targets. 

Examples for this mechanism are Riboswitches, which are often encoded in untranslated 

regions (UTR) of bacterial mRNAs (Breaker, 2010). Depending on specific signals they can 

fold into structures that can either enable or disable translation. Antisense RNAs (asRNAs), 

like Riboswitches, also act on cis. They are encoded at the same locus as their targets but on 

the opposite strand, which clearly leads to perfect complementarity with the target RNA 

(Georg and Hess, 2011). Conversely, trans acting sRNAs often show short and imperfect 

base pairing with their targets. High complementarity is, in many cases, only given within a 

seed region of approximately 6-8 base pairs (Gottesmann and Storz, 2010). This seed region 

is crucial for interaction initiation and is typically located in the 5' regions of the sRNAs 

(Papenfort et al., 2010). Base pairing with targets usually occurs in the 5' untranslated 

region of mRNAs, or partially downstream of the start codon.  
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Several mechanisms for translational control by trans acting, base pairing sRNAs are known 

(Marchfelder and Hess, 2011). Masking of the Shine-Dalgarno (SD) sequence, which is 

central for the binding of the 30S ribosomal subunit (Shine and Dalgarno 1974), and start 

codon sequences, inhibits translational initiation. The Escherichia coli Spot42 sRNA for 

instance, targets the SD sequence of the galK mRNA and prevents the 30S subunit of the 

ribosome from associating with its binding site and furthermore leads to a loss of galK 

mRNA stability in experimental over expression of Spot42 (Beisel and Storz, 2011). Vice 

versa, the DsrA sRNA activates the translation of rpoS mRNA by employing an 'anti-

antisense' mechanism, which leads to the resolution of an intramolecular base paired 

structure between the 5'UTR and coding sequence (CDS) of the rpoS mRNA, and renders 

the SD sequence accessible to the 30S ribosomal subunit (Majdalani et al., 1998). sRNAs 

can also label mRNA targets for degradation by RNases. In this way, the Salmonella 

typhimurium MicC sRNA binds to a region within the CDS of the ompD mRNA and flags it 

for degradation by RNAse-E (Pfeiffer et al., 2009). 

Grouping trans acting sRNAs into the class of ncRNAs can in some cases be misleading, as 

they can also serve as templates for translation. This is the case for the SgrS sRNA (Wadler 

and Vanderpool, 2007) and RNAIII (Benito et al., 2000). In line with this, it has also been 

suggested that mRNAs may also have, sRNA typical, regulative functions which are yet 

unknown (Waters and Storz, 2009). 

 

Figure 1: Outer membrane protein (Omp) regulatory circuit in E. coli and Salmonella.  Black lines: 

homologous sRNAs regulating homologous targets in both organisms, green lines: E.coli specific regulation, 

purple lines: Salmonella specific regulation (Corcoran, Papenfort and Vogel, 2011) 
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Regulation of protein function by sRNAs has also been reported. The 6S sRNA from E. coli 

specifically interacts with the ů70 associated RNA polymerase holoenzyme, and thereby 

down regulates transcription of promoters with weak -35 regions (Wassarmann, 2007). 

Despite most examples originating from enteric bacteria, regulation by sRNAs is not limited 

to this group of microorganisms, and it has been proposed that regulation by sRNAs is 

spread among all bacteria (Gottesmann, Storz 2010). Organisms such as Vibrio harveyi or 

Agrobacterium tumefaciens for example, require sRNAs for quorum sensing and ABC 

transporter regulation respectively (Tu et al., 2008, Wilms et al., 2011). Especially deep 

sequencing approaches simplify identification of novel sRNAs in organisms not yet as 

intensely studied as E. coli or S. typhimurium (Mitschke et al., 2011a,b). 

In many cases, for Gram negative bacteria, the RNA chaperone Hfq is required to allow 

target recognition and base pairing in vivo (Vogel and Luisi, 2011), yet much remains 

unclear about the exact role of Hfq and about potential other RNA chaperones in the process 

of mediating sRNA target recognition.  

It is apparent that a multitude of sRNAs target more than one mRNA (Fig. 1), simplifying 

the prediction and identification of new targets for sRNAs by comparing with already 

known target sites (Modi et al., 2011). This way, the magnitude of potential targets can be 

narrowed down by incorporation of the preexisting knowledge. Furthermore, sRNAs and 

their targets are often conserved across certain bacterial species (Fig. 1, 2 and 3), suggesting 

a comparative approach for identifying new targets. For instance, there is experimentally 

verified data, which illustrates that the ~80 nt RybB sRNA, which is nearly identical in E. 

coli and S. typhimurium, negatively regulates the translation of outer membrane proteins 

(OMP) in these two organisms (Papenfort et al., 2006, Thompson et al., 2007, Fig. 1). 

Direct clinical and biotechnological relevance has been perceived in sRNA research. 

Reduced pathogenicity in bacterial hfq mutants (Romby et al., 2006), controllability of 

acetate excretion in E. coli (Negrete et al., 2011) and accumulation of succinate by RyhB 

overexpression in E. coli (Kang et al., 2012) have been reported.  
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2.2 Conservation of regulation ï RybB, MicA and SgrS  

The global outer membrane protein regulator RybB (Johansen et al., 2006, Papenfort et al., 

2010) is a suitable example to display how not only the sRNA sequence, but also its target 

regulation can be conserved across species boundaries.  

 

Figure 2: Alignment of RybB sRNAs from various enteric bacteria. Bold part of the sequence represents the 

interacting region of the sRNAs. ST: Salmonella typhimurium, EC: Escherichia coli, CR: Citrobacter 

rodentium, SD: Shigella dysenteriae, SB: Salmonella bongori, KP: Klebsiella pneumoniae, KO: Klebsiella 

oxytoca, CK: Citrobacter koseri, ES: Enterobacter sakazakii, YP: Yersinia pestis, YE: Yersinia 

enterocolitoca, SP: Serratia proteamaculans, SM: Serratia marcescens, PL: Photorhabdus luminescens, SG: 

Sodalis glossinidius ,  EW: Erwinia carotovora. (Supplementary figure S3 from Papenfort et al. 2010) 
 

Both in E. coli and Salmonella, RybB is induced upon heat stress and regulates the same 

group of targets. Figure 2 shows the extensive sequence similarity of RybB homologs across 

many enteric bacteria. An alignment of the 5' UTRs of RybB target mRNAs (Fig. 3) clearly 

outlines that not only the RybB sequences are conserved throughout enteric bacteria but also 

the sequences of their targets.  In this case the binding sites (bold letters) nearly always 

show perfect conservation, allowing the conclusion that the sRNA as also the target 

regulation is conserved, which has also been proven experimentally for E. coli and 

Salmonella. A study on the MicA sRNA revealed similar results regarding conservation of 

homologous sRNAs and their targets (Udekwu et al., 2005). 



Introduction 

 

7 
 

 

Figure 3: Alignments of RybB target mRNAs. The RybB seed region is printed in bold. ST: Salmonella 

typhimurium, CK: Citrobacter koseri, EB: Enterobacter sp. 638, EC: Escherichia coli, ES: Enterobacter 

sakazakii, YP: Yersinia pestis, EW: Erwinia carotovora, PL: Photorhabdus luminescens  (Supplementary 

Figure S8 from Papenfort et al., 2010) 

 

Yet, not in every case a conservation of target regulation, as in the case of RybB, can be 

observed. A recent study on SgrS (Rice and Vanderpool, 2011) and its targets in divergent 

enteric bacteria revealed that target conservation is only given in some cases. ptsG 

regulation by SgrS, for instance, seems to be conserved among all tested, SgrS containing 

bacteria (Horler and Vanderpool, 2009), while manX regulation by SgrS is not. 

 

2.3 Prediction of sRNA targets 

Prediction of sRNA targets in bacteria is a choke point in sRNA research, and has proven to 

be a very challenging task. Imperfect and short base pairing between sRNAs and their 

targets complicate the matter (Pichon and Felden, 2008). Furthermore, knowledge of sRNA-

mRNA interactions is still comparatively limited compared to miRNA-mRNA interactions, 

and current computational solutions are most likely biased by the limited magnitude of 

examples available to abstract from. The problem has been addressed by several algorithmic 

approaches, which tackle the problem from different angles. 
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Generally the prediction types can be assigned to four different groups, of which all are 

initially dependent on finding complementary stretches between the sRNAs and their target 

sequences (Backofen and Hess, 2010).  

Firstly, methods such as the basic local alignment search tool (BLAST) (Altschul et al., 

1990), TargetRNA (Tjaden et al., 2006) or GUUGle which, unlike BLAST, also allows G-

U-base pairs (Gerlach and Giegerich, 2006), are a starting point and solely depend on 

sequence complementarity.  

Secondly, assignment of thermodynamic energy scores, like in RNA secondary structure 

prediction, to sRNA-target duplexes is an addition to the first approach. This yields a result 

with increased biological significance and also allows consideration of temperature, which 

is central for structure and stability of RNA. However, intra-molecular structures are not 

addressed, which is a major negligence of a biologically important contribution in sRNA-

mRNA interactions (Peer and Margalit, 2011, Richter and Backofen 2011). Implementations 

of this approach are RNAplex (Tafer and Hofacker, 2008) and RNAhybrid (Rehmsmeier et 

al., 2004).  

Concatenating the target RNA and sRNA sequences with an interspacing linker, and 

predicting the joint secondary structure of both RNAs, is another way of dealing with the 

problem of sRNA target prediction. In essence, this is similar to general RNA folding 

algorithms, such as MFOLD (Zuker, 1994) or RNAfold (Hofacker et al., 1994) and has, to 

name one, been realized in the sRNATarget program (Cao et al., 2009). Yet, the detriments 

to these concatenation approaches are the same as those intrinsic to the folding algorithms. 

Certain structures, such as pseudoknots (Fig. 4), which have in vivo relevance, cannot be 

predicted. This is especially problematic since many interactions are located in hairpin loops 

of one or both RNAs. 

Finally, consideration of accessibility in the sRNA-mRNA interaction has yielded very 

competitive results (Mückstein et al., 2006, Busch et al., 2008, Eggenhofer et al., 2011, 

Tafer et al., 2011).  Accessibility means that the interaction sites both in the target and the 

sRNA should not show involvement in intramolecular base pairing if intermolecular base 

pairing is to occur. If they do show intramolecular base pairing at the putative interaction 

site, the accessibility of the interaction site is reduced and therefore the interaction is 

penalized, consequently leading to a worse (i.e. less negative) energy score. RNApredator 

(Eggenhofer et al., 2011) is a recent target prediction webserver also taking gene ontology 
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enrichment (Ashburner et al., 2000) into account. Current data indicates, that sRNAs are 

often part of regulatory networks (Modi et al., 2011), illuminating that ontology enrichment 

should be a standardized option in every future target prediction software. If significant 

enrichment can be detected, this allows instantaneous characterization of regulatory 

networks the sRNA may participate in, and simplifies the evaluation of results. 

 

Figure 4: Representation of a pseudoknot between two merged, distinct RNAs (blue and red) with the inter-

spacing linker region (L, green) in the concatenation approach. (Figure 1B from Backofen and Hess 2010) 

 

Due to a lack of specificity, leading to high numbers of false positive hits in all available 

software, target prediction is still not satisfactory and often dismissed by biologists at this 

time. Therefore, improvement of present algorithms is a pressing concern.  

 

2.4 IntaRNA - int eracting RNAs 

IntaRNA (Busch et al., 2008), which is the underlying sRNA target prediction algorithm in 

this project, is one of the previously mentioned methods that consider the accessibility of 

interaction sites. The program calculates the final energy of an interaction by minimizing 

the sum of the single energy scores. These energies are, (1) the energies required to unfold 

double stranded stretches in the interacting regions of the sRNA and its target (blue and 

green in Equation 1), which are positive and therefore penalize the interaction, and (2) the 

hybridization energy (red in Equation 1) of the interacting region, which is negative and 

promotes the strength of an interaction. The RNAhybrid energy model is employed in order 

to calculate the hybridization energy. The accessibilities (i.e. ED-values in Equation 1) can 

be obtained by using RNAPLFOLD (Bernhart et al., 2006). If the sum of Equation 1 yields 

a positive result, then this result is dismissed for the final output. IntaRNA also establishes 

the application of a seed region, which has been shown to be of biological relevance 
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(Papenfort et al., 2010). Both, length and amount of unpaired bases allowed in the seed 

region are user definable. Also, the seed is not restricted to a certain location within the 

sRNA or its target. A disadvantage of IntaRNA is that it cannot predict interactions such as 

double kissing complexes which form between the OxyS sRNA and the fhlA mRNA 

(Argaman and Altuvia, 2000), thus eliminating these kind of interactions from the scope of 

predictability. 

 

E
IntaRNA

(i, i', k, kô) = E 
hybrid 
(i, ió, k, kó) + ED 

mRNA 
(i, ió) + ED 

sRNA 
(k, kó)  ,  (1) 

 

Figure 5: Representation of an mRNA-sRNA interaction between i,i' (bases in the sRNA) and k, kô(bases in 

the mRNA) (Image supplied by Andreas S. Richter). 

 

A complete approach of IntaRNA requires O(n²m²) and O(nm) of time and space 

respectively. However, a more practical, heuristic approach reduces these complexities to 

O(nmô) for time and O(nm) for space, mô being max{m,Lį}, where L is the ñsize of the 

sequence window in which both mRNA and sRNA are foldedò. IntaRNA has proven to be 

very competitive compared to other sRNA target prediction software in accuracy and 

complexity, which motivates its use as base line algorithm for the comparative prediction 

approach presented in this work. 

 

2.5 Comparative approaches in Bioinformatics 

In bioinformatics, comparative approaches have generally proven to be very helpful. This is 

intrinsically obvious, as every group of organisms is thought to have evolved from a 

common ancestor (Darwin, 1859). In line with this it seems reasonable to assume that 

organisms, which have diverged from each other, still retain common properties.  
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Global and local alignments (Needleman and Wunsch, 1970, Smith and Waterman 1981) 

compare similarity in amino acid and nucleotide sequences and led to approaches as 

complex as BLAST (Altschul et al., 1990), which is extensively employed in de novo 

characterization of freshly acquired genomic sequences, and is a tool which is indispensable 

in modern molecular biology. De novo genome annotation also follows a comparative 

methodology (Aziz et al., 2008). Computational prediction of novel sRNAs in bacteria (Voß 

et al., 2009) and phylogenetic analyses follow this practice too.  

A comparative approach also seems viable to solve the eminent problem of lacking 

reliability in sRNA target predictions, however only if conserved interspecies regulation is 

present, which is the case for many sRNAs (Corcoran, Papenfort and Vogel, 2011, Fig. 1), 

but not for all (Richter and Backofen, 2011). This is the focus of the homology IntaRNA 

(hIntaRNA) program presented in this project.  

hIntaRNA is a homology based approach employing the IntaRNA algorithm to increase the 

reliability of predictions for trans acting small RNA targets in prokaryotes. The basic idea 

of predicting regulatory RNA targets in a comparative manner has been proposed for 

eukaryotic microRNAs (Rehmsmeier et al., 2004), and prokaryotic sRNAs (Tafer et al., 

2011). As already mentioned, in many cases a conservation of targets for conserved sRNAs 

can be observed across single species boundaries (Figs. 1, 2 and 3). Consequently, under the 

assumption that regulation is conserved, overlapping target predictions for distinct 

organisms yield stronger evidence of correct functional prediction.  

 

2.6 The comparative approach in RNAhybrid 

Rehmsmeier et al., (2004) introduced a comparative approach for predicting mRNA-

miRNA duplexes for orthologous target sequences. They state that the probabilities of two 

separate predictions occurring by chance (p-values) can be combined to a joint probability 

by the following equation: 

P[Z1 Ó e1, Z2 Ó e2]  = (max{ P[Z Ó e1], P[Z Ó e2]})² ,  (2) 

with P[Z Ó e] being the probability that the observed energy Z is greater or equal to e. This 

means that the bigger one of the two p-values is selected and squared.  
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This equation can be generalized into a form which allows a variable number of organisms 

as follows: 

P[Z1 Ó e1, . . . , Zk Ó ek] = (max{P[Z Ó e1], . . . , P[Z Ó ek]})
k
 ,

  (3) 

However, Equation 3 assumes that orthologous targets are statistically independent, which is 

incorrect when taking the biological background into account. As previously described, the 

evolutionary idea is based in the concept of species being descended from common 

ancestors, making it obvious that a certain degree of dependence must still be present. This 

leads to the need for a measure of dependence between the orthologous target sequences. 

Hence, Rehmsmeier et al. introduced k-effective (keff), which lies between 1 and the number 

of orthologous targets (k): 

1 Ò keff Ò k  ,  (4) 

 

The higher the dependence between the target sequences, the smaller keff will be. 

Accordingly the final joint p-value calculated from Equation 3, with the according keff, will 

be greater, the higher the dependence between the target sequences is. Assuming an analysis 

with two identical organisms there is no gain of information, by inclusion of the second 

organism, consequently leading to a keff  of 1.  

keff is obtained by shuffling the miRNA, predicting interactions with orthologous targets and 

estimating extreme value distribution parameters to calculate p-values for the predicted 

energy values. Next, the p-values are joined, employing Equation 3 with kô values instead of 

k, where kô lies between 1 and k.  keff  is the kô which yields the straightest line in the 

empirical cumulative density function of the joint p-values. Straightness is evaluated using 

the least squared error measure method.  

The approach for combining p-values, which is presented in this work, is strongly based on 

the methodology presented by Rehmsmeier et al., but has increased sophistication, and shall 

be presented in the methods part. 
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2.7 The comparative approach in RNAplex 

Compared to the former version of RNAplex (Tafer and Hofacker, 2008), the new version 

of RNAplex (Tafer et al., 2011) incorporates accessibility calculation into the prediction 

model. RNAplex can also make alignment based predictions by application of the 

RNAalifold concept (Bernhart et al., 2008). This model takes evolutionary conservation into 

consideration as base pairs are only enforced if they can be formed by most sequences in the 

alignment. Furthermore, a comparative approach is introduced in order to reduce the 

abundance of false positives. The authors developed their comparative model following the 

argumentation that target site conservation between organisms sharing homologous sRNAs, 

and compensatory mutations between target RNA and sRNA ï with respect to other 

organismsô sRNA and target sequences ï, are an indicator of increased prediction reliability 

(Chen et al., 2007). The procedure in the comparative method of RNAplex consists of five 

steps, starting with aligning the putative target sequences with clustalw (Larkin et al., 2007) 

and sorting them by similarity. In the following, RNAplex predictions for all sequences are 

carried out, while the three best predictions for each target sequence are stored. Then these 

predictions are employed to recursively find the best set of target sites. In order to achieve 

this, sequence similarity and interaction strengths are used and the final group of target 

sequences is assessed via backtracking. The arisen cluster of target sites is realigned and the 

RNAplex alignment version is applied. 

Generally RNAplex does not introduce groundbreaking innovations to sRNA target 

prediction. The authors stress that the strongest gain is on the level of runtime. They also 

state that genome wide target predictions with other available tools, such as IntaRNA 

(Busch et al., 2008), are impractical. This observation must be viewed critically especially 

from an applied angle, as a time difference of a few hours is not central if the quality of 

predictions demonstrably increases. The comparative approach seems overly restrictive and 

complicated. While the number of false positives can most certainly be anticipated to 

decrease, the number of false negatives will most likely increase alongside. 
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3 Methods 

 

3.1 The concept behind hIntaRNA 

The basic concept behind hIntaRNA is that overlapping IntaRNA predictions for 

homologous targets in distinct organisms yield increased evidence for predictions being of 

functional relevance. However, IntaRNA predictions yield energy scores that are, due to 

varying GC-content and dinucleotide frequency, initially not comparable for different 

organisms (Yakovchuk et al., 2006). A statistical model, based on probability values (p-

values), seems promising to combine evidence from various sources. Naively one may think 

that the p-values of predictions of homologous targets in different organisms could be 

simply multiplied to assess the joint probability, just as 1/6 can be raised to the power of 

three to obtain the joint probability of rolling the same number with the dice three times in a 

row. This would, at least in some cases, certainly give rise to satisfying results. Clearly, a 

more generally applicable model is desirable. A major disadvantage of the naive method is 

that it does not take the phylogenetic distance of the organisms into account. If, for instance 

a comparative prediction were to be made in the naive fashion for three organisms and two 

of these were of the Escherichia, and one of the Salmonella genus, it is obvious that without 

weighting, no statistically and biologically sound result can be attained. To this end, the 

individual p-values are phylogenetically weighted in hIntaRNA, while the result of this 

weighting is a phylogenetically weighted mean of all the p-values for one group of 

homologous targets. However, as this is a mean it does not yet represent the result of a 

multiplication of probabilities. Consequently this mean must be powered to a certain degree. 

Here, one also may firstly think that powering the p-value by the amount of participating 

organisms is acceptable, just as in the example with the dice. This is basically the same as 

multiplying the individual p-values just that the weighted mean p-value is powered instead. 

This would be correct in the case of all participating events being entirely independent. 

Under inclusion of the biological background however, it is clear that there is no complete 

independence, as it is assumed that all organisms are descended from a common ancestor 

(Darwin, 1859). Hence, the weighted mean cannot, at least not in every case, be powered by 

the amount of organisms in the analysis. The degree of dependence can be assessed by 
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employing a function that describes the products of n uniform distributed random variables 

between [0,1] which are in this case the p-values (Bailey and Gribskov, 1998). 

 

3.2 P-values 

Probability values (p-values) are frequently used in statistical analyses, and describe the 

probability of an event occurring by chance. Furthermore, p-values are random uniform 

variables between [0,1] (Murdoch et al., 2008). Hence, p-values can acquire values in the 

range of 0 and 1 and the probability of an observed event occurring by chance is smaller, the 

smaller the according p-value is. Here the event is an energy score predicted by IntaRNA 

and the p-value sheds light on the probability of a particular score being predicted by chance 

or the probability to get a score better or equal to the score viewed. In order to assess the 

likelihood of a coincidental event an appropriate background model and a null hypothesis 

(H0) need to be established as a basis for the evaluation of chance. In sequence analysis a 

background model can be generated by shuffling the analyzed sequence or by fitting a 

model to a dataset of several predictions. If the resulting p-value is smaller or equal to a 

previously defined significance level, the result is statistically significant with respect to H0. 

P-values are also important to make the significance of results from different analyses 

comparable. The raw data in this project are IntaRNA energy scores, which are useless if 

evaluating predictions in an interspecies approach as GC-content and dinucleotide 

abundance, which play a central role in defining the energy of an interaction, can vary 

between organisms (Yakovchuk et al., 2006). Finally it must be stressed that the p-value is 

the result of a statistical test, and not the result of a biological experiment. Hence, a good p-

value does not necessarily infer biological significance, but rather a biologically interesting 

statistical result hinting at possible relevance (Mitrophanov and Borodovsky, 2006).  

 

3.3 Generalized and Gumbel extreme value distributions 

Extreme value distributions (EVD) are a class of distributions from probability theory. They 

can be applied to the modeling of the likelihood of extreme events, such as RNA folding 

energies (Rehmsmeier et al., 2004) or flooding events (Gumbel, 2004). These incidents can 

be assumed to be extreme value distributed, as low folding energies and floodings are 
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considered rare and extreme. Consequently, an EVD is a better model for these kinds of 

occurrences, compared to a normal distribution as the density of extreme events is small. A 

general extreme value distribution (GEV) is defined by three central parameters location 

(Õ), scale (ů) and shape (Ů). µ shifts the location of the maximum, ů changes the width of 

the function and Ů alters the behavior of the tail. The bigger Ů is, the stronger the tail 

converges towards zero. 

The cumulative distribution function is defined as: 

 

Ὂὼ; µ,ʎ,ʀ= exp{ [1 + ʀz (
x µ

ʎ
)]

1
ʀ} ,   (5) 

 

while the resulting density function is: 

Ὢὼ;  µ,ʎ,ʀ=  
1

ʎ
[1 + ʀz (

x µ

ʎ
)]

1
ʀ 1

exp{ 1 + ʀ
x µ

ʎ

1
ʀ

} ,   (6) 

A specialized form of the GEV distribution is the Gumbel extreme value distribution. It 

differs from the GEV distribution in the detail that the shape parameter (Ů) is always zero.  

 

Figure 6: Gumbel distributions with a variety of different location and scale parameters. 
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Figure 6 shows how extreme value distributions vary under the influence of different 

parameters. The location parameter clearly shifts the EVD towards the positive region when 

enlarged, while the width of the EVD increases with bigger scale values. In this project, 

GEV distributions and Gumbel distributions were used to model density distributions of 

IntaRNA energy scores and subsequently derive p-values from these.  

  

3.4 Transformation of IntaRNA energies to p-values 

Three approaches were tested to transform IntaRNA energies to p-values. These are the 

empiric approach on shuffled data, the fitting approach on shuffled data and the fitting 

approach on unshuffled data. The first, empiric, approach created a background model by 

shuffling the target sequences 10 times, while retaining the dinucleotide frequencies of the 

shuffled sequences. Shuffling was performed with the shuffle program, which is part of 

Sean Eddyôs squid package (http://selab.janelia.org/, accessed at 01/09/2011). IntaRNA 

predictions were carried out on the shuffled and unshuffled data for all sRNAs from the 

benchmarking dataset (see paragraph 3.7) except for InvR. Furthermore, no predictions 

were made for Pectobacterium carotovorum, Serratia proteamaculans and Yersinia pestis 

and the MicA Escherichia fergusonii prediction was also not considered. Predictions for 

OmrA were only performed for E. coli, E. fergusonii and Salmonella, yielding a total data 

set of 92 predictions. The energies predicted for the shuffled data served as basis for 

calculating p-values for the unshuffled data as described in Equation 7. 

The p-value, P(Eu), of a specific IntaRNA energy score Eu is defined by: 

 

In this equation, E is the total amount of shuffled IntaRNA energy scores. The equation 

shows the amount of predicted interactions on the shuffled data with an energy score better 

or equal to each individual, observed energy in the unshuffled data, divided by the total 

number of energies of the shuffled data. 

Previous investigations of the statistical distributions of interaction energies (Rehmsmeier et 

al., 2004, Schulz 2009) revealed that predicted duplex energies follow extreme value 

statistics. In line with this, the second approach for p-value generation is fitting of a general 

ὖὉό =  
Ὁ  Ὁό

Ὁ
 ,   (7) 
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extreme value distribution to the shuffled IntaRNA energy scores. When fitted to the data, 

p-values can be directly obtained from the extreme value distributionôs cumulative 

distribution function 5. 

The third approach is strongly related to the first one, as it also uses extreme value statistics 

for p-value generation. This method solely differs in the fact, that it does not employ the 

shuffled data, but rather fits the general extreme value distribution to the unshuffled (i.e. 

genome wide IntaRNA prediction) data. The whole genome prediction on unshuffled data 

can also be employed as background model, as most predictions have an arbitrary character 

and no in vivo relevance, as is the case for the shuffled dataset. Also, IntaRNA predicts 

interactions for most sequences, which supplies a satisfying statistical magnitude (see 

supplementary Figure 1 or paragraph 3.6 for closer explanation).  

 

Figure 7: Red: density of IntaRNA energies, black: general extreme value curve fitted to the data. Absolute 

(i.e. positive) energy values were used for plotting reasons.  

 

Figure 7 graphically illustrates how fitting an extreme value distribution to unshuffled data 

looks. The red curve shows the densities of individual energies of the unshuffled data, while 

the black curve shows the fitted density function. 
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3.5 Method of least squares 

In general, the method is used to fit parameters of a model function to obtain the best fit to a 

dataset of observed values. Here, the method of least squares is a procedure with which an 

estimation of the deviance between two functions is calculated. Smaller sums indicate 

higher similarity between compared functions.  

Z being the amount of the analyzed data points, F being the calculated error and ymi and yni 

being the respective data points of two functions. 

Ὂ= (ώάὭ ώὲὭ)²
ᾀ

Ὥ=1
   ,   (8) 

In this project the method of least squares was employed to assess the similarity of the 

empiric distribution function and the ideal distribution function 11, in order to retrieve keff. 

The evaluation of uniformity of the distribution of the initial p-values was also carried out 

with this method, using p-values of 92 individual single organism IntaRNA predictions (see 

paragraph 3.4 for details). 

 

3.6 Weighting and multiplication of p-values according to 

phylogeny, and retrieval of keff using the Bailey & Gribskov function 

for products of independent uniformly distributed random variables 

Statistically speaking, the joint probability, Zn, for n events occurring is the product of the 

probabilities of the separate events, occurring individually under the assumption that all 

events are statistically independent (see Equation 10). This can be applied to the p-values 

generated from the IntaRNA energies, by multiplying the p-values of predictions of 

homologous targets in distinct organisms. However, as not all the organisms in an analysis 

are necessarily equidistant from each other and the events are not totally independent, 

measures of distance and dependence are required. An alignment (emma) (Rice et al., 2000) 

of genomic 16s-linker-23s regions (Fig. 8) from each participating organism, serves as basis 

for the subsequent calculation of a distance matrix, using the Jukes-Cantor model (Jukes and 

Cantor, 1969). 
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Figure 8: Yellow marked genomic 16s-linker-23s region of Synechocystis sp. PCC 6803 in Artemis genome 

browser (Release 13.2.0) (Rutherford et al., 2000). 

 

The individual p-values, P, are exponentiated with their contribution to the distance matrix, 

M[Pn], divided by the total size of the distance matrix, M[all], and then multiplied with each 

other. The individual contribution of an organism to the distance matrix is the sum of 

distances of one organism to each of the other organisms, while the total size of the distance 

matrix is the sum of all its entries. This yields a phylogenetically weighted mean of the 

combined p-values (see paragraph 7.1 for a specific example).  

 

Pall = P1
M[P1]/M[all]  *  é * Pn

M[Pn]/M[all]
  ,   (9) 

 

Bailey and Gribskov (Bailey and Gribskov, 1998) introduced a function (11) which 

describes the cumulative distribution of probabilities of the products of n independent, 

uniformly distributed random variables between 0 and 1 being smaller or equal to their own 

value.  

Let Pi be a uniform in the interval [0,1] distributed random variable. Then, the product of n 

of such random variables is defined by: 

 

ὤὲ= Б ὖὭ
ὲ
Ὥ= 1   ,   (10) 

 

under the assumption that all Pi are statistically independent.  
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The probability that Zn has an observed value Ò p, P(Zn Ò p), is given by: 

 

Ὂὲὴ = ὴВ
( ln ὴ)Ὥ 

Ὥ!
ὲ 1
Ὥ=0   ,   (11) 

 

In this project, the p-values satisfy the conditions given above and consequently this 

function is employed in order to find the degree of dependence, keff, between the separate 

entities (i.e. organisms) in the hIntaRNA analysis. As function 11 describes how the 

distributions resulting from products of individual independent p-values should ideally look, 

it can be used to compare the actual data to. keff is retrieved in a manner very similar to the 

previously described method employed in the comparative approach in RNAhybrid (see 

paragraph 2.6) (Rehmsmeier et al., 2004). The product of the exponentiated p-values is 

exponentiated with the potential keff (i.e. kô),  

 

Pkô = Pall
kô
  ,   (12) 

 

and the resulting values are used to generate function values for an empiric function, which 

is then compared to function 11. The empiric probability, P(Pu), of a specific p-value ,Pu , is 

defined by: 

ὖὖό =  
ὖ  ὖό

ὖ
 ,   (13) 

 

The empiric function values are compared to the affiliated function values from function 11, 

and the errors are evaluated with the method of smallest squares.  
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Figure 9: Comparison of empiric (red) and ideal (black) functions for the likelihood of products of uniformly 

distributed , random variables between [0,1]. 

 

 

The kô yielding the smallest error in the comparison of function values is the keff which is 

consequently used for the calculation of the final p-values. The data used to assess keff for 

each cluster of genes, are the joint p-values from every possible cluster in the range of n 

down to two, while keff is assessed for each cluster individually. Figure 9 illustrates the 

comparison of distribution function (11) (black) to the empiric cumulative distribution 

function (red) visually. In this case the correct keff is keff = 2. Similarity of function values 

can also be visualized by plotting the function values against each other (Fig. 10). The plot 

yielding the straightest line indicates the two functions with the most similar function 

values. 
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Not every gene has homologs in each of the other organisms in the analysis. If, for instance, 

the analysis comprises of n organisms, many genes will be present in all n organisms, 

however those only present in n-1 or less organisms complicate the matter, as there are more 

than n different combinations of these clusters. The previously described analysis must be 

carried out for each possible cluster < n. 

 

Figure 10: Empiric cumulative density function values plotted against function 11 values. 

 

A problem resulting from these smaller clusters is that prokaryotic genomes are frequently 

comprised of approximately 4000 genes, making it intrinsically obvious that clusters will 

lack the statistical magnitude needed, the more organisms participate in an analysis. The 

problem of insufficient statistical power in smaller clusters can be elegantly solved by 

extracting subclusters from the bigger clusters. A cluster of five, for example, contains the 

information of all possible clusters of four and smaller. It only needs to be stripped of the 

genes not needed in order to create the smaller subclusters or pseudo clusters. These pseudo 

clusters are not regarded for the final output, but are crucial to achieve a statistically 

significant population. Supplementary Figure 1, shows that a sample size of 1000 random 

variables between [0,1] results in an acceptable uniform distribution. This minimum level 

sample size is always met and mostly significantly overstepped. The procedure of creating 

pseudo clusters is aided by the Math::Combinatorics Perl module.  
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3.7 Benchmarking dataset 

The Benchmark was executed on 74 experimentally verified 5ôUTR targets. However, not 

only the 5ôUTR, in this case assumed to be the stretch 200 nt upstream of the start codon, 

was used, but also 100 nt downstream of the 5ôUTR were parsed, leading to potential target 

sequences of 300 nt per gene. Of the verified targets, 43 are E. coli (NC_000913), 29 are 

Salmonella (NC_003197) and two are Synechocystis sp. PCC 6803 targets. A total of 34 

different sRNAs were tested (Supplementary table 1). The organism counts varied between 

different analyses. ArcZ, CyaR, FnrS, GcvB, GlmZ, MicA, OmrB, RprA, RybB and Spot42 

were analyzed with eight input organisms (NC_000913, NC_011740, NC_003197, 

NC_009792, NC_013716, NC_012917, NC_009832, NC_003143). ChiX, DsrA, MicC, 

MicF, OxyS, RyhB and SgrS were each analyzed with five organisms (NC_000913, 

NC_011740, NC_003197, NC_009792, NC_013716) as was SyR1 (NC_000911, 

NC_010296, NC_010546, NC_011729, NC_013161). OmrA was analyzed with three 

organisms (NC_000913, NC_011740, NC_003197) and InvR with two organisms 

(NC_003197, NC_003198). 

The results of the hIntaRNA analyses were evaluated individually and were also compared 

to single IntaRNA predictions as a measure of improvement. 

Organism name and strain RefSeq ID 

Escherichia coli K-12 MG1655 NC_000913 

Salmonella enterica CT18 NC_003198 

Salmonella typhimurium LT2 NC_003197 

Synechocystis sp. PCC 6803 NC_000911 

Escherichia fergusonii ATCC 35469 NC_011740 

Citrobacter koseri ATCC BAA-895 NC_009792 

Citrobacter rodentium ICC168 NC_013716 

Pectobacterium carotovorum PC1 NC_012917 

Serratia proteamaculans 568 NC_009832 

Yersinia pestis CO92 NC_003143 

Microcystis aeruginosa NIES-843 NC_010296 

Cyanothece sp. ATCC 51142 NC_010546 

Cyanothece sp. PCC 7424 NC_011729 

Cyanothece sp. PCC 8802 NC_013161 
 

Table 1: List of organisms employed for the benchmarking dataset with organism name/strain and RefSeq ID. 
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3.8 Datasets in analyses of novel sRNAs 

Several analyses on sRNAs not contained in the Benchmarking dataset were executed. The 

Agrobacterium tumefaciens AbcR1 and AbcR2 sRNAs (organisms: NC_003062, 

NC_010994, NC_003047), the Vibrio harveyi Qrr1 sRNA (organisms: NC_002505, 

NC_009783, NC_004603, NC_011753, NC_004459) and the Anabena sp. PCC 7120 NsiR1 

and NsiR3 (organisms: NC_007413, NC_014248, NC_010628, NC_003272) sRNAs were 

analyzed. 

Organism name and strain RefSeq ID 

Agrobacterium tumefaciens C58 NC_003062 

Rhizobium etli CIAT 652 NC_010994 

Sinorhizobium meliloti 1021 NC_003047 

Vibrio cholaerae N16961 NC_002505 

Vibrio harveyi ATCC BAA-1116 NC_009783 

Vibrio parahaemolyicus RIMD 2210633 NC_004603 

Vibrio splendidus LGP32 NC_011753 

Vibrio vulnificus CMCP6 NC_004459 

Acaryochloris marina MBIC11017 NC_009925 

Gleobacter violaceus PCC 7421 NC_005125 

Nostoc sp. PCC 7120 NC_003272 
 

Table 2: Organisms employed in further analyses of sRNAs with organism name/strain and RefSeq ID.  

 

3.9 DAVID functional annotation 

Functional annotation for gene lists, which are acquired as results of hIntaRNA predictions, 

can be analyzed using the database for annotation, visualization and integrated discovery 

(DAVID) (Huang et al., 2009). Due to the fact that sRNAs often act as global regulators in 

regulatory networks, functional enrichment of top hits (i.e. top 50) is a method to extract 

information about the regulatory processes an sRNA may participate in. In order to be 

enriched, a subset of genes must be overrepresented compared to a background. Concretely 

for a group of genes to be enriched, this means that the percentage of genes of a certain 

functional group must be significantly (with respect to, for example Fisherôs exact test) 

higher in the subset compared to the percentage of this class of genes represented in the 

background. The background in this project are all genes derived from a single organism for 

which IntaRNA interactions can be predicted and homologous genes in other organism are 

present. The gene identifiers employed in our case are Entrez Gene IDs. Yet, DAVID allows 
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the use of several other common identifiers. An important value in the enrichment analysis 

is the enrichment score of an enriched cluster which is defined as ñthe geometric mean of all 

the enrichment P-values of each annotation termò in the cluster (citation from Huang et al. 

2009), while the p-values are calculated with Fisherôs exact test. Huang et al., state that 

enrichment scores Ó 1.3 are of increased significance. However, they also stress that gene 

clusters with lower enrichment scores should not necessarily be dismissed. All enrichments 

were executed with standard parameters. 

 

3.10 Quality clipping before p-value combination 

Preprocessing the data in order to improve predictions seems promising. Preprocessing in 

this case means that single organism prediction p-values that are bigger or equal to 0.8 are 

ñclippedò from the initial prediction. The idea is to eliminate obviously arbitrary predictions 

from clusters which may show conservation of sRNA regulation only for some of the genes 

in the cluster. In order to assess the potential of this preprocessing method, hIntaRNA 

clipped predictions were taken out for the whole benchmarking dataset and rankings were 

evaluated in comparison to hIntaRNA predictions without clipping. 

 

3.11 Implementation overview 

In the following, the implementation of hIntaRNA shall be explained. Detailed methodology 

is explained in the preceding paragraphs. 

hIntaRNA has a modular character, and is split into 14 individual Perl scripts. All these 

scripts are successively executed by a master script (homology_intaRNA.pl). The input 

arguments are firstly a fasta formatted file containing the sRNA homologs, secondly the 

number of nucleotides upstream and downstream of only the start codon or upstream of the 

start codon and downstream of the stop codon respectively, depending on the specification 

of the region for which the prediction shall be made (i.e. 5ôUTR or CDS).   
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Example Abstraction 

perl   [script language] 

homology_intaRNA.pl  [program] 

0680a.fasta  [sRNA homologs] 

200 [upstream start codon] 

50 [downstream start codon]  

16S-linker-23S.fasta  [molecular chronometer] 

5utr [mRNA region]  

NC_008686.gb,NC_008687.gb  [chromosomes org. 1] 

NC_007493.gb,NC_007494.gb  [chromosomes org. 2] 

NC_009428.gb [chromosome org.3] 

NC_003047.gb  [chromosome org.4] 

NC_008209.gb  [chromosome org.5] 
 

Table 3: Exemplary visualization of input arguments for a 5ôUTR hIntaRNA analysis. 

 

Furthermore, a fasta formatted file containing a molecular chronometer (i.e. 16s-, linker- 

and 23s-region, Fig. 8) of the input organisms and RefSeq files of the chromosomes and 

plasmids of the respective organisms must be supplied (Table 3).  An example call of the 

script is presented in the appendix (see paragraph 7.3 hIntaRNA user manual ï Standard 

Operating Procedure (SOP)). Generally the work flow of the program can be split into two 

major processes. First, the genome wide IntaRNA predictions for each mRNA sequence are 

made, and the energies calculated by IntaRNA are transformed into p-values derived from 

generalized extreme value distributions which are fitted to the IntaRNA energies (Fig. 7). 

IntaRNA parameters are a seed of at least seven consecutively paired bases, a window size 

of 140 nt for ED value computation and a maximum distance of two paired bases of 70 nt 

(IntaRNA webserver standard parameters). If the analysis is run on sequences of different 

length, a length normalization of the energies is taken out, following the principle presented 

in RNAhybrid, with m and n being the lengths of the mRNA and the sRNA respectively, 

and e and en being the IntaRNA energy score and the normalized energy score, respectively. 

Ὡὲ=   
Ὡ

ln(άὲ)
 ,   (14) 

 

 For the initial step to be executed, the sequences of interest must be parsed from the RefSeq 

files, which in this case depends on the Perl Bio::SeqIO module. Then the raw IntaRNA 
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outputs are processed into a more practical comma separated file format to which the p-

values are added.  

 

Figure 11: hIntaRNA flow chart, *Explained in 3.4, **using MBGD (Uchiyama et al., 2010) cluster table, 

***E xplained in 3.6. 

 

Calculation of p-values is achieved by using the R-statistics evir package. Addition of R 

code into the Perl code was realized utilizing the Statistics::R Perl module. The single 

organism predictions are the basis for the second part of the work flow. In this part, single 

predictions of homologous target sequences from distinct organisms are combined. 

Homology between target genes is assessed, by application of a whole genome homology 

table calculated on the M icrobial Genome Database for Comparative Analysis (MBGD) 

webserver (Uchiyama et al., 2010), which initially utilizes a BLAST all-against-all 

approach. If several genes from one organism are homologous only the gene yielding the 

best interaction energy is used for further processing. For the combination of p-values a 

distance matrix from the 16s-linker-23s regions of the participating organisms is calculated 

by firstly aligning the fasta and secondly creating the matrix with the Jukes-Cantor method 

(Jukes and Cantor, 1969). Alignment (emma) and distance matrix (distmat) software were 

both taken from the EMBOSS package (Rice et al., 2000). For the combination of p-values, 

the first step is to calculate the contributions of each organism to the distance matrix and 

exponentiate the p-value with this contribution. The contribution in this case, is the quotient 
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of the contribution of the considered organism, and the contributions of all organisms in the 

analysis. This step yields a somewhat weighted geometric mean of the combined p-values. 

After the initial combination, the degree of dependence (keff) in the analysis is assessed and 

final joint p-values are calculated following a method presented by Bailey and Gribskov 

(Bailey and Gribskov, 1998). The final output is a hIntaRNA score sorted, comma separated 

file, which also contains an annotation, Entrez Gene ID, interaction site details and the 

IntaRNA single prediction energy and p-value of the predicted targets. Furthermore, the 

sequences of interacting regions for the respective organisms and mRNAs are supplied in 

FASTA files (*.interacting.fa). For clarification reasons, a detailed, concrete example of a 

hIntaRNA analysis for a Synechocystis sp. PCC6803 SyR1 target is presented in the 

appendix. A detailed explanation of the output is supplied in paragraph 7.5. 
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4 Results 

 

4.1 Results of the technical analyses 

The first part consists of the results derived from the technical analyses leading to the final 

implementation of hIntaRNA. 

 

4.1.1 Analysis of uniformity in initial p-value distributions 

The theory behind function 11 is based on uniform distributed random variables between 

[0,1]. In order to test if this holds true for the p-values obtained from the IntaRNA energy 

scores, the distributions of the initial p-values were tested against a uniform distribution, 

employing the method of least squares. Figure 12 shows the results of the test of uniformity 

concerning the distributions of the initial p-values. The box plot illustrates that the p-values 

generated by fitting general extreme value distributions to the IntaRNA energies have 

smaller squared errors or deviances, when compared to a uniform distribution, than those 

generated by the empiric method for p-value generation.  

 

Figure 12: Box plot of the results of the method of smallest squares on initial p-value distributions for 92 data 

sets. 
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This means that the distribution of p-values derived from the fitting methods show stronger 

uniformity. The fitting method on unshuffled data (i.e. genome wide IntaRNA predictions) 

is used in the final implementation of hIntaRNA due to the major reduction in runtime 

without the shuffling process being incorporated. 

 

4.1.2 Parameter comparison for EVD fits on shuffled and unshuffled 

target sequences for different sRNAs 

In order to assess possible differences between the EVD parameters for shuffled and 

unshuffled target sequences, the EVD parameters (Õ, ů, Ů) of the respective target 

predictions on shuffled and unshuffled targets, were plotted against each other. Linear 

dependencies indicate that shuffling does not change any parameters intrinsic to the target 

sequences. Plotting (Figs. 13-15), reveals a linear dependency between Õ and ů, while Ů 

clearly shows two clusters. The first cluster is, similarly to the Õ and ů of the first two plots, 

linearly correlated, while the second group clusters around 0 for the unshuffled data. This 

indicates that one class of sRNAs seems to follow a Gumbel EVD (i.e. Ů=0), while the other 

group shows general EVD behavior. The shape parameters for the shuffled data do not 

cluster around 0, indicating that shuffling changes a property of the target mRNAs and shifts 

Gumbel EVDs to general EVDs. This is an interesting observation, however as the final 

implementation is realized with unshuffled data, this shift is not of major concern. 

 

Figure 13: Plot of location (µ) parameters against each other for shuffled and unshuffled data. 
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Figure 14: Plot of scale (ů) parameters against each other for shuffled and unshuffled data. 

 

Figure 15: Plot of shape (Ů) parameters, here denoted as xi, against each other for shuffled and unshuffled data. 

 

4.1.3 Runtime 

The runtime of hIntaRNA is greatly dominated by the runtime of the IntaRNA single 

organism predictions. The target sequence parsing also takes up a mentionable part of the 

calculation. The hIntaRNA benchmark prediction of SyR1 targets for instance, takes 182 

minutes with NC_010296 having the highest abundance of potential target sequences/genes 

(6312) and NC_010546 having the longest version of SyR1 with 161 nt. The benchmark 

prediction for GcvB targets takes significantly more time, lasting 281 minutes. Here 

NC_009792 has the most potential targets (4980) and the longest sRNA sequence is that of 

NC_000913 with 202 nt. Table 4 shows the runtimes, sequence lengths and organism counts 



Results 

 

33 
 

while the average amount of target sequences per organism was ~4500 (length 300 nt) for 

the benchmarking dataset.  

 

sRNA name longest sRNA version # Organisms Runtime (min) 

GcvB 202 nt 8 281 

FnrS 128 nt 8 159 

MicA 73 nt  8 100 

CyaR 91 nt  8 114 

RybB 80 nt  8 116 

Spot42 110 nt  8 148 

ArcZ  127 nt 8 168 

SyR1 161 nt 5 182 

OmrA 88 nt 3 83 

InvR 91 nt 2 83 

ChiX 84 nt 5 85 

DsrA 89 nt  5 95 

MicF 94 nt  5 102 

OxyS 111 nt 5 111 

MicC 110 nt 5 123 

SgrS 243 nt 5 305 

OmrB 95 nt 8 120 

RprA 106 nt 8 137 

RyhB 91 nt 5 100 

GlmZ 223 nt 8 292 
 

Table 4: Run times for the benchmark dataset. The run times were obtained using the perl ñtimeò command at 

the start and the end of the master script (homology_intaRNA.pl) and calculating their difference. The 

processors the calculations were executed on are Quad-Core AMD OpteronÊ 8378 processors with 2411 Mhz 

and 512 KB cache.  

 

A detailed complexity analysis was not performed but the data in Table 4 allows an 

informed estimation of expected runtimes depending on sRNA length and genome size. Due 

to the pseudo cluster calculation (described in paragraph 3.6), analyses including more than 

ten organisms become increasingly large, consequently leading to impracticability with 

respect to the runtime. The total number of clusters, c, to be calculated in a hIntaRNA 

analysis of n organisms is defined as follows: 

 

           ὧ= В
ὲ!

Ὧ! ὲ Ὧ!
ὲ
Ὧ=2   ,  (15) 
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Parallel computation on multiple cores is enabled for the IntaRNA single organism 

predictions. The amount of cores used is the same as the amount of organisms participating 

in the analysis. This feature greatly reduces the total runtime of hIntaRNA. 

 

4.1.4 Benchmark 

When developing refined algorithms for the prediction of biological processes, the central 

result is always the benchmark, as it clarifies if the refinements to already present methods 

were successful or not. In this case, the histogram of rank frequencies (Fig. 16) already 

reveals the advantage of hIntaRNA (blue boxes) over the single organism predictions made 

with IntaRNA (green boxes) alone.  

 

Figure 16: Histograms of the frequencies of predicted ranks in hIntaRNA (blue) and IntaRNA (green) 

predictions. The first plot shows a magnification of the second plot. The ranking was defined by hIntaRNA 

score and initial p-value for hIntaRNA and IntaRNA respectively. 
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The histograms in Figure 16 show the abundance of individual ranks for experimentally 

verified 5ôUTR targets. The abundance of correctly predicted targets in the top ten hits is 

vastly greater in hIntaRNA. Concretely, IntaRNA predictions on the 74 experimentally 

verified 5ôUTR targets, yield 14 (i.e. 18.9%) true positives in the top ten, while hIntaRNA 

doubles this number consequently placing 28 (i.e. 37.8%) targets in the top 10, six of these 

being on rank one. The subsequent ranks, up to rank 25 also show more hIntaRNA 

predictions, while the latter ranks show higher abundance of IntaRNA predictions. The 

unmagnified histogram clearly reveals that not all predictions reside within the top 100. 41 

(i.e. 55.4%) IntaRNA predictions exceeded the rank of 100, compared to 30 (40.5%) 

hIntaRNA predictions. Generally, the ranks of 51 predictions (i.e. 68.9%) improve by 

application of hIntaRNA, while 23 (i.e. 31.1%) target predictions do not improve or worsen. 

Yet, this number of unimproved predictions is artificially declined due to other correct 

predictions outranking previous predictions.  

The Benchmark dataset did not only yield information pointing at the potential of 

hIntaRNA. Further analysis of the results suggested a multitude of novel targets for sRNAs 

for which many targets have already been verified, but were not part of the benchmarking 

dataset (see paragraph 4.2.1).  

 

4.1.5 Clipped benchmark 

The results of the benchmark on the preprocessed single organism p-values are supplied in 

the supplementary Table 1. The numbers in the Table, as well as the histogram of rank 

frequencies clearly shows that no major improvement was achieved by pre-clipping the 

data. In most cases the predictions remained the same or were worse. In this context, pre-

processing does not seem to be a viable practice. Furthermore, closer investigation of 

possible corruption of the statistical model would have been necessary if the benchmark had 

shown better results. In this case however, pre-clipping can simply be disregarded. 
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Figure 17: Histograms of the frequencies of predicted ranks in hIntaRNA (blue) and clipped hIntaRNA (green) 

predictions. The first plot shows a magnification of the second plot. The ranking was defined by hIntaRNA 

scores. 
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4.2 Application of hIntaRNA 

The second part consists of the results derived from the application of hIntaRNA. 

 

4.2.1 Extended analysis of the benchmarking dataset ï GcvB, 

Spot42, RyhB and RybB 

The dataset the Benchmark was executed on, generated additional data suggesting new, yet 

unconfirmed targets in E. coli and Salmonella, especially in the context of functional 

enrichment (see paragraph 3.9).  

The hIntaRNA prediction for the Salmonella and E. coli GcvB sRNA, which plays an 

important regulative role in amino acid synthesis and amino acid transport (Sharma et al., 

2011, Pulvermacher et al., 2008), yielded many new putative targets.  

Functional enrichment of the Salmonella top 50 showed increased abundance of genes 

related to amino acid synthesis and transport. New putative targets clustered with genes 

already reported as GcvB targets. The new putative, synthesis related targets are stm0680 

(asnB), stm1723 (trpE), stm2384 (aroC), stm1196 (acpP), stm1578 (narY), stm1725 (trpC), 

stm3161 (metC) and they cluster with the verified targets stm3909 (ilvC), stm1299 (gdhA) 

and stm3903 (ilvE). Stm3909 (yifK) and stm0150 (aroP) are two novel putative transport 

associated GcvB targets. They clustered with the verified targets stm3564 (livK), stm4398 

(cycA), stm2355 (argT), stm1746.s (oppA) and stm0399 (brnQ).  

Clustering of the E. coli top 50 yielded a major group of amino acid biosynthetic process 

related genes, consisting of 17 entries with a high enrichment score of 6.17. Most of these 

are already reported. However, b1385 (feaB) and its homolog in Salmonella stm1524 (yneI) 

appear to be yet unreported GcvB targets. 

The E. coli Spot42 sRNA top 50 predictions, displayed strong overrepresentation of genes 

that are important in the citric acid cycle. The enrichment score of the cluster containing the 

verified Spot42 target b0720 (gltA) and the putative targets b0728 (sucC), b0116 (lpd), 

b0721 (sdhC) and b1136 (icd), is 2.29. Furthermore the predicted interactions were mainly 

located in the single stranded regions of Spot42, which are important for base pairing with 

target RNAs (Beisel and Storz, 2011). Ali gnment analysis of the respective target 
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interaction sites, revealed sequence conservation (Fig. 18). Sugar transport related genes 

were also enriched with an enrichment score of 1.29.  

 

Figure 18: Alignments (created with emma (Rice et al., 2000)) of the interacting regions on the lpd, gltA, sucC, 

icd target mRNAs with locus tags. cko: Citrobacter koseri, rod: Citrobacter rodentium, efer: Escherichia 

fergusonii, b: Escherichia coli, stm: Salmonella typhimurium, spro: Serratia proteamaculans, pc1: 

Pectobacterium carotovorum, ypo: Yersinia pestis. The letters in red show identical residues, letters in green 

show similar residues, letters in black show different residues and Ts are Us in RNA context. 

 

Another interesting result is the hIntaRNA prediction for E. coli RyhB. Besides the verified 

targets b4154 (frdA), b0722 (sdhD) and b1612 (fumA) (Richards and Vanderpool, 2011) 

being located at positions 10, 24 and 32 respectively, functional enrichment showed high 

abundance of metal-binding affiliated genes, yielding a cluster of 14 genes with an 

enrichment score of 1.35, which fits directly into the scope of already reported RyhB 

functions. While all genes in the cluster are certainly interesting, the most striking new 

potential targets are b3365 (nirB), b0156 (erpA) and b3867 (hemN) as they show predicted 

interactions with RyhB in which the SD-sequence and the start codon are occluded by base 

pairing with the sRNA. 

Closer investigation of the Salmonella RybB hIntaRNA analysis indicated the presence of 

an outer membrane protein targeted by RybB. The interaction was subsequently verified 

experimentally (see paragraph 4.2.3). 
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4.2.2 Novel predictions for sRNAs ï AbcR1 & 2, Qrr1, NsiR1 & 3 

In order to assess potential functions of the sRNAs AbcR1&2, Qrr1 and NsiR1&3, 

hIntaRNA predictions were carried out for all three sRNAs and the results were 

subsequently analyzed employing the DAVID functional enrichment tool. 

Table 5 shows the top 15 hIntaRNA predictions for the AbcR1 sRNA in Agrobacterium 

tumefaciens. The verified AbcR1 target atu2422, here on rank 32 (not shown in table 5), is 

an ABC transporter.  

hIntaRNA score NC_003062 Annotation 

3.473395e-06 atu3487 ABC transporter substrate binding protein (sugar) 

3.484135e-06 atu5280 Hydrolase 

1.810383e-05 atu3076  uracil transport protein 

4.233513e-05 atu2737  Oxidoredutase 

8.595159e-05 atu2493  forms a tetramer composed of 2 alpha subunits and 2 beta subunits 

1.129300e-04 atu1174  pyrophosphate-energized proton pump 

1.719447e-04 atu3198  ABC transporter substrate binding protein (ribose) 

1.753479e-04 atu3485  short chain dehydrogenase 

1.798424e-04 atu4550  LacI family transcriptional regulator 

1.964779e-04 atu5071  ABC transporter  substrate binding protein (dipeptide) 

2.050593e-04 atu4123  ABC transporter substrate binding protein (branched amino acid) 

2.222805e-04 atu4537  ABC transporter membrane spanning protein (amino acid) 

2.244232e-04 atu3253  ABC transporter substrate binding protein 

2.894201e-04 atu3114  ABC transporter substrate binding protein (sugar) 

3.412708e-04 atu2296  2-dehydro-3-deoxygluconokinase 
 

Table 5: hIntaRNA top 15 predicted targets for AbcR1 sRNA in Agrobacterium tumefaciens. 

 

Due to the fact that sRNAs are often included into specific regulatory networks and affect 

mRNA targets with similar protein products, it is very striking that eight of the top 15 

predictions for AbcR1 are also ABC transporters. This hints at the quality of the prediction 

for AbcR1, not only with respect to many of the targets belonging to the same group of 

genes (i.e. being functionally enriched) but also with respect to an already verified target 

(atu2422) also being an ABC transporter. Furthermore DAVID functional enrichment 

reported enrichment of genes related to periplasmatic space, cell envelope and external 

encapsulating structure for the top 50 hIntaRNA predictions with an enrichment score of 

2.91. An enrichment of the top 50 predictions for the Agrobacterium tumefaciens AbcR2 

sRNA rendered a cluster with genes related to the same cellular structures, but with a 

reduced enrichment score of 1.34.  
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The hIntaRNA prediction for the Vibrio harveyi Qrr1sRNA ranks the known target luxO 

(vibhar_02959) on rank two, while luxR (vibhar_00157), also a known Qrr1 target, is not 

correctly predicted and is ranked on position 1119. Functional enrichment of the top 50 

resulted in strong representation of sugar metabolism with an enrichment score of 2.49. Cell 

membrane, envelope and transport related genes were also enriched, yielding an enrichment 

score of 1.09. 

The Anabena sp. 7120 NsiR1 top 50 of the prediction yielded an overrepresentation of 

vitamin and nitrogen metabolic process associated genes with an enrichment score of 0.76, 

while the NsiR3 prediction showed stronger enrichment of peptidoglycan related genes with 

an enrichment score of 1.69. Furthermore, patU3 (alr0101) and invB (alr0819) were highly 

ranked in the NsiR1 prediction. 

 

4.2.3 STM1530 is a novel RybB target in Salmonella 

The STM1530::GFP fusion experiment (performed by Dr. Kai Papenfort from Uni 

Würzburg) verified the interaction between the Salmonella STM1530 mRNA and the RybB 

sRNA. The western blot (Fig. 20) clearly reveals that the regulation is negative and based on 

RybB presence, as no down regulation of GFP expression is visible in the RybB mutant 

(RybB-M2).  

 

                        182                                 218  

                        |                                   |  

  stm1530  5' - CCC...AUAAG     UAA  C    AAA AU  A            GUUAU...GGC - 3'  

                         ACAAA   GG AUAU     GA AAAAGUAGUGGU 

                         |||||   || |:||     :| |||||:|||||:  

                         UGUUU   CC UGUA     UU UUUUCGUCACCG 

  RybB     3' - UUU...CGAGG     UAC  C    GU     C            - 5'  

                        |                                  |  

                        33                                 1  
 

Figure 19: Interaction of STM1530 mRNA (black) and RybB sRNA (red) as predicted by IntaRNA       

(energy = -16.438 kcal*mol
-1
). AUG (yellow box) located at 201-203 on the mRNA.  

 

Furthermore the western blot shows that the central interacting region of RybB (R16TOM) 

is the same region, which interacts with the other, already earlier verified (Papenfort et al., 

2010) RybB targets, even though the down regulation does not seem to be as strong as with 

the full RybB sequence. These authors suggested that the 3ô flanking region of the 

interaction site on the target sequence, in most cases, initially consists of an adenosine. This 
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does not hold true for STM1530, where the interaction is flanked by a 3ô guanine on the 

mRNA (Fig. 19). 

 

 

Figure 20: Western blot of the STM1530::GFP fusion experiment. RybB showing the GFP amount under 

RybB expression, R16TOM showing the GFP amount if only the R16TOM region (Papenfort et al. 2010) of 

RybB is expressed and RybB-M2 showing the GFP amount in a RybB mutant sequence. GroEL is a protein 

used as standard to show the average protein abundance. The experimental procedures (Urban and Vogel, 

2007, Towbin et al., 1979) were done externally, in collaboration with Dr. Kai Papenfort (Würzburg). 

 

 


