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Abstract

1 Abstract

Background: Prediction of targets of bacterial small RNAs (SRNAS) is a very challenging
task, addresed by several approachesxpErimental testing and verification of sSRNA
targets iscostly and laboumtensive. Therefore, the reliable algorithmic prediction of
putative sRNA targets could vastly reduce the amount of wet lab work. However, due to
very short and often imperfect complementarity between the sRNA and its thmet
prediction is not a trivial task. Thateracting RNA (IntaRNA) algorithm is one approach,
which frequently, however, does not yield satisfying results yet and therefore demands

improvement.

Approach: It has been statetthat snall RNA targets should é predicted in a comparative
manner.Even though this waseriginally stated for eukaryotic RNAghe basic idea of this
thesis also holds for bacteria. The task of improving the IntaRNA algorithm's prediction
quality utilizes exactly this concept, also amporating the individual phylogenetic distances
between the analyzed organisms. For instancegdtiteen verified experimentalfiigat the

MicA and RybB sRNAs irE. coli and Salmonellaeach have homologous targets in both
organisms, thus indicating consgation on the regulatory level. Here, the implementation of
the idea that overlapping target predictions for distinct organisms yield stronger evidence of
correct functional prediction is presented. IntaRNA target predicémagombined with
phylogeneticinformation by transforming the IntaRNA energy scores intwagtues and

combining these in order to attain a combined score for a group of homologous genes

Results: A Benchmark on a dataset of 74 experimentally verified targets yig@iaedising
results improving 68.96 of all predictions compared to regular IntaRNA.&87% of thetrue
positive predictions were in the top 10, six of these on rank épplication of hintaRNA

to several sSRNA from bacteria as divergent afphaproteobacteria, enterobadter or
cyanobacteriasuggested a multitude of novel yet unreported sRNA targets. The results hint
at the Spot42 sRNA playing a major role in the regulation of citric acid cycle associated
genes. Furthermore hintaRNA analysis suggested the interactitve &fytoB sRNA with

the yet hardly studied outer membrane protein stm1530Saimonella this was
subsequently verified experimentalldditionally, the Agrobacterium tumefaciensbcR1
SRNA seems to control more ABiEansporterelated mRNAs than previously concedd.

The programis implemented in Brl and R and can be readily used on Linux systasis

command lingool. An easy to use webserver is planned for the future.
1



Abstract

Zusammenfassung

Hintergrund: Die Vorhersage von Zielelmzw. Targetdakterieller kleiner RNAgSRNAS)

ist eine anspruchsvolle Aufgabe dibereits durch verschiedenste6sungsansatze
angegangen wurde. Experimentelle Uberpriifung und Verifikation von sRNA Targets ist
zeitlich und finanziell aufwendig. Folglich konnte die verlassliche algorithmische
Vorhersage von 9RA Targets zu einer malRgeblichen Redunngr der experimentellen
Arbeit fuhren. Imperfekte und kurze Paarungen zwischen sRNAs und ihren Zielen
erschweren verlassliche Vorhersag®er interacting RNA (IntaRNA) Algorithmus ist
einer der Ansatze zur Losung désoblems, der aber okeine verlasslichericrgebnisse

liefert unddaherverbessert werden sollte.

Ansatz: Es ist vorgeschlagen worderndie Ziele von kleinen RNAskomparativ
vorherzusagen. Dgwurde urspringth fur Eukaryoten in Erwadgg gezogengilt aber

auch fur bakteriéee sRNAs. Die hier verfolgte Absicht)ntaRNA Vorhersagenzu
verbessermutzt dieses Konzept und beinhaltet auch eine Betrachtung der individuellen
phylogenetische\bstande der verglichenen Organismen zueinandgreiixentell wurde
bestétigt, dass die sSRNAs MicA und RybB homologe Targets. inoli und Salmonella
habenDies bestatigt, dass es eine Konservierung auf der regeraibenegibt. In diesem
Projekt, wird die Implementierung der Idee, dass Uberlapperatgeivorheragen fir
unterschiedliche Organismen erhdhte Evidenz fir tatsachlich funktionale Regulation
darstellt, vorgestellt. IntaRNA Vorhersagen werden mit phylogenetischer Information
kombiniert wobei IntaRNA Energiescores iRVperte umgewandelt werdeie p-Werte

werden kombiniert um einen finalen Score fir eine Gruppe homologer Gene zu erhalten.

Ergebnisse: Ein Benchmark auf einen Datensatz von 74 experimebgdtatigtenrsRNA
Targets, lieferte vielversprechende Resultate. 68.9% aller Vorhersadmssenten sich im
Vergleich zu IntaRNA37.8% der wahr positiven Vorhersagen waren in den oberen 10 ihrer
jeweiligen Vorhersage, wobei sich 6 von diesen auf Rang 1 befabaeAnwendung von
hintaRNA fihrte zur Identifikation von vielen putativen noch sknnten sRNA Targets.

Die Ergebnisse deuten auf eine globale Rolle der SRNA Spot42 in der Regulation von
Genen des Citratcyklus hin. Des Weiteren wurde die Interaktion des von hintaRNA
vorgeschlagen Targets stm1530 &smonellaexperimentall bestatigDas Programm ist

in Perl und Rimplementiertund zurzeit auf Linux Systemen in der Command Line

verflugbar.Ein Webserver ist in Planung.
2
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2 Introduction

2.1 Bacterial small RNAs

Ribonucleic acid (RNA) is a key player in every living organism and it is lilghly likely
that RNA was the carrier of genetic information prior to the advent of deoxyribonacieic
(DNA) (Gilbert, 1986) RNA can form secondary structures by pairing with other RNA
elements inan intra- and/or intermolecular manneBesidescommonly known transfer
RNA (tRNA), ribosomal RNA (rRNA), ribozymes anprotein coding, messenger RNA
(mRNA), recent studies suggestsanificant presence of non coding RNAs (ncRNAS) in
pro- and eukaryotic organisms, where they can participate in regulaineegses, such as
controlling translation of mMRNAEddy, 2001)

Bacterial smalRNAs (sRNAs) whicharefunctionallyanalogougo eukaryotic microRNAs
(miRNAs), also belong to this grouhey range from 50 500 nucleotides (nt) in length,

and can in mancasesriginate from individual genes, controlled by tmedbwn promoters

and terminator§Waters and Storz, 20093RNAs supply an additional module for gene
regul ation, and are pr oduc ehdmohiztak, 2007)Tden d @ c h
Esderichia coliMicF RNA was the first reported member of the sRNA group, and was
discovered long Here the burst in SRNA resear¢Mizuno et al., 1984)MicF acts m

trans. This means it is encoded at a locus distinct to its tarGesicting RNA elemerstare

the counterpart tdrans acting sRNAs, as they share the same locus with thegets.
Examples for this mecham are Riboswitches, which are often encoded in untranslated
regions(UTR) of bacterial mMRNAgBreaker, 2010)Depending on specific sigis they can

fold into structures that can either enable or disable translation. Antisense RNAs (AsRNAs
like Riboswitches, also achais. They are encoded at the same locus as their targets but on
the opposite strand, which clearly leads to perfect ppementarity with the target RNA
(Georg and Hess, 2011¢onverselytrans acting sRNAs often showhortand inperfect

base pairing with their targets. High complementarity is, in many cases, only given within a
seed regiomf approximately 68 base pairgGottesmann and Storz, 201This seed region

is crucial for interaction initiation and iypically locatedin the 5' regions of the sRNAs
(Papenfort et al., 2010Base pairing with targets usually occurstire 5' untranslated

regionof mMRNAS, or parglly downstream of the start codon.
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Several mechanisms for translational controtraypsacting, base pairing sRNAs are known
(Marchfelder and Hes011) Masking of the Shin®algano (SD) sequencewhich is
central forthe binding of the 30S ribosomatibunit (Shine and Dalgarno 1974), and start
codon sequences, inhibits translational initiation. Hseherichia coliSpot42 sRNA for
instance, targets the SD sequence ofghkdk mMRNA and prevents the 30S subunit of the
ribosome from associating with itsnding site and furthermorkeads to a loss ofalK
MRNA stabiity in experimental over expression of Spoizisel and Storz, 2011Yice
versa, the DsrA sRNA activates the translationrmdS mRNA by employing an ‘anti
antisense' mechanism, which leatb the resolution of anntramolecular base paired
structure between the 5'UTR and coding sequence (CDS) opdi$mRNA, and renders
the SD sequence acsdle to the 30S ribosomal suburiifajdalani et al., 1998 sSRNAs
can also label mRN targets fordegradation by RNses. In thisway, the Salmonella
typhimuriumMicC sRNA binds to a region within the CDS of thempDmRNA and flag it

for degradation by RNASE (Pfeiffer et al., 2009).

Groupingtransacting sRNAs into thelassof ncRNAs can in some sas be misleading, as
they can also serve as tempfafier translation This is the case for the SgrS sRMadler
and Vanderpool, 2007gnd RNAIII (Benito et al., 2000)In line with this, it has also been
suggested that mRNAs may also have, sRNA typregulativefunctions which are yet
unknown(Waters and Storz, 2009).

E. coli and Salmonella

Figure 1: Quter membrane proteff©mp)regulatory circuiin E. coli andSalmonella Black lines:
homologous sRNAs regulating homologous targets in both orgargsesn lineskE.coli specific regulation,

purple linesSalmonellaspecific regulation@orcoran, Papenfort and Vogel, 2017

4
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Regulation of protein function by SRNAs has also been reported. The 6S sRNA.fomin
specifically interacts withthe (7o asso@ted RNA polymerase holoenzymand thereby

down regulates transcription of promoters with we#k regons (Wassarmann, 2007)

Despitemost examplesriginating from enteric bacteria, regulation by sRNAs is not limited
to this group of microorgnisms, and it has been proposed that regulation byAsRSI
spread among all bacteri@ottesmann, Storz 2010prganisms such agibrio harveyior
Agrobacterium tumefacienfor example, require sRNAs for quorum sensing and ABC
transporter regulation resgtively (Tu et &, 2008, Wilms et al., 2011Especally deep
sequencing approachesmplify identification of novel sRNAs in organisms not yet as
intensely studied aBs. coli or S. typhimurium(Mitschke et al., 2014,H.

In many cases, for I@m negativebacteria the RNA chaperone Hfq is required to allow
target recogition and base pairingn vivo (Vogel and Luisi, 2011)yet much remains
unclear about the exact role of Hfq and about potential other RNA chaperones in the process

of mediating sSRNAargetrecognition.

It is apparent that a multitude of SRNAs target more than one m@igA 1), simplifying
the prediction and identification of new targets for sRN#s comparingwith already
known target sitegModi et al., 2011) This way,the magnitude opotential targets can be
narrowed down by incorporation of the preexisting knowledgethermore, sRNA&and
their targetsare often conserved across certain bacterial spégigsl, 2 and 3, suggesting

a comparative approadbr identifying new targetsFor instance, there is experimentally
verified data, which illustrates that the ~80 nt RybB sRNA, which is nearly identi&al in
coli and S. typhimurium negatively regulates the translation of outer membrane psotei
(OMP) in these two organisniBapeffort et al., 2006, Thompson et al., 2061g.1).

Direct clinical and biotechnological relevandess been perceived in sRNA research.
Reduced pathogenicity in bacteriafg mutants (Romby et al., 2006¢pntrollability of
acetate excretiom E. coli (Negete et al.,, 2011) and accumulation of succinate by RyhB

overexpressiom E. coli (Kang et al., 2012havebeen reported.
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2.2 Conservation of regulationRybB, MicA and SgrS

The global outer membrane protein regulator RybB (Johansen et al., Zp@éfdtt et al.,
2010) is asuitable example to display how not onhetsRNA sequence, but also tésget

regulation can be conserved across species boundaries.

1 82
ST GCCACUGCUUUUCUUUGAUGUCC _CAU-UUCGGUUCAAGGUUGG-UGGGUUUUUU
EC GCCACUGCUUUUCUUUGAUGUC L UUUUGUGG? _CCAUCAACCCCGCCAU-UUCGGUUCAAGGUUGA-UGGGUUUUUU
CR GCCACUGCUUUUCUUUG A”(JW' z 5UGGA-GCCCAUCAACCCCGCCGU-UUCGGUUCAAGGUUGA-UGGGUUUUUU
SD  GCCACUGCUUUUCUUUGAUGUC sA—GCCC > >CCCGCCAU-UUCGGUUCAAGGUUGG-UGGUUUUUUU
SB  GCCACUGCUUUUCUUUGAUGUC CCAU-UUAGGUUCAAGGUUGA-UGGGUUUUUU
KP GCCACUGCUUUUCUUUGAUGUC (}( A”U””HUHH% (J(,,(,,(,,AUCAAC(,,CC(J(,(,,AC—UUCGGUUCAAGGUUGA—UGGGUUUUUU
KO GCCACUGCUUUUCUUUGAUGUCCCCAUUUUGUGGA-GCCCAUCAACCCCGCCAC-UUAGGUUCAAGGUUGA-UGGGUUUUUU
CK GCCACUGCUUUUCUUUGAUGUC CAAUUUGUGGA-G ) "AU-UUUGGUUCAAGGUUGA-UGGGUUUUUU
ES GCCACUGCUUUUCUUUGAUGUCCCCAUUUUGUGGA-GCCCAUCAACCCCGCCAU-CUUGGUUCAAGGUUGA-UGGGUUUUUU
YP GCCACUGCUUUUCUUUGAUGUCCCCAUAUUGAGGA-GCCCGGUAGUCCCGCCUUCUUAGGUUCAAGACUAACCGGGUUUUUU

(€ ( G (

( ( G (

3G

YE GCCACUGCUUUUCUUUGAUGUCCCCAUAUUGAGGA-GCCCGAUAGUCCCGCCUUCUUAGGUUCAAGACUAGUCGGGUUUUUU
SP  GCCACUGCUUUUCUUU v%”bw' CAUUUU va HR (_-;( ,GUUAGUC,CC(J( CUAUUUAGGUUCAAGACUAG-CGGGUUUUUU
SM § _CUU-UUAGGUUCAAGAUUAU-CGGGUUUUUU
PL CCAU-UUUGGUUCGAGACUAU-CGGGUUUUUU
S5G GCCACUGCUUUUCUUU' A”(J”( CCC A”U”W AHHA (J( CC AA(_-;( (JU( cC (J( CUA-UUAGGUUCAAGACGC-—UUGGUUUUUU
EW GCCACUGCUUUUCUUUGAU-UCCCC _CUU-UCAGGUUCAAGAGCGA-UGGGCGUUUU

(
(
(
(
(

Figure 2: Alignment of RybB sRNAs from various enteric bacteria. Bold part of the seqapnesents the
interacting region of the sSRNAST: Salmonella typhimuriupkEC: Escherichia coliCR: Citrobacter
rodentium SD: Shigella dysenteriaéSB: Salmonella bongorKP: Klebsiella pneumoniadkO: Klebsiella
oxytoca CK: Citrobacter koseriES: Enterobacter sakazakilP: Yersinia pestisYE: Yersinia
enterocolitoca SP: SerratiaproteamaculansSM: Serratia marcescen®L: Photorhabdus luminescer3G:

Sodalis glossinidius EW: Erwinia carotovora.(Supplementary figure S3 from Papenfort et L@

Both in E. coli and Salmonella RybB is induced upon heat stress and regulates the same
group of targets. Figur2shows the extensive sequence similarity of RybB homologs across
many enteric bacteria. An alignment of the 5' UTRs of RybB target mRRigs3) clearly

outlines that not only the RybB sequences are conserved throughout enteric bacteria but also
the sequences of their targets. In this case the binding (bitdd letters) nearly always

show perfect conservation, allowing the conclusibattthe sRNA as also the target
regulation is conserved, which has also been proven experimentallf. faoli and
Salmonella A study on the MicA sRNA revealed similar results regarding conservation of

homologous sRNAs and theargets (Udekwu et al., B8).
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ompF

ompA

omps T AAGUUCUGGCA
K GAAAAGUUCUGGCG:

tsx

ompW

fadL

JCGCAGUGGCAC
CAGUGGCAA]
CAGUGG!
CUGUCGH

Figure 3: Alignments of RybB target mMRNAs. The RybB seed region is printed indjol8almonella
typhimurium,CK: Citrobacter koseriEB: Enterobacter sp. 63&C: Escherichia coliES: Enterobacter
sakazakii YP: Yersinia pestisEW: Erwinia caraovora,PL: Photorhabdus luminescerSupplementary
Figure S8 from Papenfort et 22010)

Yet, not in every case a conservation of target regulation, as in the case of RybB, can be
observed. A recent study on SgrS (Rice and Vanderpool, 2011) andyétstar divergent
enteric bacteria revealed that target conservation is only given in some p&s@s.
regulation by SgrS, for instance, seems to be conserved amaegtat,SgrS containing

bacteria (Horler and Vanderpool, 2009), whiteanXregulation ly SgrS is not.

2.3 Prediction of sSRNA targets

Prediction of SRNA targets in bacteria is a choke point in SRNA research, and has proven to
be a very challenging task. Imperfect and short base pairing between sRNAs and their
targets complicate the matteri¢Ron and Felden, 2008). Furthermore, knowledge of sSRNA
MRNA interactions is still comparatively limitesbmpared to miRNANRNA interactions

and current computational solutions are most likely biased by the limited magnitude of
examples available to abstt from. The problem has been addressed by several algorithmic

approaches, which tackle the problem from different angles.
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Generally the prediction types can be assigned to four different groups, of which all are
initially dependent on finding complemenyastretches between the sSRNAs and their target

sequences (Backofen and Hess, 2010).

Firstly, methods such as the basic local alignment search tool (BLAST) (Altschul et al.,
1990) TargetRNA (Tjaden et al., 2006§ GUUGIe which, unlike BLAST, also allowG-
U-basepairs (Gerlach and Giegerich, 2006), are a starting point and solely depend on

sequence complementarity.

Secondly, assignment of thermodynamic energy scores, like in RNA secondary structure
prediction, to sSRNAtarget duplexes is an addition teetfirst approach. This yields a result
with increased biological significance and also allows consideration of temperature, which
is central for structure and stability of RNA. However, iatnalecular structures are not
addressed, which is a major neginge of a biologically important contribution in SRNA
MRNA interactiongPeer and Margalit, 2011, Richter and Backofen 20iplementations

of this approach are RNAplex (Tafer and Hofacker, 2008) and RNAhybrid (Rehmsmeier et
al., 2004).

Concatenating t target RNA and sRNA sequences with an interspacing linker, and
predicting thejoint secondarystructureof both RNAs is another way of dealing with the
problem of sRNA targeprediction. In essence, this gmilar to general RNA folding
algorithms, sule as MFOLD (Zuker, 1994) or RNAfold (Hofacker et al., 1994) and has, to
name one, been realized in the sRNATarget program (Cao et al., 2009). Yet, the detriments
to these concatenation approaches are the same as those intrinsic to the folding algorithms.
Certain structures, such as pseudoknotg. (&), which have in vivo relevance, cannot be
predicted. Thigs especially problematic since many interactions are located in hairpin loops
of one or both RNAs.

Finally, consideration of accessibility in the sRM#ARNA interaction has yiekt very
competitive resultgMuckstein et al., 2006, Busch et al., 2008, Eggenhofer et al.,, 2011
Tafer et al., 201l Accessibility meanshat the interaction sites both in the target and the
SRNA should not show involvement intramolecular base pairing if intermolecular base
pairing is to occur. If they do show intramolecular base pairing at the putative interaction
site, the accessibilityof the interaction sitas reduced and therefore the interaction is
penalized, consequty leading to a worse (i.e. less negative) energy score. RNApredator

(Eggenhofer et al., 2011) is a recent target prediction webserver also taking gene ontology

8
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enrichment (Ashburner et al., 2000) into account. Current data indicates, that SRNAs are
often part of regulatory networks (Modi et al., 2011), illuminating that ontology enrichment
should be a standardized option in every future target prediction softWagignificant
enrichment can be detected, this allows instantaneous characterizatiomuddtamey

networks the sRNA may patrticipate in, and simplifies the evaluation of results.

Figure 4: Representation of a pseudokraitveen two merged, distinct RNAs (blue and neitf the inter

spacindinker region(L, green in the concatenation appwa (Figure 1B from Backofen and Hess 2010)

Due to a lack obpecificity, leading to higmumbers of false positive hiia all available
software, target prediction is still not satisfactory and often dismissed by biologists at this

time. Therefore, immvement of present algorithms is a pressing concern.

2.4IntaRNA - interactingRNASs

IntaRNA (Busch et al., 2008), which is the underlying sRNA target prediction algorithm in
this project, is one of the previously mentioned methods that consider theaibititgof
interaction sites. The program calculates the final energy of an interaction by minimizing
the sum of the single energy scores. These energies are, (1) the energies requifeld to
double stranded stretches in the interacting regions oA andits target (blue and
green in Euation 1), which are positive and therefore penalize the interaction, ance(2) th
hybridization energy (red in doiation 1) of the interacting region, which is negative and
promotes the strength of an interactioneTRNAhybrid energy model is employed in order
to calculate the hybridization energy. The accessibilities (i.ev&@Desin Equation ) can

be obtained by using RNAPLFOLD (Bernhat al., 2006). If the sum ofdaation 1 yields

a positive result, then thigsult is dismissed for the final output. IntaRNA also establishes

the application of a seed region, which has been shown to be of biological relevance

9
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(Papenfort et al.,, 2010). Both, length and amount of unpaiasgésallowed in the seed
regionare userdefinable. Also, the seed is not restricted to a certain location within the
SRNA or its target. A disadvantage of IntaRNA is that it cannot predict interactions such as
double kissing complexes which form between the OxyS sRNA andhide mRNA
(Argamanand Altuvia, 2000), thus eliminating these kindimteractionsfrom the scope of

predictability.

EIntaRNA( | ’ )=IE,hybridK ,l ’ k é\)'*éE,D mPRJA’( | k_l_dED SBN)Q( k o (H.)é )
4
mRNA
[ i
Figure 5: Representation ah mMRNA-sRNA interaction betweenii ' (bases in the sRNA) a

the mRNA)(Imagesupplied by AndreaS. Richter)

A complete approach of IntaRNA requires O(n2m2) and O(nm) of time and space
respectively. However, a more practical, heuristic approach reduces these comgiexities
O(nmdé) for time and O( nm) for space, mé bei
seqguence window in which both mRNA and sRNA
very competitive compared to other sRNA target prediction software in accuracy and
complexity, which motivates its use as base line algorithm for the comparative prediction

approach presented in this work.

2.5 Comparative approachesBioinformatics

In bioinformatics, comparative approaches have generally proven to be very helpfus This
intrinsically obvious, as every group of organisms is thought to have evolved from a
common ancestofDarwin, 1859) In line with this it seemseasonable to assunibat

organismswhich have diverged from each other, still retain common properties.

10
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Global and local alignmestNeedleman and Wunsch, 1970, Smith and Waterman 1981)
compare similarity in amino acid and nucleotide sequences and led to approaches as
complex as BLAST (Altschul et al., 1990Which is extensively employed ide novo
charactenzation of freshly acquired genomic sequenced,ia a tool which is indispenisie

in modern molecular biologyDe novogenome annotation also folle a comparative
methodology(Aziz et al., 2008)Computational prediction of novel SRNAs in bacteria (Vol3

et al., 2009) and phylogenetic analyses follow this practice too.

A comparative approach also seems viable to solve the eminent problem of lacking
reliability in SRNA target predictions, however only if conserved interspecies regulation is

present, whichg the case for many sRNAEdrcoran, Papenfort and Vogel, 2011, Fig. 1),

but not for all (Richter and Backofen, 2011). This is the focus of the homology IntaRNA

(hIntaRNA) program presented in this project.

hintaRNA is ahomology based approach employing the IntéRMgorithm toincrease the
reliability of predictions fortrans actingsmall RNA targets in prokaryote$he basic idea

of predicting regulatory RNA targets in a comparative manner has been proposed for
eukaryotic microRNAs (Rehmsmeier et al., 200dnd prokaryotic SRNAs(Tafer et al.,

2011) As already mentioned, in many cases a conservation of targets for conserved sRNAs
can be observed across single species boundaries IF®yand 3. Consequentlyunder the
assumption that regulation is conservemjerlapping target predictions for distinct

organisms yield stronger evidence of correct functional prediction.

2.6 The comparative approach in RNAhybrid

Rehmsmeier et al., (2004) introduced a comparative approach for predicting mRNA
MIiRNA duplexes for dhologaus target sequences. They stii@t the probabilities of two
separate predictions occurring by chance/dfues) can be combined to a joint probability

by the folowing equation:
P[Z1 Oe, Z; Oey] = (maxX P[Z Oey], P[ZOes]})?, (2)

with P[Z O€] being the probability that the observed eneZgg greater or equal te This

means thathebiggeroneof the two pvalues is selected and squared.

11
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This equatiorcan be generalized ineo formwhich allows a variableaumber of organisms

as follows:
P[Z1 Oey, . .., ZOa] = (max{P[ZOe], . .. ,P[Z0a) ¥, (3)

However, Kuation3 assumedhiat orthologous targets are statistically independent, which is
incorrect when taking thbiological background into accours previously described, the
evolutionary idea is based in the concept of species being descended from common
ancestors, making it obvious that a certain degree of dependence must still be present.
leads to the nekfor a measure of dependence between the orthologous target sequences.
Hence, Rehmsmeier et al. introducedftective kes), which lies between 1 and the number

of orthologous target:

1 ke Ok, (4)

The higher the dependencestlveen the target sequences, the smaltlgr will be.
Accordingly the finaljoint p-value calculated from guation 3, with the accordinig will

be greaterthe higher the dependence between the taeggtesices is. Assuming an analysis
with two identical organisms the is nogain ofinformation, by inclusion of the second

organism consequently leading toka; of 1.

ker is obtained by shuffling the miRNA, predicting interactions with orthologougeta and
estimating extreme value distribution parameterscdtrulate pvalues forthe predicted
energy values. Next, thevalues are joined, employingyiation 3 withk @alues instead of

k, wherek dies between 1 an#. ke is thek a@vhich yieldsthe straightest line in the
empirical cumulative density function of the joirtvplues. Straightness is evaluated using

the least squared error measure method.

The approach for combiningyalues, which is presented in this work, is strongly based on
the methodology presented by Rehmsmeier et al., but has increased sophistication, and shall

be presented in the methods part.
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2.7 The comparative approach in RNAplex

Compared to the former version of RNAplex (Tafer and Hofacker, 2008), the new version
of RNAplex (Tafer et al., 2011) incorporates accessibility calculation into the prediction
model. RNAplex can also make alignment based predictions by application of the
RNAalifold concept (Bernhart et al., 2008). This model takes evolutionary conservaton int
consideration as base pairs are only enforced if they can be formed by most sequences in the
alignment. Furthermore a comparative approach is introduced in order to reduce the
abundance of false positiveBhe authors developed their comparative modikbwing the
argumentation thatarget site conservatidmetween organisms sharing homologous sRNAs

and compensatory mutations between target RNA and sRNWith respect to other
organism8sRNA and target sequenciesare an indicator of increased preatio reliability

(Chen et al., 2007)I'he procedure in the comparative method of RNAplex consists of five
steps, starting with aligning the putative target sequences with clustalw (Larkin et al., 2007)
and sorting them by similarity. In the followinBNAplex predictions for all sequences are
carried out, while the three best predictions for each target sequence areTdterethese
predictions are employed to recursively find the best set of target sites. In order to achieve
this, sequence similarity andteraction strengths are used and the final group of target
sequences is assessed via backtracking. The arisen cluster of target sites is realigned and the

RNAplex alignment version is applied.

Generally RNAplex does not introduce groundbreaking innowmatito SRNA target
prediction. The authors stress that the strongest gain is on the level of runtime. They also
state that genome wide target predictions with other available tools, such as IntaRNA
(Busch et al., 2008), atienpractical. This observation mtibe viewed critically especially
from an applied angle, as a time difference of a few hours is not central if the quality of
predictions demonstrably increases. The comparative approach seems overly restrittive
complicated While the number of falsgositives can most certainly be anticipated to

decrease, the number of false negagiwill most likely increasdangside.
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3 Methods

3.1 The concept behind hintaRNA

The basic concept behind hintaRNA is that overlappinthRNA predictions for
homologos targets irdistinct organisms yield increased evidencedmdictionsbeing of
functional relevanceHowever, IntaRNA predictions yield energy scotbat are, due to
varying GGcontent and dinucleotide frequency, initially not comparable for different
organisms (Yakovchuk et al., 2006). A statistical model, based on probability values (p
values), seems promising to combine evidence from various sources. Naively one may think
that the pvalues of predictions of homologous targets in different organismnsd doe
simply multiplied to assess the joint probabilifjyst as 1/6 can beaised to the power of
three to obtairthe joint probability of rolling the same number with the dice three timas

row. This would, at least isome cases, certainly giveiso satisfying resultlearly, a

more generally applicable model is desirallenajor disadvantage of the nai method is

that itdoes not take the phylogenetiistance of the organisms into accoufitfor instance

a comparative prediction were te made in theaivefashion for three organisms and two

of these wer®f the Escherichia and oneof the Salmonellagenusit is obvious that without
weighting, no statistically and biologicallyogndresult can be attained. To this end, the
individual pvalues are phylogenetically weighted in hintaRNA, while the result of this
weighting is a phylogenetically weighted mean of all theajues for one group of
homologous targetdlowever as this is a mean it does not yet represent the result of a
multiplication of probabilities. Consequently this mean must be powered to a certain degree.
Here one also mayfirstly think that powering the -palue by the amount of participating
organisms is acceptablpist as in the example with the didéhis is basically ta same as
multiplying the individual pvalues just that the weighted meawglue is powered instead.

This would be correct in the case of all participating evéeing entirely independent.
Under inclusion of the biological background however, it isrcthat there is no complete
independenceas it is assumed that all organisms are descended from a common ancestor
(Darwin, 1859)Hence the weighted mean cannot, at least not in every case, be powered by

the amount of organisms in the analysis. The degredependence can be assessed by
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employing a function thadescribes the products of n uniform distributed random variables
between [0,1] which are in this case theglues (Bailey and Gribskov, 1998).

3.2P-values

Probability values (fvalues) are frguently used in statistical analyses, and describe the
probability of an event occurring by chandarthermore, gralues are randoraniform
variables between [0, Murdoch et al., 2008 Hence, pvalues can acquire values in the
range of 0 and 1 and tipeobability of an observed event occurring by chance is smaller, the
smaller the according-palue is.Here the event is an energy score predicted by IntaRNA
and the pvalue sheds light on the probability of a particular score being predicted by chance
or the probability to get a score better or equal to the score vidweaxtder to assess the
likelihood of a coincidental event an appropriate background model and a null hypothesis
(Ho) need to be established as a basis for the evaluation of chance. éncequalysis a
background model can be generated by shuffling the analyzed securebygefitting a
model to a dataset of several predictiolighe resultingp-value is smaller or equal to a
previously definedignificance levelthe result is statistdly significant with respect to #
P-values are also important to make the significance of results from different analyses
comparable. The raw tain this project are IntaRNA energy scqresich are useless if
evaluating predictions in an int@ecies approach as G€ontent anddinucleotide
abundance, whiclplay a central role in defining the energy of an interaction, can vary
between organisms (Yakovchuk et al., 20@8hally it must be stressed that thevgue is

the result of a statistical test,canot the result of a biological experiment. Hence, a geod p
value does not necessarily infer biological significare rather a biologically interesting

statistical result hinting at possible relevance (Mitrophanov and Borodovsky, 2006).

3.3Generalzed and Gumbel extreme value distributions

Extreme value distribution€&EVD) are a class of distributions from probability theory. They
can be applied to the modeling of the likelihood of extreme events, such as RNA folding
energies (Rehmsmeier et al., 20@r flooding events (Gumhe2004. These incidents can

be assumed to be extreme value distributed, asfédsing energies and floodings are
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considered rare and extreme. ConsequeattyEVD is a better model for these kinds of
occurrences, compared @aonormal distribution as the density of extreme events is sfall.
general extreme value distribution (GEV) is defined by three central parametersnocatio

( ©), scal e (U)ushiftsahe thcatom af the maximumi,changes the width of

the funct o n  aalters the behavior othe tal. The bigger U is, the

converges towards zero.

The cumulative distribution function is defined as

1

S NNG)

X
O AR =exp{ [1+RZ(
while the resulting density function:is

1
/(H)]R1 1exp{ 1+RX/{H R} ) (6)

. 1 X
Qu WA R = X[1+ RZ (

A specialized form of the GEV distribution is the Gumbel extreme value distribution. It

differs from theGEYV distribution in the detathat the shape parametetis) always zero.
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Figure 6 Gumbel distributioawith a variety of different location and scale parameters.
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Figure 6 shows how extreme value distributions vary untie influence of different
parametersThe location parameter clearly shifts the EVD tadgathe positive region when
enlarged while the width of the EVD increases withigger scale valuesn this project,
GEV distributions and Gumbel distribatis were used to model density distributiais

IntaRNA energyscoresand subsequently derivevalues from these.

3.4 Transformation of IntaRNA energies tevplues

Three approaches were tested to transform IntaRNA energiesvatugs.These are the
empiric approach omshuffled data, the fitting approach on shuffled data and the fitting
approach orunshuffled dataThe first empiric,approachcreated a background model by
shuffling the target sequences 10 times, while retaining the dinucleotide frequencies of the
shuffled sequenceshuffling wasperformedwith the shuffle program, which is part of
Sean Esquidypackagghttp://selab.jané.org/, accessed at 01/09/201intaRNA
predictions were carried out on the shuffled and unshuffled fdatall SRNAs from the
benchmarking datasesde paragrapB8.7) except for InvR Furthermore, no predions

were made folPectobacterium carotovorunserratia proteamaculansnd Yersinia pestis

and the MicAEscherichia fergusoniprediction was also not considered. Predictions for
OmrA were only performed fdE. coli, E. fergusoniiand Salmonellayielding a total data

set of 92 predictionsThe energies predicted for the shuffled data served as basis for

calculating pvalues for the nshuffled data as descridbén Equation?.

The pvalue, P(Eu), of a specific IntaRNA energy score Eu is defayed

0@ = 0 'OQ )

In this equationE is the total amount of shuffled IntaRNA energy scorBise @uation
shows the amount of predicted interactiongtms shuffled datavith an energy scorbetter
or equal to edtindividual, observed energy the unshuffled data, divided by the total

number of energies of the shuffled data.

Previous investigations of the statistical distributions of interaction energies (Rehmsmeier et
a., 2004, Schulz 2009) revealetiat predicted duplex energies follow extre value

statistics. In line with this, the secoa@proach for gvalue generation itting of a general
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extreme value distribution to the shuffled IntaRNA enesggres When fitted to thelata,

p-values can bedirectly obtained from the extreme valued i st r i buwmtlatnen 6 s

distributionfunction5.
The third approach is strongly related to the first one, as it also uses extreme value statistics

for p-value generation. This method solely differs in the,ft#wt it does not employ the
shuffled dataput rather fits the general extreme value distribution to the unshuffled (i.e.
genome wide IntaRNA predictiprdata. The whole genome predictioon unshuffled data

can also be employed as backgrommaldel, as most predictions have an arbitrary character
ard noin vivo relevance, as is the case for the shuffled dataset. Also, IntaRNA predicts

interactions for most sequences, which supplies a satisfying statistical mag(saele

supplementaryigurel or paragraph 3.6 for closer explanajion
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Figure 7 Red: density of IntaRNA energieblack: general extreme value curve fitted to the.dsbaolute

(i.e. positive) energy values were used for plotting reasons.

Figure 7graphically illustrates hovitting an exreme value distribution tanshuffled data
looks The red curve shows the densities of individual energies of the unshuffled data, while

the black curve shows the fitted density function.
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3.5Method ofleast squares

In general, the method is used to fit parameters of a model function to obtagstH# to a
dataset of observed values. Helee thethod ofeast squares a procedure with which an
estimation of the deviance between two functiesicalculated.Smaller suns indicate

higher similarity between compared functions

Z being the amoundf the analyzed data points, F being the calculated error garahg v,

being the respective data pointistwo functions
0= g (2 Q9% . (®

In this project the method of least squavess employeda asses the similarity ofthe
empiric distributionfunction and the ideal distributiofunction 11, in order to retrievees;.
The evaluation of uniformity of the distribution of the initiavplues was also carried out
with this methogusing pvalues of 92 individual single orgesm IntaRNA predictiongsee

paragraph 3.4 for details)

3.6 Weighting and multiplication of pvalues according to
phylogeny, and retrieval &« using the Bailey & Gribskov function

for products of independenhiformly distributed random variables

Statistically speaking, thgint probability, Z,, for n evens occurring is the product of the
probabilities of the separate event€curring individuallyunder the assumption that all
events are statistically independésee Euation 10) This can be apiged to the pvalues
generated from the IntaRNA energies, by multiplying thealues of predictions of
homologous targets in distinct organisms. However, as not all the organisms in an analysis
are necessarily equidistant from each othed the events arnot totally independent,
measurs of distance and dependence r@guired.An alignment (emma) (Rice et al., 2000)

of genome 16slinker-23s regions (Fig.)8from each participating organism, serves as basis
for the subsequent calculation of a distanegrix, using the Juke€antor model (Jukes and
Cantor, 1969).

19



Methods

|lza4s500 2449600 2450400 |z451200 2452000 |zas52500 |z453600
{ N |
rr rrn23isa 6E03L29 33a
T N N 0 [ | A LTI T TIIm |
N | T A A T (R Y
I N 1 T Y W TR

Figure 8 Yellow marked genomic 1dker-23s region ofSynechocystisp. PCC 6803n Artemis genome
browser(Release 13.2.qRutherford et al., 2000)

The individual pvalues P,are expoentiated with their contribution to the distance matrix,
M[P.], divided by the total size of the distance matrix, M[all], and then multiplied with each
other. The individual contribution of an organism to the distance matrix is the sum of
distances of onerganism to each of the other organisms, while the total size of the distance
matrix is the sum of all its entrieShis yields a phylogenetically weighted meahthe

combined pvalues (see paragph 7.1 for a specifiexample).

P.y = PlM[Pl]/M[aII] * & *nM[PpyM[an] . (9)
Bailey and Gribskov (Bailey and Gribsko998) introduced a function (llwhich
describes the cumulative distribution of probabilities of the products of n independent,

uniformly distributedrandom variablebetween 0 and 1ding smdker or equal to their own

value

Let B be a uniform in the interval [0,1] distributed random variable. Then, the product of n

of such random variables is defined by:

@ = B%,0q0, (10

under the assumption that ajldPe statistically independent.
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Theprobabilitythatzhas an o b s p P, ®p),iswiaen bye O

o = ABhd—0, (1)

In this project the pvalues satisfy the conditions given above and consequémgy
function is employed in order to find the degree of dependdagebetween the separate
entities (i.e. organisms) in theIntaRNA analysis. As function l#lescribes how the
distributions resulting from products of individumidependenp-valuesshould ideally look,

it can be used to compare the actual dat&ctos retrieved in a manner very similar to the
previously described method employed in the comparative approach in RNd\ligbe
paragraph 2.6JRehmsmeier et al., 2004). The product of the exponentiateluges is
exponentiated with the potentiak; (i.e. k )

P & Pai®®, (12

and the resultingalues are used to generate function values for an empiric funetioch
is then compared to functidrl. The empiric probability P(R), of aspecificp-value ,R, is
defined by:

. 0
), = - , (13
% z (13

CA

The empiric function values are compared to the affilif®edtion values from function 11

and the errors are evaluated with the method of smallest squares.
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Figure 9 Comparison of empiric (red) and idealgtk) functions for the likelihood of productsuaiiformly
distributed , random variables between [0,1]

The k ielding the smallest error in the comparison of function \&laahekes which is
consequently used for the calculation of the finadlajues.The data used to assdgg for
each cluster of genes, are the joirtgiues from every possible cluster in the range of n
down to two, whilekess is assessed for each cluster individuafygure 9illustrates the
comparison ofdistribution function (11) (black) to the empiriccumulative distribution
function (red) visually. In this case the correkts is kets = 2. Similarity of function values
can also be visualized by plotting the fuootvalues against each otheigF10). The pld

yielding the straightest linendicatesthe two functions with the most similar function

values.
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Not every gene has homologs in each of the other organisms in the analysis. If, for instance,
the analysis comprises @f organisms, many genes will be present inralbrganisms,
however those only presentrirl or lessorganisms complicate the matter, as therenaoee

than ndifferent combimations of these cluster§he previously described analysis must be

carried outfor each possible cluster < n
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Figure 10 Empiiic cumulative densitjunction values plotted against functibh values.

A problem resulhg from these smaller clusteisthat prokaryotic genomes are frequently
comprised of approximately 4000 genes, making it intrinsically obvious that clusters will
lack the statistical magnitude needed, the more organisms participate in an analysis. The
problem ofinsufficient statistical power in smaller clusters can be elegantly solved by
extracting subclusters from the bigger clusters. A cluster of five, for deamgntains the
information of all possible clusters of four and smaller. It only needs to be stripped of the
genes not needed in order to create the smaller subclusters or pseudo clusters. These pseudo
clusters are not regarded for the final outpuit are crucial to achieve a statistically
significant populationSupplementary igure 1, shows that a sample sizel®00 random
variables between [0,1] results in an acceptable uniform distribufi@s. minimum level
sample size is always met and mostigngiicantly oversteppedlhe procedure of creating

pseudo clusters is aidég the Math::Combinatorics Pariodule.
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3.7Benchmarking dataset

The Benchmark was executed on 7 Howevepmt i ment
onl y t h e ths éagdsBumed to be the stretch 200 nt upstream of the start codon,
was used, but also 100 nt downstream of the
sequences of 300 nt per genH. the verified targets43 areE. coli (NC_000913), 29 are
Salmonella(NC_003197) and two ar8ynechocystisp. PCC 6803 targets. A total of 34

different SRNAs were tested (Supplementary table 1). The organism counts varied between
different analyses. ArcZ, CyaR, FnrS, GevB, GImZ, MicA, OmrB, RprA, RybB and Spot42

were analyzé with eight input organismgNC_000913 NC_ 011740, NC_003197,
NC_009792 NC_013716 NC_012917 NC_009832,NC_003143) ChiX, DsrA, MicC,

MicF, OxyS, RyhB and SgrS were each analyzed with five organisms (NC_000913,
NC_011740, NC_003197, NC_009792, NC_01371é8s was SyR1 (NC_000911,
NC_010296, NC_010546, NC_ 011729, NC_013161). OmrA was analyzed with three
organisms (NC_000913, NC_011740, NC_003197) and InvR with two organisms
(NC_003197, NC_003198).

The results of the hintaRNA analyses were evaluated indilhdand were also compared

to single IntaRNA predictions as a measure of improvement.

Organism namend strain RefSeq ID
Escherichia cok-12 MG 1655 NC_000913
Salmonella enteric€T18 NC_003198
Salmonella typhimuriurh T2 NC_003197
Synechocystisp. PCC 6803 NC_000911

Escherichia fergusomiTCC 35469 NC_011740
Citrobacter koseATCC BASB95 NC_009792

Citrobacter rodentiuniCC168 NC_013716
Pectobacterium carotovorui@C1 | NC_012917
Serratia proteamaculans68 NC_009832
Yersinia pesti€092 NC_00343

Microcystis aeruginosNIES343 NC_010296
Cyanothecsp.ATCC 51142 NC_010546
Cyanothecsp.PCC 7424 NC 011729
Cyanothecsp.PCC 8802 NC_ 013161

Table 1: List of organismsmployedfor the benchmarking dataset with organism name/strain and RiEfSeq
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3.8Datasets in analyses of novel SRNAs

Several analysesnocsRNAs not contained in the Benchmarking dataset were executed. The

Agrobacterium

analyzed.

Organism namend strain RefSeq ID
Agrobacterium tumefacien858 NC_003062
Rhizobium etICIAT 652 NC_010994
Sinorhizobium meliloti021 NC_003047
Vibrio cholaeradN16961 NC_002505
Vibrio harveyATCC BAAL116 NC_009783
Vibrio parahaemolyicuRIMD 2210633 NC_004603
Vibrio splendidutGP32 NC_011753
Vibrio vulnifitsCMCP6 NC_004459
Acaryochloris marinéBIC11017 NC_009925
Gleobacter violaceuBCC 7421 NC_005125
Nostocsp.PCC 7120 NC_003272

tumefaciensAbcR1 and AbcR2 sRNAs(organisms: NC_003062,
NC 010994, NC_00304y7)the Vibrio harvey Qrrl sRNA (organisms: NC_002505,
NC_009783, NC_004603, NC_011753, NC_0044&%)Jthe Anabena spPCC 7120 NsiR1
and NsiR3(organisms: NC_007413, NC_014248, NC_010628, NC_0032RR)As were

Table 2:0rganisms employed in further analyses of SRNAs with organism/etiaieand RefSeq ID.

3.9DAVID functional annotation

Functional annotation for gene listghich are acquired as results of hintaRNA predictions,

can be analyzed using tliatabase foannotation,visualization andntegrateddiscovery

(DAVID) (Huang et al., 2009). Due to the fact that SRNA€pfact as global regulators in

regulatory networks, functional enrichment of top hits (i.e. top 50) is a method to extract

information about the regulatory processes an sRNA may participate in. In order to be

enriched, asubset of genesiust be overreprested compeed to a background. Concretely

for a group of genes to be enrichékis means that the percentage of genes of a certain

functional group must be significantfy wi t h

respect

t o,

for

exam

higher in thesubsetcompared tohe percentage of this class of genes represented in the

background. The background in this projact all genes derived from a single organism for

which IntaRNA interactionsan be predictecand homologous genes in other organism are

presentThe gene idetifiers employed in our case deatrez Gene IDs. Yet, DAVID allows
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the use of several other common identifigka.important value in tb enrichmenanalyss
is the enrichment scoxd an enriched clustevhich is definedaét he geometri c me
the enrichment® al ues of each ann o(ciaton foom Hiaegremab | n t
2009) whilethe pv al ues ar e <cal cul at éddangwet d|. btateRhats her 6 s
enri chment scores O 1.3 are of siresscthattgeree d s
clusters with lower enrichment scores should not necessarily imesdisd All enrichments

were executed with standard parameters.

3.10Quality clipping before fvalue combination

Preprocessing the data in order to improve predictionsisgeomising Preprocessing in

this case means that single organism predictivalpes that are bigger equal to 0.8 are

Acli ppedo from the initial prediction. The i
from clusters which may show conservation of SRNA regulation only for some of the genes

in the cluster. In order to assess the potential of this preprocessing method, hintaRNA
clipped predictions were taken out for the whole benchmarking dataset andgankere

evaluated in comparison tdntaRNA predictios without clipping.

3.11 Implementation overview

In the following, the implementation of hintaRNA shall be explained. Detailed methodology

is explained in the preceding paragraphs.

hintaRNA has a modar character, and is split into liddividual Perl scripts. All these
scripts are successively executed by a master s@rgphology intaRNA.pl) The input
arguments are firstly #&astaformatted file containing the sRNA homologs, secondly the
number of mcleotides upstream and downstream of only the start codon or upstream of the
start codon and downstream of the stop codon respectively, depending on the specification

of the region for which the prediction shal/l
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Exanple Abstraction

perl [script language]
homology_intaRNA.pl [program]

0680a.fasta [SRNA homologs]

200 [upstream start codon]
50 [downstream start codon]
16Slinker-23S.fasta [molecular chronometer]
Sutr [MRNA region]

NC_008686.gb,NC_008687.gh| [chromosomes org. 1]
NC_007493.gb,NC_007494.gb| [chromosomes org. 2]

NC_009428.gb [chromosome org.3]
NC_003047.gb [chromosome org.4]
NC_008209.gb [chromosome org.5]

Table 3 Exemplary isualization of input arguments fol5aé U MiIRRaRNA araysis.

Furthermore, a fastdormatted filecontaining a molecular chronometer (i.e. -1@sker-

and 23gegion, Fig. § of the input organisms and RefSeq files of the chromosomes and
plasmids of the respective organisms mustiygplied (Table B An example calbf the

script is presented in the appendseé paragrapfi.3 hintaRNA user manudl Standard
Operating Procedure (SOPBenerally the work flow of the program can be split into two
major processes. First, the genome wide IntaRNA predictions for eaclAra&iNience are
made, and the energies calculated by IntaRNA are transformed-uatioigs derived from
generalized extreme value distributions which are fitted to the IntaRNA energies (Fig. 7).
IntaRNA parameters are a seed of at least seven consecytanady bases, a window size

of 140 nt for ED value computation and a maximum distance of two paired bases of 70 nt
(IntaRNA webserver standard parametet§xhe analysis is run on sequenca#sdifferent
length a length normalization of the energiesakdn out, following the ninciple presented

in RNAhybrid, with m and n being the lengths of the mRNA and the sRNA respectively
and e andgbeing the IntaRNA energy score and the normalized energy, seepectively.

, Q
Q = . (14)

In(G¢)

For the initial step to be executed, the sequences of interest enpatded from the RefSeq

files, which in this case depends on the Perl Bio::SeqlO modiien the raw IntaRNA
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outputs are processed into a more prattcomma separated file format to which the p

values are added.

Input: Organisms and selected sequences (1]

1/
Program: homology IntaRNA (7

inoracionswin oA
TN

T et s
" i g

Output (3]

Figure11: hintaRNA flow chart*Explained in 3.4**using MBGD (Uchiyama et aJ.2010)cluster table,
***E xplained in 3.6.

Calculation of pvalues is achieved by using thesRatistics &ir package.Addition of R

code into the Pertode was realized utilizing the Statistics::RrIPmodule. The single
organism predictions are the basis for the second part of the work flow. In this part, single
predictions of homologous target sequencesmfrdistinct organisms are combined.
Homology between target genes is assessed, by application of a whole genome homology
table calculated on thklicrobial GenomeDatabase for Comparative Analysis (MBGD)
webserver (Uchiyama et al.,, 2010), which initially limés a BLAST alagainstall
approach. If several genes from one organism are homologous only the gene yielding the
best interaction energy is used for further processing. For the combinationatigs a
distance matrix from the l@mker-23s regions bthe participating organisms is calculated

by firstly aligning the fasta and secondly creating the matrix with the Jo&etor method
(Jukes and Cantor, 1969). Alignment (emma) and distance matrix (distmat) software were
both taken from the EMBOSS paclka(Rice et al., 2000). For the combination efglues,

the first step is to calculate the contributions of each organism to the distance matrix and

exponentiate the-palue with this contribution. The contribution in this case, is the quotient
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of the contibution of the considered organism, and the contributions of all organisms in the
analysis. This step yields a somewhat weiglgedmetric meaif the combined jvalues.

After the initial combination, the degree of dependelke® (n the analysis is agssed and

final joint p-values are calculated following a method presented by Bailey and Gribskov
(Bailey and Gribskov, 1998). The final output iBlataRNA scoresorted, comma separated
file, which also contains an annotation, Entrez Gengifhieractionsite detailsand the
IntaRNA single prediction energgnd pvalue of the predicted target$:urthermore, the
sequences adhteracting regiondor the respective organisms and mRNAs are supplied in
FASTA files (*.interacting.fa) For clarification reasons detailed, concrete example of a
hintaRNA analysis for aSynechocystisp. PCC6803 SyR1 target is presented in the
appendix A detailed explanation of the outpgtsupplied in paragraph 7.5.

29



Results

4 Results

4.1 Results of the technical analyses

The first pat consists of the resultterived fromthe technical analyses leading to the final

implementation of hintaRNA.

4.1.1Analysis of uniformity in initial pvalue distributios

The theory behind functiofl is based on uniform distributed random variabletsvben

[0,1]. In order to test if this holds true for thevplues obtained from the IntaRNA energy
scores, the distributions of the initialvalues were tested against a uniform distribution,
employing the method of least squaregure 12shows the redts of the test of uniformity
concerning the distributions of the initiaivalues. The box plot illustrates that thergdues
generated by fitting general extreme value distributions to the IntaRNA energies have
smaller squared erro devianceswhen ompared to a uniform distribution, than those

generated by thempiric method for pvalue generation.

4000
|
o
0o

3800
00

3600

3400

3200

R T—

T T T
empiric shuffled fit on unshuffled fit on shuffled

Figure 12 Box plot of the results of the method of smallest squares on initi@up distributiongor 92 data

sets.
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This means thahe distribution of p-valuesderived fromthe fitting methodshow stronger
uniformity. The fitting method on unshuffled data (i.e. genome wide IntaRNA predictions)
is used in the final implementation of hintaRNA due to the major reduction in runtime

without the shufflig process beinmcorporated

4.1.2 Parameter comparistor EVD fits on shuffled and unshuffled

target sequences for different SRNAs

In order to assess possible differences between the EVD parameters for shuffled and
unshuffled target sequences, the EMDar amet er s ( 6, a, U) of
predictions on shuffled and unshuffled targets, were plotted against each other. Linear
dependencies indicate that shuffling does not change any parameters intrinsic to the target
sequencesPlotting (Figs. 13L5) , reveals a I|linear dependenc)
clearly shows two clusters. The first clust:¢
linearly correlated, while the second group clusters around O for the unshuffled data. This
indcaes t hat one class of sRNAs seems to folloc
group shows general EVD behavior. The shape parameters for the shuffled data do not
cluster around 0O, indicating that shuffling changes a property of the target mRNAiféad s

Gumbel EVDs to general EVD3his is a interesting observation, however as the final

implementation is realized with unshuffled data, this shift is not of major concern.

mu plot

huffled
(=5

Figure13: Plot of location (1) parameters against each other for shufflediashuffled data.
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sigma plot

huffled
24
1

sigma unshuffle:

16 18 20 22 24 26 28

sigma shuffled

Figure14 Pl ot of scale (0) parameters against each othe

xi plot

i unshuffled

-016 -014  -012  -010 -008 -006 004 -002

Figure15 Pl ot of shape (U) parameters, here denoted as

4.1.3Runtime

The runtime of hintaRNA is greatlyothinged by the runtime of the InRNA single
organism predictionsThe target sequence parsing also takes up a mebtgopart of the
calculation.The hintaRNA benchmark prediction odyR1 targets for instance, takes 182
minutes with NC_01P96 having the higkst abundance gotentialtarget sequenckgenes
(6312 andNC_010546having the longest version of SyR1 with 161 hhe benchmark
prediction for GcvB targets takes sificantly more time, lasting 28Iminutes. Here
NC_009792has the most potential tatgg4980 andthelongest SRNA sequende that of
NC_000913with 202 nt. Table 4 shows the runtimes, sequence lengtitorganism cours
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while the average amounf target sequencgser organismwvas ~4500 (length 300 nfpr

the benchmarking dagat

sRNA namg longest sSRNA versig # Organisms| Runtime (min)
GcevB 202 nt 8 281
FnrS 128 nt 8 159
MicA 73 nt 8 100
CyaR 91 nt 8 114
RybB 80 nt 8 116
Spot42 110 nt 8 148
ArcZ 127 nt 8 168
SyR1 161 nt 5 182
OmrA 88 nt 3 83
InvR 91 nt 2 83
ChiX 84 nt 5 85
DsrA 89 nt 5 95
MicF 94 nt 5 102
OxyS 111 nt 5 111
MicC 110 nt 5 123
SgrS 243 nt 5 305
OomrB 95 nt 8 120
RprA 106 nt 8 137
RyhB 91 nt 5 100
Glmz 223 nt 8 292
Table 4:Run times for the benchmark dataset. The run times were obtained usiegy p e r | iti medo col

the start and the end of the master script (homology intaRNA.pl) and calculating their difference. The
processors the calculations were executed on are-Quade A MD 08878pracessois with 2411 Mhz
and 512 KB cache

A detailed complexityanalysis was not performed but the data mbl€ 4 allows an
informed estimation of expected runtimes depending on sRNA length and genonizusize.

to the pseudo clust calculation (described paragraplt8.6), analyses including more than
ten organisms become increasingly large, consequently leading to impracticability with
respect to the runtimelhe total numberof clusters, ¢, to be calculated in a hintaRNA
analyss of n organisms is defined as follows:

£l

0= B gy + (19)
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Parallel computation on multipleoresis enabledfor the IntaRNA single organism
predictions. he amount of cores used is the same as the amount of organisms participating

in the analysis. This feature greatly ueds the total runtime of hintaRNA.

4.1.4Benchmark

When developing refined algorithms for the prediction of biological processes, the central
result is always the benchmark, as it clarifies if the refinements to already present methods
were successful anot. In this case, the histagn of rank frequencies (Fig. L@lready
reveals thadvantagef hintaRNA (blue boxesdver the single organism predictions made

with IntaRNA (green boxesjlone

[ == _
(3]
E ]
§ hintaRNA
g 24 L = IntaRNA
(=2 —
2
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[ [ I [ I ]
0 20 40 60 80 100
rank
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g' |
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o B [ntaRNA
L o
. :i:LFI—LJ:”_h-r»- O P e o s & oo o oo ¢
[ [ [ [ 1
0 1000 2000 3000 4000
rank

Figure 16 Histograns of the frequencies of predicted rank hintaRNA (blue) and IntaRNA (green)
predictions. The first plot shows a magnification of the second plot. The ranking was defined by hintaRNA

score and initial gvalue for hintaRNA and IntaRNA respectively.
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The histogram in Figure 16 showhe abundace of individual ranks for experimentally
verified 506UTR targets. The abundance of <co
vastly greater in hintaRNAConcretely, IntaRNA predictions on the 74 experimentally
verified 56UTR .tla9%)tre mositivegni the ltod terl, while(hintaRNA
doubles this number consequently placing 28 (i.e. 37.8%) targets in the top 10, six of these
being on rank oneThe subsequent ranks, up to rank 25 also show more hintaRNA
predictions, while the latteranks show higher abundance of IntaRNA predictiofise
unmagnified histogram clearly reveals that not all predictions reside within the top 100. 41
(i.,e. 55.4%) IntaRNA predictions exceeded the rank of 100, compared to 30 (40.5%)
hintaRNA predictions. Geerally, the ranks of51 predictions (i.e. 68.9%) improvby
application of hintaRNAwhile 23 (i.e. 31.1%) target predictions glot improve oworsen

Yet, this number olunimproved predictions is artificially declined due to other correct
predictions otranking previous predictions.

The Benchmark dataset did not only yield information pointing at the pakeati
hintaRNA. Further analysis of the resufisggested a multitude of novel targets for SRNAs
for which many targets have already been verjftad were not part of the benchmarking

datase({see paragraph.2.1)

4.1.5 Clippedenchmark

The results of the benchmark on the preprocessed single orgaviglmes aresupplied in

the supplementary dble 1. The numberin the Table,as well as the hiegram of rank
frequencies clearly shows that no maijorprovement was achieved by pkpping the

data. In most cases the pretthns remained the same were worse In this context, pre
processing does not seem to be a viable practice. Furtheroloser investigation of
possible corruption of the statistical model would have been necessary if the benchmark had

shown better resdts. In this case however, peiipping can simply be disregarded.
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Figure 17 Histograns of the frequencies of predicted kanin hintaRNA (blue) and clipped hintaRNA (green)
predictions. The first plot shows a magnification of the second plot. The ranking was defined by hintaRNA

scores.
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4.2 Application of hintaRNA

The second part consists of the resdésved fromthe application of hintaRNA

4.2.1Extended analysis of theebchmarking datasétGcevB,
Spot42,RyhB and RybB

The dataset the Benchmark was executed on, generated additional data suggestyeq
unconfirmed targets irE. coli and Salmonella especiallyin the context of functional

enrichmen{see paragraph 3.9)

The hintaRNA prediction fothe Salmonellaand E. coli GevB sRNA, which plays an
important regulative role imamino acid synthesis aramino acid transporgSharma et al.,
2011 Pulvermacher el., 2008, yielded manyew putative targets

Functional enrichmenbf the Salmonellatop 50 showd increased abundance of genes
related to amino acid synthesis and transpdew putative targets clusteredth genes
already reported as GcevB targetdhieTnew putativesynthesis relatethrgets are stm0680
(asnB, stm1723 {fpE), stm2384 &roC), stm1196 &cpP, stm1578 farY), stm1725{fpC),
stm3161 (etQ and they cluster with the verified targets stm3908C], stm1299 gdhA)
and stm3903ilYE). StmPD09 ifK) and stm0150&roP) are two novel putative transport
associated GcvB targets. They clustewith the verified targets stm3564vK), stm4398
(cycA), stm2355 &rgT), stm1746.sqppA and stm0399urnQ).

Clustering of theE. coli top 50 yieldeda major group of amino acid biosynthetic process
relatedgenes, consisting of 17 entries with a high enrichment score of Bldst of these
are already reportetiowever,b1385 {eaB and its homolog irBalmonellastm1524 ynel)

appear to bget unreportd GevB targets.

TheE. coli Spot42 sRNAtop 50 predictionsgisplayed strong overrepresentation of genes
thatare important in the citric acid cycle. The enrichment score of the cluster containing the
verified Spot42 target b072@l{A) and the putative tgets b0728 qucQ, b0116 [pd),

b0721 6dhQ and b1136i¢d), is 2.29.Furthermore the predicted interactionere mainly
located in the single stranded regions of Spot42, which are important for base pairing with

target RNAs (Beisel and Storz, 2011Alignment analysis of the respective target
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interaction sites, revealesequenceconservation(Fig. 18. Sugar transport related genes

were also enriched with an enrichment score of 1.29.

iod gita
cko_03256 e e e .
rod_01221 SImO730 e
efer_D137 pet_ 1231 -
Ll ypo1108 s
stm0154 cko_02439 L
sl spro_1262 Bl
pol_3566 rod_07181 —
ypo3di7

ypol115 rod_ 12261

pel_1238 pel_1872

afer_2385 stm1238

cko_02431 ypol641

bO728 cko_01835

spro_1269 efer_1794

stmO738 b1136

rod_07251 spro_2025

Figure 18 Alignments ¢reated withemma(Rice et al., 2000Q)of theinteracting regions on thpd, gltA, sucG
icd target mRNAswith locus tagscko: Citrobacter koserirod: Citrobacter rodentiumefer. Escherichia
fergusonij b: Escherichia coli stm: Salmonella typhimuriumspro: Serratia proteamaculanspcl:
Pectobaterium carotovorumypo: Yersinia pestisThe letters in red shoidentical residues, letters in green

show similar residues, letters in black show different residodsTs are Us in RNA context.

Another interesting result is the hintaRNA prediction Eorcoli RyhB. Besides the verified
targets b4154f(dA), b0722 ¢dhD and b1612 fumA (Richards and Vanderpool, 2011)
being located at positions 10, 24 and 32 respectively, functional enrichment showed high
abundance of metddinding affiliated genes, yiding a cluster of 14 genes with an
enrichment score of 1.35, which fits directly into the scope of already reported RyhB
functions. While all genes in the cluster are certainly interesting, the mosinsirikew
potential targets are b3366iiB), b0156 érpA) and b3867HemN as they show predicted
interactions with RyhB in which the SBequence and the start codon are occluded by base

pairing with the SRNA.

Closer investigation of th8almonellaRybB hintaRNA analysis indicated the presence of
an outer membrane proteinargeted by RybBThe interaction was subsequently verified

experimentally §ee paragrapt.2.3).
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4.2.2Novel predictions for SRNAs AbcR1 & 2, Qrrl, NsiR1 & 3

In order to assess potential functions of the sRNAs AbcR1&2, Qrrl and NSiR1&
hintaRNA predictions were carried out for all three sRNAs and the results were

subsequently analyzesinploying the DAVID functional enrichment tool.

Table 5shows the top 15 hintaRNA predictions fire AbcR1 sRNA in Agrobacterium
tumefaciensThe verifed AbcR1 target atu2422, heo@a rank 32 (not shown in tablg,5s

an ABC transporter.

hintaRNA scor{ NC_003062 Annotation

3.473395e06 atu3487 | ABC transporter substrate binding protein (sugar)

3.484135e06 atu5280 | Hydrolase

1.810383€05 atu3076 | uracil transport protein

4.233513e05 atu2737 | Oxidoredutase

8.595159e05 atu2493 | forms a tetramer composed of 2 alpha subunits and 2 beta subu

1.129300e04 atull74 | pyrophosphateenergized proton pump

1.719447€04 atu3198 | ABC transporter substrateinding protein (ribose)

1.753479€04 atu3485 | short chain dehydrogenase

1.798424€04 atu4550 | Lacl family transcriptional regulator

1.964779e04 atub071 | ABC transporter substrate binding protein (dipeptide)

2.050593e04 atu4123 | ABC transporter subsate binding protein (branchedmino acid)

2.222805e04 atu4537 | ABC transporter membrane spanning protein (amino acid)

2.244232e04 atu3253 | ABC transporter substrate binding protein

2.894201e04 atu3114 | ABC transporter substrate binding protein (atlg

3.412708e04 atu2296 | 2-dehydro3-deoxygluconokinase

Table 5 hintaRNA top 15 predicted targets for AbcR1 sRNAgrobacteriunmtumefaciens.

Due to the fact that SRNAs are often included into specific regulatory networks and affect
MRNA targets wih similar protein products, it is very striking that eight of the top 15
predictions for AbcR1 aralso ABC transportersThis hints at the quality of the prediction
for AbcR1, not only with respect to many of the targets belonging to the same group of
geres(i.e. being functionally enriched)ut also with respect tan already verified target
(atu2422) also being an ABC transporteFurthernore DAVID functional enrichment
repoted enrichment of genes relatéal periplasmatic space, cell envelope and exslern
encapsulating structure for the top 50 hintaRNA predictions with an enrichment score of
2.91. An enrichment of the top 50 predictions tioe Agrobacterium tumefaciendbcR2
SRNA rendered a cluster with genes related to the same cellular structuresitiowt
reduced enrichment score of 1.34.
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The hintaRNA prediction for th&ibrio harveyi Qrr1sRNA ranks the knen targetluxO
(vibhar_0295% on rank two, whilduxR (vibhar 00157, also a known Qffr target, is not
correctly predicted and is ranked on pi@si 1119. Functional enrichment of the top 50
resulted in strong representation of sugar metabolism with an enrichment score of 2.49. Cell
membrane, envelope and transport related genes were also enriched, yielding an enrichment

score of 1.09.

The Anabenasp. 7120 NsiR1 top 500f the predicion yielded an overrepresentation of
vitamin and nitrogen metabolic process associated genes with an enrichment score of 0.76,
while the NsiR3 prediction showed stronger enrichment of peptidoglycan related genes with
anenrichment score of 1.68urthermorepatU3 (alr0101) andnvB (alr0819) were highly
ranked in the NsiR1 predicn.

4.2.3STM1530 is a novel RybB target 8almonella

The STM1530::GFP fusion experimerfperformed by Dr. Kai Papenfort from Uni
Wirzburg)verified the interaction between tBalmonellaSTM1530 mRNA and the RybB
sRNA. The western blot (Fig. 2@learly revealshat the regulation is negatiead based on
RybB presence, as no down regulation of GFP expression is visible in the RybB mutant
(RybB-M2).

182 218
I
stm1530 5' -CCC..AUAAG UAA C AAA AU A GUUAU...GGC -3
ACAAA GG AUAU GA AAAAGUAGUGGU
111 O e TR
UGUUU CCUGUA UU UUUUCGUCACCG
RybB 3'-UUU..CGAGG UAC C GU C -5
I I
33 1

Figure 19 Interaction of STM1530 mRNA (black) and RybB sRNA (red) as predicted by IntaRNA
(energy =16.438 kcal*moat). AUG (yellow box)located at 20203 on the mRNA.

Furthemore the western blahows that the central interacting region of RybB (R16TOM)

is the same region, which interacts with the other, already earlier verified (Papenfart et al.
2010) RybB targetseventhough thedown regulation does not seem to be asgtras with

the full RybB sequenceThese aut hors suggested that t h

interaction site on the target sequence, in most cases, initially consists of an adenosine. This
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does not hold true for STM1530, where the interaction is flaiked3 6 guani ne on
mMRNA (Fig. 19.

Figure 20 Western blot of the STM1530::GFP fusion experiment. RybB showing the GFP amount under
RybB expression, R16TOM showing the GFP amount if only the R16TOM region (Papenfort et al. 2010) of
RybB is expressednd RybBM2 showing the GFP amount in a RybB mutant sequence. GroEL is a protein
used as standard to show the average protein abundance. The experimental procedures (Urban and Vogel,
2007, Towbin et al., 197pwere done externally, in collaboration wibin. Kai Papenfort (Wirzburg).
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