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Zusammenfassung

RNA und Proteine sind zwei bedeutende Biopolymere. Es wird allgemein angenommen,
dass die Strukturen von RNA-Molekülen und Proteinen eindeutig durch deren Sequen-
zen bestimmt werden. Die Struktur eines Biomoleküls ist wiederum zur Ausübung seiner
biologischen Funktion notwendig. Durch diskrete Strukturmodelle, welche eine abstrakte
Beschreibung der molekularen Struktur geben, werden theoretische Studien am Compu-
ter ermöglicht. In dieser Arbeit wurden RNA-Moleküle als RNA-Sekundärstrukturen und
Proteine als Strukturen auf einem Gitter repräsentiert. Der Strukturbildungsprozess von
Biopolymeren wird entscheidend durch die Eigenschaften und die Topologie der Energie-
landschaft, welche der Faltung zu Grunde liegt, bestimmt. Typische Eigenschaften der
Energielandschaften, wie beispielsweise die Anzahl der lokalen Optima, die Verteilung der
Basins, aber auch die Übergangszustände zwischen den Optima, können hervorragend
durch sogenannte Barrier-Trees veranschaulicht werden. Barrier-Trees bieten eine redu-
zierte Darstellung der Energielandschaft und ermöglichen dadurch die Untersuchung der
Faltungsdynamik von Biopolymeren.

Im Rahmen dieser Diplomarbeit wird ein generischer, problemunabhängiger Ansatz zur
Berechnung von Barrier-Trees vorgestellt. Im Gegensatz zu vorherigen Ansätzen basiert
er nicht auf vollständiger oder teilweiser Aufzählung von Strukturen, da diese Methoden
aufgrund des begrenzt verfügbaren Speichers auf kleine Moleküle beschränkt sind. Um eine
gute Annäherung für den Barrier-Tree der Energielandschaft zu erhalten, wurden zufällige
Wege zwischen lokalen Minima gesucht. Dieses Durchsuchen des Konformationsraumes
wird als Sampling bezeichnet. Die dadurch über die Energielandschaft gewonnenen Infor-
mationen wurden genutzt, um den Barrier-Tree parallel zum Sampling zu konstruieren.
Ansätze, welche auf Aufzählung basieren, erlauben es, den exakten Barrier-Tree für Mo-
leküle beschränkter Größe zu berechnen. Um die hier vorgestellte Methode zu überprüfen,
wurden für solche kleinen Beispiele die mittels Sampling berechneten mit den exakten
Barrier-Trees verglichen.

Zwei Beispiele von RNA-Molekülen ergaben eine vollständige Übereinstimmung zwischen
den berechneten Barrier-Trees. Dies deutet darauf hin, dass mit dem Sampling-Ansatz
sowohl alle lokalen Minima als auch der exakten Barrier-Tree einer Energielandschaft be-
rechnen werden können. Zwei Beispiele von Gitter-Proteinen zeigten, dass durch die in
dieser Arbeit vorgestellte Methode der untersuchte Konformationsraum nicht auf bestimm-
te Regionen beschränkt wird. Es wurden mehr lokale Minima als in vorherigen Studien
gefunden und die erhaltenen Barrier-Trees deckten einen größeren Bereich der Energieland-
schaft ab. Die erlangten Ergebnisse weisen darauf hin, dass eine Strategie, welche teilweise
Aufzählung und Sampling kombiniert, die besten Ergebnisse versprechen würde.



Abstract

The structures of RNA molecules and proteins, which are both important biopolymers,
are commonly assumed to be uniquely determined by their sequences. The structures
of these biomolecules are in turn necessary to carry out the molecules’ biological func-
tions. Discretized structure models provide a coarse-grained description of the molecular
structure, which is necessary to perform computational studies. In this research, RNA
molecules were modeled as secondary structures for RNA, and proteins were modeled as
self-avoiding walks on a lattice. The structure formation process of biopolymers is cru-
cially determined by the properties and the topology of the underlying energy landscape,
in which the folding proceeds. Typical characteristics of the energy landscape, like the
number of local optima, the basin distribution as well as the transition states between the
optima, can be visualized by barrier trees. Barrier trees provide a reduced representation
of energy landscapes, which can be used to study the dynamical behavior of biopolymer
folding.

The research described in this thesis aimed to present a generic, problem-independent
approach for the generation of barrier trees. In contrast to previous studies, the approach
used did not rely on exhaustive or selective enumeration, which is limited to smaller
molecules due to the amount of available memory. In order to find a good approximation
for the barrier tree of the energy landscape, walks between local minima were sampled by
random and adaptive walks. The information determined about the energy landscape was
used to build up the barrier tree during the sampling. Approaches which are based on
enumeration allow to compute the exact barrier tree of an energy landscape for limited
molecule sizes. To validate the presented method, the barrier trees resulting from the
sampling were compared with the exact ones for such small instances.

Total agreement between the resulting barrier trees was obtained for two examples of RNA
molecules, which indicates that the sampling approach can be used to compute both all
local minima and the exact barrier tree of an energy landscape. Two examples of lattice
proteins showed that the presented method does not restrict the investigated conformation
space of the energy landscape to certain regions. More local minima than in previous
studies were found, and the resulting barrier trees covered a larger region of the energy
landscape. The results suggest that a strategy which combines selective enumeration and
sampling for the exploration of energy landscapes promises the best results.
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Chapter 1

Introduction

1.1 Motivation

Molecules, which are built of a large number of small subunits, are called polymers. The
term monomer denotes the subunit of such a macromolecule. If the polymers are produced
by living organisms, they are called biopolymers. Important biological macromolecules
are the nucleic acids DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), as well
as proteins. Their monomers are nucleotides and amino acids, respectively. This thesis
focuses on RNA and proteins, whose three-dimensional structure is vital for their biological
function. We discuss approaches for the exploration of energy surfaces which govern the
structure formation process of RNA and proteins.

In general, the specific sequence of amino acids and nucleotides uniquely determines the
structure of a protein and a RNA molecule, respectively. The function of proteins and
RNA in turn is determined by their structure.

For a long time, proteins have been known to show a great variety of three-dimensional
structures. These structures are essential to carry out the protein’s very manifold struc-
tural and functional roles in the cell.

In contrast, it was believed for decades that RNA molecules are little more than a simple
carrier for information from DNA to proteins, since an important role of RNA molecules is
to guide the polymerization of proteins. Nevertheless, numerous other functions of these
molecules were revealed during the last few years. The Science Magazine decided that
the discovery of special small RNAs, which operate many of the cell’s controls, deserves
the trophy “Breakthrough of the year 2002” [Cou02]. In 2006, even the Nobel prize for
medicine was granted for the finding of gene silencing by RNA interference. However,
crucial for the function of an RNA molecule is its secondary and tertiary structure. A
well-known and well-studied example of the relation between structure and function is the
tRNA. These are short sequences of about 76 nucleotides which form a cloverleaf secondary
structure and typically occur in an L-shaped, tertiary structure. For further reading on
the different types of RNA and their related structures, see for example [Hig00].

Due to the fact that the structure of a biopolymer is responsible for its function, it is clear
that there is a big interest in the three-dimensional shape of biomolecules.

Therefore, an important task is to gain more knowledge about the folding of a biomolecule.
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Figure 1.1: Schematic representation of an energy landscape and its associated barrier tree, taken
from ref. [WWH+06]. The local minima are marked with numbers, and their connecting saddle
points are marked with lowercase letters. The global minimum of the energy landscape is marked
with an asterisk.

The term folding denotes the structural change from the open chain to the naturally occur-
ring form. A typical requirement for the analysis of this process is to know the energetically
optimal structures. They can be gained from a task called biopolymer structure predic-
tion, which is the prediction of the biopolymer’s structure from its sequence. Due to the
very high number of degrees of freedom in an unfolded RNA or protein chain, the task of
structure prediction is at present computationally feasible only in simplified models.

An impression of possible pathways from the unfolded to the stable ground state can be
received from the study of the energy surface, on which the folding proceeds. The formation
of a biomolecule’s structure is crucially determined by the properties and the shape of
its underlying folding landscape. These energy landscapes exhibit the same geometrical
features as natural occurring landscapes, like mountains, valleys, plains, ridges and so on,
but they are multidimensional. Typical characteristics of a landscape, like the number of
local optima, the basin distribution as well as the transition states between the optima, can
be conveniently visualized in the manner of a barrier tree. These barrier trees provide a
reduced representation of energy landscapes, and they are a very useful description for the
study of biopolymer folding pathways [FFHS00]. They also give an appropriate impression
of the overall topology of the energy landscape. Having the underlying energy landscape
of a biopolymer at hand, the folding dynamics of the molecule can be investigated, and
properties of the folding landscape like kinetic traps can be unveiled easily. See Figure 1.1
for a schematic energy landscape representation and the associated barrier tree.

1.2 Related Work

Several studies that address the folding of biomolecules in combination with their under-
lying energy landscapes were carried out in the past.

Flamm et al. presented a stochastic algorithm named kinfold to simulate the folding ki-
netics of RNA sequences into secondary structures [FFHS00]. The correlation between the
obtained kinetics and the structure of the energy landscape as well as folding mechanisms
were discussed. In the past, it was often conjectured that a large free energy gap between
the biopolymer’s ground state and its first suboptimal structure indicated good folding
properties. However, it turned out that this conjuncture is incorrect, at least for RNA
secondary structures. Instead, Flamm et al. showed that the numbers and the heights



1.3 Contribution 9

of saddle points along the folding path from the open chain to the folded structure are
important factors which determine the folding behavior. Barrier trees, which organize the
local minima and the saddle points in a hierarchical structure, therefore are an excellent
tool for the study of folding pathways. However, the stochastic simulation used in their
study considers all legal biopolymer structures, which makes it very time-consuming and
computationally intensive.

Since there is a clear relationship between the dynamics and the energy landscapes of
biopolymer folding, a formal definition of barrier trees and the associated basin structure
in arbitrary landscapes had to be given. In [FHSW02], Flamm et al. developed a rigorous
concept of barrier trees for degenerate landscapes. Furthermore, the program barriers,
which efficiently computes the barrier tree of an energy landscape from an energy sorted
list of configurations, was presented. barriers is based on exhaustive enumeration of all
configurations. Therefore, its use is limited to landscapes of modest size. The program
was applied to two well-known examples of landscapes: spin glass and RNA.

Thereinafter, it was shown that, based on the barrier tree approach, it is possible to predict
the folding behavior of RNA molecules by numerical integration [WSSF+04]. In their
study, it was found out that there is a good agreement between the results of stochastic
folding simulations and the dynamics predicted with the help of barrier trees.

Just recently, a generic algorithm to generate and explore the lower part of energy land-
scapes was presented and applied to discrete protein models [WWH+06]. Given a starting
set of low energy structures, the latticeFlooder approach allows to investigate parts of
the energy spectrum selectively, restricted by a given energy threshold. It is possible to
generate just the lower portion of the energy landscape, which contains the structures of
main interest, like the optimal and suboptimal structures. A straightforward application
of this method is the calculation of barrier trees. However, the method enumerates only
structures below a given energy threshold and is limited by the available memory. The
resulting barrier trees represent just a partial landscape.

Wang and Landau introduced a self-learning Monte-Carlo algorithm that performs a ran-
dom walk on the energy surface [WL01a, WL01b]. This method allows to iteratively calcu-
late the density of states, which is basically the number of states at a certain energy. Since
the Wang-Landau algorithm is not trapped by local minima, it is suitable to efficiently
sample rough energy landscapes. A modified version of this algorithm was proposed and
implemented by Rathore et al. to study the folding of proteins [RdP02, RIdP03, RIdP06].

A completely different approach for studying protein folding was presented by Song et
al. [STD+03]. Their method evolved from robotics motion planning techniques, which
are called probabilistic roadmap methods. Their approach aimed to study issues related
to the folding process like the formation of secondary and tertiary structure, and the
dependence of the folding pathway on the initial denatured structure. Since the roadmaps
contain large sets of unrelated folding pathways, they provide global information about
the protein’s energy landscape.

1.3 Contribution

To gain knowledge about the energy landscape underlying a biopolymer folding process,
exhaustive enumeration of all possible biopolymer structures can be used as a basis for
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the calculation of the exact barrier tree. This was done in previous studies, see for ex-
ample [FHSW02]. However, the search space grows exponentially with the length of the
molecule, even in simplified models [MS96, Wat95]. Due to the immense number of possi-
ble structures, such exhaustive enumeration is obviously both time-consuming and hardly
computationally feasible, in particular because of the limited amount of available memory.
The selective enumeration approach presented by Wolfinger et al. [WWH+06] results in
barrier trees that represent just a cutout of the landscape.

This gives rise to the question whether it is necessary to enumerate all possible structures
of a biopolymer in order to construct the barrier tree of its energy landscape, or if there
are other possible approaches.

In this thesis, we enter this question and present a generic, problem-independent approach
for the study of energy landscapes. Here, random sampling of the energy landscape is
employed to find a good approximation of the landscape’s barrier tree. The presented
method by itself does not restrict the search space and enables, as a matter of principle,
the approximation of the barrier tree with arbitrary accuracy. From the resulting barrier
tree, one can derive topological details of the energy landscape: its shape, the number and
the distribution of both global and local optima of the landscape, the basin structure and
the heights of the barriers separating the optima. This information provides insight into
the dynamical behavior of biopolymer folding.

The developed algorithm was applied to different examples of RNA and proteins in sim-
plified models. The obtained results were afterwards evaluated by comparison with the
results from previous studies [WSSF+04, WWH+06].

1.4 Overview

In Chapter 2, the theoretical background for the study of biopolymer energy landscapes
is given. The chapter describes fundamental concepts of energy landscapes and simplified
biopolymer structure models. Chapter 3 presents the sampling strategy used within this
thesis and describes the implementation of the energy landscape models. In Chapter 4,
examples of the sampling are given. Furthermore, the obtained computational results are
presented and discussed. Finally, Chapter 5 recapitulates the results and gives an outlook
of possible further research in this area.



Chapter 2

Fundamental Concepts and
Definitions

In this chapter, the fundamental concepts needed for the purpose of this thesis are ex-
plained and several definitions are given. Thereby, the chapter provides a deeper intro-
duction of biopolymers and their associated folding landscapes.

2.1 Energy Landscapes

In 1932, the idea of fitness landscapes was introduced in evolutionary biology to describe
the dynamics of evolutionary optimization [Wri32]. This concept comprises both a set of
genotypes arranged in an abstract space, which defines the accessibility of each genotype to
another one, and a fitness value, which is assigned to each genotype by a fitness function f .

However, this concept is not only restricted to evolutionary processes. It is, for example,
also used to model problems like combinatorial optimization where the fitness function
is represented by the cost function [GJ79]. In biophysics, energy landscapes are used
to describe the folding of biomolecules like proteins and nucleic acids. These folding
landscapes, and especially their topology, are the main point of interest in this thesis1.

A general definition of energy landscapes is given in [Sta02]. The following definition is a
specialization for biopolymers:

An energy landscape can be described formally by the following three parts:

1. A set X of conformations, or more general configurations,

2. an operator N : X → P(X), which defines the neighborhood of a conformation
x ∈ X, and

3. an energy function E : X → R.

The conformation space X is formed by the conformation set X in combination with
the neighborhood operator N . It can be distinguished between discrete landscapes, which

1To avoid confusion, it should be mentioned that in evolutionary context the fitness is maximized, and
that in biophysics the energy is minimized.



2.1 Energy Landscapes 12

have a finite conformation space, and continuous landscapes. In the following, only discrete
landscapes will be discussed.

The organization of the conformation space X can be described by a move set. It defines
how one conformation can be converted into a neighbored one [Sta02]. The move sets
investigated here assign to each conformation x ∈ X a set N(x) of accessible neighbors.
N(x) denotes the neighborhood of x. Each move should have a reverse counterpart and
the move set should be constructed such that y ∈ N(x) ⇔ x ∈ N(y). The move set then
results in a symmetric neighborhood relation N : X ×X, where (x, y) ∈ N⇔ y ∈ N(x).
When applying a move to a string, which is a sequence of characters over a fixed alphabet
like an RNA sequence, a character is typically replaced by another one at a single position.

An energy function E is called non-degenerate, if E(x̂) = E(ŷ) ⇔ x̂ = ŷ. The definitions
given in this section apply to non-degenerate energy landscapes. Distinctive features of
degenerate landscapes will be specified separately.

The presented concept of energy landscapes allows the definition of local minima of the
energy function, their associated basins of attraction and the saddle points and energy
barriers separating them [Sta02]. The local minima are important in optimization problems
since they might be decoys during the search for global minima. Global minima are
minimal values of the energy function.

Formally, a conformation x̂ ∈ X is called local minimum, or metastable state, if

∀y ∈ N(x̂) : E(x̂) ≤ E(y). (2.1)

A conformation x̂ is called a global minimum, if

∀y ∈ X : E(x̂) ≤ E(y).

Note that each global minimum is a local minimum by definition.

The set of all local minima is denoted withM. Moreover, let N+
M be the transitive closure

of N onM, i. e. the transitive closure of NM = {(x, y) ∈ N | x, y ∈M}. Then, M(x) is
written for the set of local minima that are neighbored to x ∈ M directly or via other
minima, i. e.M(x) =

{
y ∈M | (x, y) ∈ N+

M
}
. Because the energy function E is, of course,

constant on M(x), the definition is relevant for the degenerate case only. M(x) is called
a shoulder, if

∃z ∈ X \M ∧ ∃y ∈M(x) with (y, z) ∈ N such that E(y) = E(z). (2.2)

This definition is illustrated in Figure 2.1. Confer [FHSW02] for a definition on graphs.

An important characteristic of a landscape is the intuitive notion of its ruggedness. The
number of local minima is a measure for it, and the difficulty of the optimization on a
landscape is closely related to its ruggedness [MdWS91].

Each local minimum x̂ has an associated basin B(x̂), which is a set of structures that are
attracted by the minimum. Although, before this characteristic of a landscape can be
defined, a few more definitions have to be given first.

A list of conformations

x = x1, . . . , xk = y with ∀1 ≤ i ≤ k : xi ∈ X and ∀1 ≤ i < k : (xi, xi+1) ∈ N

is a walk between the conformations x and y.
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Figure 2.1: The shoulder, a special class of local minima. The black circles mark local minima.
The minima x and y form a shoulder. The gray circle marked with z is a saddle point, but not a
local minimum of the landscape.

The term random walk denotes an arbitrary, randomly chosen walk between two con-
formations. A walk is called an adaptive walk, if the conformations x1, . . . , xk hold the
condition ∀1 ≤ i < k : E(xi+1) < E(xi), and if @y ∈ N(xk) : E(y) < E(xk). On the
other hand, a walk is called a gradient walk2, if the conformations x1, . . . , xk hold the
conditions ∀1 ≤ i < k : E(xi+1) < E(xi) ∧ xi+1 = arg min

x∈N(xi)
E(x), and if @y ∈ N(xk) :

E(y) < E(xk). That is, in each step of the gradient walk, the neighbor with the minimal
energy has to be chosen. In degenerate landscapes, the minimum energy neighbor does
not have to be uniquely defined. If several minimum energy neighbors exist, a determin-
istic rule can be used to choose the neighbor. For instance, one could always choose the
neighbor which comes lexicographically first.

Each conformation x ∈ X is mapped to a local minimum by performing a gradient walk
from x. The basin of attraction of the local minimum x̂, which is denoted by B(x̂), consists
of all conformations which are mapped to x̂ by a gradient walk. It should be noted
that the mapping is unique in non-degenerate landscapes. In the degenerate case, the
mapping becomes unique by the use of the aforementioned deterministic rule for choosing
the minimum energy neighbor. The size of the basin and the fitness of the minimum are
correlated: deeper minima usually have larger basins. A possible way to measure the size
of a basin B(x̂) is to determine the average length of the gradient walks from y ∈ B(x̂)
to x̂ [Sta02].

The local minima and their basins of attraction are separated by saddle points and their
corresponding energy barriers. Two conformations x and y in X are called mutually
accessible at the level η, written

x" η # y,

if there is a walk w in X from x to y, such that ∀z ∈ w : E(z) ≤ η [FHSW02]. The saddle
height E[x̂, ŷ] between two local minima x̂ and ŷ is the minimum height which makes them
accessible from each other, that is

E[x̂, ŷ] = min
{
max [E(s)|s ∈ w]

∣∣w : walk from x̂ to ŷ
}

= min
{
η

∣∣ x̂" η # ŷ
}
. (2.3)

A point s ∈ X that satisfies the condition (2.3) is called a saddle point between x̂ and ŷ.
In non-degenerate landscapes, each saddle point s connecting x̂ and ŷ with E(s) = E[x̂, ŷ]
is unique.

The saddle heights E[x̂, ŷ] have the property to be an ultrametric distance measure on the
set of the local minima, which is discussed for example in [RTV86, MH98]. That is to say,

2The gradient walk, in this case, is also called steepest descent walk, since the steepest descent algorithm
is applied.
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the saddle heights satisfy the condition

E[x̂, ŷ] ≤ max (E[x̂, ẑ], E[ŷ, ẑ]) ∀x̂, ŷ, ẑ ∈M. (2.4)

The barrier of a local minimum is the height of the lowest saddle point which has to be
overcome in order to reach a more favorable local minimum. The barrier B(x̂), which
encloses a local minimum x̂ ∈M, is in symbols

B(x̂) = min
{
+∞;E[x̂, ŷ]− E(x̂)

∣∣ ŷ ∈M : E(ŷ) < E(x̂)
}
. (2.5)

Another definition linked to saddle points is the valley below the saddle s, V(s) [WSSF+04].
The valley V(s) is a collection of conformations which are reachable from the saddle
point s on a walk whose energy never exceeds the value E(s). Therefore, all confor-
mations in V(s) have an energy below or equal E(s). Assume that two saddle points s
and s′ have the property E(s′) < E(s). The valley V(s′) can then be either a subvalley
of V(s), i. e. V(s′) ⊆ V(s), if s′ ∈ V(s), or the valleys are disjoint, i. e. V(s′) ∩ V(s) = ∅,
if s′ 6∈ V(s). In consideration of the fact that saddle points separate local minima
and that each valley by definition contains at least one saddle point, it follows that
each valley contains (in non-degenerate landscapes at least two) local minima. Con-
versely, V(s) ⊆

⋃
k: x̂k∈V(s) B(x̂k), i. e. the valley V(s) is contained in the union of the

basins B(x̂k) of the local minima x̂k ∈ V(s). It should be noted that V(s) contains only
conformations with an energy below or equal E(s), whereas the energy of the conforma-
tions in the basins B(x̂k) might exceed the value E(s).

In degenerate landscapes, the question arises how to treat neighbored local minima with
the same energy. When imagining a flat landscape, with the given definition every state is a
local minimum. Therefore, in this study, the following strategy was embarked: if two local
minima have the same energy, and if the difference between their saddle height and their
energy is below or equal a given threshold ε, they shall belong to a common equivalence
class, that is, they are assumed to be equivalent to each other. Formally, the equivalence
class of a minimum x ∈M is the set [x] =

{
y ∈M

∣∣ E(x) = E(y) ∧ E[x, y]− E(x) ≤ ε
}
.

The basin of the equivalence class [x] is defined by B([x]) =
⋃

y∈[x] B(y). For the remainder
of this thesis, when speaking about a minimum, the equivalence class of the minimum for
degenerate landscapes is implied. Thus, the barrier height between two minima also applies
to the members of their equivalence classes.

After all, the valleys, the local minima within them and the saddle points connecting the
metastable states can be represented in a unique hierarchical structure. This hierarchical
structure is called the barrier tree of the energy landscape. The barrier tree is a rooted
graph G(V,E). The vertex set V contains the local minima of the landscape and the
saddle points connecting them. Each vertex has an associated energy value, which is the
energy of the local minimum and the saddle height, respectively. The leaves of the tree are
the local minima, and the internal nodes represent the saddle points. The energy barriers
between two minima can be read off easily according to Definition (2.5)3. For a rigorous
mathematical definition of barrier trees of degenerated landscapes, see [FHSW02].

An example of a barrier tree with a schematic representation of the underlying energy
landscape is given in Figure 1.1. In this example, the local minima marked with the

3It is also possible to represent the barrier tree as a rooted and weighted graph. Then, instead of
providing the energy value of each vertex, each edge is weighted with the energy barrier of the vertices
which it connects.



2.2 Discrete Models of Biopolymer Structures 15

numbers 2 and 3 are accessible to each other by the saddle point c. The saddle height E[2, 3]
corresponds to E(c). The energy barrier of the minimum 3 is E(c)− E(3).

2.2 Discrete Models of Biopolymer Structures

The two types of biopolymers examined here, namely RNA molecules and proteins, both
have distinct three-dimensional structures. These structures give the polymers special-
ized biochemical capabilities like the catalytic mechanisms of enzymes and ribozymes. A
great number of biopolymer structures have already been revealed at full atomic resolution
by structural biologists with the help of techniques such as nuclear magnetic resonance
(NMR) spectroscopy and X-ray crystallography. Still, the amount of data collected in
structural data banks is continuously increasing. The Protein Data Bank (PDB), a world-
wide repository of three-dimensional structural data of large biological molecules, in partic-
ular proteins and nucleic acids, is a good illustration of this fact [BWF+00]. The PDB was
established in 1971 with just 7 available structures. By the end of 2006, 40839 structures
were deposed, but the number of structures in the PDB is still undergoing an approximate
exponential growth.

However, some applications of structural data in biology, like studies of molecular evolu-
tion, do not necessarily require a description of the molecular structure on a fine-grained
level, which is a list of the three-dimensional coordinates of each atom. To reduce the
level of detail, low-resolution or coarse-grained structure models were introduced. In the
simple discretized structure models presented here, each monomer is modeled by a single
point or letter. A review of different models can be found in [SS04]. These models do not
only have the advantage that they concentrate on the problem-specific basic features of
the structure, but they can also be enumerated and are easier to handle when performing
computational studies.

2.2.1 RNA

Biological Background

RNA is a single-stranded molecule, which is made from monomers that are called nu-
cleotides. Each nucleotide consists of a sugar (ribose) with an attached phosphate group
and a nitrogen-containing sidegroup: a base. The base may be either adenine (A), cyto-
sine (C), guanine (G) or uracil (U). The sugars are linked to each other by phosphodiester
bonds. The resulting polymer chain is formed by the sugar-phosphate backbone and the
bases which protrude from it.

Since the RNA is single-stranded, its backbone is flexible which allows the polymer chain
to bend back and to form hydrogen bonds with another part of the same strand. The
base A can pair with its complementary base U, and C can pair with G. Apart from
these standard, or Watson-Crick base pairs, other non-standard types like G pairing with
U can be found occasionally. RNA chains can fold up in a variety of different shapes. The
complementary base-pairings cause that the folding of an RNA molecule is determined by
its nucleotide sequence. The resulting structures of the folded RNA molecules can give
rise to their biological functions. An example for the relationship between structure and
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function is the ribozyme. The catalytic activity of this RNA molecule is enabled by its
specific structure (see for instance [FDZD98, LS94]).

RNA Secondary Structures

In this study, an RNA secondary structure model at a coarse-grained level is used instead of
the spatial coordinates. Each nucleotide is represented by a single letter. Only the covalent
bonds between consecutive nucleotides, hence the RNA sequence, and the non-covalent
hydrogen bonds, the base-pairs, are considered. In the following, a formal definition of an
RNA structure according to [WS78] will be given:

Let s ∈ {A,C,G,U}∗ be a sequence. Then, an RNA structure over s is formally defined
as a set P of pairs,

P =
{

(i, j)
∣∣∣∣ i < j ∧ si, sj form a Watson-Crick

or a non-standard base pair (G-U)

}
.

Any two base pairs (i, j) and (k, l) ∈ P have to fulfill the two following conditions:

• i = k ⇔ j = l since each base can pair with one other base at most, and

• j < k, l < i, i < k < l < j or k < i < j < l must be satisfied.

A structure satisfying the second condition is called non-crossing and does not contain
pseudo-knots. After the formation of secondary structure elements, pseudo-knots as part
of the tertiary structure can fold. They give rise to crossing base pairs, which is the reason
why an RNA structure containing pseudo-knots is also called crossing. Pseudo-knots
can be found in functionally important locations, which makes them important for many
natural RNAs [tDPD92]. Since it is proved that the prediction of general RNA structures
containing pseudo-knots is NP-complete [LP00], they are neglected in the remainder of
this thesis.

As shown in Figure 2.2, an RNA secondary structure can be visualized as a planar sec-
ondary structure graph or, in a straightforward way, as a string in the bracket notation.
For a structure on a sequence of length n, this string has the same length n and consists
of dots and matching brackets. A base pair between the positions i and j is represented
by a left parenthesis at position i and by a right parenthesis at position j. A dot stands
for an unpaired base.

At this point, it can be returned to energy landscapes to define their abstract parts for
RNAs. The conformation set X of a given RNA sequence s is the set of all secondary
structures P , or conformations, which are compatible with s. The neighborhood of a
conformation x ∈ X is defined by a set of moves on x. The most elementary move set on an
RNA secondary structure is the single move set. A single move assigns a structure Px ∈ X
a neighbor Py ∈ X by removal or insertion of a single base pair (i, j) in compliance with
the restriction that no pseudo-knots are allowed. The single move set always makes it
possible to find a path4 between two arbitrary conformations Px, Py ∈ X. The path can
be constructed by the removal of all base pairs from Px and the insertion of all base pairs
from Py into the unfolded intermediate structure afterwards. Due to the property that
each two elements of X can be connected by a path, single moves provide an ergodic5

4A path (or folding path) is a walk where all conformations are distinct.
5Ergodic means that each arbitrary state of the conformation space must be reachable from each other

state by the application of a finite number of operations from the move set.
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Figure 2.2: Visualization of an RNA secondary structure as RNA secondary structure graph and
in bracket notation. Two matching parentheses symbolize a matching base pair, and unpaired
bases are represented by dots.

move set on X. Therefore, it has been used in this study. For details about single moves
and another class of moves on RNA secondary structures, the shift moves, see [FFHS00].
The single move set also induces a metric on the conformation space which is called the
base pair distance.

The remaining part of the energy landscape, the energy function E, will be defined in the
following section.

RNA Secondary Structure Prediction

The standard energy function of an RNA structure is assumed to be equal to the summed
up energy contributions of all secondary structural elements, which the structure can be
decomposed into:

E(P ) =
∑

(i,j)∈P

EP
i,j , (2.6)

where EP
i,j is the energy contribution of the secondary structural element defined by the

base pair (i,j)6. These structural elements are hairpin and internal loops, bulges, stacked
base pairs and multi-loops. Parameters for their energy can be found in [JTZ89, WTK+94,
MSZT99], for example.

For the last two decades, several dynamic programming approaches to tackle the problem
of RNA secondary structure prediction have been presented. Nussinov [NJ80] gave a very
simple algorithm which assumes that the groundstate structure has the maximal number
of base pairs. This “maximum matching” structure usually differs a lot from the real RNA
structure. In 1981, Zuker and Stiegler [ZS81] formulated another algorithm to solve the
RNA folding problem. It finds the structure with the minimum free energy (mfe), which
is the thermodynamical most stable one, and uses the standard energy model of above.
The mfe structure can be calculated recursively by dynamic programming. The algorithm
is implemented, for instance, in the Vienna RNA Package7 [HFS+94].

6Equation (2.6) is a simplification, since the energy contribution of dangling ends has to be added.
7The Vienna RNA Package is freely available at http://www.tbi.univie.ac.at/RNA/.

http://www.tbi.univie.ac.at/RNA/
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Another application of dynamic programming to the RNA folding problem was the ob-
servation made by McCaskill [McC90] that the partition function Z over all secondary
structures P , which is

Z =
∑

P is structure for s

e−
E(P )
kT , (2.7)

can also be calculated by dynamic programming. k is the Boltzmann constant, and T is
the temperature. Having the partition function at hand, base pair probabilities and the
probability of a given structure can be easily calculated.

An algorithm which generates all suboptimal conformations below a certain energy thresh-
old was presented by Wuchty et al. [WFHS99]. The suboptimal folding is based on dy-
namic programming and multiple backtracking. The algorithm is part of the Vienna RNA
Package as well. This approach allows to compute the density of states (DOS) in the
low-energy region. The DOS is the distribution of the number of structures as a func-
tion of energy. The DOS is crucial to assess how well-defined the ground state is from a
thermodynamical point of view.

2.2.2 Proteins

Biological Background

Like DNA and RNA, proteins are linear, unbranched chains composed of single monomers.
In proteins, the monomers are amino acids and there are 20 different types of them8.

All amino acids have the same general structure which is shown in Figure 2.3. An amino
acid consists of a central carbon atom, the α-carbon (Cα) atom, and attached to it, the
amino group (NH2), the carboxyl group (COOH), a hydrogen atom (H) and the side-chain
group (R). Each of the amino acids gets its unique properties from one of the 20 different
side chains. They are different in regard to hydrophobicity, charge, reactivity, size, and so
on.

group
Amino Carboxyl

groupCN C

H

H
H

R

O

OH

Figure 2.3: General structure of an amino acid, taken from ref. [BW06]. Attached to a central
carbon atom are the amino group, the carboxyl group, the side-chain group (R) and an hydrogen
atom.

The amino acids are linked together via covalent peptide bonds and form the polypeptide
chain. A peptide bond connects the carboxyl group of one amino acid with the amino
group of the next one. The order of the amino acids, which is called the sequence of the
protein, is specific for each single protein.

8In human proteins, a 21st amino acid, called selenocysteine, is present. Unlike the 20 standard amino
acids, it is not encoded directly by the genetic code.



2.2 Discrete Models of Biopolymer Structures 19

ω

C

O

N

H

N

H

H

H

C

H

O
H

C

Cφ ψ
R

R’

= backbone

Figure 2.4: Two amino acids which are linked together by a peptide bond. The figure has been
taken from ref. [BW06].

In Figure 2.4, it can be seen that the backbone9 of the polypeptide contains three bonds
per amino acid. The peptide bond is planar, that is, no free rotation around this bond is
allowed. Two configurations are possible for the peptide bond: the trans form and the rare
cis form (with a rotation angle ω of 180◦ and 0◦, respectively). Rotation can occur around
the Cα-C bond, which is called psi (ψ) angle, and around the N-Cα, which is called phi (φ)
angle. The conformation, that is the arrangement of the atoms in the three-dimensional
space, is determined by a pair of ψ and φ angles for each amino acid and the side chain
angles. The two angles ψ and φ can both be in the range [−180◦, 180◦]. However, since
steric collisions between the atoms must not occur, the possible angles are restricted to
small regions. Nevertheless, the protein can still fold in a huge variety of ways and can
therefore form an enormous amount of different conformations.

Each protein folds into a particular three-dimensional structure. Reactive sites on their
surface allow the protein to bind with a high specificity to other molecules and to act as an
enzyme to catalyze a reaction. Proteins also have other functions such as signal transduc-
tion, intracellular movement of other molecules, and the maintenance of cell structures.
The specific function of each protein depends on its own specific amino acid sequence.
Since the sequence is genetically specified, it could also be said that proteins put the ge-
netic information of the cell into action. To delve further into biological details, consult
for example [AJL+02].

The folding of proteins takes place during and after their synthesis at the ribosome. The
process happens spontaneously, but it is often assisted by special proteins which are called
chaperons. It is assumed that the free energy of the conformation in functional proteins is
minimized along the folding path until the native structure of the protein, the distinguished
conformation of the natural protein, is reached. This whole process of searching for the
native conformation is termed protein folding. However, it is possible that a misfolding
occurs. For example, in the case of pathological proteins like prions, the folding stuck in
a local minimum [HW97]. The treatment with special solvent can unfold, or denature, a
protein by disruption of the noncovalent bonds which hold the protein into shape. After the
removal of the denaturing solvent, the protein often renatures, that means it refolds into its
native conformation. This strongly indicates that all the information needed for the protein
folding process can be found in the amino acid sequence of the protein. For this reason,
one tries to compute the native conformation just from the amino acid sequence, which is
denoted protein structure prediction. Since the amount of available protein sequence data
is growing enormously, but the experimental structure determination is very expensive

9The term backbone denotes the chain of Cα-atoms linked by the peptide bonds. The side-chain groups
protrude from it.
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and time-consuming, the number of known structures cannot keep up with the number of
sequences. Therefore, protein structure prediction has become one of the most important
problems in computational biology.

Simplified Models of Proteins

Lattice models provide a coarse-grained view on protein structure. They abstract the
spatial coordinates of each amino acid to discrete positions on a given lattice and use a
rather simple energy function. This allows to perform computational studies, which could
not be realized with the full atomic resolution of proteins. The following definitions of
simplified protein models are given in dependence on [Wil05].

The term protein model denotes a mathematical formalization to model the sequence, the
structure and the energy of a protein. It consists of a set of sequences S over a fixed alpha-
bet A, a set of conformations (or structures) X and an energy function E : A∗ × X → R
assigning an energy value to a sequence and a conformation.

A simple and well-known protein model is the HP-Model proposed by Lau and Dill in
1989 [LD89]. It reduces the 20-letter alphabet of the amino acids to a two-letter alphabet,
consisting of H, which represents hydrophobic amino acids, and P, which represents polar
or hydrophilic amino acids. Since it is commonly believed that the hydrophobic force is
dominant in protein folding, the energy function only favors contacts between H-monomers.
Only the backbone structure of the protein is modeled, that is one position for each amino
acid. These positions are restricted to discrete positions on a geometrical structure that
is known as lattice.

A lattice is a set L of lattice vectors (also called lattice points) such that

~0 ∈ L (~0 denotes the zero vector), and
~u,~v ∈ L implies ~u+ ~v, ~u− ~v ∈ L.

For a lattice L, n vectors {~v1, . . . , ~vn} exist in such a way that L consists of all the integral
linear combinations of these vectors, that is

L =

{
n∑

i=1

λi~vi

∣∣∣ λ1, . . . , λn ∈ Z

}
(2.8)

If n is minimal with the property (2.8), then ~v1, . . . , ~vn is a basis which generates the
lattice L, and n is the dimension of L.

The Euclidean length of a lattice vector ~p =
( px

py
pz

)
is

√
p2

x + p2
y + p2

z
10. The non-zero

lattice vectors with minimal Euclidean length are called neighbor vectors NV for L. Two
lattice points ~p and ~q are called neighbors of each other, we say that they are in contact,
if, and only if, ~p− ~q ∈ NV .

An example of a straightforward two-dimensional lattice (Z2) is the square lattice (SQ).
The most simple three-dimensional one is the cubic lattice (CUB). Another lattice in Z3,
the face-centered cubic lattice (FCC), is defined as the set of points{(

x
y
z

)
∈ Z3

∣∣∣ x+ y + z is even
}
.

10This definition for three-dimensional lattices can be given analogously for two-dimensional lattices.
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Name Basis Min. dist. # Neighbors
SQ {( 1

0 ) , ( 0
1 )} 1 4

CUB
{(

1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)}
1 6

FCC
{(−1

−1
0

)
,
(

1
−1
0

)
,
(

0
1
−1

)} √
2 12

Table 2.1: Overview of different commonly used lattice types and their properties. See text for
description.

Figure 2.5: The cubic and the face-centered cubic lattice. Cutout of the cubic lattice with edges
between neighbored points (left figure). The unit cell of the face-centered cubic lattice with edges
between neighbors, in dependence on ref. [Wil05] (right figure).

Table 2.1 shows for these examples the generating basis vectors, the minimal Euclidean
distance between two lattice points and the number of neighbors of each lattice point.
A schematic representation of the cubic and the face-centered lattice can be found in
Figure 2.5.

As it was shown in [PL95], the FCC lattice models real proteins structures more accurately
than the cubic lattice. Another drawback of the latter lattice is known as the parity
problem, which forbids contacts between points which have the same parity. The parity
of a point is the sum of its coordinates which can either be even or odd. See [ABc+97] for
details concerning the parity problem.

The abovementioned HP-model of Lau and Dill was originally introduced on the two-
dimensional square lattice. It can be formally defined as a protein model with:

• a sequence s ∈ {H,P}n

• a structure x : [1, . . . , n]→ Z2 which fulfills the conditions

1. ∀1 ≤ i < n : x(i) and x(i+ 1) are neighbors, and

2. ∀1 ≤ i < j ≤ n : x(i) 6= x(j)

• a contact energy function E(s, x) =
∑

1≤i<j≤nEsi,sj∆ (x(i), x(j)),
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H P
H -1 0
P 0 0

H P N X
H -4 0 0 0
P 0 +1 -1 0
N 0 -1 +1 0
X 0 0 0 0

Table 2.2: Energy matrices for the pairwise contact potential Esi,sj for different alphabets. HP:
includes hydrophobic interaction (H = hydrophobic, P = polar) (left table). HPNX: includes
hydrophobic and electrostatic interaction (H = hydrophobic, P = polar, N = negative, X = neutral),
taken from ref. [BWBB99] (right table).

where x(i) denotes the position of the i-th monomer of the structure x,

Esi,sj =

{
−1 if si = sj = H,

0 otherwise
and

∆(p, q) =

{
1 if p and q are neighbors,
0 otherwise.

The first condition of the structure demands that successive amino acids of the chain are
also neighbored in the lattice. The second condition ensures self-avoidance, that is none
of the lattice positions is occupied by two monomers. The sequence of neighbored lattice
points which describes the protein structure (first condition) is called a walk on the lattice.
A walk which assures self-avoidance is a self-avoiding walk (SAW).

The presented HP-model can be extended in different ways. Although originally defined
for the square lattice, the HP-model can be easily applied to other lattices. For example,
two- and three-dimensional triangular lattices were used in [ABc+97]. It is also possible to
extend the alphabet of the model. Energy matrices for the pairwise contact potential Esi,sj

for different alphabets can be found in Table 2.2.

Below, it will be shown how a walk on a given lattice can be encoded as a string. This
compression of the structure has the advantage that the storage space is much smaller than
in the case of saving the complete coordinates of each lattice point. Another benefit is that
the comparison of structures can be reduced to simple string comparison. An introduction
into this concept of absolute and relative moves was given by Bornberg-Bauer in [BB97].
Backofen et al. went further into the question in [BWC00]. An absolute move for a given
lattice is a character of an alphabet D which is assigned to each possible neighbor vector
of the lattice. For the square lattice, the directions forward, left, right and backward are
described by DSQ =

{
d1 = ( 1

0 ) := f, d2 = ( 0
1 ) := l, d3 =

(
0
−1

)
:= r, d4 =

(−1
0

)
:= b

}
. For a

sequence of length n, a walk on a lattice is fully described by its initial point x(0) and the
ordered list of n− 1 absolute moves. That is to say, the lattice point x(i+ 1) is obtained
by attaching the move d ∈ D to x(i) : x(i+ 1) = x(i) + d.

Relative directions provide an alternative in encoding the protein’s conformation. This
thesis follows the definition as given in [BWC00], which differs from Bornberg-Bauer’s
definition of relative moves [BB97]. A conformation of length n can be described by a
walk of n − 1 relative directions. Following along the walk in relative directions involves
retaining a frame of reference, which is changed using rotation matrices.

In the following, the concept of relative moves is exemplified for the three-dimensional
cubic lattice. In this lattice, it is necessary to apply a base transformation with every
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relative move. A relative move is an element of the alphabet R = {F,L,R,U,D,B}. In
self-avoiding walks, the backwards direction B does not occur, which reduces the relative
move alphabet to R \B. The vector vr assigned to a relative move r ∈ R is defined as

vF =
(

1
0
0

)
, vL =

(
0
1
0

)
, vR =

(
0
−1
0

)
, vU =

(
0
0
1

)
, vD =

(
0
0
−1

)
.

A sequence w ∈ R∗ is called a relative move sequence. For a given sequence w, gbaser(w)
is defined as

gbaser(w) =

{
I3 if w = ε,

gbaser(w′) ·Br if w = w′r.

I3 denotes the 3×3 identity matrix, and Br are rotation matrices which turn the vector vr

into
(

1
0
0

)
. Thus, Br is defined as follows:

BF =
(

1 0 0
0 1 0
0 0 1

)
, BL =

(
0 −1 0
1 0 0
0 0 1

)
, BR =

(
0 1 0
−1 0 0
0 0 1

)
, BU =

(
0 0 −1
0 1 0
1 0 0

)
, BD =

(
0 0 1
0 1 0
−1 0 0

)
.

Let w be a given relative move sequence of length n − 1. The lattice points of the corre-
sponding conformation with the initial point x(0) =

(
0
0
0

)
are defined by ∀1 ≤ i ≤ n− 1 :

x(i) = x(i− 1) + gbaser(w1 . . . wi−1) · vwi .

The relative move sequences allow the introduction of pivot moves. A pivot move is a point
mutation on the relative move string which corresponds to a rotation of the remaining
conformation part behind the position it was applied to. In fact, pivot moves result not
only in rotations, but they also allow reflections. Thus, mutations (and pivot moves)
correspond to automorphisms which map the lattice to itself [BWC00]. The concept of
pivot moves can be defined for arbitrary lattices. The ergodicity of pivot moves has been
proved by Madras et al. [MS88].

Another class of moves applied to lattice proteins are local moves. A local move changes
the positions of a bounded number of consecutive monomers at a time. The move set
provided by this type of move is non-ergodic and was not taken into consideration in this
study.

Finally, the parts of an energy landscape for lattice proteins are summarized. The con-
formation set consists of all self-avoiding walk structures which have the length of a given
sequence s. The organization of the conformation space is described by the move set. In
this case, the application of a single operation from the pivot move set, which is a point
mutation on the structure in relative moves, generates the neighboring conformation of a
given structure x. The definition of energy landscapes is completed with an energy func-
tion. In the lattice protein case, it is given by the sum of the pairwise contact potentials
of the structure x.

Constraint-Based Protein Structure Prediction in Simplified Protein Models

Structure prediction in a given protein model can be regarded as the combinatorial opti-
mization problem of predicting

arg min
x∈X

E(s, x)

for a certain sequence s.
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In 1998, it was shown that the problem of protein structure prediction is NP-complete,
even in the HP-model for the two-dimensional [CGP+98] and cubic lattice [BL98]. Thus,
there is probably no general, efficient algorithm that solves this problem (under the belief
that P 6= NP).

In this section, a fast and exact approach for the prediction of optimal and suboptimal
structures in simplified protein models on different lattices using the constraint program-
ming technique is outlined. This method of Backofen and Will is termed constraint-based
protein structure prediction (CPSP). It is explained in detail in [BW06].

Overall, CPSP predicts optimal structures which have maximally compact hydrophobic
cores. These compact hydrophobic cores are sets of points with as many contacts between
H-monomers as possible. For the purpose of protein structure prediction, compact cores
are enumerated in a process called core construction first. Subsequently, one tries to place
the protein sequence on a compact core which is called threading.

Given a sequence s with nH many H-monomers, CPSP starts with the computation of
bounds on the number of possible HH-contacts for nH monomers, if they are freely dis-
tributed to the lattice points. The main idea of this first step is to split the lattice into
layers and to consider the contacts within and between the layers. In the following step
of core construction, a constraint-based search for enumerating all cores of size nH with
maximally many contacts is performed. In the third and final step, the sequence s is
mapped onto the cores. This threading is modeled as a constraint satisfaction problem.
During the threading, one tries to find an optimal structure which fulfills two conditions:
all H-monomers occupy core positions, and the structure is a self-avoiding walk, that is
all positions differ from each other and the chain is connected. If it fails to map s onto an
optimal core, the number of contacts will be relaxed and the threading is repeated until a
structure is found. It should be noted that the first two steps described are not performed
throughout each protein structure prediction, but that the optimal cores are precomputed
independently of an actual sequence and stored in a data base. Only the threading step
has to be carried out for each given sequence.

The CPSP approach outperforms other approaches for the folding of lattice proteins in HP-
models concerning time efficiency, completeness and flexibility. The approach is complete
since it predicts all optimal structures. It is flexible since it works for different lattices
and contact energy functions, more precisely for the HP and HPNX-energy functions and
for the CUB and the FCC lattice. CPSP was successfully applied for predicting optimal
structures of HP-sequences up to a length of 200 in the face-centered cubic lattice, where
only heuristic algorithms existed so far. Above all, CPSP is the only available method
to completely enumerate the ground state and near-optimal states of lattice proteins in
several three-dimensional models, and was therefore used in the context of this study.

2.3 Kinetics of Biopolymer Folding

In this paragraph, the kinetics of biopolymers will be discussed. The aim is to predict the
folding behavior of biopolymers as a function of time.

A stochastic algorithm for the investigation of RNA folding kinetics was given by Flamm
et al. [FFHS00]. In their contribution, the formation of RNA secondary structures was
modeled at the level of single base pairing events like opening and closing of base pairs.
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The following model was used:

Given the move set, the folding of biomolecules can be modeled as a continuous-time
Markov process in conformation space as follows: Let X be a set of conformations that
are compatible with the sequence s, in compliance with the prior definitions of RNA
or lattice protein structures. The transition rate from the conformation y ∈ X to the
conformation x ∈ X is given by rxy. This rate is zero, if (y, x) 6∈ N. That is, y and x are
not neighbors in the conformation space according to the defined move set. The probability
of observing conformation x at time t as the secondary structure of s is denoted by px(t).
The probability distribution is given by the master equation

dpx(t)
dt

=
∑
y∈X

py(t) rxy, with rxx = −
∑
y 6=x

ryx.

The equation can be rewritten in matrix form as

d
dt
~p(t) = R ~p(t). (2.9)

This linear system of differential equations is solved by explicit computation of ~p(t) =
etR ~p(0) with the initial distribution vector ~p(0). For the transition rates ryx between
neighboring structures, the model dictates the expression

ryx = r0e
−E

6=
yx−E(x)

kT for x 6= y.

The transition state energies have to be symmetric: E 6=yx = E 6=xy. In the simplest case,
they can be modeled by E 6=yx = max {E(x), E(y)}. The time axis can be adjusted to
experimental data with the parameter r0.

However, the presented approach for the simulation of the whole kinetic folding process
considers all possible biopolymer conformations. Since the conformation space grows expo-
nentially with the sequence length [MS96, Wat95], this description of the energy landscape
is computationally feasible only for very short sequences. Therefore, a coarse-grained rep-
resentation of the energy landscape is needed, which brings us back to the concept of
barrier trees. The barrier trees were introduced as a mapping from the full conformation
space to a reduced conformation space, since they represent only the local minima and
the saddle points of the folding landscape. Based on these, several discrete models can
be formulated to predict the RNA folding behavior [WSSF+04]. These models have been
applied to lattice proteins as well [Wol04].

Consider the gradient basins B of the local energy minima to be a partition of the confor-
mation space X. The classes of the partition are called macrostates. To each macrostate α,
one can assign the partition function

Zα =
∑
x∈α

e−
E(x)
kT

and the corresponding free energy

G(α) = −kT lnZα.

The simplest and most straightforward approximation for the kinetic folding process is the
Arrhenius law for transitions on the barrier tree. Within this model, transitions only occur
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between the local minima that are directly connected by a saddle point. The transition
state energies are approximated by the saddle heights E[α, β]. For the rates between
macrostates α and β, one derives rβα = e−

E[α,β]−G(α)
kT . Instead of using the macrostate’s

free energy G(α) for the calculation of the transition rates, it is conceivable to use the
energy of the local minimum belonging to the macrostate. However, this simplification
lowers the quality of the approximation. A general drawback of the Arrhenius law is that
it completely neglects the fact that there are multiple pathways connecting two minima.

A much better approximation for the kinetic folding process is the macrostates process. It
calculates the transition rates between macrostates by summing up the microscopic rates
between the conformations belonging to the macrostates. Since the barriers program
determines to which macrostate a conformation belongs, the transition rates between the
macrostates can be computed “on-the-fly” while executing the program.

A comparison between the folding dynamics resulting from the directly integrated master
equation (2.9) and the coarse-grained dynamics shows reasonable agreement. For RNA,
the Arrhenius law describes the process qualitatively correct, but differs clearly in quan-
titative details. The macrostates process exhibits better agreement to the stochastic sim-
ulations [WSSF+04]. In contrast, coarse-grained lattice protein dynamics generally shows
different behavior from the stochastic simulations of the kinetic folding process [Wol04].

In summary, barrier trees appear to be a good starting point for the calculation of folding
kinetics. They provide a reduced representation of the conformation space, which is re-
stricted to local minima and saddle heights. Based on these, Arrhenius-type kinetics can
be formulated.



Chapter 3

Methods

The following chapter describes how the sampling approach of this study was carried out.

The pseudocode used in this thesis to specify the algorithms follows the conventions of
Cormen et al. [CLRS01]. All presented algorithms were implemented in ISO/ANSI C++
using object-oriented programming.

3.1 Sampling of the Energy Landscape

In this study, the barrier tree of an energy landscape was constructed without exhaustive
enumeration of all possible biopolymer structures. Instead, it was approximated by a
sampling over the conformation space of the biopolymer. The performed sampling was
not guided by a sophisticated heuristic, but was rather a randomized search. This allowed
us to make as little assumptions of the underlying landscape as possible, and led to a
generic approach. Therefore, the method could be applied to different systems which
make use of the energy landscape concept.

As elucidated in Section 2.1, the barrier tree of an energy landscape is a rooted graph. The
vertices of the graph correspond to the local minima of the landscape and their connecting
saddle points. Each conformation which is represented by a vertex has an associated energy
value. An energy function E assigns the energy to the conformations. Consequently, it is
sufficient to know all local minima and their saddle points to construct the barrier tree of
an energy landscape.

It should be noted that in the approach presented in this thesis, just the saddle height
between two conformations, instead of the saddle point, was stored. This is due to two
reasons: first, less storage space is needed. The second, but more important reason is that
biomolecules in simplified models typically show degeneracy. A high degree of degeneracy
is especially a common feature of lattice protein energy landscapes, since there are many
conformations that have exactly the same energy. The saddle points connecting the optima
do not have to be unique, but they must have the same energy. For this reason, we were
only interested in the saddle heights which make two conformations mutually accessible.
Moreover, two neighbored conformations which have the same energy are obviously mu-
tually accessible at the level of their energy. Then, there is even no saddle point between
them, but the saddle height is still defined according to Equation (2.3).
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Whilst being aware of this, the following sampling strategy can be derived to construct
the barrier tree iteratively:

1. While the sampling termination condition is not fulfilled, choose a minimum x̂ out
of all local minima that are already known.

2. Perform a random walk of length n, starting from the chosen minimum x1 = x̂. Save
the end conformation xn and the highest energy value Emax of all conformations
that were visited during the random walk.

3. Perform an adaptive walk starting from the conformation xn. The walk terminates
in a local minimum ŷ.

4. If the minimum ŷ is not yet known, add ŷ to the barrier tree and connect it to x̂ by
the estimated saddle height Emax, since x̂" Emax # ŷ. If the minimum ŷ is already
known, and if Emax is lower than the current estimated saddle height Ecurr between
the minima ŷ and x̂ in the barrier tree, replace Ecurr by Emax.

5. Iterate from step 1.

In the following subsections, the algorithms of the adaptive and the random walk are
specified. In addition, a proof is given that the strategy presented above actually yields
to local minima and the correct saddle heights between them.

Note that in the remainder of the thesis, the term saddle height is used for the estimated
saddle height between two minima, that is the currently known energy that makes the
minima mutual accessible to each other. Otherwise, the term correct saddle height is
used.

3.1.1 The Adaptive Walk

Corollary 1. Every adaptive walk terminates in a local minimum.

Proof. According to the definition given in Section 2.1, an adaptive walk terminates in xi,
if ∀xi+1 ∈ N(xi) : E(xi+1) ≥ E(xi). Hence, xi is a local minimum according to Defini-
tion (2.1).

The algorithm of the adaptive walk, starting from a given conformation x, is given in
Listing 3.1.

Listing 3.1: Algorithm of an adaptive walk
ADAPTIVE_WALK(x)
1 while arbitrary neighbor y of x with E(y) < E(x) exists
2 do x ← y
3 return x

The function E(x) implements the energy function E, which returns the energy value
of the passed conformation x. Detailed information about the implementation of the
conformation’s neighborhood, the energy function and other properties of the biopolymer
models is given in Section 3.5.

The application of a gradient walk to find unknown local minima is also possible. This walk
characterizes the basins simultaneously, but it is not the objective here. The adaptive walk
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has the advantage that, in contrast to the former, the algorithm is not bound to enumerate
all neighbors of the current conformation. Thus, it is much faster and was therefore used
in this approach.

3.1.2 The Random Walk

The random walk, starting from a given local minimum, aims to leave the basin of at-
traction of the minimum. With the subsequent adaptive walk, it is attempted to reach a
conformation other than the start conformation.

The desired length n of the walk, that is the total number of visited conformations, has
to be passed to the procedure RANDOM_WALK as given in Listing 3.2. Furthermore, it is
assumed that the pointer to an object WalkStatus is passed to the procedure. The
object WalkStatus is composed of the attributes x curr for the currently processed con-
formation and e max for the highest energy of all conformations that were visited during
the random walk.

Listing 3.2: Algorithm of a random walk
RANDOM_WALK(WalkStatus, n)
1 e_max[WalkStatus] ← E(x_curr[WalkStatus])
2 i ← 1
3 while arbitrary neighbor x of x_curr[WalkStatus] exists and i ≤ n
4 do i ← i+1
5 if E(x) > e_max[WalkStatus]
6 then e_max[WalkStatus] ← E(x)
7 x_curr[WalkStatus] ← x

Proposition 1. The sampling utilizing the presented random walk algorithm yields the
correct saddle height between the start conformation of the walk, x̂, and the local mini-
mum ŷ, obtained by the subsequent adaptive walk, if the random walk length n has been
chosen to be sufficiently large, and if a sufficient number of different walks from x̂ to ŷ
have been found by the sampling.

Let Emax be the highest energy that occurred during a random walk starting from x̂ = x1.
Further, let xn be the conformation the random walk terminated in. Thus, E(xn) ≤ Emax.
The subsequent adaptive walk starts from xn and terminates in ŷ. Since only con-
formations with lower energy are chosen during each step of the adaptive walk (see
Section 2.1), Emax is the highest energy on the performed walk w from x̂ to ŷ. That
is, Emax = max [E(x)|x ∈ w], which means that x and y are mutually accessible at the
energy level Emax for this walk.

According to Definition (2.3), the correct saddle height E[x̂, ŷ] is min
{
η

∣∣ x̂" η # ŷ
}
,

which is the minimum of all Emax found over all walks. As long as the value E[x̂, ŷ] was
not found by the sampling, there must be at least another unknown walk v from x̂ to ŷ, in
which the highest energy value is equal to E[x̂, ŷ], such that x̂" E[x̂,ŷ] # ŷ. The repeated
application of random and adaptive walks, starting from x̂ and terminating in ŷ, yields
new walks as long as the length n of the random walk has been chosen to be large enough.
Due to the fact that the conformation space is finite, the walk v is likely to be found if a
sufficient number of walks between x̂ and ŷ have been sampled.
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3.1.3 The Sampling Approach

Corollary 2. Once the set of all local minima M and the correct saddle heights between
each possible pair of minima x, y ∈ M have been found with the presented strategy, the
correct barrier tree of the energy landscape can be constructed from them.

As stated above, this corollary follows from the definition of a barrier tree as given in
Section 2.1.

Now, the whole sampling algorithm can be specified (see Listing 3.3). It is assumed that
the passed parameter n is the number of single sampling steps and that m is the desired
random walk length. A pointer to an existing barrier tree BT , which is not specified
further at this point, has to be passed as well. This tree has to contain at least a single
optimum to provide a start conformation for the sampling. The optima and the saddle
heights which were found are added to BT during the sampling process.

In this study, local minima, which were part of a shoulder (see Definition (2.2)), were
not regarded as local minima in the narrower sense. Thus, they were not included in the
barrier tree, but they were still saved to avoid multiple processing. In the degenerate case,
a local minimum that is part of a shoulder could be the endpoint of a gradient walk. This
special case was not taken into consideration here. However, it could be reasonable to save
these special local minima in the barrier tree.

Listing 3.3: Sampling algorithm
SAMPLING(BT, n, m)
1 for i ← 1 to n
2 do get local minimum x from BT
3 x_curr[WalkStatus] ← x
4 RANDOM_WALK(WalkStatus, m)
5 y ← ADAPTIVE_WALK(x_curr[WalkStatus])
6 if y is unknown local minimum
7 then save y as known local minimum
8 if neither x nor y are part of a shoulder
9 then insert y as local minimum into BT
10 add saddle height e_max[WalkStatus] between x and y in BT
11 else if x is part of a shoulder
12 then replace x by y in BT
13 else if y is in BT and e_max[WalkStatus] is lower than saddle height

between x and y in BT
14 then update saddle height between x and y in BT

to value e_max[WalkStatus]

The energy landscape sampling approach is illustrated in Figure 3.1.

The resulting barrier tree is the correct one for the investigated energy landscape, if all
local minimaM and the correct saddle heights between all minima were found, as stated
in Corollary 2. That is, this method is capable to yield the correct barrier tree unless the
sampling was stopped before the correct tree has been found. In the latter case, a more or
less good approximation of the barrier tree is obtained. Such an approximation can lack
local optima, and the estimated saddle heights can be above the correct values.

The whole sampling process can be controlled by several parameters which have al-
ready been partially introduced. The length of the sampling is determined by the pa-
rameter n. Since the structure space grows exponentially with the chain length of a
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Figure 3.1: Sampling of the energy landscape. a) A barrier tree, which contains the two local
minima 1 and 2, connected by the saddle point a, is given. b) The minimum 2 is randomly
chosen as start conformation of a random walk. The subsequent adaptive walk, starting from the
end conformation of the random walk, terminates in the local minimum 3. E(b) is the highest
energy value that occurred during the random walk. Since minimum 3 is not yet known, it is
added to the barrier tree and connected to minimum 2 by the saddle point b with the height E(b).
c) Another sampled walk between minima 2 and 3 results in the saddle point c that connects 2
and 3. Since E(c) < E(b), the estimated saddle height E(b) between 2 and 3 is updated to E(c),
which is the correct saddle height. d) The resulting barrier tree of the energy landscape.

biomolecule1, n should be chosen depending on the molecule’s length.

Another alterable parameter is the length m of the random walk. If m is chosen too large,
the sampling will be an arbitrary roaming in the structure space. Then, it will be unlikely
to find the correct saddle height. On the other hand, by choosing the value of m too
small, it cannot be assured that the basin of the start local minimum is left. To tackle this
problem, the following strategy was mapped out to adjust the random walk length for a
given problem instance: During the random walk, an adaptive walk was started from each
processed neighbor. As soon as the adaptive walk terminated in a local minimum which
has been unknown until then, the current length of the random walk was saved. This test
was repeated many times. Then, the distribution of the random walk lengths was used to
estimate an appropriate value for the parameter m.

Since each sampling iteration starts from a given conformation, the sampling process is, of
course, also influenced by the method through which the start conformation is chosen from
the barrier tree. The easiest idea is to pick it out randomly of all local minima already
known under the premise that all optima are uniformly distributed.

However, the biologically functional structures are the energetically optimal and near-
1 The number of RNA secondary structures, SN , grows exponentially with the chain length N :

SN ∼ N− 3
2 · 1.8N , see [Wat95].

For the number of possible protein structures on the CUB lattice, an asymptotic growth factor of 4.5N was
estimated [MS96].
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optimal ones. By choosing low-energy conformations in favor, one tries to reproduce the
low-energy portion of the folding landscape as exactly as possible.

A method to favor low-energy conformations is to make use of the common assumption that
the distribution of the biopolymer conformations follows the Boltzmann distribution. That
is, the probability of a structure x in the ensemble of all possible biopolymer structures in
thermodynamic equilibrium is proportional to its Boltzmann factor

W (x) = e−
E(x)
kT , (3.1)

in which k is Boltzmann’s constant, and T is the temperature of the system. The sum
of the Boltzmann factors of all possible conformations is called the partition function Z,
as already introduced in Equation (2.7). The Boltzmann factor divided by Z gives the
Boltzmann distribution.

In this study, the frequency of choosing an optimum as the start conformation for the
sampling was proportional to the Boltzmann weight of the optimum. Conformations being
more probable according to the Boltzmann distribution were consequently chosen more
often.

As already mentioned, at least one local optimum has to be provided as the start conforma-
tion for the sampling. To get a good set of start conformations, optimal and near-optimal
structures of the given sequence were predicted. This guaranteed that the lowest part of
the energy landscape was covered. The RNA secondary structure prediction was carried
out by means of Zuker’s algorithm. Suboptimal conformations were generated using the
approach of Wuchty et al. For more information about these algorithms, see Section 2.2.1.
For proteins, constraint-based protein structure prediction was used as introduced in Sec-
tion 2.2.2.

The following paragraph presents how the vaguely defined barrier tree BT was realized.
This includes both the tree’s implementation itself and the implemented operations on the
tree.

3.2 The Barrier Tree Data Structure and its Representation

The last section utilized an abstract barrier tree data structure, which will be discussed
in detail below. The barrier tree has to meet the demand that the information gained by
the sampling is stored in an efficient way to keep down the required amount of memory.
Furthermore, the data structure should support several operations on it with moderate
time complexity. Miscellaneous representations of a barrier tree are possible. Two of them
are discussed in the context of this thesis.

Since a barrier tree is a rooted and weighted graph (compare with Section 2.1), a graph
representation suggests itself. The set of all local minima of the landscape,M, corresponds
to the vertex set V of the graph. For n optima, a n×n adjacency matrix with an assigned
weight for each edge (x̂, ŷ) ∈ E is required. The entry in row x̂ and column ŷ is simply
the saddle height between the two minima x̂ and ŷ. This adjacency matrix of the graph
requires O(n2) memory.

From the graph representation, the barrier tree can be calculated. Provided that an ultra-
metric distance measure is given, the ultrametric tree can easily be reconstructed by an
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agglomerative clustering procedure. The Unweighted Pair Group Method with Arithmetic
mean (UPGMA) [MS57] is an example of these procedures. As stated in Section 2.1, the
saddle heights are an ultrametric distance measure. Consequently, the barrier tree, which
is constructed from the graph described above with the help of a hierarchical clustering,
is the correct tree. The complexity of the hierarchical barrier tree construction algorithm
is in the order of the complexity of UPGMA, which is known to be O(n2).

In summary, the graph representation of a barrier tree has a space complexity of O(n2),
and the construction of the tree takes O(n2) time.

Another possible representation of the barrier tree is the data structure of a full binary
tree. A binary tree is denoted as full, if each node is either a leaf or has degree exactly
two. This property is ensured, since the leaves represent the local minima, and the internal
nodes represent the saddle heights between them. Because of connecting two minima, each
saddle height, and thus each internal node, has two children. Each node of the barrier
tree is represented by a single object. To organize the tree, each node has pointer to other
nodes. Besides this, each node x has to have a pointer conf(x) to the conformation it
represents and to an energy value E(x). The attribute conf(x) is NIL, if x is an internal
node. E(x) is the energy of the optima for leaves, or rather it is the saddle height for
internal nodes. The attribute root[BT ] points to the root of the entire barrier tree BT .
The tree is empty if root[BT ] = NIL. Under the assumption that the cardinality of M
is n, the tree has n leaves. Hence, it has n− 1 internal nodes and 2n− 1 nodes in total. It
follows that this representation has a space complexity of O(n). During the buildup of the
tree, the existing saddle heights are updated, which will be described in detail later on. At
this point, it should be mentioned only that this update has a worst-case time complexity
of O(n). If the binary tree is balanced, this bound improves to O(log n).

The comparison of the two discussed barrier tree representations points out that a binary
tree is evidently the better data structure. The tree representation has also the advantage
that the current barrier tree is always available, since it is build up “on-the-fly” during the
sampling. This allows printing of the barrier tree during the ongoing sampling process.
Furthermore, it can be easily extended by other features. For example, it is possible that,
for non-degenerate landscapes, the whole saddle point conformation, instead of the saddle
height only, is stored in the binary tree’s internal nodes.

The internal use of a binary tree causes a fact which is not really problematic, but quite
unaesthetic. Imagine that three optima are mutually accessible by the same saddle height.
Since each node in a binary tree has at most two children, a saddle point connecting all
three minima cannot be represented. Consequently, the binary tree must have a node that
has the same energy value as its child.

The problem is approached by using a clever scheme to represent trees with an arbitrary
number of children [CLRS01]: the left-child, right-sibling representation, which also uses
only O(n) space for any rooted tree with n nodes. In the scheme, each node x stores the
following pointer to other nodes:

1. parent(x) points to the parent of node x,

2. left− child(x) points to the leftmost child of x, and

3. right− sibling(x) points to the sibling of x that is immediately to the right.

The pointer left− child(x) is NIL, if node x has no children. If x is the rightmost child
of its parent, then right − sibling(x) = NIL. The pointer parent(x) is NIL, if x is the
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root of the tree.

The extension of the children list to a doubly-linked list allows the removal of a given node
from the tree in constant time. This is achieved by the addition of a left-sibling pointer
to each node. Without that pointer, the siblings of the removed node x would have to be
traversed to update the right-sibling pointer of x’s left sibling.

3.3 Operations on Barrier Trees

The aforementioned sampling algorithm makes use of the following operations which have
to be provided by the barrier tree data structure:

• get a random local minimum under the assumption of either a uniform or a Boltz-
mann distribution

• check whether a given local minimum is already included in the tree

• check whether a given local minimum is part of a shoulder

• insert a new local minimum into the tree and add a given saddle height between the
new and a known optima

• update the saddle height between two given optima, if the new height is lower than
the current one

It is also useful to have the opportunity to calculate the distance between barrier trees.
This permits an impression of how good the barrier tree approximation in comparison to
the exact barrier tree is. In the RNA case, the exact barrier tree can be generated with
the barriers program [FHSW02].

3.3.1 Get a Random Optimum from the Barrier Tree

To return a random optimum from the barrier tree efficiently, a data structure allowing
direct access to arbitrary elements in constant time is needed. In this implementation,
a vector Mins stores the local minima of the barrier tree. The vector provides random
access to its elements by their indices in O(1) time.

It should be recalled that the distribution of the biopolymer conformations was assumed
to follow the Boltzmann distribution. Listing 3.4 shows the algorithm that was employed
to get a random Boltzmann distributed optimum from the passed vector Mins. The
algorithm uses a standard method to randomly choose a value out of several indexed and
weighted values.

Listing 3.4: Get a random Boltzmann distributed optimum from the barrier tree
GET_BOLTZMANN_DISTRIBUTED_RANDOM_LOCAL_MIN(Mins)
1 create array A[1..length[Mins]]
2 A[1] ← Boltzmann factor of Mins[1]
3 for i ← 2 to length[Mins]
4 do A[i] ← A[i-1] + Boltzmann factor of Mins[i]
5 B choose random number between 0 and A[length[A]]
6 r ← RANDOM(0, A[length[A]])
7 find smallest j: A[j] ≥ r
8 return Mins[j]
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3.3.2 Check the Existence of an Optimum

A hash table was used in order to check whether a given optimum was already known.
Hashing is a very effective and useful technique for the implementation of dictionaries, as
the average-case complexity of the basic operations INSERT, SEARCH and DELETE is constant
time.

The implementation in the context of this thesis uses a string hash function that was
proposed by Daniel J. Bernstein. A string representation of the conformation is used as
key. Basically, the function is

hash(i) = hash(i− 1) ∗ 33 + string[i], and hash(0) = 5381.

Thus, checking whether a conformation is known, takes O(1) time on average.

3.3.3 Check Optimum for Being Part of a Shoulder

In terms of Definition (2.2), a local minimum x̂ ∈M forms a shoulderM(x̂), if the saddle
height between x̂ and a ŷ ∈M\M(x̂) satisfies E[x̂, ŷ] = E(x̂). In this case, x̂ belongs to
the basin B([ŷ]) and should therefore not be added as local minimum to the barrier tree.

Likewise, x̂ ∈ M is, according to Definition (2.2), part of a shoulder M(ẑ), if there is
a ŷ ∈ M(ẑ) with E(x̂) = E(ŷ) = E[x̂, ŷ]. Then, the minima x̂ and ŷ belong to the same
equivalence class and are treated as one minimum.

Since minima that are known to belong to a shoulder are not added to the barrier tree,
the latter case can apply only if a known local minimum turns out to be part of a shoulder
during the sampling. Therefore, it always has to be checked first, if two local minima
are equivalent and if they are consequently members of the same equivalence class. This
allows for the removal of the whole class from the barrier tree, if just one class member
turns out to be part of the shoulder later on.

Consequently, to test x̂ by means of a given saddle height E[x̂, ŷ] for being part of a
shoulder, it is sufficient to verify if the condition E[x̂, ŷ] = E(x̂) is satisfied.

3.3.4 Insert New Optimum and Add Saddle Height Between Two Op-
tima

Insert a New Optimum into Barrier Tree

A new optimum is added to the barrier tree by the insertion of a new leaf which references
the conformation. Of course, the conformation itself has to be stored at a different place,
namely at the vector as mentioned above.

It should be recalled that local minima of degenerate landscapes are collected into equiv-
alence classes. Two minima x and y are member of the same equivalence class [x], if they
satisfy the condition E(x̂) = E(ŷ)∧E[x̂, ŷ]−E(x̂) ≤ ε for a given energy threshold ε. Such
an equivalence class is represented by just a single leaf in the barrier tree. Still, all optima
are saved, which allows that the sampling starts from each of them. The introduction of
these equivalence classes helps to keep the barrier tree compact and the landscape smooth.
Without them, equivalent minima would blow up the barrier tree, and minima enclosed
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by a very low barrier would make the landscape very craggy. Thus, the representation
of equivalent minima by just a single leaf is especially necessary if the energy function
is highly degenerated. Due to the concept of equivalence classes for local minima, the
resulting barrier tree is just a projection of the exact barrier tree. For simplification, it
was demanded that the energy threshold ε was equal to 0 for RNA secondary structures
and at most 1 for lattice proteins. The restriction avoids that local minima, which are not
directly connected to each other by a single saddle point, have to be merged.

Add the Saddle Height Between Two Optima

When a new saddle height sh between the new local minimum a and the known minimum b
is found, it does not just provide information about the saddle height between these two
optima, but also between a and other local minima. Let s be the new saddle point
between a and b, and let t be the highest saddle point which separates b from other local
minima with E(t) < E(s) = sh. Since there has to be a walk from b to t whose energy
never exceeds E(t), there also has to be a walk from t to s whose energy never exceeds E(s).
Thus, t ∈ V(s) and V(t) ⊆ V(s). Then, all local minima in the valley V(t) can access the
minimum a ∈ V(s) by the saddle point s with the energy sh as well.

To add the saddle height between a new leaf and a leaf being already part of the barrier
tree, the procedure ADD_SADDLE_HEIGHT was used as given in Listing 3.5. The procedure is
passed a new leaf a, a second leaf b within the tree, and their separating saddle height sh,
which will be added to the barrier tree BT .

Listing 3.5: Add the saddle height between two optima
ADD_SADDLE_HEIGHT(BT, a, b, sh)
1 b ← GET_HIGHEST_ANC_BELOW_EBOUND(b, sh)
2 if parent(b) = NIL
3 then create node c with energy sh
4 make a and b children of c
5 root[BT] ← c
6 else if e(parent(b)) = sh
7 then make a child of parent(b)
8 else create node c with energy sh
9 replace b by c in BT
10 make a and b children of c

In line 1, the simple function GET_HIGHEST_ANC_BELOW_EBOUND is used to obtain the high-
est ancestor of b, whose energy is less than the new saddle height sh. The function
GET_HIGHEST_ANC_BELOW_EBOUND is presented below. The highest ancestor found represents
the highest saddle height less than sh which separates b from other local minima. Then, b
is set to this highest ancestor. If b has no parent (line 2), it must be the root of the barrier
tree. Then, in lines 3–4, a node c representing the new saddle height is created, and a
and b become its children. The root of BT is set to c in line 5. If the highest ancestor b
is an internal node, two cases can occur. Either the parent of b has the energy sh, then a
is added to its children list (lines 6–7). Otherwise, the energy of b’s parent is above sh,
since b is the highest node below sh. Therefore, in lines 8–10, a new node c representing
the saddle height sh is created, the parent of b becomes parent of c, and a and b become c’s
children.

Instead of being a new leaf, the passed node a can also be the root of a subtree which
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Figure 3.2: Insertion of a new local minimum into a barrier tree. a) Given the barrier tree, a new
local minimum labelled with 4 has to be inserted into the barrier tree. The new saddle point c was
found between the known minimum 1 and the new minimum 4. The highest ancestor of 1 with
an energy below E(c) is the saddle point b, which connects the minima 1 and 3. The node which
represents b has no parent and is the root of the barrier tree. b) The new minimum 4 is inserted
into the tree. A new node which represents the saddle point c is inserted into the tree. Its children
become the minimum 4 and the subtree with the root b. Furthermore, the root of the barrier tree
is set to c. The resulting barrier tree is shown in the figure.

is not linked to the barrier tree. Then, the passed saddle height is the energy level that
makes the optima within the subtree accessible to b.

Figure 3.2 exemplifies the insertion of a new local minimum into a barrier tree.

Get the Highest Ancestor Below an Energy Bound

The function presented below (Listing 3.6) returns the highest ancestor of the passed
node a, whose energy is below the energy bound eb, if it exists. Otherwise, it returns a.

Listing 3.6: Get the highest ancestor below an energy bound
GET_HIGHEST_ANC_BELOW_EBOUND(a, eb)
1 anc ← a
2 while parent(anc) 6= NIL and e(parent(anc)) < eb
3 do anc ← parent(anc)
4 return anc

3.3.5 Update the Saddle Height Between Two Optima

In this paragraph, the updating of saddle heights within a barrier tree will be explained.
Such an update becomes necessary, when a saddle height between two minima that is
lower than the currently known saddle height has been found. The saddle height between
two optima is the energy of their least common acestor (lca) in the barrier tree. Thus,
in order to get the energy that makes two given minima mutually accessible, their least
common ancestor has to be determined.

The lca of two nodes p and q in a tree is their shared ancestor which is located farthest
from the root. Thus, the lca is the internal node closest to the nodes p and q that appears
in both paths of p and q towards the root of the tree.
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Find the Least Common Ancestor of Two Nodes

Derived from its definition, the problem of finding the lca of two distinct nodes p and q
can be solved with the simple algorithm given in Listing 3.7.

Listing 3.7: Determine the least common ancestor of two nodes
DETERMINE_LCA(p, q)
1 create lists L1, L2
2 while parent(p) 6= NIL
3 p ← parent(p)
4 add p to L1
5 while parent(q) 6= NIL
6 q ← parent(q)
7 add q to L2
8 a ← tail[L1]
9 b ← tail[L2]
10 lca ← NIL
11 while a 6= NIL and b 6= NIL and a = b
12 lca ← a
13 a ← prev[a]
14 b ← prev[b]
15 return lca

In lines 2–7, all ancestors of p and q on the path towards the root are collected each into
a list. In lines 11–14, the entries of these two lists are compared, starting from the root,
until the list entries differ. The last common entry is the lca and is returned.

The complexity of the algorithm depends on the height of the tree, since an upward path
from each of the two nodes to the root has to be performed. It takes O(n) time to
determine the lca in an arbitrary n-node tree, since its height is bounded by the number
of nodes. If the tree is approximately balanced, its height is O(log n). As barrier trees are,
in the majority of cases, balanced to some extent, the complexity of DETERMINE_LCA could
improve to O(log n).

However, Bender and Farach-Colton presented an algorithm that answers lca queries in
constant time after only linear preprocessing of the tree [BFC00]. Since their algorithm
is effectively implementable, in contrast to other ones presented before, it potentially
provides the opportunity to be applied to the sampling approach. However, the algorithm
cannot be applied directly as the barrier tree changes dynamically. The algorithm has to
be modified in such a way that the preprocessing step does not have to be repeated after
each update of the barrier tree. Further analysis would exceed the task of this thesis,
but could be the subject of further work in order to improve the runtime of the sampling
algorithm.

Update the Barrier Tree

During the sampling process, a saddle height between two minima a and b lower than their
currently known saddle height, that is the energy of their lca in the barrier tree, can be
found. As soon as this happens, the tree has to be updated. Thereby, one of the following
three cases can apply:
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1. It turns out that the minima a and b are members of the same equivalence class.
Therefore, either the leaf representing a or the leaf representing b is removed from
the barrier tree, which has to be consolidated after this removal. The consolidation
will be explained afterwards.

2. It turns out that a or b belongs to a shoulder. The leaf representing the minimum
that belongs to the shoulder is removed from the barrier tree. Subsequently, the tree
has to be consolidated.

3. The saddle height between the optima a and b has to be updated in the barrier tree.
That is, a lower saddle height between a and b is introduced. Resulting from this,
the two subtrees st1 and st2, which contain the optima a and b respectively and
which are below the optima’s lca, have to be updated as well. Because the saddle
heights have the property to form an ultrametric distance measure (see Section 2.1),
the need of the subtree update follows from Equation (2.4): a lower saddle height
between the two minima a and b also lowers the saddle height between minimum a
and each minimum in subtree st2 and between b and each minimum in st1. After
the subtree update, the tree has to be consolidated.

Consolidate the Barrier Tree After Leaf Removal

The barrier tree update requires a barrier tree consolidation procedure, since the removal
of a leaf from the tree might result in an internal node that has just one child. Such a
procedure is presented in Listing 3.8. The procedure is passed the parent p of the leaf
removed and the barrier tree BT .

Listing 3.8: Consolidate the barrier tree after leaf removal
CONSOLIDATE(BT, p)
1 if p has at least 2 children
2 return
3 else if p = root[BT]
4 then root[BT] ← child(p)
5 parent(root[BT]) ← NIL
6 else make child(p) child of parent(p)
7 remove p from parent(p)
8 delete p

The procedure CONSOLIDATE is returned, if node p has at least two children (lines 1–2).
Otherwise, p must have exactly one child, since it is an internal node which had to have
at least two children before one of it was removed. If p is the root of the tree, it is deleted
and its child becomes the new root of the tree (lines 3–5 and line 8). Otherwise, in lines 6–
8, p is spliced out of the tree. That is, the child of node p becomes child of p’s parent,
and p is deleted from the tree.

Update the Saddle Height Between Two Optima

The update of the saddle height itself, which is the third case mentioned above, is done
suchlike that all the leaves of the “smaller” subtree below the lca are relocated into the
“larger” subtree below the lca. The “smaller” subtree is named st1, and the “larger”
subtree is named st2. It is assumed that the sampling gives rise to the new saddle height sh
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Figure 3.3: Update of a barrier tree. a) Given the barrier tree, the saddle height between the
two local minima 1 and 4 has to be updated. The new saddle point between 1 and 4 is d with
the saddle height E(d). The current saddle height between the minima 1 and 4 is the energy of
their least common ancestor c. Note that although the subtree below the least common ancestor c,
which contains just the minimum 4, is definitely the “smaller” subtree below c, it is ascertained
that the subtree containing the minima 1, 2, and 3 is the “smaller” one here. Thus, this example
can both be concise and illustrate a more complex update process. b) The subtree that contains
the minima 1 and 2 has the root a, whose energy E(a) is below E(d). Consequently, this subtree
is connected to minimum 4 by the saddle point d. c) The minimum 3 has to be relocated as well,
since it is accessible from 1 at the saddle height E(b). d) Because c, the former least common
ancestor of 1 and 4, remains with just one child, it has to be spliced out of the tree. This is done
by the procedure CONSOLIDATE. The barrier tree resulting from the update is shown in the figure.

between the minima a and b. First, the subtree of st1 that contains either a or b and whose
root has an energy just below the new saddle height sh is determined. Then, this subtree
is connected to st2 by the saddle height sh. Afterwards, one moves in the remainder of st1
towards the lca. On this path, all leaves of st1 are relocated into st2 until the subtree st1
is empty. Finally, the node lca has to be spliced out of the barrier tree, if the root of st2
remains its only child. Figure 3.3 exemplifies this algorithm.

The saddle height update procedure for a given barrier tree was implemented as described
in Listing 3.9. The procedure is passed the barrier tree BT , the two local minima a and b,
their lca and the new saddle height sh between a and b.

Listing 3.9: Update the saddle height in the barrier tree
UPDATE_SADDLE_HEIGHT(BT, a, b, lca, sh)
1 if distance(a,lca) < distance(b,lca)
2 then swap a and b
3 subtree1 ← GET_HIGHEST_ANC_BELOW_EBOUND(b,sh)
4 sub1parent ← parent(subtree1)
5 remove subtree1 from sub1parent
6 st2node ← GET_HIGHEST_ANC_BELOW_EBOUND(a, sh)
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7 ADD_SADDLE_HEIGHT(BT, subtree1, st2node, sh)
8 while sub1parent 6= lca
9 do subtree1 ← sub1parent
10 sub1parent ← parent(subtree1)
11 remove subtree1 from sub1parent
12 st2node ← GET_HIGHEST_ANC_BELOW_EBOUND(st2node, e(subtree1))
13 if (e(parent(st2node)) = e(subtree1))
14 then make subtree1’s children to children of parent(st2node)
15 delete subtree1
16 else replace st2node by subtree1 in BT
17 make st2node child of subtree1
18 CONSOLIDATE(BT, lca)

In the first two lines, the “smaller” subtree st1 below the lca is determined. The “smaller”
subtree is the subtree wherein the path from the minimum towards the lca is shorter than
in the other one. The node denoted with b has to be in st1. The distance from the minima
towards the lca can be determined by the procedure DETERMINE_LCA(a, b) after marginally
extending it. In line 3, the algorithm sets the node subtree1 to the highest ancestor of b,
whose energy is less than sh. Of course, b has an ancestor within the subtree st1 below
the lca, since sh < E(lca). Then, in lines 4–5, the node subtree1 and the subtree below
it which contains b is removed from its parent. Subsequently, subtree1 is connected by
the saddle height sh to the “larger” subtree st2 containing a. This is done by means of
the procedure ADD_SADDLE_HEIGHT (lines 6–7). Afterwards, it is proceeded with the parent
of subtree1. Lines 8–17 are repeated until the lca is reached. Thus, all remaining leaves
from the subtree st1 are relocated into the subtree st2. In each iteration step, the algorithm
moves one tree level closer to the lca (lines 9–10). In line 11, the current node subtree1 and
the subtree below it is removed from the remainder of the barrier tree. The node subtree1
is the saddle point that made the minimum b accessible to the minima within the subtree
below the node subtree1. Therefore, in lines 12–17, subtree1 is inserted into st2. If a
saddle point with subtree1’s energy already exists in st2, all of subtree1’s children are
inserted into st2 and just the node subtree1 is deleted (lines 13–15). Otherwise, subtree1
is inserted into st2 as a node (lines 16–17). In line 18, the procedure CONSOLIDATE is called,
since the node lca might have just one child. Then, it has to be spliced out of the tree.

3.4 Distances Between Barrier Trees

A distance measure on barrier trees makes it possible to interpret the quality of the tree
approximation. To compare two such approximations, a reference barrier tree is needed.
For certain types of conformation space, this reference can be generated by means of
barriers. Then, different barrier trees gained by the sampling can be compared with
each other in respect of their distance to the reference tree.

The distance measure also gives rise to a new termination condition of the sampling.
Instead of specifying the sampling length, the sampling could be terminated as soon as
the distance between approximated and reference tree falls below a given threshold.

Packages like PHYLIP [Fel05] already contain methods to compute tree distances. How-
ever, they normally allow for differences in tree topology, and the trees should all have
the same list of leaves. This is not appropriate for the presented sampling approach, since
the differences in the energy barriers, that is the branch lengths, are supposed to be used
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for the distance calculation between barrier trees. It is also possible that the compared
barrier trees do not represent the same set of local minima. Therefore, the root mean
square deviation (RMSD) over the saddle heights was used as distance measure.

Once again, low-energy conformations are assessed with a higher weight than conforma-
tions with higher energy. The weight assigned to an optima resembles its Boltzmann factor
(see Equation (3.1)).

The RMSD(BT1, BT2) over two barrier trees BT1, BT2, which represent the same set of
local minimaM, is defined by√

1
N(N − 1)

∑
x1∈M

∑
x2∈M,x2 6=x1

max (W (x1),W (x2)) · (EBT1 [x1, x2]− EBT2 [x1, x2])
2,

where N denotes the cardinality ofM, EBT [x1, x2] denotes the saddle height between x1

and x2 in BT , and W (x) denotes the Boltzmann factor of conformation x.

Assume that BT1 and BT2 do not represent the same set of local minima. Then, at least
one of the trees contains one or more minima, which are not included in the respective
other tree. Let xmissed be the minimum of tree BT1 that is missing in BT2. Then,
the deviation from the saddle heights EBT1 [xmissed, xn] for all xn ∈M \ {xmissed} cannot
be determined, since there are no corresponding saddle heights in BT2. To resolve this
problem, the difference between EBT1 [xmissed, xn] and the height of the highest possible
saddle height in BT2 is calculated. If the maximal saddle height is known, it can be passed
as parameter to the function that calculates the RMSD. In the HP-model, this value is 0,
which is the energy of the open chain conformation. If, however, the highest possible
saddle height is not available, a lower bound for this maximal height will be provided by
the maximum of the energy of the two barrier trees’ roots.

3.5 Implementation of Energy Landscape Models

The presented sampling approach is generic, this means that it is not dependent on the
underlying energy landscape model. Thus, a framework for the study of arbitrary land-
scapes is needed. The landscape models have to define at least a set of conformations
and a neighborhood of the conformations in order to form the conformation space, and an
energy function over the conformations. In the context of this thesis, we developed the
Energy Landscape Library (ELL)2 that meets these basic requirements [MWB07]. Con-
sequently, this library provides a platform for generic algorithms to investigate energy
landscape properties.

3.5.1 General Architecture of the Energy Landscape Library

The core of the ELL is an abstract class State, which defines the abstract properties and
methods of a state. The term state is equated with the term conformation as used in
the last chapter. This class provides the interface between the generic algorithm and its
underlying landscape model. A new landscape model is introduced by deriving a subclass
from the abstract superclass. This allows for the formulation of the algorithm on an

2The ELL is freely available at http://www.bioinf.uni-freiburg.de/sw/ell/.

http://www.bioinf.uni-freiburg.de/sw/ell/
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abstract state, which will be specialized afterwards. The generic algorithm on the state,
however, does not have to be adapted or reimplemented.

The class State provides methods to obtain the fitness of a state, which permits for
example evolutionary studies, and to obtain the energy of a state. The energy of a state
is its negated fitness. Another basic functionality of the class is the possibility to iterate
over the neighbors of a state. This iteration can be done randomly, or with respect to a
specific order on the neighbors. To reduce the memory usage for this enumeration, the
neighbors are generated on demand. Furthermore, a state can be saved in a compressed
representation. This makes it possible to manage a larger number of states, since less
memory is used for each of it. The last important method provided by the class is the
calculation of distances between two states. The distance is the number of moves that
must be applied to one state in order to reach another one.

3.5.2 States for RNA Secondary Structures and Lattice Proteins

The ELL currently implements states for RNA secondary structures (see Section 2.2.1)
and for structures of simple lattice proteins (see Section 2.2.2). RNA secondary structures
are internally represented in bracket notation and two neighbors can be converted into
each other by single moves. The base pair distance defines the distance between two RNA
states. The free energy of an RNA secondary structure is calculated as described by Zuker
and Stiegler [ZS81] by means of the Vienna RNA package implementation [HFS+94]. The
simple lattice protein model supports different lattice types (SQ, CUB, FCC). The sequence
alphabet and its associated contact energy function can be arbitrarily assigned. The pro-
tein structures are internally represented in relative moves. Hence, neighbors are generated
using pivot moves. The distance between two protein structures is the Hamming distance3.
The Hamming distance between two protein states provides a lower bound for the number
of relative moves that are necessary to reach one state from the other one. Since only
self-avoiding walks are allowed, a direct path4 connecting two states does not have to exist
for lattice protein states, in contrast to RNA states.

Due to the fact that the ELL is highly modular, all available landscape models can be ex-
tended in a simple way, and new models can be implemented in a straightforward manner.

3.5.3 Symmetries of Lattice Proteins

As already said in Section 2.2.2, there are symmetrical structures for each lattice protein
that result from rotations and reflections of the protein. It was ascertained that every rel-
ative move string starts with forwards direction F . Since the first letter of the move string
is fixed, several symmetrical structures are already excluded from the conformation space.
More precisely, rotations within the x−y−layer (that is a rotation around the z−axis) and
reflections at the y − z−layer are forbidden. Consequently, it is not permitted to apply a
pivot move to the first position of the relative move string. Such a move would just result
in a reflection or rotation of the state instead of generating a new state.

3For two strings of equal length, the Hamming distance between them is defined by the number of
different positions in the strings.

4A direct path between two conformations is a path where adjacent conformations have a lower distance
to the target conformation. For lattice protein states, minimal refolding paths instead of direct paths can
be defined. These paths allow some indirect steps that result in a larger distance to the target.



3.5 Implementation of Energy Landscape Models 44

The basic lattice protein models, as implemented in the ELL, do not exclude any more
symmetrical states beyond the ones described above. The neighbors of a state are gen-
erated via point mutations on the relative move string, which can lead to states that are
symmetrical to each other.

To exclude the remaining symmetrical structures, the concept of relative move string nor-
malization was developed. As up to now, neighbors are generated by applying a pivot
move to a given state. However, two states are considered to be identical, only if their
normalized representation is identical. The normalized representation of a lattice protein
state is the lexicographically smallest state that is symmetrical to the original state. This
lexicographically smallest state is computed by a normalize function. The function changes
the letters in the encoding relative move string according to a prior specified order on the
relative move alphabet. Consequently, all states that have the same normalized represen-
tation are assumed to be members of the same symmetry class, which is represented by
its normalized state.

In the following, an example for the SQ lattice is given. Assume that the lexicographical
order on the relative move alphabet is FLBR. Let FRFLR be a SAW encoded in relative
moves on the given lattice. The first position of the string does not have to be changed,
since F comes lexicographically first. Since the move L comes before the move R at the
second string position, all R within the string have to be swapped with L and vice versa.
Thus, FLFRL is the resulting, normalized relative move string of the structure being
symmetrical to the original one.

A prototype of such a normalize function has been implemented for the cubic lattice.
The implementation is based on a replacement scheme for relative moves in symmetrical
structures. The scheme ensures that the moves in the relative move strings appear in the
lexicographical order FLDRU .



Chapter 4

Results and Discussion

In the last chapters, the theoretical background for the study of biopolymer energy land-
scapes was given. Furthermore, the models as well as the sampling strategy used within
this thesis were presented. This chapter will give examples of the sampling and will present
the computational results that have been obtained.

The following studies were carried out:

• Two RNA examples were used to assess if the sampling approach is capable of
finding the exact barrier tree of the energy landscape. For RNA secondary structures,
efficient algorithms exist to enumerate suboptimal structures. Thus, exact barrier
trees can be generated as implemented in the program barriers [FHSW02]. This
provides the possibility to verify the barrier trees obtained by the sampling approach.

• Two lattice protein examples demonstrate the capabilities of the presented approach.
In contrast to RNA secondary structures, no efficient algorithm for the enumeration
of suboptimal structures below a certain energy level exist for lattice proteins. Hence,
no exact barrier trees were available for comparison with the sampled ones. The
program latticeFlooder [WWH+06] enumerates only neighbored structures below
a given energy threshold. Consequently, certain energy barriers cannot be overcome,
which is the reason that not all suboptimal structures can be reached.

All calculations were performed on AMD Opteron 875 with 2.2 GHz.

To verify the outcomes of the sampling approach, procedures to sort and to print the
resulting barrier trees were implemented. The sorting arranges the barrier tree in the
same way as the barriers program does. It is done in two steps. First, all local minima
are sorted by increasing energy. If two conformations have the same energy, they are
sorted lexicographically by their string representation. Second, the tree is sorted in the
following manner: each node references a conformation which occurs before, according to
the conformation order after the first sorting step, the conformation referenced by its left
sibling. The barrier tree is sorted breadth-first starting from its root. In addition, printing
of the barrier tree in Newick tree format is provided. The barrier tree graphics within this
thesis were drawn with the application NJplot, which is able to interpret the Newick tree
format [PG96].
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4.1 Results

4.1.1 Barrier Trees of RNAs

As a first example, an artificially designed RNA molecule of length n = 20 with the se-
quence CUGCGGCUUUGGCUCUAGCC was chosen. The sequence has already been presented in
previous work [WSSF+04], where it was denoted xbix. The conformation space of this
molecule consists of 3886 secondary structures. Figure 4.1 shows the exact barrier tree of
xbix1. The tree was calculated by the program barriers from a list of all conformations,
which was generated using RNAsubopt. The barrier tree has 34 local minima. The mfe
structure ....((((........)))) has an energy of -4.3 kcal/mol and is represented by min-
imum 1. The denatured, open chain conformation is represented by the local minimum 8.
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Figure 4.1: Barrier tree of the artificially designed RNA sequence xbix. The plot shows the
barrier tree of the molecule and the table contains the corresponding eight lowest local minima of
the energy landscape.

To assess our approach, a sampling of the energy landscape was performed, starting from
the mfe conformation ....((((........)))). The temperature, which is used to adjust

1Note that the energies of all RNA secondary structures were calculated with stabilizing energies to
unpaired bases adjacent to helices in multi-loops and free ends (dangling ends). Programs like RNAeval

and RNAsubopt, which are part of the Vienna RNA Package, thus have to be used with the option -d1.
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Figure 4.2: Distance between exact and sampled barrier tree of the artificially designed RNA
sequence xbix. The plot shows the mean RMSD between the two barrier trees versus the number
of sampling steps. The mean RMSD is the arithmetic mean of 10 runs, and it is plotted on a
logarithmic scale.

the Boltzmann weights of the conformations, was set to 310.15 K. This temperature en-
sures that all local minima have almost the same probability to be chosen as the start
conformation for a single sampling step2. Since the complete barrier tree of the energy
landscape was of interest, this distribution of the local minima was meaningful. The ran-
dom walk length of each sampling step was chosen from the uniform distribution on the
interval [1 . . . 5]. After every 100 sampling steps, the barrier tree yielded by the sampling
was compared with the exact barrier tree of the energy landscape as computed by the pro-
gram barriers. The sampling was terminated as soon as the exact barrier tree has been
found. On average over 10 runs, all 34 local minima were found after 1246 sampling steps.
The exact barrier tree was found after 25960 sampling steps on average. The mean runtime
of a sampling, terminating in the exact barrier tree, was 5 s in our implementation. A plot
of the mean RMSD between the exact and the sampled barrier tree versus the number of
sampling steps for 10 runs is shown in Figure 4.2. For the calculation of the RMSD, an
energy of 23.5 kcal/mol was passed as the maximal saddle height. This value is the energy of
the highest energy conformation as calculated by RNAsubopt. The mean RMSD declines
exponentially and reaches the value of 0 after 53600 sampling steps. Figure 4.3 shows the
barrier tree of a single sampling run that was stopped after 30000 steps with an RMSD
of 13.04 between the sampled and the exact barrier tree. The tree is identical to the exact
barrier tree shown in Figure 4.1, except for the position of minimum 23. Therefore, the
tree is just an approximation of the exact barrier tree.

The second example is the artificially designed RNA sequence ACGCGUACGACACGCAACGCAGU
with a length of 23 nucleotides. The conformation space of the RNA molecule with this
sequence consists of 6226 secondary structures. The barrier tree in Figure 4.4 shows that
the energy landscape of this molecule contains 78 local minima. Minimum 1 corresponds
to the mfe conformation ..((((.....))))........ with a free energy of -4.7 kcal/mol.

2A sampling step refers to a single iteration of the sampling algorithm. It consists of a single random
walk, the subsequent adaptive walk, and the operations on the barrier tree, if necessary.
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Figure 4.3: Barrier tree approximation of the artificially designed RNA sequence xbix after
30000 sampling steps. The energy landscape sampling was stopped after 30000 steps with an
RMSD of 13.04 between the sampled and the exact barrier tree. The resulting tree is identical to
the exact barrier tree, except for the position of minimum 23.
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Figure 4.4: Barrier tree of the RNA sequence ACGCGUACGACACGCAACGCAGU. The mfe conformation
is represented by minimum 1.

Minimum 9 represents the open chain conformation.

The sampling of the energy landscape was performed with the same parameter values as
in the previous example. The mfe structure ..((((.....))))........ was provided as
start conformation for the calculations. Averaged over 10 runs, all 78 local minima of the
energy landscape were found after 2796 sampling steps. The sampling was terminated
with the exact barrier tree after 62970 sampling steps on average, which corresponds to a
runtime of 15 s in our implementation. Figure 4.5 shows the mean RMSD between exact
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Figure 4.5: Distance between exact and sampled barrier tree of the RNA sequence ACGCGUA-
CGACACGCAACGCAGU. The plotted RMSD between the two barrier trees is the arithmetic mean
of 10 sampling runs. It is plotted on a logarithmic scale.

and sampled barrier tree plotted versus the number of sampling steps for 10 runs. Again,
the energy of the highest energy conformation, which is 25.5 kcal/mol, was passed as the
highest possible barrier height for the RMSD calculation. Similar to the first example, the
mean RMSD declines exponentially. A mean RMSD of 0 is reached after 170600 sampling
steps.

For the second RNA molecule, another sampling of its energy landscape was performed.
This time, shoulders were not excluded from the set of local minima. The resulting barrier
tree is shown in Figure 4.6. The barrier tree is similar to the correct one (cf. Figure 4.4),
but it contains three additional local minima, namely the minima labelled with 61, 68
and 72. These minima are enclosed by an energy barrier of 0, and each of it is part of a
shoulder. In all other examples, minima belonging to a shoulder were excluded from the
barrier tree.

4.1.2 Barrier Trees of Lattice Proteins

After discussing the sampling of RNA secondary structure energy landscapes in the last
section, the following section will concentrate on lattice protein folding.

In the first example, an HPNX sequence in the three-dimensional cubic lattice was used.
The examined lattice protein is a 10-mer with the sequence HHXHPHNHNP. The confor-
mation space of this sequence consists of 308981 different SAW structures. When sym-
metrical structures were excluded, the number of different SAWs on the lattice declined
to 39640. Three different parameter settings were used to sample the energy landscape of
this protein. In two settings, any SAW structure of the conformation space was allowed
to be generated by applying pivot moves during the sampling. In the third setting, nor-
malized structures were allowed only. Such normalized structures reduce the size of the
conformation space, since only non-symmetrical structures are considered to be different
conformations. Symmetrical structures are collected into symmetry classes. Every sym-
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Figure 4.6: Barrier tree of the RNA sequence ACGCGUACGACACGCAACGCAGU without exclusion of
shoulders. In contrast to the correct barrier tree shown in Figure 4.4, this tree contains three
additional minima labelled with 61, 68 and 72. Each of these three minima is part of a shoulder.

metry class is represented by a normalized structure. See Section 3.5 for details about
the implementation of the normalize function. Furthermore, in each setting, local minima
were collected into equivalence classes. The energy threshold ε for the difference between
the minima’s energy and their saddle height was set to 0 in setting one and three. It was
set to 1 in setting two. All in all, the following three settings were attained:

1. all SAWs on the lattice were allowed as structures, and the threshold ε for collecting
local minima into equivalence classes was set to 0,

2. all SAWs on the lattice were allowed as structures, and the threshold ε for collecting
local minima into equivalence classes was set to 1,

3. only normalized SAWs on the lattice were allowed as structures, and the threshold ε
for collecting local minima into equivalence classes was set to 0.

For the sampling, a temperature of 1K was chosen. This value favors low-energy confor-
mations. The random walk length of each sampling step was chosen from the uniform
distribution on the interval [1 . . . 10]. The energy landscape sampling started from an op-
timal conformation with the relative move sequence FLLFLFLUU and an energy of −13. It
was terminated after 20 million steps. The runtime of the sampling implementation was
about 3 hours for this lattice protein example.

Figure 4.7 shows the barrier trees that were obtained by the sampling of the energy
landscape of this lattice protein. From the top to the bottom, the trees were calculated with
parameter settings 1, 2 and 3. The upper plot shows the tree resulting from the sampling
with parameter setting 1. The tree has 129 leaves, with a single leaf corresponding to an
equivalence class of local minima. That is, there are 129 basins, which are associated with
473 different local minima. Additionally, 7404 minima belonging to a shoulder were found,
which were not included in the barrier tree. There are 68 different minima with an energy
of −13, which is the optimal energy of the examined lattice protein. The basins associated
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with the ground states are labeled with 1 to 12. The results were verified with the help of
the program latticeFlooder, which returned the same 68 ground states with E = −13.
The plot in the middle shows the barrier tree of the sampling with parameter setting 2.
At this, symmetrical structures were not excluded, but minima with the same energy
separated by an energy barrier not exceeding 1 were assumed to belong to a common
equivalence class. Therefore, the tree shows only 41 different basins. The number of
different local minima declined to 193, but the number of minima which belong to a
shoulder increased to 7684. Thus, the total number of local minima found, which is 7877,
did not change in comparison to the parameter setting discussed before. Once again,
68 ground states with E = −13 were found. They belong to basins 1, 2, 3 and 4. The
lower plot shows the barrier tree calculated by the sampling which allowed normalized
structures only. The tree has 20 basins, which are associated with 66 different local
minima. This time, only 9 optimal structures with an energy of −13 were found. These
conformations are identical with the ground states as enumerated by latticeFlooder.
The ground states’ basins of attraction are labeled with 1 and 2. The comparison of the
barrier trees calculated with parameter settings 1 and 3 leads to the observation that the
symmetrical ground states are connected by saddle heights of E = −12 and E = −5.

To illustrate the convergence of the energy landscape sampling for the sequence HHXHPH-
NHNP, two different features of the resulting barrier trees were chosen. Both the number
of local minima found and the average saddle height between each two local minima of
the barrier tree versus the number of sampling steps were analyzed. Figure 4.8 displays
the curves of the obtained data for the different parameter settings. Each plot shows the
arithmetic mean of 5 runs. The general shape of the two different curves is the same
for all three parameter settings, and all curves show convergence as well. The sampling
over normalized conformations converges much faster to the number of local minima of
the landscape than the samplings over all conformations do. In the case of the average
saddle height, the curves of the samplings over all conformations decline later and start
convergence later than the sampling over normalized conformations does. Furthermore,
the curves of the average saddle heights are not smooth, but noisy.

As a second example of lattice protein energy landscapes, the 27-mer HPNX sequence
HHXHPHHHNPHHPHHHHNHPHNHHHNP in the three-dimensional cubic lattice was chosen. The
landscape of this example has just recently been studied using the latticeFlooder ap-
proach [WWH+06]. To demonstrate the capabilities (and limitations) of the sampling ap-
proach, a sampling over the conformation space of this polymer was performed. Constraint-
based protein structure prediction (CPSP) was utilized to provide a good set of start
conformations for the sampling. The unique ground state with E = −80 and four subop-
timal conformations on the first energy level with E = −79 were chosen as the starting
set (see Table 4.1). The energy landscape sampling was stopped after 7 million steps.
The temperature was set to 1 K, and the random walk length of each sampling step was
chosen from the uniform distribution on the interval [1 . . . 10]. The threshold ε for collect-
ing local minima into equivalence classes was set to 1. With these parameter values, the
implementation of the energy landscape sampling took a runtime of several days.

The barrier tree resulting from a sampling, which was performed with the parameter
setting as described above, is given in Figure 4.9. The tree shows the 150 lowest local
minima. Altogether, 6444934 different local minima and 6395867 associated basins of
attraction were found. Since symmetrical structures were not excluded, the tree shows
5 ground states due to rotations and reflections. These states have an energy of −80
and are labeled with 1 to 5 within the tree. Besides this, 20 suboptimal conformations
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Figure 4.7: Barriers trees of the HPNX-kind lattice protein with sequence HHXHPHNHNP. The trees
were generated by sampling of the lattice protein energy landscape with parameter settings 1, 2
and 3 (from top to bottom). See text for details.
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Figure 4.8: Convergence of the energy landscape sampling for the sequence HHXHPHNHNP. The
two plots in one row belong to samplings with parameter settings 1, 2 and 3 (from top to bottom).
The plot on the left shows the number of local minima that have been found during the sampling,
including the minima that belong to a shoulder. The plot on the right shows the average saddle
height between each two local minima of the resulting barrier tree. Each plot shows the arith-
metic mean of 5 samplings per parameter setting. The number of sampling steps is plotted on a
logarithmic scale.
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Relative moves Energy
FFLFLFLULLFFLLDDLLRDFDFRRF -80
FFDFDDULUUFFUUDDLLRDFDDRRD -79
FFDFDDUFUURFUUDDLLRDFDDRRD -79
FRRFRFRUDDFFDDRRDDLDFDFLLF -79
FRRFRFRLRRDFRRUURRDRFRFDDF -79

Table 4.1: Starting set for the energy landscape sampling of the 27-mer sequence HHXHPHHHNPH-
HPHHHHNHPHNHHHNP.

5 2 4 1 3 -80.0

-70.0

-60.0
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Figure 4.9: Barrier tree of the HPNX-kind lattice protein with sequence HHXHPHHHNPHHPHHHHN-
HPHNHHHNP.

with an energy of −79 were found. The studies of Wolfinger et al. [WWH+06] gave
a barrier tree with a single minimum with E = −80 and 4 minima with E = −79.
In their results, the optimal and near-optimal conformations were highly connected via
saddle heights in an energy range of −40 to −50. The barrier tree found by the sampling
approach contains saddle heights at quite high energy levels. The optimal conformations
are mutually accessible by energies between −30 to −40. This indicates that the resulting
barrier tree appears to be just a rough approximation of the exact one.

4.2 Discussion of Results

In the two RNA examples discussed, the approach for the sampling of energy landscapes
yielded the same barrier trees as computed by the program barriers from a list of all
conformations. With our method, all local minima of the landscape were found after a
small number of sampling steps. Consequently, the sampling approach can be used to
determine the local minima of biopolymer folding landscapes, at least for short sequences.
To compare the barrier tree resulting from the sampling with the exact barrier tree, the
RMSD between them was used. At the beginning of the sampling, the RMSD declined
rapidly and started to converge to a value of zero. When the sampling was stopped as soon
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as the convergence started, it was already obtained a relatively good approximation of the
landscape’s exact barrier tree. When the sampling was continued, the RMSD reached a
value of zero in both examples. An RMSD of zero means that the barrier tree obtained
by the sampling agreed with the exact barrier tree.

Accordingly, the two examples showed that the sampling approach is capable of resulting
in the correct barrier tree of an energy landscape. The runtime of the sampling implemen-
tation was in the range of seconds, which is by all means acceptable.

After verifying the sampling approach with the RNA examples, it was applied to two
examples of lattice proteins. In this connection, the exact barrier tree of the energy
landscape was not available. Therefore, the convergence behavior of the sampling regarding
the number of local minima found and the average saddle height between local minima
was analyzed to evaluate the quality of the barrier trees that were obtained.

By putting local minima, which are separated by an energy barrier not exceeding 1, into
equivalence classes, the barrier tree resulting from the sampling becomes smaller. More
local minima are collected into an equivalence class, which results in fewer classes for the
same number of minima. Each leaf in the barrier tree represents such an equivalence class.
Therefore, the tree contains less leaves and becomes clearer. However, the resulting barrier
tree is just a projection of the exact one.

In the first lattice protein example, one parameter setting excluded symmetrical structures
by normalization of relative move strings. The reduced size of the conformation space was
reflected in the runtime of the sampling. With this setting, the sampling, and thus the
convergence, was faster than with the two other settings. As less conformations and
therefore less local minima exist, more walks for every two local minima can be sampled.
Consequently, more walks that connect the minima are known after the same number of
sampling steps. The number of local minima found versus the number of sampling steps
was compared with all three different parameter settings of the first lattice protein example.
All samplings showed convergence to a fixed number of local minima, but the sampling
over normalized conformations started to converge earlier. The average saddle height in
the resulting barrier trees converged to a fixed value as well. Again, the convergence of
the average saddle height started earlier for the sampling over normalized conformations.
The convergence to a fixed value for all three parameter settings suggests that the sampled
barrier trees converge to the correct ones. Of course, it is possible that a certain part of
the energy landscape cannot be reached by the sampling by reason of an upper bound for
the random walk length that was chosen to be too low. Then, if a part of the landscape
is separated from the remainder by a high saddle height, it possibly cannot be reached by
the random walk, since the walk is too short to visit a conformation whose energy exceeds
this saddle height. To avoid this, the maximal length of the random walk was always
chosen higher than the estimated “appropriate value”, which was determined following
the strategy described in Section 3.1.3. The averaged saddle height plotted versus the
sampling steps did not yield a smooth curve, but a curve with some noise. The noise arose
due to the removal of shoulder points and the collection of minima into equivalence classes
during the sampling. Assume that two minima are already mutually accessible by a low
energy. When they turn out to belong to a common equivalence class, the saddle height
between them is not used anymore for the calculation of the average saddle height. This
results in an increase of the average saddle height, although the barrier tree still converges
globally to the exact barrier tree.

When the different barrier trees of the first lattice protein example were compared, it
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turned out that certain symmetrical ground states are connected by very low saddle heights
of E = −12. This can be seen as an artifact of the pivot move set. For small molecules
as the investigated 10-mer, only a few intermediate conformations are necessary to turn a
given structure into a symmetrical one.

In conclusion, the first lattice protein example indicates that the sampling approach is
also capable of returning the correct barrier tree of a lattice protein energy landscape, or
at least a good approximation of it.

The sampling results of the second discussed lattice protein example were compared with
the results from Wolfinger’s study [WWH+06]. With the sampling approach, significantly
more local minima were found. Symmetrical structures of optimal and suboptimal confor-
mations were found, and thus a larger region of the energy landscape was covered. The
latticeFlooder approach selectively enumerates millions of conformations, limited by
the size of available RAM. Afterwards, the exact barrier tree of this landscape part is cal-
culated from the enumerated conformations. With this method, generally barrier trees are
gained which contain non-connected subtrees. Therefore, with the enumeration method,
the need for the sampling of direct or minimal refolding paths between non-connected min-
ima emerges. In contrast, the sampling approach is capable of finding a number of local
minima that are in the range of millions. Beyond this, all local minima are connected. An
existing drawback of the presented method appears to be that the found saddle heights
within the barrier trees are too high. Consequently, they are just an upper bound of the
exact saddle heights.

The barrier trees of both lattice protein examples showed that there are several optimal
and suboptimal conformations. No unique ground state exists, and there are many con-
formations with exactly the same energy. This high degree of degeneracy is a common
feature of lattice protein energy landscapes. It can be seen as an artifact of the underlying
model, which uses a limited alphabet size and fixed bond lengths and angles [WWH+06].
For instance, assume that a single monomer of the lattice protein, which did not contribute
to the contact energy of the conformation, was turned. Then, a different conformation
arose, but the contact energy of the lattice protein did not change. A study to quantify
the degeneracy distribution in three-dimensional HP-models as practical application of
CPSP was carried out by Will [Wil05]. At this point, it seems reasonable to ask whether
it is correct to model proteins with reduced alphabets as two or four-letter alphabets.
Several experimental studies have shown that functional and rapidly folding proteins do
not necessarily require the full sequence complexity of naturally occurring proteins (see
for example [AKY02]). Fan and Wang investigated reduced alphabet sizes to find the
minimum number of amino acid types that is required to encode complex folding proteins.
According to them, the lower bound of letters, which is required for a natural protein to
encode its structure, is around ten [FW03]. Since the approach presented in this thesis is
generic and problem-independent, it could be readily applied to more realistic models with
an alphabet that is larger than the four-letter HPNX alphabet. Such extended alphabets
would, however, require a method that provides optimal conformations as a starting set
for the sampling. Another possibility to circumvent degeneracies would be the choice of
more complex lattices like the FCC instead of the CUB lattice. However, because the degrees
of freedom increase in the FCC lattice, the size of the conformation space increases as well.
Thus, more sampling steps would be required to obtain a barrier tree approximation that
would be close to the exact barrier tree.

The comparison of the two approaches selective enumeration and sampling indicates that
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they complement each other. The advantages of one method are the disadvantages of
the other, and vice versa. The sampling approach is capable of finding a huge number
of minima and could therefore be used to roughly characterize the energy landscape.
Afterwards, the latticeFlooder approach could be used to calculate the exact barrier
tree of certain landscape regions by selective enumeration starting from minima which
were found by the sampling. Hence, a strategy combining the two algorithms could be
the basis for further research programs. Both approaches are problem-independent and
applicable to the energy landscape of arbitrary discrete systems. In principle, the barrier
trees computed by these methods enable dynamic studies based on landscape theory, even
for molecules which have a huge conformation space such as large RNA molecules. The
HP and HPNX-model can provide an opportunity to make studies of the dynamic behavior
of lattice proteins computationally feasible.



Chapter 5

Conclusion

Barrier trees provide a coarse-grained representation of energy landscapes by organizing
local minima and saddle heights in a hierarchical structure. They are therefore a very useful
tool for the study of biopolymer folding pathways. This thesis aimed to develop a generic,
problem-independent sampling method for the computation of such barrier trees, and to
compare the outcome of the sampling with the exact barrier trees obtained by approaches
based on enumeration. As a result of this research, a random sampling approach, which
allows to compute the exact or approximated barrier tree of the energy landscape, was
developed. Using this method, the investigated conformation space of the landscape is not
restricted to certain regions. Thus, in comparison to the current approaches for lattice
proteins, more local minima were found, and the resulting barrier trees covered a larger
region of the energy landscape.

Two examples of RNA molecules were used to compare this method with previous ap-
proaches of other groups. Since there was total agreement between the resulting barrier
trees, it can be concluded that the sampling approach can be used to compute both all
local minima as well as the exact barrier tree of an energy landscape. For RNA molecules
and proteins, the size of the conformation space grows exponentially with the sequence
length. Since the growth is slower in the RNA case, the exact barrier tree can be sampled
for longer sequences than in the protein case.

In order to evaluate the quality of the sampling approach for lattice proteins, the con-
vergence behavior of two features over the sampled barrier tree was analyzed. Both the
number of local minima found and the average saddle height between local minima within
the barrier tree converged to a fixed value. This convergence strongly indicates that a
good approximation of the exact barrier tree was already obtained. It can be assumed
that the barrier tree resulting from the sampling converges to the exact barrier tree of the
lattice protein energy landscape. The exclusion of symmetrical conformations from the
conformation space by normalization of the relative move strings reduces the size of the
conformation space. Due to the smaller conformation space, the sampling of the energy
landscape starts to converge earlier to the exact barrier tree.

The experiments indicate that the method presented in this thesis is able to significantly
find more local minima than former methods based on selective enumeration of certain
parts of the lattice protein energy landscape. Consequently, the sampling approach covers
the conformation space much better than enumeration approaches. Symmetrical structures
of optimal and suboptimal conformations, which did not appear in the outcomes of former
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studies, were found. This proves that the sampled barrier trees represent a larger region
of the energy landscape. The sampling method has the advantage, that, in contrast to
methods based on enumeration, the number of sampled conformations for the barrier
tree construction is not basically restricted by the available amount of memory. The size
of the resulting barrier tree is, of course, limited, but it is principally possible to reach
every conformation of the conformation space by the sampling. An obvious problem of
the presented method is, that saddle heights within the resulting barrier trees can be
higher than within the exact barrier tree of the energy landscape. The sampling of direct
paths between local minima of the barrier tree appears to be a possible way to find better
approximations of the saddle heights. Other improvements of the accordance between
exact barrier tree and approximated barrier tree could be the subject of further research
in this area.

The comparison of different approaches for the exploration of energy landscapes, namely
selective enumeration and sampling of conformations, indicates that a strategy which
combines the two methods could achieve very promising results. The limitations through
the nature of one approach are compensated by the benefits of the other. A conceivable
combination could be designed as follows: the sampling is used to roughly characterize
the energy landscape of a biomolecule. Subsequently, the lower parts of certain energy
landscape regions are selectively investigated by enumeration of conformations starting
from optimal and near-optimal conformations found with the help of the sampling. The
whole algorithm could be sped up by clever parallelization of sampling and enumeration.

Taking all the different aspects into consideration, it can be said that the sampling ap-
proach developed within this thesis appears to be a promising technique for the compu-
tation of barrier trees as reduced representation of biopolymer energy landscapes. The
barrier trees can be used as the basis for the estimation of basin sizes. Moreover, they are
a good starting point for the calculation of biopolymer folding kinetics.
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