
Media Engineering and Technology Faculty

German University in Cairo

A new heuristic algorithm for
IntaRNA for improved RNA-RNA

interaction prediction

Bachelor Thesis

Author: Mohamed Ezz El-Din El-Shaer

Supervisor: Prof. Dr. Rolf Backofen

Andreas Richter

Reviewer: Prof. Dr. Slim Abdennadher

Submission Date: 4 March, 2011

This is to certify that:

(i) The thesis comprimises only my original work toward the Bachelor Degree

(ii) Due acknowlegement has been made in the text to all other material used

Mohamed Ezz El-Din El-Shaer
4 March, 2011

Acknowledgments

I would like to thank Prof. Dr. Rolf Backofen so much for offering me this great oppor-
tunity to work on my Bachelor Thesis in his group of Bioinformatics in Albert Ludwigs
University of Freiburg.

I owe alot to my supervisor Andreas Richter, this thesis would not have been possible
without his continuous guidance and support with both knowledge and ideas throughout
the research. His analytical skills and professional attitude affected me personally. I want
to thank him alot for all his efforts, working with him was a great pleasure for me.

I would like to show my deep gratitude to Prof. Dr. Slim Abdennadher for arranging
this opportunity.

I am also grateful to my respectful parents for their great support along my stay,
without whom I wouldn’t have been able to stay abroad.

I want to thank everybody in the group for being helpful and friendly, which con-
tributed positively to my work.

3

Abstract

The number of discovered ncRNAs(non-coding RNAs) that regulate target mRNAs by
base pairing is growing fast. This demands for identification of the target mRNAs for
those ncRNAs. Thus prediction of such interactions between ncRNAs and mRNAs be-
came of great neccesity to help identify targets for known ncRNAs. A few computational
algorithms for this purpose were developed to predict such interactions. While some of
the algorithms were fast enough for genome-wide searches, they were not so accurate in
predicting interactions between long RNAs. This is because they neglected an impor-
tant factor for interaction formation which is the interacting site accessibility. IntaRNA
considers site accessibility while maintaining the same time and space complexities of
these fast algorithms. IntaRNA includes two algorithms, one that gives optimal results
according to the Turner free energy model1, but is time consuming with time complexity
O(n2m2). The second algorithm is heuristic with time complexity O(nm) only, but does
not give optimal results for all input sequences. In this thesis we present improvements
over both algorithms of IntaRNA. First we modified the non-heuristic algorithm to model
more accurately how RNAs are actually forming an interaction. It simulates - in the same
order - the sequence of events in which interaction formation is thought to happen in real.
The new implementation allows to forbid high energy barriers that might be encountered
during interaction formation and that are less likely to be overcome. Second we improved
the accuracy of the heuristic algorithm of IntaRNA, making it more accurate and reliable
for use in biological researches, without significantly increasing its runtime and space
requirements.

1The energy model used scores interactions by considering both hybridization and accessibility ener-
gies

4

Contents

1 Introduction 7
1.1 General motivation . 7
1.2 Problem statement . 7
1.3 Previous work . 8

1.3.1 RNAcofold, PairFold . 8
1.3.2 RNAhybrid . 9
1.3.3 IntaRNA, RNAup . 9
1.3.4 RNArip , piRNA . 10
1.3.5 Overview . 11

2 Background 12
2.1 RNA . 12
2.2 Energy model of RNA secondary structures 14
2.3 Notations and conventions . 15
2.4 Previous IntaRNA algorithms . 16

2.4.1 Computing the seed . 16
2.4.2 Non-heuristic version . 17
2.4.3 Heuristic version . 18
2.4.4 Dangling end energies . 19

2.5 Implementation . 20

3 Non-heuristic algorithm 21
3.1 Motivation . 21
3.2 Algorithm . 22
3.3 Implementation . 25

3.3.1 The order of filling the matrix . 25
3.3.2 Filling an entry in the matrix . 28
3.3.3 Space improvement . 30
3.3.4 Limiting interaction length . 32

4 Improved heurestic algorithm 35
4.1 Motivation . 35

4.1.1 Problems of heuristic version . 35
4.2 Algorithm . 36
4.3 Implementation . 39

4.3.1 Filling the matrices . 39

5

4.3.2 Implementation of Interaction Set ADT 40

5 Results and discussion 45
5.1 Performance of the improved heuristic algorithm 45
5.2 Performance on prediction of bacterial RNA-RNA interactions 46
5.3 Results . 46
5.4 Time and space requirements . 50
5.5 Future work on the non-heuristic algorithm 50
5.6 Conclusion . 52

Bibliography 53

6

Chapter 1

Introduction

In this chapter we introduce the problem of RNA-RNA interaction prediction and its im-
portance to the field of Bioinformatics. Then we discuss some of the previous approaches
for the problem.

1.1 General motivation

For a long time RNA was thought to be involved only in protein synthesis process. How-
ever, in the last two decades many non-protein coding RNAs (ncRNAs) were discovered.
Some of them function as post-transcriptional regulators by binding to mRNAs (mes-
senger RNAs) via base pairing, like for example miRNAs (micro RNAs), siRNAs (small
interfering RNAs) or bacterial sRNAs (small RNAs). Although many ncRNAs have been
discovered and verified, only few target RNAs for these ncRNAs are currently known.
Knowing these targets helps assign a function to these ncRNAs. Since target identi-
fication is tedious, expensive and time consuming to be accomplished experimentally,
prediction algorithms of such interactions became of great neccesity. Using computation
power can help to identify targets for known ncRNAs in a more convenient and efficient
way. Finding which RNAs can have a stable interaction with the known ncRNAs is ac-
tually finding the target mRNAs for those ncRNAs. IntaRNA is an algorithm for this
purpose.

1.2 Problem statement

Two RNA sequences are given, presumably target RNA sequence and ncRNA sequence,
represented as strings S1 and S2, respectively. Each character in the strings represents
one nucleotide. An interaction can be defined as a set S of pairs (x, y), such that x is a
position of a nucleotide in S1 and y is a position of a nucleotide in S2. Each pair in the
set represents a base pairing between the base at position x in the target RNA and the
base at position y in the ncRNA, with the condition that a position x or y cannot exist
in more than one pair. An energy value is assigned to interacting regions according to
the Turner Free energy model.

7

The problem is to find the best interaction between the two sequences energy-wise,
that is, compute the interaction with the minimum free energy (MFE).
This problem is known as RNA-RNA Interaction Prediction Problem RIP and it was
proven in [1] to be an NP-complete if we want to consider all possible interaction struc-
tures. This means that an exact algorithm for the problem would require exponential
time. However polynomial time algorithms exist when we restrict the class of interactions
to be considered. Different algorithms handle the problem with different approaches and
most importantly they consider different subsets of all possible interactions to avoid the
exponential time requirement. In the next section a brief overview of some algorithms is
presented.

1.3 Previous work

1.3.1 RNAcofold, PairFold

Both the RNAcofold [6] and the PairFold [2] algorithms use nearly the same idea of con-
catenating the two input sequences S1 and S2 to one sequence (denoted as S12), then the
concatenated sequence S12 is folded like a single RNA sequence using any algorithm like
the classical Zuker folding algorithm for example, while keeping track of the concatena-
tion point.

Although the idea is nice and very simple, it has the major drawback that it does
not consider the case when there are pseudoknots in S12, which is very likely to happen
in RNA-RNA interactions and should be considered because S12 is actually two separate
sequences binding together. To clarify more, consider the example in Figure 1.1, when
one of the sequences is binding to a hairpin loop in the other sequence.

Figure 1.1: The structure shown appears to RNAcofold and PairFold as a pseudoknot in S12 so it is
not considered as one of the possible solutions.

Speaking about these two sequences as one sequence, then this interaction is pseu-
doknotted , which the RNA folding algorithms used by RNAcofold and PairFold never
consider. While speaking about them as two separate RNA sequences , which is the case,

8

then the interaction has a common structure because interaction sites are often located
in loop regions. Thus this kind of structures cannot be handled by these algorithms.

1.3.2 RNAhybrid

RNAhybrid [25] is an RNA-RNA interaction prediction algorithm that minimizes the
hybridization energy, i.e., the energy of the base pairings between the two sequences. It
neglects an important factor for having a stable binding between the two sequences, which
is the accessibility of the interacting regions in the sequences. Accessibility energy is the
amount of energy required to make the the interacting regions in each sequence single
stranded, or in other words, free from intramolecular pairings. Although the algorithm is
fast with time complexity O(nm), neglecting the accessibility factor makes it unreliable
when used with relatively long input sequences. Since the longer the interaction region
is, the more energy is needed to make it accessible for the interaction. Therefore for
longer sequences, accessibility energy is not negligible anymore and has a direct impact
on choosing the best interaction. For example consider the interaction given in Figure
1.2 which shows a possible output of RNAhybrid.

Figure 1.2: The dotted base pairs are the ones required to be broken to make the interacting region
free of intramolecular base pairs and available for interaction with the other sequence.

Because the interacting region is long, it may have a good hybridization energy with
lots of base pairings between the two sequences. On the other hand, long interaction
regions require an amount of accessibility energy which is not easy to overcome. Therefore
this structure as an output may not be the biologically correct one.

1.3.3 IntaRNA, RNAup

IntaRNA and RNAup [21] are two other programs for the prediction of RNA-RNA in-
teractions. They overcome all the disadvantages in the previously mentioned algorithms.
IntaRNA and RNAup do not use the concatenation method, and thus allow for loop-loop
interactions. Two types of energies contribute to the overall scoring, (1) Hybridization
energy (exothermic) resulting from base pairing between the two sequences (2) Accessi-
bility energy (endothermic) required to make the interacting region in each sequence free
from intramolecular pairings. The two factors are opposing each other; the more base

9

pairings we have between the two sequences, the more hybridzation energy is released
(and thus more stability), in the same time the more accessibility energy is required.
They balance this tradeoff in a way so that at the end, the best possible interaction is
returned as output. They use dynamic programming approach to build up an optimum
solution for the resulting interaction. RNAup has a time complexity of O(n3 + nw5)
(where w is the maximum interaction length allowed), which makes it inapplicable on
huge datasets, while IntaRNA has two versions of the algorithm, a non-heuristic version
which is O(n2m2), and a heuristic version which is a good approximation for the non-
heuristic version, but is much faster with time complexity O(nm) only [9]. The heuristic
version is more practical for genome-wide researches due to its time efficiency. However,
output accuracy needed to be improved to make the heuristic algorithm more reliable
and to widen the set of inputs for which the algorithm give the optimal solution, which is
one thing we present in this thesis. Further explanation for the accuracy problems of the
heuristic version is found in Section 4.1.1. Another major advantage of IntaRNA is that
it enables the user to enforce a seed region in the interaction and specify the parameters
of this seed.
The drawback of these algorithms is that only one hybridization region is possible in the
resulting interaction. An interaction like OxyS-fhlA cannot be predicted correctly since
they were found experimentially to have two kissing haripins [3]. Even a simpler duplex
of multiple interaction sites (as shown in Figure 1.3) cannot be predicted by IntaRNA or
RNAup.

Figure 1.3: A duplex with multiple interaction sites that cannot be predicted by IntaRNA or RNAup.

1.3.4 RNArip , piRNA

Those two algorithms [10, 15] can compute joint secondary structures of two interacting
RNAs. The computed interaction can contain multiple interaction sites. Specifically
RNArip was able to predict the OxyS-fhlA [3] with good accuracy. It could predict one
of the kissing hairpins exactly and predicted the other kissing hairpin with a difference of
two base pairs only (compared to the experimentally validated interaction). The problem
of those algorithms is the the time requirement of O(n6). The space complexity for both
algorithms is O(n4).

For more information about different RIP algorithms, see [4] for a review.

10

1.3.5 Overview

In this thesis we focus on imporving the two algorithms of IntaRNA. First, we modify
the non-heuristic algorithm in a way that allows to forbid high energy barriers that might
be encountered during interaction formation and that are less likely to be overcome, this
is discussed in Chapter 3. Second, we improve the heuristic algorithm to make it more
accurate and reliable, more details are in Chapter 4. After that we perform an evaluation
of both algorithms with respect to prediction accuracy, time consumption and memory
consumption. In our experiment we use a data set of 36 pairs of RNAs. We discuss the
results in Chapter 5.

11

Chapter 2

Background

2.1 RNA

RNA (Ribonucleic Acid) is a biopolymer composed of a long chain of nucleotides. Each
nucleotide is a molecule that is composed of a ribose sugar, a phosphate group and a
nitrogenous base. The type of a nucleotide depends on its nitrogenous base. A nu-
cleotide can have one of four types of bases attached to its sugar, these are Adenine,
Guanine, Uracil or Cytosine. RNAs play vital roles in the synthesis of proteins that
control chemical processes in the cell. An RNA molecule is usually defined by its pri-
mary and secondary structures (and possibly other structures which are out of our scope).

Primary structure

The primary structure of an RNA molecule is a sequence of nucleotides that form that
molecule. An RNA nucleotide sequence is represented in computational context as a
string of characters S over the alphabet {A,G,U,C}. Each character in S represents
one nucleotide forming the RNA molecule. Each of the four characters of the alphabet
resembles a nucleotide type :

• A Adenine

• G Guanine

• U Uracil

• C Cytosine

In general, two nucleotides may form a bond called base pairing. A nucleotide can
either be free (unpaired) or involved in exactly one base pair at a time, but not more.
When an RNA has a region of consecutive free nucleotides, we call it a single-stranded
region.

12

Secondary structure

The secondary structure of an RNA molecule with primary structure S defines the base
pairings formed between its nucleotides. It can be formally defined as follows :

T = {(i, i′)| i ∈ S, i′ ∈ S, Si is paired with Si′}

where T is the set of base pairings over the sequence S and Si is the ith nucleotide
in the sequence S. Each pair (i, i′) in the set T represents one base pair between the
nucleotides Si and Si′ . For the scope of this thesis, we only consider the secondary
structures that satisfy the following constraints :

1. ∀(i, i′) ∈ T, 1 ≤ i < i′ ≤ |S|

2. ∀(i, i′), (j, j′) ∈ T, i′ 6= j

3. ∀(i, i′), (j, j′) ∈ T, i = j ⇐⇒ i′ = j′

4. ¬∃(i, i′), (j, j′) ∈ T, i < j < i′ < j′ (no pseudoknots are allowed).

In the following, some basic definitions are introduced :

Intramolecular base pairs: Base pairs between nucleotides of a single RNA molecule,
the formed structure is called an intramolecular structure (or secondary structure). The
process of forming an intramolecular structure is usually refered to by RNA folding.

Intermolecular base pairs: Base pairs between nucleotides of two RNA sequences, the
formed structure is called an intermolecular structure (RNA-RNA interaction).

Duplex : The words duplex and intermolecular structure are used interchangeably in
this thesis.

Seed region : In intermolecular interactions, a seed region is a region in each of the in-
teracting sequences, which is assumed to initiate the interaction. The seed region consists
of consecutive complementary bases in the two sequences that can form a thermodynam-
ically stable initial interaction.

RNA-RNA interactions can be composed of the following secondary structure elements
(shown in Figure 2.1) :

Stacking

A stacking is formed by two subsequent base pairs having no free nucleotides between
them. For example the base pairs (i, j) and (i + 1, j + 1) form a stacking.

13

Bulge

A bulge is formed by two base pairs when there are one or more unpaired nucleotides
between them in only one of the two sequences. For example the base pairs (i, j) and
(i+c+1, j+1) form a bulge on the first sequence and the base pairs (i, j) and (i+1, j+c+1)
form a bulge on the second sequence provided that c > 0. c represents the number of
unpaired nucleotides between the two base pairs in the corresponding sequence.

Internal loop

An internal loop is formed by two base pairs where there are one or more unpaired
nucleotides between them in both sequences. For example the base pairs (i, j) and (i +
c1 + 1, j + c2 + 1) form an internal loop provided that c1 > 0 and c2 > 0. c1 and c2
represents the number of unpaired nucleotides between the two base pairs in the first and
second sequences respectively.

Figure 2.1: Possible interaction structures

2.2 Energy model of RNA secondary structures

The energy model used for scoring intramolecular and intermolecular structures in this
thesis is the Turner free energy model.

In this energy model, only the following pairs of nucleotide types are allowed to form
a base pair :

• (G,C)

• (A,U)

• (G,U)

Scoring an interaction in IntaRNA is based on two energy contributions :

• Hybridization energy : Energy score due to intermolecular base pairings in the form
of stackings, bulges or internal loops (exothermic energy, i.e., energy is a negative
value).

• Accessibility energy : An amount of energy required to make the interacting region
single-stranded, i.e., not involved in intramolecular pairings (endothermic energy,
i.e., energy is a positive value).

14

The term ensemble denotes the set of all secondary structures that can be formed by an
RNA sequence.

The accessibility energy of a region [i, k] in an RNA sequence S is defined by the
energy difference (denoted by ED) :

ED(i, k) = −(Eall − Eunpaired
i,k),

where Eall denotes the energy of the ensemble of all possible secondary structures that
can be formed by the sequence S and Eunpaired

i,k denotes the energy of the ensemble of
those structures that have the region [i, k] single stranded. If s is the set of all structures
that can be formed by a sequence, then the partition function Zs is defined as

Zs =
∑
Qεs

e−
E(Q)
RT

where E(Q) is the free energy of the sequence S when folded into the structure Q.

The term e−
E(Q)
RT denotes Boltzmann factor. The partition function is the sum over the

Boltzmann factors of all states Q. The energy of the ensemble Eall could then be defined
as

Eall = −RT ln(Zs)

The energy of an ensemble of structures is calculated using a partition function ap-
proach from [20]. Similarly we can get Eunpaired

i,k by first calculating the partition function

Zsunpaired
i,k

where sunpairedi,k is the ensemble of all structures that can be formed by the se-

quence S, with the region [i, k] single stranded. Then Eunpaired
i,k = −RT ln(Zsunpaired

i,k
), for

more details see [21].

Note that accessibility values are not additive, i.e.

ED(i, k) 6= ED(i, x) + ED(x, k)

2.3 Notations and conventions

To simplify explanation we have to define some conventions that are used in the next
chapters :

• S1 and S2 refer to the sequences of the two given RNAs.

• S1
i and S2

j denote the nucleotides at position i in the sequence S1 and at position
j in the sequence S2.

• C(i, j, k, l) denotes the energy of the most stable interaction between S1 and S2

that begins at i through k in S1 and j through l in S2.

• C(a, b, c, d) is a prefix of C(i, j, k, l) if each of the following is true :
a = i b = j c < k d < l

• C(a, b, c, d) is a suffix of C(i, j, k, l) if each of the following is true :
a > i b > j c = k d = l

15

• The number of enclosed bases in C(i, j, k, l) in S1 is k − i + 1

• The number of enclosed bases in C(i, j, k, l) in S2 is l − j + 1

• The total number of enclosed bases in C(i, j, k, l) is (k − i + 1) + (l − j + 1)

• Since an entry C(i, j, k, l) denotes an interaction, the words entry and interaction
will be used interchangeably.

• sloop denotes the maximum size of an internal loop (the default value is 16).

2.4 Previous IntaRNA algorithms

To be able to present the contribution of this thesis on IntaRNA, its previous algorithms
[9] are reviewed briefly.

2.4.1 Computing the seed

One of the features of IntaRNA is that it enforces a seed region in the resulting interac-
tions. It also allow the user to define the following properties of the seed :

• P : the number of base pairs in the seed region

• bmaxm : the maximum number of unpaired bases allowed in the target RNA in the
seed region.

• bmaxs : the maximum number of unpaired bases allowed in the ncRNA in the seed
region.

• bmax : the maximum number of unpaired bases allowed in both sequences.

The energy of a seed region is calculated in the same way in all presented algorithms in
this thesis using the function seed.seed(i, j, k, l) denotes the best seed interaction (having
the four properties set by the user) in the region between (i, j) and (k, l). We store the
interaction energies of all seeds from (i, j) in the matrix seed(i, j, P ′, bm, bs), where P ′

denotes the number of paired bases in S1 and in S2; and bm and bs denote the number of
unpaired bases in S1 and S2 repectively. The recursion is as follows :

seed(i, j, P ′, bm, bs) =

min
p, q

i < p ≤ min(i+ sloop + 1, n)
j < q ≤ min(j + sloop + 1,m)

 Eloop(i, j, p, q)+
seed(p, q, P ′ − 1,
bm − (p− i− 1), bs − (q − j − 1))

 if P ′ > 2

Eloop(i, j, p, q) if P ′ = 2

if (S1

i , S
2
j)

can pair

∞ otherwise

(2.1)

Eloop(i, j, p, q) gives the energy of the loop formed between base pairs (i, j) and (p, q),
such that this loop could be any of the interaction structures stacking, bulge or internal

16

loop. Both seed(i, j, k, l) and seed(i, j, P ′, bm, bs) represent the same thing, the equiva-
lence between both representations is clarified in the following equation :

seed(i, j, k, l) =

seed(i, j, P, (k − i + 1)− P, (l − j + 1)− P)

if k − i+ 1 ≥ P and

l − j + 1 ≥ P

∞ otherwise

(2.2)

Note the difference between P and P ′; P is the number of paired bases in the seed
defined by the user, while P ′ is the number of paired bases in the seed that is denoted
by seed(i, j, P ′, bm, bs) with 2 ≤ P ′ ≤ P .

2.4.2 Non-heuristic version

The first algorithm of IntaRNA is a complete version, which computes different interac-
tions with all possible starts and ends. The direction of computation is from the right to
the left. It is based on dynamic programming with the following recursions :
Initial case :

Ck,l(k, l) =

{
ED1(k, k) + ED2(l, l) if S1

k, S
2
l can pair

∞ otherwise
(2.3)

Main recursion :

Ck,l(i, j) =

min
p, q

i < p ≤ min(i+ sloop + 1, n)

j < q ≤ min(j + sloop + 1,m)

Eloop(i, j, p, q) + Ck,l(p, q)

−ED1(p, k)− ED2(q, l)

+ED1(i, k) + ED2(j, l)

if (S1
i , S

2
j) can pair

and (S1
k, S

2
l) can pair

∞ otherwise

(2.4)
where Ck,l(i, j) denotes the interaction between sequences S1 and S2 in the region

enclosed by the base pairs (i, j) and (k, l). ED1 and ED2 gives the accessibility values
for the first and second sequences respectively. Ck,l(i, j) is computed by extending another
interaction Ck,l(p, q) to the left by adding a loop. The extension that gives the minimal
energy interaction is taken. Since accessibility values are not additive and accessibility
energy is already included in Ck,l(p, q), one has to subtract the old accessibility values
before adding the new ones.

However, a seed region is not enforced in the interactions of matrix C. For that reason,
another matrix Ck,l

seed stores interactions with a seed. This matrix is computed using the
following recursion :

17

Ck,l
seed(i, j) =

min

min
p, q

i < p ≤ min(i+ sloop + 1, n)

j < q ≤ min(j + sloop + 1,m)

Eloop(i, j, p, q) + Ck,l

seed(p, q)

−ED1(p, k)− ED2(q, l)

+ED1(i, k) + ED2(j, l)

min
p, q

P ≤ p− i+ 1 ≤ P + bmax
m

P ≤ q − j + 1 ≤ P + bmax
s

(p− i+ 1) + (q − j + 1) ≤ 2P + bmax

seed(i, j, p, q) + Ck,l(p, q)

−ED1(p, k)− ED2(q, l)

+ED1(i, k) + ED2(j, l)

if (S1
i , S

2
j) can pair

and (S1
k, S

2
l) can pair

∞ otherwise

(2.5)
Here an entry Ck,l

seed(i, j) is computed by taking the minimum of the two cases : (1)
The entry denotes the extension of interaction that already contains a seed by adding
a loop to its left end, (2) The entry denotes an interaction composed of a seed on the
left followed by a hybridization stored in C. seed(i, j, k, l) denotes the best seed region
between base pairs (i, j) and (k, l).

This version of IntaRNA has a time complexity of O(n2m2). The space complexity is
only O(nm) since the same 2-D matrices Ck,l and Ck,l

seed are reused for all different (k, l).

2.4.3 Heuristic version

The approach of the heuristic version is similar to the complete version but the difference
is that for each interaction with a left end base pair (i, j), only one right end (k, l) is
considered instead of all possible right ends. This means that the number of possible
interactions considered (and consequently the time required) is reduced by a quadratic
factor. The recursions follow.

C(i, j) =

min

min
p, q

i < p ≤ min(i+ sloop + 1, n)

j < q ≤ min(j + sloop + 1,m)

Eloop(i, j, p, q) + C(p, q)

−ED1(p, che1(p, q))

−ED2(q, che2(p, q))

+ED1(i, che1(p, q))

+ED2(j, che2(p, q))

(1)

ED1(i, i) + ED2(j, j) (2)

if (S1

i , S
2
j) can pair

∞ otherwise

(2.6)

18

che(i, j) =

{
che(p, q) if Case (1) is the minimum in Equation 2.6

(i, j) if Case (2) is the minimum in Equation 2.6
(2.7)

An entry C(i, j) in the matrix C stores the best interaction with the left end (i, j).
Equation 2.6 is similar to Equation 2.4 (complete version recursion) with the difference
that here only one right end is considered. che(i, j) (for C Hybridization End) stores
the right end for the interaction in C(i, j). Since che(i, j) stores a base pair, che1(i, j)
denotes the first element of the pair and che2(i, j) denotes the second. In other words, if
che(i, j) = (k, l), then che1(i, j) = k and che2(i, j) = l.

To encorporate a seed interaction, we introduce two additional matrices Cseed and
cheseed. An entry Cseed(i, j) in this matrix stores the best interaction with left end (i, j),
which includes a seed region. cheseed(i, j) stores the right end for the interaction denoted
by Cseed(i, j). The matrix Cseed can be filled according to the following recursion :

Cseed(i, j) =

min

min
p, q

i < p ≤ min(i+ sloop + 1, n)

j < q ≤ min(j + sloop + 1,m)

Eloop(i, j, p, q) + Cseed(p, q)

−ED1(p, cheseed1 (p, q))− ED2(q, cheseed2 (p, q))

+ED1(i, cheseed1 (p, q)) + ED2(j, cheseed2 (p, q))

min
p, q

P ≤ p− i+ 1 ≤ P + bmax
m

P ≤ q − j + 1 ≤ P + bmax
s

(p− i+ 1) + (q − j + 1) ≤ 2P + bmax

seed(i, j, p, q) + C(p, q)

−ED1(p, che1(p, q))− ED2(q, che2(p, q))

+ED1(i, che1(p, q)) + ED2(j, che2(p, q))

if (S1
i , S

2
j) can pair

∞ otherwise

(2.8)

The first case in Equation 2.8 forms the interaction by extending another interaction -
that contains a seed - to the left. The second case forms the interaction from a seed
followed by hybridization to its right. The energy of this hybridization is taken from the
matrix C.

2.4.4 Dangling end energies

Dangling end energies are additional stabilizing energies which form when an unpaired
nucleotide stacks with an adjacent base pair. In both the heuristic and non-heuristic al-
gorithms mentioned above, the dangling end energies are computed first for the rightmost
base pair, for which we consider 4 possibilities of dangling ends. After the interaction is
extended to the left, the dangling end energies of the leftmost base pair are computed by
considering again all 4 possibilities.

19

2.5 Implementation

ANSI C++ is the programmng language used to implement all the algorithms presented
in this thesis. RNAplfold [5, 7] and RNAup [21] modules (from ViennaRNA package [14])
were used to compute the accessibility energy values for the target RNA and ncRNA re-
spectively. The values are stored in a 2-D array for each sequence.

Previously, the Eloop function was not implemented. It was only mentioned in theoret-
ical context for recursion simplification. But in the implementation the recursions were
expanded to four cases wherever there was an Eloop function in a recursion. In this thesis,
the Eloop function is implemented to make it easy not only for theoretical explanation,
but also for implementation and to support code organization and reusability.

Given the four indices of the two base pairs enclosing the loop, the function checks for
the type of the structure enclosed between the two base pairs and returns the appropriate
energy. The function is shown in Algorithm 1.

Algorithm 1 Eloop function

function Eloop(i, j, k, l)

if k − i = 0 and l − j = 0 then
return 0

else if k − i = 1 and l − j = 1 then
return stacking(i, j, k, l)

else if k − i > 1 and l − j = 1 then
return bulge(i, j, k, l)

else if k − i = 1 and l − j > 1 then
return bulge(i, j, k, l)

else if k − i > 1 and l − j > 1 then
return internal loop(i, j, k, l)

else
return ∞

end if
end function

20

Chapter 3

Non-heuristic algorithm

3.1 Motivation

Developing a non-heuristic version of IntaRNA is important for several reasons. First,
to have an algorithm with accurate output1, i.e., the optimal solution according to the
energy model, so that we can compare to the output of the other heuristic or non-optimal
algorithms and produce statistics on accuracy and reliability for them. The second reason,
is that in this algorithm, the order we use to calculate the result is similar to the order
in which real interactions are assumed to form; that is, interacting first in a seed region
of consecutive nucleotides with perfect complementarity then extending the interaction
from this seed in both directions (left and right) simultaneously. The order is shown in
Figure 3.1.

Figure 3.1: The order of computing an MFE interaction structure.

1from our point of view, with the restriction of having only one interaction region and using the
knowledge available at the time of writing this thesis

21

This has the major advantage to allow tracking the interaction energy while interaction
formation is in process, then stop the interaction at some points where high amounts of
energy are required to form further base pairs. For example suppose that the structure
in Figure 3.2 is an MFE structure between two sequences.

But to form this structure between the two sequences, the interaction process needs
to go from Figure 3.3.a to Figure 3.3.b and then to Figure 3.3.c.

Figure 3.2: MFE structure between two example sequences.

However the intermediate duplex in Figure 3.3.b maybe relatively unstable due to the
long bulge on the right end. So it is more probable that the interaction formation stops at
the point shown in Figure 3.3.a. This version of IntaRNA is ready to detect such points
and stop the interaction when seen appropriate. This feature was not implemented due
to the lack of a specific energy threshold, however the algorithm is made ready for the
feature in the means of data structures used and code organization.

Figure 3.3: Illustration of the energy barrier problem. Duplex b) is relatively unstable due to the long
bulge.

3.2 Algorithm

When given two sequences, S1 and S2, with lengths n and m respectively, the task is to
predict the MFE duplex and its interaction energy value, enforcing a seed region in this
duplex. As mentioned before, scoring of an interaction is based on hybridization energy
and accessibility energy. Dangling end energies contribute to the overall energy computed
in the end.

The algorithm is based on dynamic programming, and the following is the main re-
cursion used :

22

C(i, j, k, l) =

min

min
x, y

max(k − sloop − 1, i+ P − 1) ≤ x < k

max(l − sloop − 1, j + P − 1) ≤ y < l

C(i,j,x,y) + Eloop(x, y, k, l)

−ED1(i, x)− ED2(j, y)

+ED1(i, k) + ED2(j, l)

min
p, q

i < p ≤ min(i+ sloop + 1, k − P + 1)

j < q ≤ min(j + sloop + 1, l − P + 1)

Eloop(i, j, p, q) + C(p,q,k,l)

−ED1(p, k)− ED2(q, l)

+ED1(i, k) + ED2(j, l)

seed(i, j, k, l) + ED1(i, k) + ED2(j, l)
if P ≤ k − i+ 1 ≤ P + bmax

m
and P ≤ l − j + 1 ≤ P + bmax

s
and (k−i+1)+(l−j+1) ≤ 2P+bmax

if S1
i , S

2
j

can pair and
S1
k, S

2
l can

pair

∞ otherwise

(3.1)

C(i, j, k, l) denotes the energy of the best interaction formed between the two sequences
S1 and S2 in the regions [i, k] in S1, inclusive, and [j, l] in S2 , inclusive too. Thus, since
[i, k] denotes a region in S1 beginning at i and ending at k, it is always ensured that
k > i, and the same for j and l in S2, in order for the entry C(i, j, k, l) to be valid.

Figure 3.4: An interaction as stored in the matrix entry C(i, j, k, l)

In the recursion, the hybridization energy terms are Eloop(x, y, k, l) and Eloop(p, q, k, l).
Eloop(x, y, k, l) is the free energy of the loop beginning at the base pair (i, j) and ending
at base pair (k, l). The maximum size of a loop is restricted to sloop with default value
of 16, i.e. k − x − 1 ≤ 16 and l − y − 1 ≤ 16. Accessibility energy terms are ED1 for
accessibility of regions in S1 and ED2 for accessibility of regions in S2. ED1(i, k) denotes
the energy required to make all the nucleotides i to k - inclusive - accessible and not
involved in intramolecular structures.

The idea of the recursion is clarified in Figure 3.5. The entry C(i, j, k, l) is the min-
imum of three cases. Case (A) refers to the case when C(i, j, k, l) is an extension with
a loop to the right of another interaction in C(i, j, x, y), the minimum is taken over all

23

possible (x, y), and thus over all possible interaction extensions to the right. Similarly
Case (B) is the minimum energy value of extending an interaction by adding a loop to its
left side. Case (C) refers to the case when C(i, j, k, l) is a seed, where seed(i, j, k, l) gives
the energy of the best seed in the region between base pairs (i, j) and(k, l) as mentioned
previously in Section 2.4.1.

Figure 3.5: Visual representation of recursion in Equation 3.1.

Accessibility energies are not additive. When the matrix entry C(i, j, k, l) stores the
best interaction from (i, j) to (k, l), for example if it was computed from C(i, j, x, y) +
Eloop(x, y, k, l). We first have to subtract the accessibility energy values ED1(i, x) and
ED2(j, y) which are already included in C(i, j, x, y), then add the accessibility values
ED1(i, k) and ED2(j, l) to C(i, j, k, l).

In this context, we can say that the order in which a duplex energy is computed
is the same order in which a real duplex forms. The two sequences first interact in a
seed region with almost perfect complementarity forming the basis of the interaction
due to its thermodynamic stability, then this seed is extended to the left and the right
simultaneously. To clarify more, the duplex in Figure 3.4 may be computed or formed in
the order shown in Figure 3.1.

After all entries of the matrix C are filled in the correct order, dangling end energies
are added to each entry :

Cdangle(i, j, k, l) = C(i, j, k, l) + dangling(i, j, k, l)

The function dangling(i, j, k, l) computes the best scoring dangling ends for the in-
teraction in C(i, j, k, l). For each of the four bases enclosing the interaction i, j, k, l, a
dangling end, i.e., an unpaired nucleotide, can be included or excluded at positions i− 1
and j − 1 left of i and j, respectively, and at positions k + 1 and l + 1 right of k and l,

24

respectively. Having 2 possibilities for each of the 4 bases enclosing the interaction leaves
us with 24 = 16 combinations of dangling end energies. The minimum of the 16 values is
taken. The bases included as dangling ends are also considered in the accessibility energy.
For example if bases i− 1 and k + 1 were included as dangling ends and bases j − 1 and
l + 1 were excluded , the accessibility energy of C(i, j, k, l) is subtracted, and instead we
add ED1(i− 1, k + 1) + ED2(j, l). Note that the way we compute dangling end energies
here is different from the previous IntaRNA non-heuristic version. Here we compute the
dangling ends after we fill the matrix (i.e. after the interaction is formed) and we con-
sider 16 cases, while in the previous version, danling ends energy was computed for the
right most base pair first then for the left most base pair after the interaction has been
extended (see Section 2.4.4).

Finally, the matrix C is searched to find the MFE interaction :

MFE = min
i,j,k,l

{
Cdangle(i, j, k, l)

}
After the entry of the minimum energy was found, a traceback on matrix C is done

to get the MFE structure.
Since the loop size is restricted to constant number (default is 16), the time complexity

of the algorithm is O(n2m2). The space complexity is O(n2m2) too.

3.3 Implementation

In this section we explain the implementation details of the algorithm.

3.3.1 The order of filling the matrix

For C(i, j, k, l) we use a 4-D array. Initially all entries are set to ∞. Then the matrix
is filled according to the recursion 3.1. The order of filling the matrix cannot be simply
done using 4 nested loops as shown in Algorithm 2.

Algorithm 2 Normal order of filling a matrix

for i = 1 to n do
for j = 1 to m do

for k = i to n do
for l = j to m do

Fill C(i, j, k, l) using the recursion 3.1
end for

end for
end for

end for

n and m are the lengths of S1 and S2 respectively. The problem is that computation
of some entries relies on other entries that have not yet been computed. For example, the

25

entry C(1, 1, 8, 8) is computed before the entry C(2, 2, 8, 8) which should not be allowed
according to our recursion because C(1, 1, 8, 8) uses C(2, 2, 8, 8). One could solve this
particular dependency by changing the for loops order to be descending. But then the
problem would be with entries like C(1, 1, 7, 7) which are also needed by C(1, 1, 8, 8) but
filled after it.

For that reason another approach was taken to solve this problem. To fill the matrix
correctly we should mantain the invariant that when an entry is to be computed, all its
prefix and suffix 1 entries have to be already computed. Since for an entry C(i, j, k, l) all
its prefix and suffix entries enclose a smaller number of bases in S1 and a smaller of bases
in S2, therefore the total number of enclosed bases is also smaller. Let blen denote the
total number of enclosed bases. Thus we can first loop on blen ascendingly, ensuring that
entries with a smaller total number of enclosed bases are computed and filled first. The
4 nested loops can be written as follows :

Algorithm 3 Correct order of filling C

1: for blen = 2 to (n + m) do
2: for i = 1 to n do
3: for j = 1 to m do
4: for len1 = 1 to min(blen− 1, n− i + 1) do
5: len2 = blen− len1
6: k = i + len1− 1
7: l = j + len2− 1
8: Fill C(i, j, k, l) using the recursion 3.1
9: end for

10: end for
11: end for
12: end for

The second and the third for loop get all possible left base pairs (i, j) of the interac-
tion, the fourth for loop iterates over the number of enclosed bases in S1 (len1). Then
the number of enclosed bases in S2 (len2) is derived in Line 5. Now len1 is the number of
enclosed bases in S1 including i, and len2 is the number of enclosed bases in S2 including
j. Consequently, k = i + len1 − 1, l = j + len2 − 1. Additionally len1 is enforced to
be less than or equal blen − 1, so that len2 is at least equal to 1, and it is enforced to
be less than n− i + 1 so that k does not exceed the sequence length n. Having now the
four indices ready, the corresponding matrix entry can be filled according to recursion
3.1. However, leaving the loops in this way can lead at some points to invalid indices.
Thus, before filling the entry, one should make sure that the four indices represent a valid
entry. A quadraple (i, j, k, l) that represents a valid entry should satisfy all the following
properties :

1. 1 ≤ i ≤ n

2. 1 ≤ j ≤ m

3. 1 ≤ k

1For a definition of prefix and suffix entries refer to Section 2.3

26

4. 1 ≤ l

5. k ≤ n

6. l ≤ m

7. k − i + 1 ≥ P (since P ≥ 1, this rule also implies : k > i)

8. l − j + 1 ≥ P (since P ≥ 1, this rule also implies : l > j)

Properties 1 and 2 are already enforced by the conditions of the second and third for
loops. Properties 3 and 4 are also enforced since k = i + len1 − 1, and since i ≥ 1 and
len1 ≥ 1, similarly for l. Property 5 is enforced in the inner most for loop since len1
cannot exceed n − i + 1. Yet, Properties 6 to 8 are not enforced by the code written
in Algorithm 3. Properties 7 and 8 ensure that all entries that will be filled contain an
interaction with a seed; so that all entries without a seed remain∞. In other words they
ensure that the number of enclosed bases in S1 and S2 are at least P for each sequence.
This implies that the total number of enclosed bases (blen) should be at least 2 ∗P . len1
also should be in the range [P to (blen−P)] so that it allows S1 to cover a minimum of P
base pairs and also does not exceed (blen−P) so that len2 is at least P . Property 6 can
be enforced by an if statement. This leads us to the following code, where all changes
compared to Algorithm 4 are highlighted in red :

Algorithm 4 Correct order of filling C

for blen = 2 ∗ P to (n + m) do
for i = 1 to n do

for j = 1 to m do
for len1 = P to min(blen− P , n− i + 1) do
len2 = blen− len1
k = i + len1− 1
l = j + len2− 1
if (l ≤ m) then

Fill C(i, j, k, l) using the recursion 3.1
end if

end for
end for

end for
end for

Although this code works fine, unuseful iterations of the second and third for loops
should be avoided due to efficiency reasons. Since properties 5 and 7 are already enforced,
all iterations with i > n−P + 1 are redundant, because even when k is maximum (when
k = n), S1 would not fit a seed. For example if i = n− P + 2 and k = n, the number of
enclosed bases in S1 is k− i+ 1 = n− (n−P + 2) + 1 = n− n+P − 2 + 1 = P − 1 < P .
The same applies to j and S2. Thus the code could be written as follows, with all changes
highlighted in red :

27

Algorithm 5 Correct order of filling C

for blen = 2 ∗ P to (n + m) do
for i = 1 to (n− P + 1) do

for j = 1 to (m− P + 1) do
for len1 = P to min(blen− P, n− i + 1) do
len2 = blen− len1
k = i + len1− 1
l = j + len2− 1
if (l ≤ m) then

Fill C(i, j, k, l) using the recursion 3.1
end if

end for
end for

end for
end for

Now most of the unuseful iterations are avoided, however a few more conditions are
applied to the second, third and fourth for loops to avoid all iterations that give invalid
entries. Those conditions are not mentioned here for simplicity.

3.3.2 Filling an entry in the matrix

To fill an entry of the matrix C(i, j, k, l), we first make sure that (i, j) can pair and (k, l)
can pair, otherwise we set the entry to∞ and exit the function. If they can pair, then we
directly compute the energies for the three cases of the recursion and fill the entry with
their minimum. The function that fills an entry is given in Algorithm 6.

The first and second case (where C(i, j, k, l) is an extension to left or right of another
interaction) are only applicable when the entry covers enough base pairs to fit at least a
seed plus a loop (stacking, bulge or internal loop); otherwise only the third case (seed)
is applicable. This is ensured in Line 8 by the if statement. For the first case of the
recursion (from Line 10) x and y are chosen such that :

1. The size of the loop Eloop(x, y, k, l) does not exceed the maximum loop size(sloop).

2. The interaction to be extended C(i, j, x, y) can at least hold a seed.

3. The loop size is at least 0 (Eloop(k − 1, l − 1, k, l)), which represents a stacking.

Then the minimum energy resulting from all possible extensions (or all possible (x, y))
is chosen for Case 1. Case 2 is similar to Case 1 by symmetry. Case 3 is the case where
C(i, j, k, l) is a seed.

28

Algorithm 6 Filling an entry of C

1: function fill C(i, j, k, l)
2:

3: if CannotPair(i, j) or CannotPair(k, l) then
4: C[i][j][k][l] =∞
5: return
6: end if
7:

8: if k − i + 1 > P and l − j + 1 > P then
9:

10: //Case 1
11: minRight=∞
12: for x = max(k − sloop − 1, i + P − 1) to k − 1 do
13: for y = max(l − sloop − 1, j + P − 1) to l − 1 do
14: E=C[i][j][x][y]+Eloop(x, y, k, l)−ED1(i, x)−ED2(j, y)+ED1(i, k)+ED2(j, l)
15: minRight=min(minRight ,E)
16: end for
17: end for
18:

19: //Case 2
20: minLeft=∞
21: for p = i + 1 to min(i + sloop + 1, k − P + 1) do
22: for q = j + 1 to min(j + sloop + 1, l − P − 1) do
23: E=Eloop(i, j, p, q)+C[p][q][k][l]−ED1(p, k)−ED2(q, l)+ED1(i, k)+ED2(j, l)
24: minLeft=min(minLeft , E)
25: end for
26: end for
27:

28: end if
29:

30: // Case 3
31: seedEnergy=∞
32: if P ≤ k − i + 1 ≤ P + bmaxm and P ≤ l − j + 1 ≤ P + bmaxs

and (k − i + 1) + (l − j + 1) ≤ 2P + bmax then
33: seedEnergy=seed(i, j, k, l) + ED1(i, k) + ED2(j, l)
34: end if
35:

36: C[i][j][k][l] = min(minRight,minLeft, seedEnergy)
37: end function

29

3.3.3 Space improvement

As mentioned before, the space complexity of the algorithm is O(n2m2). The space is
predominantly taken by the matrix C, which needs n2m2 entries. Since we use a data
type float for each entry, the space required is approximately 4 ∗ n2m2 bytes (neglecting
the space required for accessibility matrices and other variables).
This means that for an input with n = 250 and m = 250, the space required is :

4 ∗ 2502 ∗ 2502

230
GB ≈ 14.55 GB

which is not even feasibly by a modern personal computer nowadays.
Although this algorithm is meant to be a complete version of IntaRNA and it was already
expected to require much resources, we worked on reducing the required space to make
the algorithm applicable for longer inputs.

Since an entry of the matrix C has to be valid in the context of interactions, many
entries that do not conform to those rules are not valid and redundant. Strictly speaking,
those entries with k < i or l < j are redundant.

The first idea was to use hash tables with a key as an encoding of a 4-tuple (i, j, k, l).
This idea was implemented and tested. The hash table reduced the space drastically,
because only entries conforming the rules and for which (i, j) or (k, l) can pair were
stored. But in the same time using a hash table had a big impact on the speed efficiency.
Additionally it put a limit on the input sequence lengths because the key data type was
unsigned long integer. Consequently, the possible keys were limited to 232, which limited
the sequence lengths to 28 = 256 each.

A small experiment was done to compare time and space requirements when using
a 4-D array and a hash table. The input used for the experiment had lenghts n = 175
and m = 60. The experiment was conducted on a machine with 2.2 GHz processor and
4 GB of RAM. The results are shown in Figure 3.6; using a hash table achieved low
memory consumption but long execution time, while using a 4-D array had high memory
consumption and a shorter execution time.

Figure 3.6: Resource requirements of implementations using a hash table, a 4-D array or index encoding
for one example

30

The idea of the hash table was excluded due to the sequence length limit and the time
requirement.
However another idea was employed using an array to keep the speed efficiency and
decrease the space requirement.

The basic idea is to use an array with smaller size to avoid the invalid entries with
k < i or l < j. To achieve this, we use a 2-D array such that the first index is an encoding
for the two indices i and k and the second index is an encoding for j and l. We denote
the first index ik and the second one jl, where each defines a range in one input sequence.
This approach allows to encode only the valid indices and exclude the invalid ones.

To explain, first consider this encoding idea without reducing the space (having the
same number of entries, but in a 2-D array instead of a 4-D array).

ik (Encoding) i k
0 0 0
1 0 1
2 0 2
3 0 3
4 1 0
5 1 1
6 1 2
7 1 3
8 2 0
9 2 1
10 2 2
11 2 3
12 3 0
13 3 1
14 3 2
15 3 3

ik (Encoding) i k
0 0 0
1 0 1
2 0 2
3 0 3
4 1 1
5 1 2
6 1 3
7 2 2
8 2 3
9 3 3
10
11
12
13
14
15

Table 3.1: a) All possible (i, k). b) Unuseful rows removed.

Table 3.1.a shows the indices i and k and their encoding ik when n = 4 as an example.
The total entries for all possible (i, k) is n ∗ n = 4 ∗ 4 = 16 , so the encoding index range
is 0 to 15 assuming that all indices are zero based. For the encoding of 2 indices to 1
index, the mapping function is :

map(i, k) = ik = i ∗ n + k

Note that in Table 3.1.a the rows highlighted in red should be excluded because
k < i. All the rows highlighted in blue will be shifted upwards in the table to get the new
encoding. Please note that the first i many rows are excluded from all rows with index
i. The new encoding is shown in Table 3.1.b.

The encoding function for the reduced space table is :

map′(i, k) = ik = i ∗ n + k −
i∑

x=0

x = i ∗ n + k − i(i + 1)

2

31

The summation term subtracted in the map′ function is to shift upwards a row from
its previous position in the map function by the number of rows to be excluded above
this row. The number of excluded rows above the current row equals to

∑i
x=0 x because

for all rows with index i, we have to exclude i rows.
By inspecting Table 3.1.b, we find that the total number of entries is reduced to∑n
x=1 x = n(n+1)

2

For large n this is almost half the number of entries in the first table, which was n2.
Encoding the two indices j and l in the same way, we end up with n(n+1)

2
and m(m+1)

2

entries for the first and second dimension, respectively, of the 2-D array. The total size
of the array used for storing all the entries is then equal to :

n(n + 1)

2
∗ m(m + 1)

2
=

(n2 + n) ∗ (m2 + m)

4

Algorithm 6 from Section 3.3.2 does not have to be changed because the space reduc-
tion is totally abstracted from the algorithm itself by the two functions Cwrite(i, j, k, l, value)
and Cread(i, j, k, l) that allow writing and reading to the matrix using the four indices.
These two functions encode the four indices using the map′ function and perform the
appropriate operation.

After applying this idea, the space required was almost 4 times less. But there was
an overhead because of the extensive use of the mapping functions for each read or
write operation. To overcome this speed overhead, all the mappings were computed in a
preprocessing stage and stored in two 1-D arrays, which required n(n+1)

2
+ m(m+1)

2
space.

An experiment was conducted again to compare the new approach to the hash tables
and the 4-D array. The results of the index encoding are shown in the corresponding
columns in Figure 3.6.

Now, an input with lengths n = 250 and m = 250 needs only 3.66 GB compared to
14.55 GB when using a 4-D array.

3.3.4 Limiting interaction length

The algorithm optionally allows the user to define the maximum number of bases in-
volved (i.e. number of enclosed bases) in the predicted interaction. We denote the user
defined interaction length by L. When the interaction length is limited, the program need
not form or store longer interactions, and thus the required memory and time are reduced.

For reducing the memory, only the mapping function and the size of the used 2-D
array have to be modified. For the mapping function, the idea is the same as in Section
3.3.3. Some rows with k−i+1 > L are excluded from Table 3.1.b and the subsequent rows
are shifted upwards by subtracting another term from the previous mapping function.
The mapping function of indices i and k is shown in Algorithm 7.

32

Algorithm 7 Mapping function

function map′′(i, k)

ik = i ∗ n + k −
i∑

x=1

x

if the user Restricts interaction length then

ik = ik −
n−L∑

x=n−L−(i−1)

x

end if
return ik
end function

The lengths of the 2-D array dimensions are (n ∗ L) − L(L−1)
2

and (m ∗ L) − L(L−1)
2

,
respectively.

Reducing the time required is done by considering only entries C(i, j, k, l) with k −
i + 1 ≤ L and l − j + 1 ≤ L. This is done by modifying the for loops in Algorithm 5 in
Section 3.3.1. Modifications are highlighted in red in Algorithm 8.

The reduction in time and memory requirements are shown in the graph in Figure
3.7, it shows the results when IntaRNA was executed with varying interaction length
limit (L) on the RNAs SgrS and ptsG from the bacterial organism Escherichia coli. The
lengths of those two RNAs are 227 and 250, respectively. The length of the predicted
interaction between both RNAs is 20.

Figure 3.7: A graph showing time and memory results for executions of non-heuristic algorithm with
varying interaction length limits.

33

Algorithm 8 Correct order of filling C

if the user does not restrict interaction length then
L = n + m

end if
for blen = 2 ∗ P to min((n + m), L) do

for i = 1 to (n− P + 1) do
for j = 1 to (m− P + 1) do

for len1 = P to min(blen− P, n− i + 1, L) do
len2 = blen− len1
k = i + len1− 1
l = j + len2− 1
if (l ≤ m and len2 ≤ L) then

Fill C(i, j, k, l) using the recursion 3.1
end if

end for
end for

end for
end for

34

Chapter 4

Improved heurestic algorithm

4.1 Motivation

The previous IntaRNA heuristic algorithm was a fast variant of the non-heuristic version.
It has time complexity of O(nm) because it considers for each interaction left end only
one right end instead of all ends1 that were considered by non-heuristic version. In
consequence, for some inputs the algorithm may miss the MFE structure. Thus, an
improvement was needed to increase the accuracy of this version of IntaRNA. To illustrate
the problem, two examples are given in the next section.

4.1.1 Problems of heuristic version

Since the heuristic version extends an interaction to the left without considering all pos-
sible right ends, it might sometimes be useful to choose a different right end accordingly
as it extends to the left. Figure 4.1 shows a structure that, when extended to the left, is
more favorable when being extended to the right as well. Extending the interaction by
one base pair to the left breaks an intramolecular base pair (in the upper RNA sequence).

Figure 4.1: Comparing heuristic and optimal behaviors for an example interaction.

1For each left end the number of right ends is proportional to n ∗m

35

Another base pair to right could be added with nearly no extra energy penalty caused
by accessibility. However, the heuristic algorithm does not accommodate this.

Another problem is illustrated in Figure 4.2. If the interaction in Figure 4.2.a is
extended by one base pair to the left, then intramolecular base pair 1 will be broken.
Then, it might be better to allow intramolecular base pair 2 to be formed instead to
avoid a high energy penalty due to accessibility. Allowing base pair 2 to form means
breaking the intermolecular base pair on the right end of the interaction (base pair 3),
which is not possible with the current heuristic algorithm. Instead, the algorithm breaks
both base pair 1 and 2, which requires an unfolding energy that might be be greater than
the hybridization energy gained from forming base pairs 3 and 4.

Figure 4.2: Comparing heuristic and optimal behaviors for an example interaction.

In the Figures 4.1 and 4.2 the heuristic algorithm behavior is shown and compared to
the behavior of an optimal algorithm.

4.2 Algorithm

The general outline of the algorithm of the improved heuristic version is similar to the
one for the previous heuristic version, which was explained in Section 2.4.3.
To tackle the problems mentioned in the previous section, a compromise was made be-
tween both the non-heuristic and the heuristic versions. For each left end (i, j), the
improved heuristic version stores the energy of the V best interactions with V different
right ends, instead of storing the energy for only one right end as in the previous heuristic
version, and instead of storing all possible right ends as in the non-heuristic version. The
number V is a parameter which can be defined by the user. Thus now C(i, j) could be seen
as an array of energy values of size V . An element in this array is denoted by C(i, j,K).
C(i, j,K) denotes the energy of the interaction with left end (i, j) having the Kth best
right end. The right interaction end itself is stored in che(i, j,K) (illustrated in Figure
4.3). For a pair che(i, j,K), the sequence positions for the first and second sequence are

36

denoted by che1(i, j,K) and che2(i, j,K), respectively. Kth best right end denotes the
right end that gives the Kth minimum interaction energy. We use the following notation

Kth

min
x
{x} ,

to denote the Kth minimum value of all x. The recursion for the 3-D matrix C is shown
in Equation 4.1. The recursion is similar to Equation 2.6 (the recusion of the heuristic
version, which is explained in Section 2.4.3) with the differences mentioned above.

C(i, j,K) =

Kth

min
p, q, R

i < p ≤ min(i+ sloop + 1, n)

j < q ≤ min(j + sloop + 1,m)

1 ≤ R ≤ V

Eloop(i, j, p, q) + C(p, q, R)

−ED1(p, che1(p, q, R))

−ED2(q, che2(p, q, R)) (1)

+ED1(i, che1(p, q, R))

+ED2(j, che2(p, q, R))

ED1(i, i) + ED2(j, j) (2)

if (S1

i , S
2
j) can pair

∞ otherwise

(4.1)

che(i, j,K) =

{
che(p, q, R) if Case (1) has the Kth minimum in Equation 4.1

(i, j) if Case (2) is the Kth minimum in Equation 4.1
(4.2)

Since the direction of interaction extension is from the right to the left, to fill the array
C(i, j) the algorithm considers extending all possible interactions with left end (p, q). For
each (p, q) we consider the V different right ends, in other words we consider all possible
C(p, q, R) with 1 ≤ R ≤ V . Additionally we consider the case when (i, j) is the right
most base pair (i.e. first base pair) of a new interaction. From all these possibilities the
minimum V energy values are taken and assigned to the array denoted by C(i, j), such
that C(i, j,K) corresponds to the Kth minimum energy found. It is ensured that for each
left end (i, j) we store the V minimum values for different right ends, so for two equal
right ends, the one with lower energy is taken. The reason for this should be clear when
we review the non-heuristic version, which stores for each (i, j, k, l) only one energy value.
It can be concluded that the improved heuristic algorithm takes at each step not only the
optimal right end, but it also takes another V − 1 suboptimal right ends. One of those
suboptimal right ends could eventually lead to a better result than the optimal right end
as shown in in the previous section.
To include a seed region we have to use two additional matrices Cseed and cheseed for

37

which the recursions follow.

Figure 4.3: An interaction represented by C(i, j,K)

Cseed(i, j,K) =

Kth

min

K
min
p, q, R

i < p ≤ min(i+ sloop + 1, n)

j < q ≤ min(j + sloop + 1,m)

1 ≤ R ≤ V

Eloop(i, j, p, q) + Cseed(p, q,R)

−ED1(p, che1(p, q,R))

−ED2(q, che2(p, q,R))

+ED1(i, che1(p, q,R))

+ED2(j, che2(p, q,R))

(1)

K
min
p, q, R

P ≤ p− i+ 1 ≤ P + bmax
m

P ≤ q − j + 1 ≤ P + bmax
s

(p− i+ 1) + (q − j + 1) ≤ 2P + bmax

1 ≤ R ≤ V

seed(i, j, p, q) + C(p, q,R)

−ED1(p, che1(p, q,R))

−ED2(q, che2(p, q,R))

+ED1(i, che1(p, q,R))

+ED2(j, che2(p, q,R))

(2)

if (S1
i , S

2
j) can pair

∞ otherwise

(4.3)

cheseed(i, j,K) =

{
cheseed(p, q, R) if Case (1) has the Kth minimum in Equation 4.3

che(p, q, R) if Case (2) has the Kth minimum in Equation 4.3

(4.4)
Equation 4.3 is analogous to Equation 2.8. Here, with the same concept, Cseed(i, j)

is an array of V values with an element denoted by Cseed(i, j,K). Cseed(i, j,K) denotes
the energy of the interaction with left end (i, j) having the Kth best right end and
including a seed region. The right end base pair positions of the interaction denoted by
Cseed(i, j,K) are stored in cheseed(i, j,K). Cseed(i, j,K) is computed by taking the Kth
minimum energy value from the two sets resulting from case (1) and case (2), in Equation
4.3, respectively. Case (1) extends another interaction with left end (i, j) that already
contains a seed by adding a loop on the left. For each left end (i, j), V possible right
ends are considered. Case (2) introduces a seed region with left end (i, j) followed by

38

hybridization. Again for each left end (i, j), V right ends are considered. We used the
following notation :

K

min
x
{x} ,

to denote the set of the K minimum values. Please note the difference between the two

notations
K

min
x
{x} and

Kth

min
x
{x}, where the first denotes a set and the second denotes a

single value. To fill an entry Cseed(i, j,K) we need to get the Kth minimum value from the
union of the two sets in case (1) and case (2). First we get the K minimum values from
each set, then from the union of the two resulting subsets, we get the Kth minimum value.

We fill the matrix C followed by Cseed, then we add the dangling end energies the
same way it was done for the non-heuristic version (see Section 3.2) :

Cseed
dangle(i, j,K) = Cseed(i, j,K) + dangling(i, j, che1(i, j,K), che2(i, j,K))

Note that we compute the dangling end energies different from the previous IntaRNA
heuristic version (see Section 2.4.4 and Section 3.2).

Finally the matrix Cseed is searched for the MFE :

MFE = min
i,j,K

{
Cseed
dangle(i, j,K)

}
.

The MFE structure can be computed by a traceback on the matrices.
The time complexity of the algorithm is O(nmV 2). This is because we have to fill n ∗m
arrays C(i, j). For each array C(i, j) we need to get V minimum values and ensure
that those values correspond to different ends, which requires time O(V 2) (more details
are provided in the next section). The space complexity of this algorithm is O(nmV).
However results in Chapter 5 show that V does not need to be large even for sequences
that are 250 nt. long. The default value for V is 5. The algorithm offers great flexibility
concerning the tradeoff between time and accuracy; setting V to a small number will
reduce the execution time and the accuracy, while setting V to a larger number will
increase the required time and the resulting accuracy.

4.3 Implementation

4.3.1 Filling the matrices

We use two 3-D matrices C and Cseed. The three dimensions of the matrices have lengths
n,m and V , respectively. V is either defined by the user or set to the default value
of 5. An entry in each of the matrices(C(i, j,K) or Cseed(i, j,K)) will not only hold
an energy value, but will also store the right end base pair (k, l) of the corresponding
interaction. We use a struct type called interaction parameters for this purpose. C and
Cseed then become 3-D matrices of interaction parameters structs. Each struct holds
three values : energy, k and l. We use the dot syntax to denote a specific value in the
struct. For example C(i, j,K).energy denotes the energy value of the interaction with
left end (i, j) and the Kth best right end. By this, the matrices che and cheseed can be

39

abandoned. Therefore che1(i, j,K) and che2(i, j,K) can now be denoted by C(i, j,K).k
and C(i, j,K).l, respectively. The same applies to Cseed.
Algorithm 9 shows the order in which the matrix C is filled.

Algorithm 9 The order of filling the matrix C

for i = n to 1 do
for j = m to 1 do

Fill the array C[i][j] using the recursion 4.1
end for

end for

Algorithm 10 shows in detail how an array C(i, j) is filled with V entries.
The implementation is based on the ADT (abstract data type) Interaction Set.

Interaction Set stores structs of type interaction parameters. An instance of the ADT
is initialized with a specific capacity (V in our case). If more than V elements are pushed
into it, the ADT stores only V -many elements, those that have the lowest energy values
of all the pushed elements, and the rest of the elements are ignored. Thus it filters the
pushed elements to keep only the V best (by energy) elements. The name of the ADT is
Interaction Set, since it is a set in the sense that it does not store interaction parameters
structs with the same (k, l). If a struct was pushed and there was another struct already
in the ADT with the same pair (k, l), the one with the minimum energy is taken and the
other is ignored. The implementation of the ADT is discussed in Section 4.3.2.

Having the Interaction Set ADT, the array C(i, j) is filled by simply pushing into
the Interaction Set all the structs corresponding to the possible extensions of C(p, q, R)
(Case (1)). Then we push the struct corresponding to Case (2) when (i, j) is the right
most (first) base pair of a new interaction. Then, the Interaction Set holds the V ele-
ments with the minimum energy values. Afterwards we directly copy the elements from
the Interaction Set to the array C(i, j). Similarly we fill the array Cseed.

4.3.2 Implementation of Interaction Set ADT

Interaction Set is an ADT implemented only for the use of the improved heuristic algo-
rithm. It uses an array of structs of type interaction parameters to store the elements.
The ADT is given a capacity (denoted by N) when instantiated, which then creates an
array of size N . The main functionality of the ADT is that many elements can be pushed
into it, but it stores only the N best elements and ignores the rest. The N best elements
are the N structs with the lowest energy values. Additionally, the ADT ensures that the
stored N structs have distinct right ends (k, l). The interface of the ADT allows two
operations : (1) push : pushes an element to the ADT, which can be either stored or
ignored (2) read : given an index of an element, the element with this index in the array
is returned, e.g., Interaction Set Instance1[K] gives the Kth element in the array.

40

Algorithm 10 Filling the array C(i, j)

1: if CannotPair(i, j) then
2: for K = 1 to V do
3: C[i][j][K].energy =∞
4: end for
5: else
6: Declare data structure list of type Interaction Set with size V
7: Declare struct E of type interaction parameters
8: //Case 1
9: for p = i + 1 to min(i + sloop + 1, n) do

10: for q = j + 1 to min(j + sloop + 1,m) do
11: for R = 1 to V do
12: E.energy=Eloop(i, j, p, q) + C[p][q][R].energy
13: −ED1(p, C[p][q][R].k)− ED2(q, C[p][q][R].l)
14: +ED1(i, C[p][q][R].k) + ED2(j, C[p][q][R].l)
15:

16: E.k = C[p][q][R].k
17: E.l = C[p][q][R].l
18:

19: list.push(E)
20: end for
21: end for
22: end for
23:

24:

25: // Case 2
26: E.energy= ED1(i, i) + ED2(j, j)
27: E.k = i
28: E.l = j
29: list.push(E)
30:

31: for K = 1 to V do
32: C[i][j][K] = list[K]
33: end for
34: end if

41

Algorithm 11 Internal implementation of Interaction Set ADT

define class Interaction Set
{

Declare interaction parameters Array arr
Declare integer N
Declare integer numE
Declare integer maxEnergy
function instantiate(integer capacity)

N = capacity
Create array arr with size = N
numE = 0
max = −∞

end function

function push(interaction parameters e)
//details in Algorithm 12

end function
}

When an element is pushed, this element should be either stored or ignored. The
decision depends on the following :

• if the array is full,

• if the pushed element has an energy less than the maximum energy already stored,

• if an element already stored in the array has the same right end as the pushed
element.

Thus to be able to decide, the ADT should keep track of the number of elements stored
so far, the maximum energy of the stored elements and check for each push operation if
the right end of the pushed element already exists in the array.

Algorithm 11 shows the variables of the ADT :

• arr is the array where elements will be stored.

• N is the capacity or the maximum number of elements the ADT should hold.

• numE is the number of elements stored in the ADT so far.

• maxEnergy is the maximum energy value of all the stored structs.

42

Algorithm 12 function push(interaction parameters E)

1: if numE = 0 then
2: arr[1] = E
3: max = E.energy
4: numE++
5: return
6: end if
7:

8: Declare boolean newRE = checkNewRightEnd(E.k,E.l) //O(N)
9:

10: if (newRE= false) then
11: Declare interaction parameters struct EsameRE

12: EsameRE=getElementByRE(E.k,E.l) //O(N)
13: if (E.energy < EsameRE) then
14: replace (EsameRE) by (E)
15: max=getMaxEnergy() //O(N)
16: end if
17: else if (newRE= true) and (numE < N) then
18: arr[numE + 1] = E
19: numE++
20: if (E.energy > max) then
21: max = E.energy
22: end if
23: else if (newRE= true) and (numE = N) and (E.energy < max) then
24: replace (array element with max energy) by (E)
25: max=getMaxEnergy() //O(N)
26: else
27: Ignore E
28: end if

Algorithm 12 shows in detail how the function push works, and how it keeps in the
array only the best N elements of all the pushed elements.

In Line 1→ 6, it is checked if the the current push operation is the first one, and thus
we store the pushed struct E regardless of its values. If the push operation is not the
first, then we check if the pushed element has a new right end, (i.e. there is no element
in the array with the same right end). This is done by the function checkNewRightEnd
given (k, l) of E. This function requires time O(N) because it simply tests every element
in the array. The result of the function can either be true or false and this result is saved
in a boolean variable newRE (new Right End). After that it can be decided whether E
will be stored or ignored.

In only three distinct cases E will be stored, otherwise it will be ignored. Case 1 (Line
10) is observed when E has a right end that already exist in the array. Then the two ele-
ments of the same right end (E and the element stored in the array denoted by EsameRE)
should be compared by their energy. If E has less energy then it replaces EsameRE.

43

Looking for EsameRE in the array require O(N) by the function getElementByRE. This
function could be merged with the function checkNewRightEnd and called only once in
the beginning, but it is presented this way for simplicity. In case 2 (Line 17), the array
is not full and the pushed element has a new right end (k, l). Then we directly store the
element, and check if the maximum energy max should be updated. Case 3 (Line 23) is
when the array is already full, E has a better (less) energy than the worst element in the
array and it also has a new right end. In this case E should not be added to the array, but
rather replaces another element to avoid exceeding the maximum capacity N . E replaces
the element with the worst energy in the array. Then to maintain a correct value for
max, the array is searched for the maximum energy value in time O(N) by the function
getMaxEnergy(). E is ignored if does not fall in one of the cases mentioned above. A flow
chart is provided in Figure 4.4 to clarify the three cases in a different (but equivalent) way.

Figure 4.4: The flow chart illustrates the different cases that can occur when a new element is pushed
in the ADT.

It can be seen that a push operation has a worst case time complexity O(N). Algo-
rithm 10 in the previous section shows that filling an array C(i, j) does a number of push
operations proportional to V , and since each of them need O(V) time, therefore filling
an array C(i, j) requires O(V 2). Consequently, filling all n ∗m arrays requires O(nmV 2)
time.

44

Chapter 5

Results and discussion

5.1 Performance of the improved heuristic algorithm

To test and evaluate the improved heuristic algorithm, a small experiment was performed
with a pair of artificial RNAs. The algorithm was executed with different values for V
which controls the number of different interaction starts that are considered. The energy
values for each execution were compared with the energy resulting from the non-heuristic
algorithm. The following are the artificial RNAs that were used :

RNA 1 : UCGAGCAGAGAGAGAGAGAGCAGCGGAUCAUUACGACUUAUCGAUGACGGCUACGAUCG

RNA 2 : UACGGACGACGCAGCAUCAUCGAUCG

Algorithm V Energy(kcal/mol)
1 -2.741

Improved heuristic version 2 -3.921
3 -5.644

Non-heuristic version -5.644

Table 5.1: Energy outputs for the heuristic IntaRNA algorithm with varying number of
interaction starts (V) and the non-heuristic IntaRNA algorithm.

Figure 5.1: A graph for energy outputs according to Table 5.1

45

The experiment illustrates the relation between V and the resulting energy for the
two tested short RNAs. It is clear that increasing the number of considered interaction
right ends also increases the number of structures considered, which in turn allows for
more stable structures to be covered.

5.2 Performance on prediction of bacterial RNA-RNA

interactions

Next, we evaluated and compared the different algorithms of IntaRNA. The evalua-
tion included 36 RNA-RNA interactions for which experimentally validated structures
are available (see Table 5.1). The test set included 25 interactions for RNAs from
Escherichia coli and 11 from Salmonella (both are bacterial organisms). The eval-
uation included three different algorithms with various parameter settings. The pre-
dicted interactions were evaluated in terms of Sensitivity, PPV and F-measure, where
Sensitivity=number of correctly predicted base pairs

number of true base pairs
, PPV =number of correctly predicted base pairs

number of predicted base pairs
and F-

measure=2∗Sensitivity∗PPV
Sensitivity+PPV

.

The following algorithm versions were used : heuristic version, improved heuristic
version and the new non-heuristic version. There was no restriction on the interaction
length and the maximum loop size was set to 16 (except for one experiment). The im-
proved heuristic version was used with parameter V equal to 1, 2, 3, 4, 5, 6, 8 and 12.
Additionally we applied the heuristic version with V = 3 and a maximal loop size of
9. All experiments were performed twice, once with a seed region of at least 7 paired
nucleotides (P = 7), and once with at least 8 paired nucleotides allowing at most one
unpaired base in both sequences (P = 8, bmax = 1). Two additional parameters were
used for all executions which are related to the computation of ED values of the target
RNA using RNAplfold. First, the window size for the sliding window approach - when
the target RNA is locally folding - was set to 140 (w=140) instead of the default value
of 70. Second, the maximum distance between two paired bases in the target RNA was
set to 70 (l=70).

Table 5.2 shows the F-measures for P = 7 and Table 5.3 shows the F-measures when
P = 8 and bmax = 1. The length of target RNAs is 250, and the length of the sRNAs
varies from 72 to 227. The average runtime on a CPU is shown for each setting.

5.3 Results

An interaction in the table will be refered to by its row number, an algorithm version by
its column letter and a specific table entry by both row number and column letter (e.g.
A1 refers to the F-measure of the interaction OmrA-cirA predicted by the non-heuristic
version).

46

P = 7
Organism+Ref sRNA—target Non-heuristic Improved heuristic Heuristic

V=3 V=2 V=1
sloop=9 sloop=16

A B C D E F
1 E.coli[13] OmrA-cirA 0 0 0 0 0 0
2 E.coli[13] OmrB-cirA 0.61 0.61 0.61 0.61 0.61 0.61
3 E.coli[3] OxyS-fhlA 0.593 0.593 0.593 0.593 0.593 0.593
4 E.coli[30] RyhB-fur 0 0 0 0 0 0
5 E.coli Spot42-galK 0.523 0.506 0.506 0.523 0.524 0.523
6 E.coli[29] GlmZ-glmS 1 1 1 1 1 1
7 E.coli[17] DsrA-hns 0.69 0.69 0.69 0.69 1 0.828
8 E.coli[11] CyaR-luxS 0.889 0.889 0.889 0.889 0.889 0.889
9 E.coli[11] CyaR-nadE - - - - - -
10 E.coli[28] MicA-ompA 0.897 0.897 0.897 0.897 0.897 0.897
11 E.coli MicC-ompC 0.667 0.478 0.667 0.667 0.667 0.667
12 E.coli[26] MicF-ompF 0.96 0.96 0.96 0.96 0.96 0.96
13 E.coli[13] OmrA-ompR 0.75 0.75 0.75 0.75 0.75 0.75
14 E.coli[13] OmrB-ompR 0.783 0.783 0.783 0.783 0.783 0.783
15 E.coli[13] OmrA-ompT 0.632 0.632 0.632 0.632 0.632 0.632
16 E.coli[13] OmrB-ompT 0 0 0 0 0 0
17 E.coli[11] CyaR-ompX 0.529 0.529 0.529 0.529 0.529 0.529
18 E.coli[16] SgrS-ptsG 0.85 0.85 0.85 0.85 0.85 0.85
19 E.coli[18] DsrA-rpoS 0.792 0.792 0.792 0.792 0.792 0.792
20 E.coli[19] RprA-rpoS 0.75 0.75 0.75 0.75 0.75 0.75
21 E.coli RyhB-sdhD 0.871 0.871 0.871 0.867 0.867 0.741
22 E.coli RyhB-shiA 0.491 0.491 0.491 0.491 0.491 0.491
23 E.coli[12] RyhB-sodB 0.621 0.621 0.621 0.621 0.621 0.621
24 E.coli[24] GcvB-sstT 0 0 0 0 0 0
25 E.coli[11] CyaR-yqaE 0.643 0.643 0.643 0.643 0.643 0.643
26 Salmonella[27] GcvB-argT 0.941 0.882 0.882 0.889 0.914 0.941
27 Salmonella[27] GcvB-dppA 0.68 0.68 0.68 0.68 0.68 0.68
28 Salmonella[27] GcvB-gltI 0 0 0 0 0.706 0
29 Salmonella[8] MicA-lamB 0.902 0.902 0.902 0.902 0.902 0.902
30 Salmonella[27] GcvB-livJ 0.955 1 1 1 0 0.955
31 Salmonella[27] GcvB-livK 0.722 0.722 0.722 0.722 0.722 0.722
32 Salmonella[23] MicC-nmpC 0.957 0.957 0.957 0.957 0.957 0.957
33 Salmonella RybB-ompN 0.857 0.857 0.857 0.857 0.857 0.857
34 Salmonella[22] CyaR-ompX 0.478 0.478 0.478 0.478 0.478 0.478
35 Salmonella[27] GcvB-oppA 0.978 0.955 0.955 0.955 0.955 0.978
36 Salmonella[27] GcvB-STM4351 0.588 0.529 0.529 0 0 0
Average F-Measure 0.6278 0.6194 0.6246 0.6105 0.6116 0.6116
Average runtime 16.5 min 1.15 sec 2.06 sec 1.63 sec 0.9 sec 2.17 sec
Average F-Measure without row 9 0.6636 0.6548 0.6603 0.6454 0.6466 0.6466
Average interaction energy -13.85 -13.47 -13.83 -13.76 -13.61 -13.67

Table 5.2: F-measures for P = 7

When we increase the parameter V for the improved heuristic version, the predicted
MFE structures have lower energies (more stable) and tend to give better F-measures.
For the experiment with P = 7, the improved heuristic version with V ≥ 5 has the same
energy results as the non-heuristic version because for V = 5 the improved heuristic
algorithm could already get an MFE structure. The same applies to the experiment with
P = 8 and bmax = 1 but with V ≥ 3. This supports a previous argument in Chapter
4 that V need not be large to get MFE structures. However, the F-measures for the
improved heuristic version with V = 5 are the same as with V = 4 or V = 3. Hence, we
present here results for V = 1, 2 and 3 only.

It should be noted that the difference in F-measure in some examples for the heuristic
version and the improved heuristic version with V = 1 results from different computation
of dangling end energies. However they have an equal average F-measure.

47

Discussion on results of Table 5.2

No interaction between Cyar and nadE (row 9) could be predicted since the interaction
does not satisfy the seed restriction of 7 consecutive base pairings. Therefore we calcu-
lated an average F-measure without this particular interaction to allow a fair comparison
between Table 5.2 and Table 5.3.

The difference in energy between the improved heuristic with V = 3 and the non-
heuristic occurs only in interactions with F-measure = 0. For the rows with non-zero
F-measures, only the two experimental settings in Row A and C yielded MFE structures
for all interactions. However A has a better F-measure because interactions predicted
from both settings were not exactly the same. When the predictions were further ana-
lyzed, it was found that for all the interactions in which A is better than C (Rows 5, 26,
35 and 36), the predictions of C were in the exact same regions in both sRNA and target
as the predictions of A; only the base pairs were different. This means that the way the
non-heuristic version forms the interaction (in both directions) is better than extending
an interaction only to the left.

The non-heuristic version always gets the MFE structure and is, in turn, time con-
suming. However, although Setting C is better than F, the difference is very small, which
does not leave much space for improvements over the previous heuristic version. In some
cases, thermodynamically less stable interactions score a better F-measure than more
stable ones, this can be seen in (F5,C5), (F7,C7) and (A30,C30).

For the predicted interactions in Row 28 the F-measure is always zero except for set-
ting E. When those interactions were examined, we found out that the interacting region
of the sRNA was the same as in the validated experiment. However the interacting region
of the target was wrong, and therefore no base pairs matched the true ones. But this
means that looking for non-overlapping suboptimal results would never lead to better F-
measure, simply because the true interaction overlaps the optimally predicted one in the
sRNA. We conclude that overlapping suboptimal results could be useful in some cases.
Setting E gave an F-measure of 0.706 because the MFE structure was not found, but
instead a suboptimal structure was found that matched the validated interaction in most
of the base pairs.

The purpose of Setting B was to simulate stopping interactions at energy barriers
constituted by long loops, which are usually destabilizing structures. In C11, C17 and
C24, the predicted structures had loops longer than 9. In Setting B the prediction gave
different structures with less stability. However, this only affected the F-measure of C11.
In two of the three cases (17 and 24) the structures predicted using sloop = 9 had the long
loops split into two parts (by one or two base pairs) and the rest of the interaction was
almost the same.

In Row 30, Settings B, C and D perfectly predicted the interaction. Setting A and
F got the true interaction region in both sequences, however there was one mismatching
base pair. Setting E had the interacting regions shifted by 7 nucleotides in the sRNA

48

and 4 nucleotides in the target, therefore all base pairs mismatched the true interaction.

All the interactions have only one hybridization region, except for OxyS-fhlA that has
two regions. IntaRNA could predict one of the two regions with good accuracy. If we
neglect the unpredicted region, then the Sensitivity for the predicted region equals 0.89,
the PPV equals 0.73 and the F-measure equals 0.8.

P = 8 , bmax = 1
Organism sRNA—target Non-heuristic Improved heuristic Heuristic

V=3 V=2 V=1
sloop=9 sloop=16

A B C D E F
1 E.coli OmrA-cirA 0 0 0 0 0 0
2 E.coli OmrB-cirA 0.61 0.61 0.61 0.61 0.61 0.61
3 E.coli OxyS-fhlA 0.593 0.593 0.593 0.593 0.593 0.593
4 E.coli RyhB-fur 0 0 0 0 0 0
5 E.coli Spot42-galK 0.523 0.506 0.506 0.523 0.524 0.523
6 E.coli GlmZ-glmS 1 1 1 1 1 1
7 E.coli DsrA-hns 0.828 0.69 0.69 0.69 1 0.828
8 E.coli CyaR-luxS 0.889 0.889 0.889 0.889 0.889 0.889
9 E.coli CyaR-nadE 0.952 0.952 0.952 0.741 0.741 0.952
10 E.coli MicA-ompA 0.897 0.897 0.897 0.897 0.897 0.897
11 E.coli MicC-ompC 0.667 0.478 0.667 0.667 0.667 0.667
12 E.coli MicF-ompF 0.96 0.96 0.96 0.96 0.96 0.96
13 E.coli OmrA-ompR 0.75 0.75 0.75 0.75 0.75 0.75
14 E.coli OmrB-ompR 0.783 0.783 0.783 0.783 0.783 0.783
15 E.coli OmrA-ompT 0.632 0.632 0.632 0.632 0.632 0.632
16 E.coli OmrB-ompT 0 0 0 0 0 0
17 E.coli CyaR-ompX 0.529 0.529 0.529 0.529 0.529 0.529
18 E.coli SgrS-ptsG 0.85 0.85 0.85 0.85 0.85 0.85
19 E.coli DsrA-rpoS 0.792 0.792 0.792 0.792 0.792 0.792
20 E.coli RprA-rpoS 0.4 0.4 0.4 0.4 0.4 0.4
21 E.coli RyhB-sdhD 0.871 0.871 0.871 0.867 0.867 0.741
22 E.coli RyhB-shiA 0.491 0.491 0.491 0.491 0.491 0.491
23 E.coli RyhB-sodB 0.621 0.621 0.621 0.621 0.621 0.621
24 E.coli GcvB-sstT 0 0 0 0 0 0
25 E.coli CyaR-yqaE 0.643 0.643 0.643 0.643 0.643 0.643
26 Salmonella GcvB-argT 0.882 0.882 0.882 0.889 0.857 0.882
27 Salmonella GcvB-dppA 0.64 0.68 0.68 0.68 0.68 0.68
28 Salmonella GcvB-gltI 0 0 0 0 0.706 0
29 Salmonella MicA-lamB 0.902 0.902 0.902 0.902 0.902 0.902
30 Salmonella GcvB-livJ 0.955 0.955 0.955 0.955 0.5 0.955
31 Salmonella GcvB-livK 0.722 0.722 0.722 0.722 0.722 0.722
32 Salmonella MicC-nmpC 0.957 0.957 0.957 0.957 0.957 0.957
33 Salmonella RybB-ompN 0.857 0.857 0.857 0.857 0.857 0.857
34 Salmonella CyaR-ompX 0.478 0.478 0.478 0.478 0.478 0.478
35 Salmonella GcvB-oppA 0.978 0.955 0.955 0.955 0.955 0.978
36 Salmonella GcvB-STM4351 0.588 0.529 0.529 0.529 0.529 0.529
Average F-Measure 0.6456 0.6348 0.6401 0.6348 0.6495 0.6414
Average runtime 18.14 min 1.37 sec 2.29 sec 1.84 sec 1.11 sec 2.38 sec
Average F-Measure without row 9 0.6552 0.6439 0.6495 0.6499 0.6654 0.6509
Average interaction energy -14 -13.58 -14 -13.94 -13.78 -13.84

Table 5.3: F-measures for P = 8 , bmax = 1

49

Discussion on results of Table 5.3

In Table 5.3 the interaction CyaR-nadE in Row 9 could be predicted with very good
accuracy due to the weaker seed conditions.

Comparing the averages of both Table 5.2 and Table 5.3 without row 9, we find that
results for P = 7 are better for settings A, B and C, while for settings D, E and F, P = 8,
bmax = 1 leads to better results.

5.4 Time and space requirements

The improved heuristic version could get a very close result to the non-heuristic version
with drastically reduced time. To conduct the 36 experiments sequentially, the non-
heuristic version took almost 10 hours, while the improved heuristic version with V = 3
took only 74 seconds (500 times faster). The previous heuristic version took 78 seconds.

The memory consumption of the non-heuristic version ranges from 390 MB to 3.1 GB
with an average of 1.14 GB, while for the improved heuristic version with V = 3 the
maximum consumption was 23 MB for the largest input SgrS-ptsG which has n = 227
and m = 250.

Figure 5.2 shows two graphs for comparison between the non-heuristic and the im-
proved heuristic versions.

Figure 5.2: Comparison between memory and time requirements of non-heuristic and improved heuris-
tic IntaRNA algorithm. The first graph is for the average memory used per prediction, the second is for
the total time taken to perform the 36 predictions.

5.5 Future work on the non-heuristic algorithm

The motivation for implementing this algorithm was to detect intermediate points in
interaction formation at which adding further base pairs would require relatively high
amounts of energy due to the unfolding energy of the interaction sites. The algorithm
is ready for adding this feature, however a threshold should be calculated to be able to

50

determine whether the energy needed to add a base pair is too high, in this case, the
interaction should be stopped just before adding this base pair. This threshold value is
not available at the moment. Therefore this feature could not be tested. In Figure 5.3,
the energies of an example interaction were plotted against interaction length, each point
in the figure represents one added base pair.

Figure 5.3: Energy plot of intermediate states in interaction formation. Each point on the figure
represents one added base pair to the interaction.

After adding the green base pairs, high amount of energy is required to add the next
base pair (due to a long loop in the interaction). Therefore we could stop the interaction
after forming the green base pairs if the energy difference between the last green and the
first red point shown was greater than the threshold.

The threshold can be calculated statistically using data sets of interactions, then
determine the interactions where the predicted structures had longer interaction regions
than in the true interaction, and finally study the energy differences in the point at which
the true interaction formation stops.

When the threshold is known, the feature can be implemented by modifying the
recursion (Equation 3.1). For filling the entry C(i, j, k, l), the minimum energy is taken
over all possible extensions to the left and right. Suppose it was found that it is best
to extend C(p, q, k, l) to the left, then the modification is to get the energy difference
between the interaction in C(p, q, k, l) before and after the extension. If this energy
difference exceeds the threshold, then C(i, j, k, l) is set to ∞.

Another possibility to modify the recursion is not to take the minimum over all possible
extensions, but instead, take the minimum over only those extensions that have an energy
difference (energy before and after extending) less than or equal to the threshold.

As already mentioned in the results of Setting B, applying the threshold may only
result in splitting the long loop by a few base pairs as in Figure 5.4. This shows that it
might be necessary to apply energy threshold to intervals and not just 2 consecutive base
pairs.

51

Figure 5.4: The energy plot shows an example interaction after applying energy threshold. The result
of applying the energy threshold was splitting a long loop by 2 base pairs.

5.6 Conclusion

We presented an improved heuristic and a non-heuristic algorithm for IntaRNA. The eval-
uation showed that the existing heuristic version has already a high accuracy, which could
be only marginally improved. However the developed improved heuristic algorithm could
get structures with the same energy as the non-heuristic algorithm in drastically less time.

In a number of cases, energetically less stable interactions scored better - in terms
of accuracy - than more stable ones, i.e., the correlation between energy stability and
prediction accuracy is not strong.

Future research should be done on detecting energy barriers to improve the accuracy
of the current prediction model. Furthermore, the prediction model should be extended
by additional features.

52

Bibliography

[1] C. Alkan, E. Karakoc, J.H. Nadeau, S.C. Şahinalp, and K. Zhang. RNA-RNA inter-
action prediction and antisense RNA target search. In Research in Computational
Molecular Biology, pages 152–171. Springer, 2005.

[2] M. Andronescu, R. Aguirre-Hernandez, A. Condon, and H.H. Hoos. RNAsoft: a
suite of RNA secondary structure prediction and design software tools. Nucleic
Acids Research, 31(13):3416, 2003.

[3] L. Argaman and S. Altuvia. fhlA repression by OxyS RNA: kissing complex for-
mation at two sites results in a stable antisense-target RNA complex1. Journal of
Molecular Biology, 300(5):1101–1112, 2000.

[4] R. Backofen and W.R. Hess. Computational prediction of sRNAs and their targets
in bacteria. RNA Biol, 7:1–10, 2010.

[5] S.H. Bernhart, I.L. Hofacker, and P.F. Stadler. Local RNA base pairing probabilities
in large sequences. Bioinformatics, 2005.

[6] S.H. Bernhart, H. Tafer, U. Mückstein, C. Flamm, P.F. Stadler, and I.L. Hofacker.
Partition function and base pairing probabilities of RNA heterodimers. Algorithms
for Molecular Biology, 1(1):3, 2006.

[7] A.F. Bompfünewerer, R. Backofen, S.H. Bernhart, J. Hertel, I.L. Hofacker, P.F.
Stadler, and S. Will. Variations on RNA folding and alignment: lessons from Be-
nasque. Journal of Mathematical Biology, 56(1):129–144, 2008.

[8] L. Bossi and N. Figueroa-Bossi. A small RNA downregulates LamB maltoporin in
Salmonella. Molecular microbiology, 65(3):799–810, 2007.

[9] A. Busch, A.S. Richter, and R. Backofen. IntaRNA: efficient prediction of bacterial
sRNA targets incorporating target site accessibility and seed regions. Bioinformatics,
24(24):2849, 2008.

[10] H. Chitsaz, R. Salari, S.C. Sahinalp, and R. Backofen. A partition function algorithm
for interacting nucleic acid strands. Bioinformatics, 25(12):i365, 2009.

[11] N. De Lay and S. Gottesman. The Crp-activated small noncoding regulatory RNA
CyaR (RyeE) links nutritional status to group behavior. Journal of bacteriology,
191(2):461, 2009.

53

[12] T.A. Geissmann and D. Touati. Hfq, a new chaperoning role: binding to messenger
RNA determines access for small RNA regulator. The EMBO Journal, 23(2):396–
405, 2004.

[13] M. Guillier and S. Gottesman. The 5’end of two redundant sRNAs is involved in the
regulation of multiple targets, including their own regulator. Nucleic Acids Research,
2008.

[14] I.L. Hofacker. Vienna RNA secondary structure server. Nucleic acids research,
31(13):3429, 2003.

[15] F.W.D. Huang, J. Qin, C.M. Reidys, and P.F. Stadler. Partition function and
base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics,
25(20):2646, 2009.

[16] H. Kawamoto, Y. Koide, T. Morita, and H. Aiba. Base-pairing requirement for
RNA silencing by a bacterial small RNA and acceleration of duplex formation by
Hfq. Molecular microbiology, 61(4):1013–1022, 2006.

[17] R.A. Lease, M.E. Cusick, and M. Belfort. Riboregulation in Escherichia coli: DsrA
RNA acts by RNA: RNA interactions at multiple loci. Proceedings of the National
Academy of Sciences of the United States of America, 95(21):12456, 1998.

[18] N. Majdalani, C. Cunning, D. Sledjeski, T. Elliott, and S. Gottesman. DsrA RNA
regulates translation of RpoS message by an anti-antisense mechanism, independent
of its action as an antisilencer of transcription. Proceedings of the National Academy
of Sciences of the United States of America, 95(21):12462, 1998.

[19] N. Majdalani, D. Hernandez, and S. Gottesman. Regulation and mode of action of
the second small RNA activator of RpoS translation, RprA. Molecular microbiology,
46(3):813–826, 2002.

[20] J.S. McCaskill. The equilibrium partition function and base pair binding probabili-
ties for RNA secondary structure. Biopolymers, 29(6-7):1105–1119, 1990.

[21] U. Muckstein, H. Tafer, J. Hackermuller, S.H. Bernhart, P.F. Stadler, and I.L. Ho-
facker. Thermodynamics of RNA-RNA binding. Bioinformatics, 22(10):1177, 2006.

[22] K. Papenfort, V. Pfeiffer, S. Lucchini, A. Sonawane, J.C.D. Hinton, and J. Vo-
gel. Systematic deletion of Salmonella small RNA genes identifies CyaR, a con-
served CRP-dependent riboregulator of OmpX synthesis. Molecular microbiology,
68(4):890–906, 2008.

[23] V. Pfeiffer, K. Papenfort, S. Lucchini, J.C.D. Hinton, and J. Vogel. Coding sequence
targeting by MicC RNA reveals bacterial mRNA silencing downstream of transla-
tional initiation. Nature Structural & Molecular Biology, 16(8):840–846, 2009.

[24] S.C. Pulvermacher, L.T. Stauffer, and G.V. Stauffer. Role of the Escherichia coli Hfq
protein in GcvB regulation of oppA and dppA mRNAs. Microbiology, 155(1):115,
2009.

54

[25] M. Rehmsmeier, P. Steffen, M. Höchsmann, and R. Giegerich. Fast and effective
prediction of microRNA/target duplexes. Rna, 10(10):1507, 2004.

[26] M. Schmidt, P. Zheng, and N. Delihas. Secondary structures of Escherichia coli
antisense micF RNA, the 5’-end of the target ompF mRNA, and the RNA/RNA
duplex. Biochemistry, 34(11):3621–3631, 1995.

[27] C.M. Sharma, F. Darfeuille, T.H. Plantinga, and J. Vogel. A small RNA regu-
lates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and
upstream of ribosome-binding sites. Genes & development, 21(21):2804, 2007.

[28] K.I. Udekwu, F. Darfeuille, J. Vogel, J. Reimeg̊ard, E. Holmqvist, and E.G.H. Wag-
ner. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA.
Genes & development, 19(19):2355, 2005.

[29] J.H. Urban and J. Vogel. Two seemingly homologous noncoding RNAs act hierar-
chically to activate glmS mRNA translation. PLoS Biol, 6(3):e64, 2008.

[30] B. Večerek, I. Moll, and U. Bläsi. Control of Fur synthesis by the non-coding RNA
RyhB and iron-responsive decoding. The EMBO journal, 26(4):965, 2007.

55

