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Abstract

The thesis presents the K-local move set, a local move set defined generically for lattice
protein models. The K-local move set is defined for both backbone and side-chain protein
models via constraint satisfaction problems. The use of the constraint-based approach
enabled its use for an arbitrary lattice. The K-local move set is then used for a simulation
procedure for side-chain protein structures in the face-centered cubic lattice using real
protein sequences and structures.
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Chapter 1

Introduction

Protein is a sequence of amino acids, bound by peptide bonds. A protein is a polymer of
amino acids. Each peptide bond forms between the amine group of a an amino acid and
the carboxyl group of the next amino acid.
Proteins hold various important roles in living organisms. They are one of the basic
constituents of cells. They help transferring molecules between cells. Enzymes, which
are proteins, participate in many biochemical reactions as catalysts [1].
The function of a protein is an important factor of its function. Thus, the problem
of protein structure prediction is considered to be of increasing importance, because it
affects our understanding of enzymes, cell structure, and also would help the field of drug
design [21]. However, this problem is considered challenging, with no known efficient
solution, and even proven to be NP-hard for some of the simple protein structure models
[17, 1].
One approach for modeling the protein structure is to assume its monomers are confined
to a discrete lattice, with each amino acid being represented by one or more vertices. This
allows for a convenient representation of the protein structure, and is known as lattice
protein models [1].
A method of protein structure prediction is the simulation of its folding into a stable,
kinetically optimal structure [1]. This requires the definition of a move set, a set of
possible structural changes that can send a protein structure into other possible protein
structures with this structural change applied. In this thesis, the K-local move set, a
generic move set is defined using an approach based on constraint satisfaction problems.
This move set is generic because it applies to any lattice model, and it is easy to be
extended for any protein structure model. It is defined for backbone as well as side-chain
protein models and it can apply to any lattice. This approach shows the flexibility given
by using constraint programming for defining the possible structural protein changes.
This move set was used for search for protein structures that are locally minimum in
their energy. The approach of using a constraint satisfaction problem for the search for
local optima is known as a general framework for local search problems, as shown in
[15]. Two search methods were used in this thesis, namely the gradient descent and
random descending walk approaches. Both of them are methods of reaching structures
that are locally optimal in energy. Comparisons are held between different input protein
structures and the simulation method and parameters used.
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Chapter 2

Background

2.1 Lattices

A lattice in 3D space is a set of vectors, including the origin vector, which is closed under
addition and subtraction. The closure of addition and subtraction grants that any integer
linear combination of these vectors belongs to the lattice.
A set of vectors {~v1, ~v2, ~v3, ..., ~vn} is called to generate a lattice L if any vector in L can
be expressed as an integer linear combination of the generating vectors. In other words,

if the lattice L =
{

∑i=n

i=1 ki~vi : ki ∈ Z

}

. The set of generating vectors is called the basis

of the lattice L, denoted as BL, if it is minimal.

The cubic lattice

The cubic lattice is denoted as Z
3, and its basis is

BZ3 =











1
0
0



 ,





0
1
0



 ,





0
0
1











(2.1)

The cubic lattice consists of all points with integer coordinates on a Cartesian three
dimensional space. It is shown in figure 2.1.

Z
3 =











x
y
z



 : x, y, z ∈ Z







(2.2)

The face-centered cubic lattice

The face-centered cubic lattice is denoted as FCC, and its basis is

BFCC =











1
1
0



 ,





0
1
1



 ,





1
0
1











(2.3)

If the space contains infinite number of equally sized cubes, packed adjacent to each other,
the face-centered cubic lattice consists of the center points of the faces of these cubes,
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as well as the corner points of the cubes themselves. The face-centered cubic lattice is
shown in figure 2.2.

FCC =











x + z
x + y
y + z



 : x, y, z ∈ Z







(2.4)

2.1.1 Neighborhood

To define the notion of neighborhood in a lattice L, the set of neighborhood vectors,
NeighborhoodL is introduced. In the lattice L, every point p1 has exactly |NeighborhoodL|
neighbors, which are {p1 + ~v : ~v ∈ NeighborhoodL}.
The predicate NeighborL(p1, p2) is used to denote that p1 is neighboring to p2 in the
lattice L, where p1, p2 ∈ L.

NeighborL(p1, p2) ⇔ ~p1 − ~p2 ∈ NeighborhoodL (2.5)

Every vertex in the cubic lattice has 6 neighbors, as shown in figure 2.1. The set of
neighborhood vectors for the cubic lattice is:

NeighborhoodZ3 =











±1
0
0



 ,





0
±1
0



 ,





0
0
±1











(2.6)

Figure 2.1: The cubic lattice; each vertex has six neighbors

The set of neighborhood vectors for the face-centered cubic lattice is:

NeighborhoodFCC =











±1
±1
0



 ,





0
±1
±1



 ,





±1
0
±1











(2.7)

2.1.2 Self-avoiding walk

A self-avoiding walk (SAW) in a lattice L is a sequence of lattice points p = (~p1, ~p2, ~p3, ..., ~p|p|),
of length |p|, where ∀1≤i≤|p| : pi ∈ L, that satisfies two conditions:
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Figure 2.2: The face-centered cubic lattice; each vertex has twelve neighbors

1. Connectivity : Every element in the sequence should be a neighbor of the preceding
element.

∀2≤i≤|p| : NeighborL(pi−1, pi) (2.8)

2. Self-avoidance: No two elements should be the same point, i.e., every lattice point
is assigned to at most one vertex.

∀1≤i<j≤|p| : pi 6= pj (2.9)

2.2 Lattice proteins

Proteins are polymers of amino acids, bound by peptide bonds. The peptide bond forms
between the amine group of an amino acid and the carboxyl group of the next amino
acid. Proteins play important roles at various processes in living organisms [1].
One essential feature of a protein is its structure. The structure of a protein is important
to determine its functionality. The problem of predicting the structure of the folded
protein is of increasing importance lately. Predicting the folded protein structure would
greatly affect our understanding of enzymes, cell structure, and also would help the field
of drug design [21].
The problem of predicting the protein structure is considered challenging with respect
to many aspects. Although the number of theoretically possible protein structures is
very large, yet the protein collapses to a certain shape in milliseconds scale, a phenomena
known as Levinthal’s paradox. So far, there is no efficient solution for this problem [17, 1].
Lattice proteins is a way to model proteins abstractly representing a protein structure as
vertices on a lattice. Each vertex is confined in a discretized lattice, and each amino acid is
represented by one or more vertices. This allows us to get an approximate, yet convenient
representation of protein structures. The backbone model maps every monomer into one
lattice point, while the side-chain model maps every monomer to two neighboring lattice
points representing the peptide bond and the amino acid chain [1].
Another possible way to model proteins is to model every monomer as two spheres, one
representing the peptide bond, and the other represents the amino acid side-chain. This
model is known as the tangent sphers model [7], which is an example for off-lattice protein
structure model. In this thesis we will only discuss lattice protein structure models.
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Backbone model A protein structure modelled in the backbone model is a chain (SAW)
of lattice points, each representing a monomer in the protein. To estimate the energy of a
certain configuration, each monomer is assigned to one symbol from a certain alphabet Σ
(dependent on the model). The energy is estimated based on the interactions between the
monomers. A protein structure modelled in backbone model is defined as a pair (p, R),
where:

p is a SAW

R : p → Σ, shortened as rpi
= R(pi) ∈ Σ (2.10)

As for the alphabet Σ, one example is Σ = {H, P}, used in the HP model [1]. Hydrophobic
monomers are mapped to H , whereas polar monomers are mapped to P .

Side-chain model A protein structure modelled in the side-chain model is a chain of
lattice points representing the peptide bonds, with each backbone lattice point neigh-
boring a residue that models the amino acid side-chain. The backbone chain as well
as the side-chain respect the self-avoidance and connectivity constraints. The structure
modelled in side-chain model is defined as a triple (p, s, R), where:

p = (~p1, ~p2, ~p3, ..., ~p|p|)

s = (~s1, ~s2, ~s3, ..., ~s|s|)

where |p| = |s|

∧ ∀1≤i≤|p| : pi, si ∈ L

∧ ∀1≤i≤|p| : NeighborL(si, pi)

∧ ∀2≤i≤|p| : NeighborL(pi−1, pi)

∧ ∀1≤i,j≤|p| : pi 6= sj

∧ ∀1≤i<j≤|p| : pi 6= pj ∧ si 6= sj

R : p ∪ s → Σ ∪ {b} , rpi
= R(pi) = b, rsi

= R(si) ∈ Σ (2.11)

2.2.1 Protein structure prediction

To predict the protein structure, it is expected that the protein takes a structure that is
of low potential energy, thus, a stable structure. The potential energy of a structure is
due to the interactions between the protein atoms. The general approach used to predict
the protein structure so far is to simulate its folding [17].
Some of the types of folding simulations include energy local minima search and simulated
annealing [5, 6, 17].

2.2.2 Energy functions

To determine the potential energy of a structure, some energy functions were developed to
allow approximate, but fast calculation of the mutual interactions between the structure
monomers.
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To calculate the potential energy participated by each pair of vertices, there is a defined
function from pairs of vertices to real numbers representing the potential energy partic-
ipation of a pair in some energy units. As the potential energy introduced out of the
interaction between two monomers depends on the distance between them, the energy
between two vertices, is thus multiplied by a factor based on the distance of the two ver-
tices. The other main factor in this function is the alphabet symbol each of the vertices
represent.
The energy function between two vertices e is more often defined as:

e(v1, v2) = eδ(v1, v2) · eΣ(rv1
, rv2

) (2.12)

where eδ(v1, v2) is the contribution to the energy function due to the distance between
the vertices, and eΣ(rv1

, rv2
) is the contribution due to the internal composition of each

of the vertices, as abstracted by the model. rvi
denotes R(vi) as defined at 2.10 and 2.11,

the alphabet symbols representing the type of the vertex.
An interesting characteristic of eδ(v1, v2) and eΣ(rv1

, rv2
) is that they are both symmetric

with respect to the order of their inputs, v1 and v2. Which means, eδ(v1, v2) = eδ(v2, v1),
and eΣ(rv1

, rv2
) = eΣ(rv2

, rv1
). This follows from the reality of the mutual interaction

between the two vertices. Thus, e(v1, v2) is just equal to e(v2, v1).

Distance-based energy functions

In attempt to achieve high precision energy evaluation, the function eδ(v1, v2) is based on
the distance between the monomers. In [5], a distance-based energy function was used
to reach for the effects resulting from the concentration of the polypeptide chain, taking
the distance between the centers of mass of the chains as a parameter.

Contact-based energy functions

As the potential energy introduced by a pair of vertices drops quadratically with the in-
crease of the distance between them, one approximation to follow is to allow participation
at the total energy of a protein structure to only the pairs of vertices that are in direct
contact (neighbors on the lattice L, or touching spheres in the case of tangent sphere
models [1]). In other words, eδ(v1, v2) is defined as follows:

eδ(v1, v2) =

{

1 if NeighborL(v1, v2)

0 otherwise
(2.13)

eΣ(rv1
, rv2

) is defined usually following a precomputed matrix of constant values, that is
shown to be correspondent to the reality. For example, the HP model suggests splitting
the vertices of the monomers into two types; hydrophobic, denoted as H , and polar,
denoted as P . The matrix for eΣ using HP models is shown in table 2.1.
The HP model is extremely efficient when used in simulations, due to the very limited
domain of it. However, the number of structures optimal according to the HP model
is huge [3]. Therefore, the HPNX model, a refinement of the HP model, is sometimes
used. The types H, P, N and X resemble hydrophobic, positive, negative and neutral,
respectively. The matrix used for HPNX energy function is shown in table 2.2.
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The MJ model takes each of the twenty possible amino acids as a representative to a struc-
ture unique on its own, and provides a finer matrix than HP and HPNX models, giving
the values of the 210 possible pairwise interactions between any two amino acids [16].
The MJ model is used in the simulations designed for this thesis, and its corresponding
matrix is given in appendix A.

Energy function for backbone model

For backbone model, the total energy of a structure is defined as a sum of all energies
computed over all non-consecutive pairs of vertices (representing monomers). The total
energy of a protein structure (p, R), given an energy function e(v1, v2), is defined as
follows:

E(p, R) =

i=|p|
∑

i=1

j=|p|
∑

j=i+2

e(pi, pj) (2.14)

Energy function for side-chain model

For side-chain model, the total energy of a structure is defined as a sum of all energies
computed over all pairs of side-chains (representing amino acid chains). The total energy
of a protein structure (p, s, R), given an energy function e(v1, v2), is defined as follows:

E(p, s, R) =

i=|s|
∑

i=1

j=|s|
∑

j=i+1

e(si, sj) (2.15)

2.3 Constraint satisfaction problem

A constraint satisfaction problem, CSP, is a mathematical problem stated as a set of
variables on which some constraints are imposed. Solving a CSP means finding an as-
signment of values to the variables such that all constraints are satisfied. Formally, a

H P
H -1 0
P 0 0

Table 2.1: Energy function matrix of HP model [9]

H P N X
H -4 0 0 0
P 0 1 -1 0
N 0 -1 1 0
X 0 0 0 0

Table 2.2: Energy function matrix of HPNX model [3]
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CSP is a triple < X, D, C >. X is a set of variables. D is a domain of values. C is a
set of constraints. A constraint can be understood as a pair (t, V ), where t is a tuple of
variables and V is a set of tuples of values, each tuple is of the same size of that of t. The
meaning of a constraint to be satisfied is that there is an evaluation function u : X → D
such that (u(x1), u(x2), ..., u(xn)) ∈ V . A solution for the CSP is an evaluation satisfying
all constraints in C.

2.4 CSP for self avoiding walk in 3D

To ease the understanding of the CSP elements, we introduce an easy problem, relevant
to the topic of the thesis, and describe its corresponding CSP.
The problem is to compute all SAWs of a certain length n on a lattice L. Given that SAWs
of length n on an infinite lattice are infinitely many, it is only interesting to investigate
SAWs beginning at the origin, ~0, as any other SAW of length n would be a translation
of one SAW beginning at the origin.

Problem For a given n, formulate a CSP that any solution of which defines a SAW p
of length n on a lattice L, such that p starts at the origin.

Solution A viable choice of variables of the CSP is to choose n variables: X =
{p1, p2, ..., pn} representing the vertices of the SAW. The length of the SAW is n, a finite
value. Thus, a finite domain of points D can be assigned to the variables, depending on
the lattice structure. For Z

3 or FCC lattices, the domain is stated explicitly in section
2.4.2, and will be denoted as the finite frame F ⊂ L, so that ∀1≤i≤n : Di ⊆ F . The
constraints imposed on the vertices constituting the SAW, C, are described as follows:

|p| = n

∧ ∀1≤i≤|p| : pi ∈ L

∧ p1 = ~0

∧ ∀2≤i≤|p| : Neighbor(pi−1, pi)

∧ ∀i6=j : pi 6= pj (2.16)

The neighborhood binary constraint, Neighbor(pi−1, pi), is not clearly defined, and thus
will be discussed in section 2.4.1. One last point to state is that most implemented
constraint problem solvers only work with numeric values, preferably integers. Therefore,
the domain of 3D points is transformed to an isomorphic domain of integer values as
described in section 2.4.3.

2.4.1 Neighborhood binary constraint

The neighborhood binary constraint is defined on two variables, each representing a lattice
point, so that it enables the constraint solver of branching and searching for a solution
respecting the neighborhood constraint. The neighborhood constraint is defined following
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its intuitive meaning, that the two vertices represented by variables will be neighbors in
the given lattice if the constraint is satisfied.
For the two variables pi and pj , of domains Di, Dj respectively, the constraints dictating
that they are neighboring are:

∀pi∈Di
∃pj∈Dj

: NeighborL(pi, pj)

∧ ∀pj∈Dj
∃pi∈Di

: NeighborL(pi, pj) (2.17)

The domains of the points pi and pj are constrained only to the pairs where pi is neigh-
boring to pj . The implementation of the neighborhood binary constraint filters any point
in each domain which has no neighbor in the opposite domain. Following is a description
of the algorithm applied to grant the satisfaction of the constraint:
Two points on a lattice are neighbors if the difference between them is one of the neighbor-
hood vectors. Thus, the neighborhood binary constraint, when applied on two variables
pi and pj , limited to two domains pi ∈ Di and pj ∈ Dj, where Di, Dj ⊂ L works as
follows:
Without loss of generality, let’s assume that the domain of pi is smaller than of pj . The
binary neighborhood constraint sweeps over all points in Di and searches for all supporter
neighbors in Dj . If no supporter was found in Dj, the point is removed from Di. After
that, Dj is cleaned up from every point that has no supporter neighbor in Di.

2.4.2 Frame size problem

To possibly model the lattice L in a computational model, a finite frame F is chosen to
have a finite domain for the points. In general, an easily representable frame is defined
by a bounding box [x1, x2] × [y1, y2] × [z1, z2]. Such representation is convenient as it
can be transformed to an isomorphic domain of integers using translation and row-major
ordering, as described in section 2.4.3. Therefore it is enough to define the boundaries of
that box, namely x1, x2, y1, y2, z1, and z2.
In Z

3 or FCC lattices, the difference between two neighbors in any coordinate does not
exceed 1. Therefore, every chain p of length n starting from the origin can not reach any
point having a coordinate of absolute value higher than n. Thus, a sufficient finite frame
is F = [−n− k, n+ k]× [−n− k, n+ k]× [−n− k, n+ k], where k ≥ 1, constant, to allow
dealing with the set of neighborhood vectors as a set of constant integers even with the
problem transformed to the integer domain using raw-major ordering. After transforming
the frame into a domain of integers using raw-major ordering, this positive k eliminates
both the errors resulting from not handling wrapping around the frame once reaching its
boundary, and also eliminates the degeneracy in efficiency resulting from handling the
special vertices at the boundaries each time the neighborhood binary constraint is run.
More formally, a frame F is defined as follows:

F = {(x, y, z) : (x, y, z) ∈ L ∧ x1 ≤ x ≤ x2 ∧ y1 ≤ y ≤ y2 ∧ z1 ≤ z ≤ z2} (2.18)

SizeF denotes the size of a frame F , the largest domain of values at one dimension:

SizeF = max(x2 − x1 + 1, y2 − y1 + 1, z2 − z1 + 1) (2.19)
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As stated before, the frame used for this problem is defined as:

F = {(x, y, z) : (x, y, z) ∈ L ∧ n − k ≤ x, y, z ≤ n + k} (2.20)

The size of this frame is SizeF = 2n + 2k + 1 = 2n + 3, for k = 1 as shown sufficient.

2.4.3 Indexing

As stated before, most of the implemented constraint solvers handle only numeric values.
So, for efficiency and convenience purposes, the points of the lattice are mapped by a one-
to-one mapping to non-negative integers using row-major ordering in order to be usable
in a constraint solver, namely the Gecode library, an open C++ library that enables
solving CSPs natively in C++, efficiently [18].
We will follow a definition of raw-major ordering that is only defined on non-negative
integer coordinates. Thus, to get all the points of the frame F in the first octant of the
infinite lattice L, the starting position of the chain will be translated from the origin to
(n + k, n + k, n + k) by a translation vector ~t = (n + k, n + k, n + k). Thus, the new
translated frame lies only on non-negative integer coordinates.

F~t = {(x, y, z) : (x, y, z) ∈ L ∧ 0 ≤ x, y, z ≤ 2n + 2k} (2.21)

The frame size is the same, not affected by the translation, SizeF~t
= SizeF = 2n+2k+1.

After that, a point of coordinates (x, y, z) in the frame F~t of size SizeF~t
is mapped, by a

one-to-one mapping, to a single integer using row-major ordering as:

I(x, y, z) = x + y · SizeF~t
+ z · Size2

F~t
(2.22)
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Chapter 3

Related Work

Protein structure prediction proposes the question of predicting the spatial structure of a
protein knowing its amino acid sequence. Levinthal showed that the number of possible
structures of a protein sequence is extremely huge. However, it is known that the folding
procedure of a protein happen in the scale of milliseconds, and that it always results into a
certain structure, dependent on the amino acid sequence, assumed to be optimal in energy,
and kinetically reachable according to the protein formation conditions. This notice,
known as Levinthal paradox [17], leads to the realization that reaching the structure of a
protein from its amino acid sequence follows a kinetically favorable procedure, known as
protein folding. Thus, one approach for answering this question is performing a simulation
of the protein folding beginning by the amino acid sequence.
It is computationally intractable to examine every possible structure of the protein in
order to predict the most favorable structure. Various models of representing the problem
of protein structure prediction was shown to be NP-hard [1]. The approach of predicting
the stable structure of a protein by simulating its collapse is named as protein folding
simulation [1].

3.1 Simulation methods

Ab initio protein structure prediction is based on simulating the physical principles ap-
plied on the protein to follow the folding steps. A folding simulation follows one simula-
tion model, such as simulated annealing, Markov chain simulation or energy local minima
search. Simulation methods based on the idea of a move set take the protein structure
from one state to another, iteratively. The possible next states from a given protein struc-
ture are named as its neighboring structures and are defined by one of the allowed move
sets applied on that protein structure. Consequently, the simulation method decides for
the choice of the next structure from the neighboring structures. Some of the simulation
methods include simulated annealing and energy local minima search.

3.1.1 Simulated annealing

In [6], a Monte Carlo approach was followed for the choice of the next protein structure.
Metropolis criterion was used for accepting or rejecting a move. This approach involves
temperature as a parameter in the Metropolis criterion. Controlled heating and cooling
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conditions affect the allowed moves. A condition with a higher temperature allows a
higher possibility for larger structural changes to occur.

3.1.2 Energy local minima search

Other simulation methods used Monte Carlo approaches for finding a ground state for
the protein chain, following a path of structures that are descending in energy. This
approach is following a folding simulation that searches for structures that are local
minima. Considering the structure space of the protein to be fold as a domain of the
energy function, and by the use of a move set defining structure neighborhoods, local
minima search algorithms can be applied to find protein structures that are locally optimal
in energy [17]. Gradient descent is a simple method of finding local minima by iteratively
choosing the neighboring structure with lowest energy. This method is used in the thesis
experiment, for applying the K-local move set.

3.2 Classification of move sets

Move sets vary according to their ergodicity (completeness). An ergodic move set (or set
of move sets) enables every structure to reach any possible formation by its application
zero or more times. A non-ergodic move set can not allow some of the formations to occur
starting from a certain structure. For a complete folding simulation, an ergodic move set
enables reaching any optimal structure, and thus ergodic move sets are preferable [9].
Move sets are defined typically with respect to a certain model (backbone or side-chain
model) in a predefined lattice. However, common move sets, as shown later, are general-
ized to various lattices and models. The move sets introduced in this thesis are defined
using a CSP approach, and thus are defined declaratively, and can apply to any lattice.
The introduced move sets were defined for both backbone as well as side-chain models.
In [2], the CSP approach to define a move set was used for protein folding simulations in
backbone model using the HP energy function. Search for local optima was introduced
as a general framework in [15], and is used in the experiments in this thesis.
A local move set is a move set affecting at most constant number of consecutive monomers
of the protein structure. The number of amino acids involved in a move is inversely related
to the probability of the move [20]. Thus, it is suggested that local moves with fewer
monomers involved are more likely to occur than moves that change the entire structure
of the chain. However local move sets are not ergodic [9]. The ergodicity of a move set is
necessary so an the optimal structure would be reachable [9]. Thus, some of the research
concentrated on ergodic move sets involving less monomers such as the pull move set
[9]. Other methods used Monte Carlo random simulations to the folding giving higher
probabilities to moves involving less amino acids [20].

3.2.1 Pull move set [9]

A pull move is defined operationally as a move involving one monomer Vi that has a
free diagonally-adjacent cell to move into, named as C, with the one other corner of the
square defined by the two cells Vi and C is occupied by Vi+1. The fourth square corner,
named as L, must be either empty or filled by Vi−1, in order to allow the pull move to
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occur. The vertex Vi is moved into the free square C. The vertex Vi−1 is either moved
to L (if L is free) or the move step stops only by moving Vi. In case Vi−1 is moved to
L, every vertex Vj is moved to the place previously occupied by Vj+2, starting from Vi−2

and going by j down until reaching a vertex that is moved and still neighboring its old
neighbors, or reaching the end of the chain.

3.2.2 Standard local move set for [17]

The standard local move set is a local move set that is originally used for backbone models
[17] and was adopted for side-chain models as well [6].
In this move set, either a random single monomer is chosen to be moved, or two consec-
utive monomers (randomly chosen) are moved. The move is allowed if a single monomer
was chosen are either moving a monomer ending the chain, and then it is moved in a way
that the protein still respects connectivity and self-avoidance. If the monomer is not at
the end of a chain, moving it is allowed if moving it to a diagonally adjacent cell keeps the
protein connected and self-avoiding. If a pair of consecutive monomers were chosen to be
moved, they are moved in a crankshaft fashion by moving the two consecutive monomers
into two other adjacent cells, diagonally adjacent to their original positions [17]. This
move set can be defined for more general lattices, and for a larger number of consecutive
monomers to be altered. It can be defined also for side-chain models as well [6, 11]. In
[4], the local move set was defined for triangular lattices. The standard local move set
defined by [17] for backbone models is shown in figure 3.1.

Tail flip Corner flip

Crankshaft movement

Figure 3.1: The standard local move set for backbone model [17]

Single moves and crankshaft moves were given probabilities of 20% of the tail flip, 20%
of the corner flip and 60% of the crankshaft movement. If the positions of the new back
bone beads are valid, the side-chain moves are chosen. Otherwise, the side-chain beads
are tried to be moved simultaneously [11].
Chapter 4 gives a generic definition for a more general form of this move set, using a
CSP definition. The move set used in [17] can be defined as the K-local move set for
K = 2, applied on backbone model, as defined in sections 4.1. However the CSP approach
allowed an easy adoption for this move set into side-chain models, and it allows a more
general definition, for K > 2, that works using any arbitrary lattice.
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3.2.3 The pivot move set [10]

The pivot move set chooses a random monomer along the chain (the pivot), then applies
reflection, rotation, or both to one side of the chain. The move is allowed if by applying
it the structure remains respecting the self avoiding conditions. This move set applies a
large structural change to the protein, and thus can be combined with a local move set
to simulate more common moves that affect limited number of monomers.

3.2.4 MS3 Local move set [11]

The MS3 move set is a local move set that extends the standard local move set. It
includes all the moves from the standard local move set, in addition to moves involving
two or three consecutive monomers. The monomers are moved into diagonally adjacent
positions if the continuity of the chain is maintained as well as self-avoidance. Some
examples of the application of the move set are shown in figure 3.2. The probability of
a move involving a number of monomers is proportional to a negative exponential of the
number of chosen monomers. The MS3 move set was shown to be more efficient than the
standard local move set, because it allows more moves that offer a more flexible structural
change [11].

Figure 3.2: Examples of the MS3 moves extending the standard local move set [11]

3.2.5 Energy function and spin states [11]

Spin states are introduced to represent the degrees of freedom of the monomers by using
n spin degrees (numbered from 0 to n− 1) and assuming that 0 is the native state. side-
chains that are in the native state is the only one contributing to the energy function.
Also, a breathing motion is introduced for the structure backbone to allow the side-chains
to be located inside the interior of the folded protein [6].
The introduction of side-chains divided the beads into back bone beads and side-chain
beads. An energy function was developed as a sum of the interactions among back bone
beads together, side-chain beads together, or the interaction between a back bone bead
with a side-chain bead [11]. Spin states are commonly used in protein folding simulation
with side-chain models, taking into account the energy participation from side-chain
beads that are in the native state only [11, 6].

14



3.2.6 Side-chain placement

Some research is directed towards predicting side-chain placements after building a back-
bone configuration with no initial knowledge of the side-chains [8]. Further research
showed that interaction between side-chains does not affect the accuracy of the side-chain
placement prediction, although prediction only using the interactions between side-chains
was shown significantly accurate. That resulted in the conclusion that both types of in-
teractions are consistent [19].
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Chapter 4

Interval-based local move set

In this thesis, we introduce CSP definitions to local move sets. The K-local move set
used in the experiment of this thesis is presented. The K-local move set follows a generic
definition, flexible in application to any model or lattice. The following chapter will
introduce CSPs solving the K-local move set for backbone model and side-chain model in
Z

3 and FCC lattices. The CSPs are extensible to be defined in other lattices as well, with
the only change altered is at the domain of the variables. An optimized variation of the
K-local move set is presented later in this chapter and its optimized CSP is presented as
well. Next chapter presents a global move set and its CSP definition for both backbone
and side-chain models as well.
The advantage of using CSP definitions is providing a generic working description for the
move set, extensible to any lattice used, and any length used, as will be shown later in
this chapter.

4.1 K-local move set in backbone model

For protein structures in backbone model, a generic definition of a local move set is to fix
the whole structure, except for a consecutive subinterval of length no more than K. This
definition is flexible as it can be applied regardless of the lattice containing the structure,
and it is easily extensible to other models, such as the side-chain model, as shown in
section 4.2.
More formally, given p, the protein chain in backbone model, as well as the previously
mentioned length K, the K-local move set is defined by choosing start and end, two
indices of vertices in the SAW p, such that 1 ≤ start ≤ end ≤ min(|p|, start + K − 1).
The move set applies by fixing the whole protein structure but allowing the subinterval
[pstart, pend] to take any formation as long as it respects the conditions of connectivity and
self-avoidance.

4.1.1 CSP for the K-local move set in backbone model

Problem Given p, a protein structure in backbone model in a lattice L, as well as
K < |p|, formulate a CSP that any solution of which defines another structure p′ that
results from applying one move out of the K-local move set to the given p.
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Solution The CSP presented to solve this problem is < X, D, C >. The CSP contains

|p| + 2 variables: X =
{

start, end, p′1, p
′
2, ..., p

′
|p|

}

representing start and end, the two

indices as described earlier, as well as the vertices of the altered protein structure, p′.
Note that |p′| = |p|.
The whole solution of the CSP is defined by an assignment for each element of the
variables, X. However, the move set is only defined in terms of p′. Thus, the CSP is
preferred not to describe duplicate solutions, in terms of equal p′. Two duplicate solutions
might occur by finding a solution for the CSP that involves a structure p′ different from
p only between start and end, inclusively. However, this same p′ is different from p
between start′ and end′, inclusively, as well, such that start′ 6= start ∨ end′ 6= end. The
two solutions, albeit different for the CSP solver, are considered redundant from the move
set point of view. Thus, it is favorable to obtain a CSP that captures every possible p′

exactly once.
Consequently, the CSP can be defined in a way that only allows the smallest interval
[p′start, p

′
end] to be chosen for each p′. This can be entailed by restricting p′start and p′end to

be different from pstart and pend, respectively. This way, other solutions with other values,
start′ and end′, can not capture the same altered structure, p′, that was captured with
start and end. Also, any possible p′ can be captured. So, this added condition will grant
a complete solution space, with no duplicates of p′.
The domains of the variables, D, are defined as follows:

start, end ∈ {1, 2, ..., |p|}

∀1≤i≤|p| : p′i ∈ Di ⊆ F, where F is defined in section 4.1.2 (4.1)

The constraints, C, of this CSP are described as follows:

1 ≤ start ≤ end ≤ |p|

∧ end − start < K

∧ p′start 6= pstart ∧ p′end 6= pend

∧ ∀1≤u<start : p′u = pu ∧ ∀end<u≤|p| : p′u = pu

∧ ∀max(2,start)≤u≤min(end+1,|p|) : NeighborL(p′u−1, p
′
u) connectivity

∧ ∀1≤i<j≤|p| : p′i 6= p′j self avoidance (4.2)

4.1.2 Variable Domains for the CSP

Suppose p = (p1, p2, ..., p|p|) is the given protein structure. Let pmin and pmax be defined
as follows:

pmin = (min1≤u≤|p|(pux), min1≤u≤|p|(puy), min1≤u≤|p|(puz))

pmax = (max1≤u≤|p|(pux), max1≤u≤|p|(puy), max1≤u≤|p|(puz)) (4.3)

In other words, pmin and pmax resemble the corners of a bounding frame containing the
whole given protein structure, p. That means:

∀1≤u≤|p| : pminx ≤ pux ≤ pmaxx

∧ pminy ≤ puy ≤ pmaxy

∧ pminz ≤ puz ≤ pmaxz (4.4)
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To limit the domain of p′, consider either point of pstart−1 or pend+1. In some cases,
start might be equal to 1 or end might be equal to |p|, however, both can not happen
simultaneously, because end − start < K < |p|. So, let ppivot be pstart−1, or pend+1, in
case pstart−1 is not defined. In other words, ppivot is a vertex neighboring to one end of
the interval [p′start, p

′
end]. It follows that the subinterval [p′max(1,pivot−K), p

′
min(|p′|,pivot+K)]

contains the subinterval [p′start, p
′
end], because end − start < K.

ppivot is outside the subinterval that was chosen to be altered for the local move set, so
p′pivot = ppivot. In Z

3 or FCC lattices, the difference between two neighbors in any coordi-
nate does not exceed 1. Thus, any vertex in the subinterval [p′max(1,pivot−K), p

′
min(|p′|,pivot+K)]

is at most K units distant away from ppivot, in any coordinate. From equation 4.4, ppivot

is contained between pmin and pmax. Thus,

∀max(1,pivot−K)≤u≤min(|p′|,pivot+K) : pminx − K ≤ p′ux
≤ pmaxx + K

∧ pminy − K ≤ p′uy
≤ pmaxy + K

∧ pminz − K ≤ p′uz
≤ pmaxz + K (4.5)

In addition, any other vertex outside [p′start, p
′
end] is kept unchanged, so it is contained

between pmin and pmax, as well. Therefore, for any point p′,

∀1≤u≤|p′| : pminx − K ≤ p′ux
≤ pmaxx + K

∧ pminy − K ≤ p′uy
≤ pmaxy + K

∧ pminz − K ≤ p′uz
≤ pmaxz + K (4.6)

As mentioned in section 2.4.2, the implementation of the neighborhood binary constraint
dictates an additional margin k = 1 for the frame. So, the bounding box for the frame
can be defined as:

F = [p′minx
, p′maxx

] × [p′miny
, p′maxy

] × [p′minz
, p′maxz

] (4.7)

The definition of p′min and p′max is:

p′min = pmin − (K + k, K + k, K + k)

p′max = pmax + (K + k, K + k, K + k) (4.8)

In order to get all the points of the frame F in the first octant of the infinite lattice L,
p′min is translated to the origin by a translation vector ~t = −p′min. Then, the translated
frame is:

F~t = {~v : v + p′min ∈ F} (4.9)

The frame size is given as described in equation 2.19. So any point in F~t can be mapped,
by a one-to-one mapping, to a domain of integers using row-major ordering, as in equation
2.22.
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4.2 K-local move set in side-chain model

The K-local move set defined for backbone model in section 4.1, is extensible to other
protein structure models. It can be defined to a protein structure in side-chain model,
similarly, by fixing the whole structure, except for a consecutive subinterval of length no
more than K. The backbone vertices, as well as their side chains, which belong to that
chosen subinterval can take any formation, as long as the structure is maintained as a
valid side-chain protein structure.

4.2.1 CSP for the K-local move set in side-chain model

Problem Given (p, s), a protein structure modelled by side-chain model in a lattice L,
as well as K < |p|, formulate a CSP that any solution of which defines another structure
(p′, s′) that results from applying one move out of the K-local move set to the given (p, s).

Solution The CSP presented to solve this problem is < X, D, C >. The CSP contains

2|p|+ 2 variables: X =
{

start, end, p′1, p
′
2, ..., p

′
|p|, s

′
1, s

′
2, ..., s

′
|p|

}

. start and end define the

interval, where only vertices that are allowed to take other positions; [pstart, pend], and
their corresponding side-chains [sstart, send]. The other 2|p| variables describe the vertices
of the altered protein structure, (p′, s′). Note that |p′| = |s′| = |p| = |s|.
Similar to the case handled at backbone model in section 4.1, the two variables start
and end are preferred not to describe duplicate (p′, s′) structures. Thus, the smallest
intervals [pstart, pend] and [sstart, send] are chosen, by restricting one of p′start and s′start to
be different than their corresponding original vertices, pstart and sstart, also one of p′end

and s′end must be different than pend and send.
The domains of the variables, D, are defined as follows:

start, end ∈ {1, 2, ..., |p|}

∀1≤i≤|p| : p′i ∈ Dpi
⊆ F

∀1≤i≤|p| : s′i ∈ Dsi
⊆ F, where F is defined in section 4.2.2 (4.10)

The constraints of this CSP, C are described as follows:

1 ≤ start ≤ end ≤ |p|

∧ end − start < K

∧ (p′start 6= pstart ∨ s′start 6= sstart)

∧ (p′end 6= pend ∨ s′end 6= send)

∧ ∀1≤u<start : p′u = pu ∧ s′u = su

∧ ∀end<u≤|p| : p′u = pu ∧ s′u = su

∧ ∀max(2,start)≤u≤min(end+1,|p|) : NeighborL(p′u−1, p
′
u) connectivity of backbone

∧ ∀start≤u≤end : NeighborL(s′u, p
′
u) connectivity of side-chains

∧ ∀1≤i<j≤|p| : p′i 6= p′j ∧ s′i 6= s′j ∧ ∀1≤i,j≤|p| : p′i 6= s′j self avoidance (4.11)
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4.2.2 Variable Domains for the CSP

The argument followed in section 4.1.2 applies for side-chain modelled protein structures,
but with k = 2 instead of k = 1, to accommodate that side-chain vertices are at most
one unit away from their corresponding backbone vertices.
More formally, given (p, s) the initial protein structure. pmin and pmax are defined to be
the corners of the bounding frame containing the backbone vertices.

pmin = (min1≤u≤|p|(pux), min1≤u≤|p|(puy), min1≤u≤|p|(puz))

pmax = (max1≤u≤|p|(pux), max1≤u≤|p|(puy), max1≤u≤|p|(puz)) (4.12)

To limit the domain of (p′, s′), consider the point ppivot, similar to the one defined in section
4.1.2. ppivot is a vertex neighboring to one end of the interval [p′start, p

′
end]. Similarly, follows

that the subinterval [p′max(1,pivot−K), p
′
min(|p′|,pivot+K)] contains the subinterval [p′start, p

′
end],

because end − start < K. The resulting domains for p′u = (p′ux
, p′uy

, p′uz
) are the same as

solved in equations 4.5 and 4.6.
Side-chain vertices are at most 1 unit away from their corresponding backbones, thus,

∀1≤u≤|p′| : pminx − K − 1 ≤ s′ux
≤ pmaxx + K + 1

∧ pminy − K − 1 ≤ s′uy
≤ pmaxy + K + 1

∧ pminz − K − 1 ≤ s′uz
≤ pmaxz + K + 1 (4.13)

As mentioned in section 2.4.2, the implementation of the neighborhood binary constraint
dictates an additional margin k = 1 for the frame. So, to accommodate side-chains
additionally, k is chosen to be 2, and the bounding box for the frame can be defined in
the same way at equations 4.7 and 4.9, for the new value of k = 2.
Reducing the domain to that the finite frame, of size that is given in equation 2.19, any
point in F~t can be mapped, by a one-to-one mapping, to a domain of integers using
row-major ordering, as in equation 2.22.

4.3 An optimized variation of the K-local move set

Similar to the move set defined in section 4.1, another move set can be defined by choosing
a subinterval of the protein chain, (pstart, send), of length at most K. The optimized
variation is choosing not to alter the boundaries of the chosen subinterval, and only
allowing the open subinterval (pstart, send) to take an alternative formation.
The advantage from such formulation to the move set is its efficiency. The domains of
the variables chosen for the CSP will be much less as shown later in 4.3.2. However,
applying this local move set alone in a folding simulation will not allow the ends of the
protein chain to take different vertices other than their initial ones (because they are
always excluded from being moved). Thus, for any folding simulation to use this local
move set, it must include other possibilities of move sets, preferably global ones, such
as the pivot move set or the pull move set, which would also grant the ergodicity of the
possible move sets.
In this section, the CSP for this move set, defined on backbone model, will be presented.
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4.3.1 CSP for the open K-local move set in backbone model

The open K-local move set for a protein structure in the backbone model p can be defined
by choosing two vertices pstart and pend, of distance no more than K ≥ 3, and allowing
the chain in between (excluding pstart and pend) to take any formation as long as it
maintains the conditions of connectivity and self-avoidance. The rest of the chain outside
the interval (pstart, pend) should be left unchanged.

Problem Given p, a protein structure modelled by backbone model in a lattice L, as
well as K < |p|, formulate a CSP that any solution of which defines another structure p′

that results from applying one move out of the open K-local move set to the given p.

Solution The CSP solving this problem, < X, D, C >, contains K variables: X =
{start, end, q1, q2, ..., qK−2}. The variables start and end denote the previously described
indices. The variables q1, q2, ...qend−start−1 resemble the vertices allowed to be altered
from the given protein chain p, which are p′start+1, p′start+2, ..., p′end−1. Finally, p′ will be
described as (p1, p2, ..., pstart, q1, q2, ..., qend−start−1, pend, pend+1, ..., p|p|).
To eliminate duplicate possibilities of p′, p′start+1 and p′end−1, resembled by q1 and qend−start−1,
they are restricted to be different than pstart+1 and pend−1, respectively. Also, qend−start,
qend−start+1, ..., qK−2 has to be set to an arbitrary value, in order to have a unique solution
per p′.
The constraints of this CSP, C are described as follows:

1 ≤ start ≤ end ≤ |p|

∧ 1 < end − start < K

∧ q1 6= pstart+1 ∧ qend−start−1 6= pend−1

∧ ∀end−start≤u≤K−2 : qu = 0

∧ NeighborL(pstart, q1) ∧ NeighborL(qend−start−1, pend)

∧ ∀2≤u≤end−start−1 : NeighborL(qu−1, qu) connectivity

∧ ∀1≤i<j≤end−start−1 : qi 6= qj

∧ ∀1≤i≤start∀1≤j≤end−start−1 : pi 6= qj

∧ ∀end≤i≤|p|∀1≤j≤end−start−1 : pi 6= qj self avoidance (4.14)

4.3.2 Variable Domains for the CSP

The domains of the variables, D are:

start, end ∈ {1, 2, ..., |p|}

∀1≤i≤K−2 : qi ∈ Di ⊆ F (4.15)

The chosen frame, F , will be smaller than that shown in section 4.1.2. To realize that,
the subinterval of the structure from pstart to pend, is of length l = end − start + 1 ≤ K.
This subinterval is translated into a finite frame F . This finite lattice should allow any
SAW of the same length l to lie completely within it. In Z

3 or FCC, the size of this
lattice SizeF was found to be bounded from above by a constant added to the length of
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the subchain SizeF = l + k, where k ≥ 1. To prove this, let the point ~Fc = ~pstart+ ~pend

2
to

be in the center of the frame F , defined as:

F =

{

(x, y, z) : (x, y, z) ∈ L ∧ max(|x − Fcx|, |y − Fcy |, |z − Fcz |) ≤
l + k

2

}

(4.16)

The notion of a distance between two points on a lattice is used in the proof; Dis(p1, p2)
will denote the length of the shortest possible SAW from p1 to p2.
Using the neighborhood vectors of the lattices Z

3 or FCC, Dis(p1, p2) ≥ |p1x − p2x|. The
reason is, that every neighborhood vector either adds to the x-dimension or not. Thus,
it needs at least a chain of |p1x − p2x| neighbors to reach from p1 to p2.
Similarly,

Dis(p1, p2) ≥ |p1x − p2x|

Dis(p1, p2) ≥ |p1y − p2y |

Dis(p1, p2) ≥ |p1z − p2z | (4.17)

The symbol SAWstart,c,end will denote a SAW that goes from pstart to pend through pc.
The length of this SAW is at least as long as sum of lengths of the shortest SAW from
pstart to pc and the shortest SAW from pc to pend:

|SAWi,c,j| ≥ Dis(pstart, pc) + Dis(pc, pend) (4.18)

Statement In the lattices Z
3 or FCC, any lattice point of a SAW of length l from pstart

to pend will not lie outside the frame F previously defined.

Proof Assume a lattice point pc /∈ F is a part of a SAW SAWstart,c,end of length l
beginning by pstart and ending in pend, the proof will show that the length of the SAW is
necessarily larger than l and thus arrive at a contradiction.
As assumed, pc lies outside F . This implies that at least one of the following three
statements is true:

|pcx −
pstartx + pendx

2
| >

l + k

2

|pcy −
pstarty + pendy

2
| >

l + k

2

|pcz −
pstartz + pendz

2
| >

l + k

2
(4.19)

By the symmetry between the three coordinates, and without loss of generality, we assume
that the first one of them is true:

|pcx −
pstartx + pendx

2
| >

l + k

2
(4.20)
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The length of the self-avoiding walk is derived as follows:

|SAWstart,c,end| = l as assumed

≥ Dis(pstart, pc) + Dis(pc, pend)

≥ |pcx − pstartx | + |pcx − pendx|

≥ |2pcx − pstartx − pendx| subadditivity

≥ 2|pcx −
pstartx + pendx

2
|

> 2(
l + k

2
) as pc is assumed to be outside F

> l + k contradiction (4.21)

That proves the sufficiency of a frame of size SizeF = l + k, where k ≥ 3, a constant to
avoid off-by-one errors resulting from integer division as well as the offset discussed in
section 2.4.2. In side-chain modelled protein structures, k ≥ 5 is used to accommodate
the side-chains attached to the backbone vertices. As l = end− start+1 ≤ K, the frame
of size SizeF = K + k will be sufficient for any value of start and end.

4.3.3 Indexed model

To get all the points of the frame F in the first octant of the infinite lattice L, the
point ⌊ ~pstart+ ~pend

2
⌋ is to be translated to (⌊ l+k

2
⌋, ⌊ l+k

2
⌋, ⌊ l+k

2
⌋) by a translation vector ~t =

(⌊ l+k
2
⌋, ⌊ l+k

2
⌋, ⌊ l+k

2
)⌋) − ⌊ ~pstart+ ~pend

2
⌋.

The translated frame is:

F~t = {~v : v + p′min ∈ F} (4.22)

The translated frame size is:

SizeF~t
= SizeF = K + k (4.23)

Finally, any point in F~t can be mapped, by a one-to-one mapping, to a single integer
using row-major ordering, as in equation 2.22, making sure that any point used at the
constraints from the original p is translated and mapped to integers as well.
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Chapter 5

Non-restricted global move set

5.1 Non-restricted global move set in backbone model

For a protein structure modelled in backbone model p, a non-restricted move set is de-
fined by allowing at most K < |p| residues to be altered, unlike the K-local move set,
independent of their relative positions.

Problem Given a protein structure p modelled by backbone model in a lattice L, and
an integer K, where 1 ≤ K < |p|, formulate a CSP, that any solution of which describes
another protein structure p′ that is different from p, with at most K residues different
from p.

Solution The CSP solving this problem, < X, D, C >, contains |p| variables: X =
{

p′1, p
′
2, ..., p

′
|p|

}

representing the vertices of the altered protein structures, p′, where |p′| =

|p|.
The constraints, C, of the CSP that defines the protein structure after applying the move
set, p′ are described as follows:

∀2≤i≤|p| : NeighborL(p′i, p
′
i−1)

∧ ∀1≤i<j≤|p| : p′i 6= p′j
∧ 1 ≤ | {i : 1 ≤ i ≤ |p|, pi 6= p′i} | ≤ K (5.1)

The domains of the variables, D, are defined as follows:

∀1≤i≤|p| : p′i ∈ Di ⊆ F (5.2)

The frame chosen, F , is identical to that chosen in equation 4.7. It can be shown that for
any residues p′a that was altered by applying the move set, there is a SAW beginning from
it to a residue that was not altered, of length at most K, because the number of altered
residues is at most K. Therefore, any vertex will be limited in domain by the same frame
F , defined in equation 4.7, where p′min and p′max are defined exactly the same way in
equation 4.8, for k = 1. The frame is to be translated, as described in equation 4.9, to
enable representing the lattice points of the protein structure in an integer domain.
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5.2 Non-restricted global move set in side-chain model

For a protein structure modelled in side-chain model (p, s), a non-restricted move set is
defined by allowing at most K < |p| residues to be altered, independent of their positions.

Problem Given a protein structure (p, s) modelled by side-chain model in a lattice L,
and an integer K, where 1 ≤ K < |p|, formulate a CSP, that any solution of which
describes another protein structure (p′, s′) that is different from (p, s), with at most K
residues different from (p, s).

Solution The CSP solving this problem, < X, D, C >, contains 2|p| variables: X =
{

p′1, p
′
2, ..., p

′
|p|, s

′
1, s

′
2, ..., s

′
|p|

}

representing the vertices of the altered protein structures,

(p′, s′), where |p′| = |s′| = |p| = |s|.
The constraints of the CSP, C, that defines the protein structure after applying the move
set, p′ are described as follows:

∀2≤i≤|p| : NeighborL(p′i, p
′
i−1)

∧ ∀1≤i≤|p| : NeighborL(p′i, s
′
i)

∧ ∀1≤i<j≤|p| : p′i 6= p′j ∧ s′i 6= s′j
∧ ∀1≤i,j≤|p| : p′i 6= s′j
∧ 1 ≤ | {i : 1 ≤ i ≤ |p|, pi 6= p′i ∨ si 6= s′i} | ≤ K (5.3)

The domains of the variables, D, are defined as follows:

∀1≤i≤|p| : p′i ∈ Di ⊆ F (5.4)

The frame chosen, F , is identical to that chosen in equation 4.7. It can be shown that for
any backbone vertex, p′a, of a residue that was altered by applying the move set, there is
a SAW beginning from it to a residue that was not altered, of length at most K, because
the number of altered residues is at most K. Therefore, any vertex will be limited in
domain by the same frame F , defined in equation 4.7, where p′min and p′max are defined
exactly the same way as in equation 4.8, for k = 2, in order to allow for side-chains, that
are at most one unit away from a backbone vertex. The frame is to be translated, as
described in equation 4.9, to enable representing the lattice points of the protein structure
in an integer domain.
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Chapter 6

Experiment

The experiment of this thesis is performing two types of protein folding simulations for
lattice protein models including side chains. The first simulation approach is a gradient
descent applied on the energies of the protein structures. The second simulation approach
is following a random sequence of protein structures, strictly descending in energy.
Known protein structures were used as inputs for both simulations. The monomer se-
quences for these proteins are described in table 6.1. The lattice used in the simulations
is the FCC lattice, in order to provide a higher resolution of the modelled protein [14].
The initial structure of each protein sequence is a result from one of two sources:

1. the fitting of real protein structures into the FCC lattice following [12].

2. optimal structures, according to the HP energy model, generated by [13].

PDB ID Monomer Sequence (original and HP modelled)
1BAZ-A SKMPQVNLRWPREVLDLVRKVAEENGRSVNSEIYQRVMESFKKEGRIGA

PPHPPHPHPHPPPHHPHHPPHPPPPPPPHPPPHHPPHHPPHPPPPPHPP

1J8E-A GSHSCSSTQFKCNSGRCIPEHWTCDGDNDCGDYSDETHANCTNQ

PPPPHPPPPHPHPPPPHHPPPHPHPPPPPHPPHPPPPPPPHPPP

1RH6-A MYLTLQEWNARQRRPRSLETVRRWVRESRIFPPPVKDGREYLFHESAVKVDLNRP

HHHPHPPHPPPPPPPPPHPPHPPHHPPPPHHPPPHPPPPPHHHPPPPHPHPHPPP

1Z0J-B IEEELLLQQIDNIKAYIFDAKQCGRLDEVEVLTENLRELKHTLAKQKGGTD

HPPPHHHPPHPPHPPHHHPPPPHPPHPPHPHHPPPHPPHPPPHPPPPPPPP

2DS5-A GKLLYCSFCGKSQHEVRKLIAGPSVYICDECVDLCNDIIREEI

PPHHHHPHHPPPPPPHPPHHPPPPHHHHPPHHPHHPPHHPPPH

2EQ7-C LAMPAAERLMQEKGVSPAEVQGTGLGGRILKEDVMRH

HPHPPPPPHHPPPPHPPPPHPPPPHPPPHHPPPHHPP

2HBA-A MKVIFLKDVKGMGKKGEIKNVADGYANNFLFKQGLAIEATPANLKALEAQKQ

HPHHHHPPHPPHPPPPPHPPHPPPHPPPHHHPPPHPHPPPPPPHPPHPPPPP

Table 6.1: Original and HP monomer sequences for the input proteins

The MJ energy function[16] was used in all simulations, as a contact-based energy func-
tion, described by equation 2.13. The matrix defining eΣ(rv1

, rv2
) is given in appendix A.
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The total energy for a protein structure in side chain model was calculated as previously
shown in equation 2.15.

6.1 Gradient descent simulation

The gradient descent method is a general approach used to find a local minimum (or a
local maximum) of a function. In a general sense, it begins by a random point in the
domain space of the function, computes the gradient of the function at that point, and
takes a step towards the direction of maximum decreasing rate of change. It continues
iteratively until it reaches a point of zero gradient.
In this thesis, the gradient descent simulation method was used to reach protein structures
that represent a local minimum with respect to their neighboring protein structures,
according to some energy function. At every iteration, each neighboring structure of the
current protein structure is computed, by applying a single valid move from the K-local
move set, defined in section 4.2. Then, the neighboring structure of minimum energy is
selected for the next iteration. In the case that different structures have the same energy,
which is minimum, one random structure of minimum energy is selected.

Problem Given a protein structure modelled using the side-chain model in the FCC
lattice, simulate the folding of a protein structure by applying an iterative gradient descent
approach on this structure, till reaching a structure with local minimum energy, according
to the MJ energy function. The neighboring structures of a structure are defined by the
K-local move set defined in 4.2. Given a protein structure S in side-chain model, NK(S)
gives the set of protein structures that result from applying the K-local move set to
S, using K as the maximum length of a subinterval of residues to be altered from the
structure S.

Input protein structures The input protein is one sequence of monomers from the
presented sequences in table 6.1. For each experiment, the initial protein structure,
Sin = (pin, sin, R), is a structure of this known protein, that was either extracted by
fitting the structure to the FCC lattice as described in [12], or one optimal structure,
with respect to the HP energy function, according to [13]. Because of the binary nature
of the HP energy function, it is usually the case that there is a class of protein structures
that are optimal with respect to the HP energy function, as the minimal energy of a
structure is achieved through a certain number of H-H contact-based interactions. Thus,
in the simulations that use an HP optimal structure as an initial structure, a single
random structure out of the optimal class is chosen per simulation. The simulations for
each experiment are run multiple times (10 to 1000 times) in order to explore the different
paths affected by the random choices resulting from energy equalities.

Simulation parameters Aside from the input protein structure as well as its monomer
sequence, the other parameters of the simulation are K, the value used in applying the
K-local move set throughout the simulation. Also, a random seed, Seed, is used as a
parameter in the simulation, in order to resolve ties between different protein structures
with equal minimum energy, using a standard pseudorandom number generator. This
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pseudorandom number generator is also used in choosing the initial HP optimal structure
to be used in the simulation out of the class of HP optimal structures.

Algorithm Gradient-Descent(Sin, K, Seed)

Randomizer ⇐ Pseudorandom-Number-Generator(Seed)
X ⇐ Sin

while ∃n∈NK(X) : E(n) < E(X) do
∇ ⇐

{

n : n ∈ NK(X) ∧ ∀m∈NK(X) : E(n) ≤ E(m)
}

X ⇐ Randomizer.Get-Random-Element(∇)
end while
return X

6.2 Random descending walk simulation

The second type of simulation performed in this thesis is the random descending walk
simulation. It begins by a protein structure, and at every iteration, it moves to a ran-
domly chosen neighbor structure, such that it is strictly lower in energy. The neighboring
structures are generated by applying a single move from the K-local move set. The simu-
lation continues until it reaches a structure that represents a local minimum with respect
to the energy function when compared to its neighboring structures.
The random descending walk approach, when applied repeatedly, often allows the simu-
lation to reach protein structures of lower energy than the gradient descent simulation.
The gradient descent simulation only reaches the local minima that are reachable by
following the structures of least energy at every iteration. The random descending walk
allows a wider range of paths, and it reaches to structures of lower energy that might
not be reachable by the gradient descent simulation, because the formation of such struc-
ture might require passing by an intermediate structure, that is not necessarily the least
energy as a neighbor to its predecessor structure.

Problem Given a protein structure modelled using the side-chain model in the FCC
lattice, simulate the folding of a protein structure by applying an iterative random de-
scending walk approach on this structure, till reaching a structure with local minimum
energy, according to the MJ energy function. The neighboring structures of a structure
are defined by the K-local move set defined in 4.2. Given a protein structure S in side-
chain model, NK(S) gives the set of protein structures that result from applying the
K-local move set to S, using K as the maximum length of a subinterval of residues to be
altered from the structure S.

Input protein structures The random descending walk simulation was only applied
on optimal protein structures, with respect to the HP energy function, generated ac-
cording to [13]. The input protein for each experiment is one of the monomer sequences
presented in table 6.1. For each experiment, multiple simulations were performed (10
to 1000 times) in order to explore the different paths taken by each random descending
walk. As there are multiple protein structures that are optimal in energy according to
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the HP model, a random structure out of them was chosen to be a starting structure for
each simulation.

Simulation parameters The parameters in the simulation are K, the value used in
applying the K-local move set throughout the simulation. Also, a random seed, Seed, is
used as a parameter for the simulation, in order to select a random structure of lower
energy out of the set of neighboring structures, using a standard pseudorandom number
generator. This pseudorandom number generator is also used in choosing the initial HP
optimal structure out of the class of HP optimal structures.

Algorithm Random-Descending-Walk(Sin, K, Seed)

Randomizer ⇐ Pseudorandom-Number-Generator(Seed)
X ⇐ Sin

loop
Next ⇐ NK(X)
Randomizer.Random-Shuffle(Next)
X ′ ⇐ First-Lower-Energy(Next, X)
if X ′ = X then

return X
end if

end loop

proc First-Lower-Energy(Next, X)

for i = 1 to |Next| do
if E(Nexti) < E(X) then

return Nexti
end if

end for
return X

This implementation of the random descending walk simulation is more efficient than
the gradient descent simulation. Every evaluation for the energy of a structure takes
O(|S|2) time, and this implementation does not necessarily evaluate the energy of every
neighboring structure, except at the very last iteration, when no neighbor of higher energy
is found.

6.3 Symmetry elimination

The function NK(X) used in sections 6.1 and 6.2 removes duplicate protein structures
up to rotation, translation and reflection. If applying the move set on a protein structure
leads to two structures that are equivalent to each other via rotation, translation and
reflection, and thus having the same energy, only one of them is yielded in the set in
order not to influence the uniformly random choice among structures by having symmetric
structures.
The set of neighboring protein structures are generated using the CSP definition men-
tioned earlier in section 4.2. Each resulting structure is translated then to a representa-
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tion invariant up to rotation, translation and reflection, named as the normalized absolute
move string.
For a backbone modelled protein structure, an absolute move string describes the protein
structure in terms of the direction each monomer is located with respect to the previous
monomer in the protein chain. For a protein chain of length n, an absolute move string of
n−1 symbols is used to describe locations of the monomers, invariantly up to translation.
The first monomer of the chain does not participate in the move string as it can be
translated to any point in the lattice, and any following monomer is described using a
single symbol representing its location relative to the last monomer in the chain. In
side-chain modelled protein structures, n other symbols are added to the string in order
to indicate the positions of the side-chains relative to their backbone vertices. Thus, the
absolute move string is invariant for any structure, up to translation.
The normalized absolute move string is, however, a unique representation for a protein
structure up to rotation, translation and reflection. The normalization step applied to an
absolute move string is forcing the first move symbols in the absolute move string to rotate
and mirror the structure in a unique representation, by favoring the first transition to take
a certain direction out of all degrees of freedom, thus rotating the whole structure after
fixing one degree of freedom. The normalization continues until it exhausts all degrees of
freedom, or finishes the absolute move string. Thus, introducing the order between the
degrees of freedom gives a unique absolute move string, namely the normalized absolute
move string, that is invariant up to rotation and reflection as well.

6.4 Results for lattice-fitted protein structures

The structures for the protein sequences given in table 6.1 were fitted into the FCC
lattice, following [12]. These structures were used as initial structures in a gradient
descent simulation, using the K-local move set , with K = 1, 2 and 3. The number of
simulations per protein sequence is given in table 6.2.

Simulation parameters K = 1 K = 2 K = 3
Number of simulations 1000 300 20

Table 6.2: Number of gradient descent simulations per protein sequence

The results of these simulations show that the lattice-fitted structures of the real protein
sequences are not optimal in energy according to the MJ energy function model. The
potential energy for most structures were close to zero (sometimes positive). One reason
might be the use of a contact energy function, which only takes into account neighboring
side chain vertices for calculating the total energy of a structure.
For every input protein sequences, each of the gradient descent simulations reached some
locally optimal structure. The structure of minimum potential energy out of them is
inspected. Tables 6.3, 6.4 and 6.5 present the potential energy of the lowest energy
structure, Emin, the number of iterations to reach that optimal structure, #iterations,
as well as the number of simulations producing that minimum energy structure, #sim,
for K = 1, 2 and 3, respectively. E(Sin) is the potential energy for the initial input
structure. Table 6.6 shows the variation of the results with respect to K.
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PDB ID E(Sin) Emin #it #sim
1BAZ-A −3.73 −23.08 39 3/1000
1J8E-A −3.54 −18.73 33 68/1000
1RH6-A +1.33 −24.69 52 1/1000
1Z0J-B +2.05 −26.10 47 1/1000
2DS5-A −4.35 −23.76 30 242/1000
2EQ7-C −3.07 −17.07 26 84/1000
2HBA-A −3.04 −21.46 31 358/1000

Table 6.3: Simulation results for lattice-fitted structures, K = 1

PDB ID E(Sin) Emin #it #sim
1BAZ-A −3.73 −29.57 31 4/300
1J8E-A −3.54 −25.92 39 1/300
1RH6-A +1.33 −33.61 47 1/300
1Z0J-B +2.05 −33.97 47 1/300
2DS5-A −4.35 −29.97 33 1/300
2EQ7-C −3.07 −19.54 21 38/300
2HBA-A −3.04 −29.85 38 1/300

Table 6.4: Simulation results for lattice-fitted structures, K = 2

PDB ID E(Sin) Emin #it #sim
1BAZ-A −3.73 −31.51 28 1/20
1J8E-A −3.54 −30.76 37 2/20
1RH6-A +1.33 −38.17 34 1/20
1Z0J-B +2.05 −35.95 36 1/20
2DS5-A −4.35 −34.36 32 1/20
2EQ7-C −3.07 −20.58 14 2/20
2HBA-A −3.04 −30.62 34 1/20

Table 6.5: Simulation results for lattice-fitted structures, K = 3

K = 1 K = 2 K = 3
PDB ID E(Sin) Emin (#it) Emin (#it) Emin (#it)
1BAZ-A −3.73 −23.08 (39) −29.57 (31) −31.51 (28)
1J8E-A −3.54 −18.73 (33) −25.92 (39) −30.76 (37)
1RH6-A +1.33 −24.69 (52) −33.61 (47) −38.17 (34)
1Z0J-B +2.05 −26.10 (47) −33.97 (47) −35.95 (36)
2DS5-A −4.35 −23.76 (30) −29.97 (33) −34.36 (32)
2EQ7-C −3.07 −17.07 (26) −19.54 (21) −20.58 (14)
2HBA-A −3.04 −21.46 (31) −29.85 (38) −30.62 (34)

Table 6.6: Variation of Emin and #it with respect to K
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The results show that the lattice-fitted protein structures are far from optimal according
to the MJ contact energy function model. The structure of minimum energy decreases
in energy for increasing K. The reason is that larger K allows the move set to contain
all move sets of smaller K, and it allows more changes in the protein structure. Thus,
the higher K is, the simulation is able to reach structures of lower potential energy.
There is no clear relation between the number of iterations needed to reach that lowest
energy structure and K. The number of iterations needed to reach a structure is mostly
dependent on number of consecutive structural changes needed to reach that specific
structure. However, the trend between the number of iterations and K appears when
investigating the average number of steps of all simulations as shown in table 6.7. The
higher values of K allow the protein structural changes to reach a stable model faster,
because of the larger freedom given for structural changes with respect to higher K. The
average energy of the final structure also decreases with increasing K.

K = 1 K = 2 K = 3

PDB ID E(Sin) E(X) (#it) E(X) (#it) E(X) (#it)
1BAZ-A −3.73 −21.06 (32.61) −27.42 (29.05) −30.18 (26.20)
1J8E-A −3.54 −17.48 (27.87) −22.74 (25.25) −27.28 (28.80)
1RH6-A +1.33 −21.60 (39.40) −29.27 (33.44) −34.80 (27.60)
1Z0J-B +2.05 −24.56 (39.45) −29.38 (34.66) −33.18 (31.05)
2DS5-A −4.35 −23.30 (28.30) −28.66 (26.94) −31.00 (23.75)
2EQ7-C −3.07 −16.50 (25.74) −19.08 (19.40) −20.34 (13.40)
2HBA-A −3.04 −21.34 (29.95) −25.68 (29.56) −28.00 (23.45)

Table 6.7: Variation of E(X) and #it with respect to K

6.5 Results for HP optimal protein structures

The structures for the protein sequences given in table 6.1 were used to generate classes of
equivalent structures that are optimal according to the HP energy model, using [13]. For
each simulation, one of the equivalent structures was chosen to perform that simulation.
The input protein sequences were used to perform both gradient descent and random
descending walk simulations, using the K-local move set , with K = 1, 2 and 3. The
number of simulations per protein sequence for each algorithm is given in table 6.8.

Simulation parameters K = 1 K = 2 K = 3
Number of simulations 1000 100 10

Table 6.8: Number of simulations per protein sequence

The results of these simulations show that the lattice-fitted structures of the real protein
sequences are not optimal in energy according to the MJ energy function model. The
potential energy for most structures were close to zero (sometimes positive). One reason
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might be the use of a contact energy function, which only takes into account neighboring
side chain vertices for calculating the total energy of a structure.
For every input protein sequences, each of the gradient descent simulations reached some
locally optimal structure. The structure of minimum potential energy out of them is
inspected. The same was performed for random descending walk simulations.

Gradient Descent Random Descending Walk

PDB ID E(Sin) Emin [E(Sin)] #it Emin [E(Sin)] #it
1BAZ-A −10.02 −28.19 [−7.32] 29 −29.10 [−11.93] 57
1J8E-A −12.31 −28.32 [−14.68] 36 −28.38 [−9.45] 59
1RH6-A −13.75 −29.92 [−14.54] 40 −32.09 [−13.59] 67
1Z0J-B −13.45 −32.18 [−14.58] 35 −32.65 [−10.73] 66
2DS5-A −7.29 −26.34 [−10.56] 33 −25.98 [−6.73] 52
2EQ7-C −5.91 −20.28 [−7.09] 26 −19.51 [−5.67] 51
2HBA-A −11.11 −27.54 [−12.04] 33 −27.92 [−14.90] 55

Table 6.9: Simulation results for HP optimal structures, K = 1

Gradient Descent Random Descending Walk

PDB ID E(Sin) Emin [E(Sin)] #it Emin [E(Sin)] #it
1BAZ-A −10.02 −32.08 [−10.27] 33 −32.62 [−11.88] 79
1J8E-A −12.31 −30.43 [−12.73] 25 −30.59 [−10.47] 92
1RH6-A −13.75 −28.82 [−14.46] 22 −35.64 [−14.23] 94
1Z0J-B −13.45 −34.81 [−14.72] 28 −34.32 [−14.35] 65
2DS5-A −7.29 −29.89 [−5.23] 32 −30.89 [−12.54] 70
2EQ7-C −5.91 −21.61 [−5.98] 23 −21.99 [−3.30] 93
2HBA-A −11.11 −30.46 [−15.76] 29 −31.82 [−12.57] 89

Table 6.10: Simulation results for HP optimal structures, K = 2

Gradient Descent Random Descending Walk

PDB ID E(Sin) Emin [E(Sin)] #it Emin [E(Sin)] #it
1BAZ-A −10.02 −33.07 [−10.64] 38 −34.60 [−9.37] 124
1J8E-A −12.31 −29.33 [−14.70] 15 −32.35 [−11.62] 113
1RH6-A −13.75 −35.12 [−11.51] 24 −37.59 [−14.23] 103
1Z0J-B −13.45 −34.71 [−11.95] 23 −37.69 [−11.8] 121
2DS5-A −7.29 −31.00 [−7.49] 24 −32.53 [−5.41] 116
2EQ7-C −5.91 −21.64 [−2.89] 23 −25.10 [−5.71] 96
2HBA-A −11.11 −30.91 [−10.66] 28 −35.56 [−12.06] 137

Table 6.11: Simulation results for HP optimal structures, K = 3

Tables 6.9, 6.10 and 6.11 present the potential energy of the lowest energy structure, Emin,
the energy, according to MJ energy function, of the HP optimal structure, that resulted in
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this structure of lowest energy, E(Sin) and the number of iterations to reach that optimal
structure, for both the gradient descent simulations as well as random descending walk
simulation.
There were no simulations that tied for the lowest energy structure except for two pairs of
simulations. Thus, the number of simulations producing that minimum energy structure
was discarded. The tables present the results for K = 1, 2 and 3, respectively. E(Sin)
is the average potential energy for the initial input structures. Table 6.12 shows the
variation of the Emin with respect to K.

Gradient Descent Random Descending Walk
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

PDB ID E(Sin) Emin Emin Emin Emin Emin Emin

1BAZ-A −10.02 −28.19 −32.08 −33.07 −29.10 −32.62 −34.60
1J8E-A −12.31 −28.32 −30.43 −29.33 −28.38 −30.59 −32.35
1RH6-A −13.75 −29.92 −28.82 −35.12 −32.09 −35.64 −37.59
1Z0J-B −13.45 −32.18 −34.81 −34.71 −32.65 −34.32 −37.69
2DS5-A −7.29 −26.34 −29.89 −31.00 −25.98 −30.89 −32.53
2EQ7-C −5.91 −20.28 −21.61 −21.64 −19.51 −21.99 −25.10
2HBA-A −11.11 −27.54 −30.46 −30.91 −27.92 −31.82 −35.56

Table 6.12: Variation of Emin with respect to K

The results show that the HP optimal protein structures are more energy optimal when
compared to real lattice-fitted protein structures, according to the MJ contact energy
function model. One reason is that the computation of HP optimal models depend on
the HP energy function as a contact-based energy function, which leads to a higher
number of touching side-chains. The structure of minimum energy generally decreases in
energy for increasing K, for both gradient descent and random walk simulations, because
larger K allows the move set to contain all move sets of smaller K. For the same value
of K, the simulation reaches lower energy structures using the random descending walk
approach than the gradient walk approach. The reason is that a random descending walk
allows the simulation to choose higher energy structures, which are not compactly folded,
as intermediate structures. Thus, adding the possibility of reaching other local minima
that are not reachable by any possible gradient descent. The same correlation appears
between E(X) and K as show in table 6.13.
The correlation between the average number of iterations and K appears to be the same
for gradient descent simulations, as appears in table 6.14, because higher values of K
allow the protein structural changes to reach a stable model faster.
However, for random descending walks, the number of iterations are much bigger. More-
over, for larger values of K, the average number of iterations is larger and is significantly
larger than the number of iterations in gradient descent simulations. The reason is that
random descending simulations do not follow a steep decrease in potential energy, which
is the case in gradient descent. This allows the random descending walk simulation to
reach a larger number of local minima. However, the progress of the simulation, although
always guaranteed to halt, it follows a gradual descent to the final structure.
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Random descending walks are provably finite. The reason is that potential energy of a
protein structure is finite, and that the simulation follows structures iteratively, in strictly
descending order. It is worth mentioning that the random descending walk algorithm is
significantly faster than the gradient descent algorithm, because the random descending
walk algorithm does not evaluate the energy of every neighboring structure in order to
choose the structure of the following iteration, unlike the gradient descent algorithm,
which evaluates the potential energy for every neighboring structure, consuming O(|S|2)
time for each energy computation.

Gradient Descent Random Descending Walk
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

PDB ID E(Sin) E(X) E(X) E(X) E(X) E(X) E(X)
1BAZ-A −10.02 −23.50 −27.07 −30.03 −23.41 −27.58 −32.22
1J8E-A −12.31 −23.73 −26.73 −28.40 −23.29 −27.40 −30.35
1RH6-A −13.75 −26.34 −30.54 −33.35 −27.20 −31.52 −34.86
1Z0J-B −13.45 −28.43 −30.78 −33.48 −28.21 −31.55 −34.03
2DS5-A −7.29 −20.70 −25.22 −27.39 −20.72 −25.79 −29.41
2EQ7-C −5.91 −16.13 −18.54 −20.71 −16.21 −19.12 −20.94
2HBA-A −11.11 −27.54 −26.58 −28.72 −24.33 −27.74 −31.28

Table 6.13: Variation of E(X) with respect to K

Gradient Descent Random Descending Walk
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

PDB ID #it #it #it #it #it #it
1BAZ-A 24.26 22.50 23.80 43.74 69.52 100.20
1J8E-A 25.11 22.99 20.40 45.32 69.37 91.70
1RH6-A 24.50 24.42 24.30 45.72 69.25 86.60
1Z0J-B 26.66 22.74 21.30 47.19 68.30 85.00
2DS5-A 27.14 23.18 21.40 45.96 70.61 101.60
2EQ7-C 18.04 16.45 17.10 33.67 53.60 67.30
2HBA-A 24.86 20.83 19.30 46.28 72.62 98.40

Table 6.14: Variation of #it with respect to K

The results show that the type of the initial structure (HP optimal or lattice-fitted) does
not affect the final energy of the structure. For some of the input sequences, using HP
optimal structures as initial structures yielded lowest energy structures. In other input
sequences, starting with lattice-fitted structures as initial structures yielded the lowest
energy structures. In some cases there were no significant difference between them.
Although random descending walk simulations do not limit the choice of next protein
structure, but only requiring any structure of strictly lower energy, random descending
walk simulations exhibit a very stable behavior in reaching the lowest energy structures
as indicated by the relation between E(X) or Emin and K, as shown in tables 6.12 and
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6.13. Especially for larger values of K, a gradient descent simulation might allow an
initial structure to reach a local minimum structure, for which there is no way out to
reach other local minimal structures, using few steps of larger structural changes leading
towards the lowest energy structure for every iteration. However, for random descending
walks, given the same number of simulations, and the same value of K, all possible random
descending walks are allowed and are eventually traced, because the random descending
walk approach treats all neighbor structures of lower energy indistinguishably.
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Chapter 7

Conclusion

The K-local move set provides a generic approach for defining a local move set. Using
a generic neighborhood function allows the CSP definition to apply on any lattice. The
CSP definition itself is extensible to any applicable protein structure model, as shown
for backbone and side-chain models. The CSP definition provided is a general definition
covering the local move sets defined in [17, 6, 4]. A more efficient local move set was
defined and can be used for folding simulations when augmented with an ergodic move
set.
The combination between CSP approach for defining the move set and the local optima
search techniques was applied in the thesis, applying the framework defined in [15]. The
results extracted lead to the conclusions that lattice-fitted protein structures are far from
optimal according to contact-based energy functions and that HP optimal structures are
good candidates for starting optima search for structures according to a more precise
energy function, such as the MJ energy function. The relations between the energies of
the optimal structures found, the number of simulation iterations and K was shown and
explained.
The results for the simulations suggest the use of distance-based energy function for
lattice-fitted protein structures. Also, the absence of tied simulations for HP optimal
structures suggests performing higher number of simulations, especially for larger values
of K. It appeared that the use of gradient descent simulation might cause some of the
optimal structures to be unreachable for more permissible move sets as shown by the
trend for simulation results of some HP optimal structures, even though the average
result of the simulations asserted that permissible move sets enable reaching structures
of lower energy. Thus, the use of an ergodic move set, combined with a realistic search
method is suggested for the search for globally optimal protein structures.
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Appendix A

Energy function matrix of MJ model

C M F I L V W Y A G T S Q N E D H R K P
C -1.06 0.19 -0.23 0.16 -0.08 0.06 0.08 0.04 0.00 -0.08 0.19 -0.02 0.05 0.13 0.69 0.03 -0.19 0.24 0.71 0.00
M 0.19 0.04 -0.42 -0.28 -0.20 -0.14 -0.67 -0.13 0.25 0.19 0.19 0.14 0.46 0.08 0.44 0.65 0.99 0.31 0.00 -0.34
F -0.23 -0.42 -0.44 -0.19 -0.30 -0.22 -0.16 0.00 0.03 0.38 0.31 0.29 0.49 0.18 0.27 0.39 -0.16 0.41 0.44 0.20
I 0.16 -0.28 -0.19 -0.22 -0.41 -0.25 0.02 0.11 -0.22 0.25 0.14 0.21 0.36 0.53 0.35 0.59 0.49 0.42 0.36 0.25
L -0.08 -0.20 -0.30 -0.41 -0.27 -0.29 -0.09 0.24 -0.01 0.23 0.20 0.25 0.26 0.30 0.43 0.67 0.16 0.35 0.19 0.42
V 0.06 -0.14 -0.22 -0.25 -0.29 -0.29 -0.07 0.02 -0.10 0.16 0.25 0.18 0.24 0.50 0.34 0.58 0.19 0.30 0.44 0.09
W 0.08 -0.67 -0.16 0.02 -0.09 -0.07 -0.12 -0.04 -0.09 0.18 0.22 0.34 0.08 0.06 0.29 0.24 -0.12 -0.16 0.22 -0.28
Y 0.04 -0.13 0.00 0.11 0.24 0.02 -0.04 -0.06 0.09 0.14 0.13 0.09 -0.20 -0.20 -0.10 0.00 -0.34 -0.25 -0.21 -0.33
A 0.00 0.25 0.03 -0.22 -0.01 -0.10 -0.09 0.09 -0.13 -0.07 -0.09 -0.06 0.08 0.28 0.26 0.12 0.34 0.43 0.14 0.10
G -0.08 0.19 0.38 0.25 0.23 0.16 0.18 0.14 -0.07 -0.38 -0.26 -0.16 -0.06 -0.14 0.25 -0.22 0.20 -0.04 0.11 -0.11
T 0.19 0.19 0.31 0.14 0.20 0.25 0.22 0.13 -0.09 -0.26 0.03 -0.08 -0.14 -0.11 0.00 -0.29 -0.19 -0.35 -0.09 -0.07
S -0.02 0.14 0.29 0.21 0.25 0.18 0.34 0.09 -0.06 -0.16 -0.08 -0.20 -0.14 -0.14 -0.26 -0.31 -0.05 0.17 -0.13 0.01
Q 0.05 0.46 0.49 0.36 0.26 0.24 0.08 -0.20 0.08 -0.06 -0.14 -0.14 0.29 -0.25 -0.17 -0.17 -0.02 -0.52 -0.38 -0.42
N 0.13 0.08 0.18 0.53 0.30 0.50 0.06 -0.20 0.28 -0.14 -0.11 -0.14 -0.25 -0.53 -0.32 -0.30 -0.24 -0.14 -0.33 -0.18
E 0.69 0.44 0.27 0.35 0.43 0.34 0.29 -0.10 0.26 0.25 0.00 -0.26 -0.17 -0.32 -0.03 -0.15 -0.45 -0.74 -0.97 -0.10
D 0.03 0.65 0.39 0.59 0.67 0.58 0.24 0.00 0.12 -0.22 -0.29 -0.31 -0.17 -0.30 -0.15 0.04 -0.39 -0.72 -0.76 0.04
H -0.19 0.99 -0.16 0.49 0.16 0.19 -0.12 -0.34 0.34 0.20 -0.19 -0.05 -0.02 -0.24 -0.45 -0.39 -0.29 -0.12 0.22 -0.21
R 0.24 0.31 0.41 0.42 0.35 0.30 -0.16 -0.25 0.43 -0.04 -0.35 0.17 -0.52 -0.14 -0.74 -0.72 -0.12 0.11 0.75 -0.38
K 0.71 0.00 0.44 0.36 0.19 0.44 0.22 -0.21 0.14 0.11 -0.09 -0.13 -0.38 -0.33 -0.97 -0.76 0.22 0.75 0.25 0.11
P 0.00 -0.34 0.20 0.25 0.42 0.09 -0.28 -0.33 0.10 -0.11 -0.07 0.01 -0.42 -0.18 -0.10 0.04 -0.21 -0.38 0.11 0.26

Table A.1: Energy function matrix of MJ model [16]
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