
Media Engineering and Technology Faculty

German University in Cairo

Accuracy-based identification

of local RNA elements

Bachelor Thesis

Author: Essam A. Moaty A. Hady

Supervisors: Prof. Dr. Rolf Backofen

Steffen Heyne

Reviewer: Prof. Dr. Slim Abdennadher

Submission Date: 18 September, 2010

This is to certify that:

(i) the thesis comprises only my original work toward the Bachelor Degree

(ii) due acknowlegement has been made in the text to all other material used

Essam A. Moaty A. Hady
18 September, 2010

Abstract

In this thesis we try to tackle the problem of identifying local RNA elements in a genome-
wide scale. We employ a fast sparse algorithm to predict maximum expected accuracy
structures based on base-pairing/unpairing probabilities. Moreover, we introduce a new
locality definition and present an accuracy function reflecting this locality.

Base-pairing and base-unpairing probabilities can be efficiently computed using RNAplfold
[32] included in the Vienna package [17]. Based on these probabilities, we identify struc-
tured regions that have high probabilities of containing significant local RNA motifs.

After that, we introduce our new program RNAMotid together with other included fea-
tures that enables it to scan genome-wide sequences for structured regions. Moreover, we
discuss how several modules were integrated together in our program to allow flexibility
and optionality of the analysis.

Finally, we evaluate the performance of RNAMotid in identifying local RNA motifs em-
bedded in randomly shuffled context. Before that, we apply an overall parameter training
followed by a family-based parameter training. Then we discuss the factors that affect
the performance of RNAMotid.

IV

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Related Work . 3

1.2.1 Comparative-based solutions . 3
1.2.2 Prediction-based solutions . 4
1.2.3 Family-specialized solutions . 5

1.3 Contribution . 5
1.4 Overview . 6

2 Preliminaries 7

2.1 Molecular Biology: DNA, RNA and Motifs 7
2.1.1 RNA Structures . 8
2.1.2 Functional RNA elements . 10

2.2 RNA Secondary Structure Prediction . 11
2.2.1 Maximum number of base-pairs 11
2.2.2 Minimum Free Energy . 13
2.2.3 Maximum Expected Accuracy . 15

3 Algorithmic aspects 17

3.1 Sparsification . 17
3.2 The new algorithm . 18

4 Implementation details 27

4.1 RNAMotid in Modules . 27
4.1.1 Probability Calculation Module 27
4.1.2 Sequence Folding Module . 29
4.1.3 Traceback Module . 30
4.1.4 Data Exporting Module . 30

4.2 RNAMotid: The big picture . 31
4.2.1 Window Scanner . 31

5 Evaluation and results 35

5.1 Motif identification evaluation . 35
5.1.1 Overall parameter tuning and evaluation 36
5.1.2 Family-based evaluation . 38

5.2 Genome-wide evaluation . 38

V

6 Conclusion 41

A Tables 42

VI

Chapter 1

Introduction

1.1 Motivation

Ribonucleic acids (RNAs) are molecules of high biological importance in the living cell.
Such molecules could be divided into functionally different categories, such as mRNAs
(messenger RNAs), tRNAs (transfer RNAs) and microRNAs. A brief description of
mRNA molecules’ life cycle can be summarized as a cycle that begins with transcription
from DNA molecules. This cycle ends with a final degradation of the mRNA molecule as
shown in figure 1.1. mRNA molecules experience through such cycle a translation stage
to complete the protein biosynthesis process. The final product depends on the gene
being expressed.

Figure 1.1: A schematic description of the transcription and translation processes inside
a eukaryotic cell with a nucleus. Figure taken from [3]

In order to control the produced amount of proteins, mRNA molecules experience a gene
expression regulation phase . The correct time point and expression level are crucial for
correct functionality of the cell [11, 28]. The discovery of elements responsible for such
regulation draw attention to the important role that some classes of RNA molecules can
play in controlling the living cell [19]. Changes in the expression of a particular gene
is often the effect of cis- or trans-regulatory elements. For example, AREs (AU-rich el-

1

ements) - are regions in mRNAs that are functionally important for their degradation
[20, 1]. A well known example of trans-regulatory elements are microRNAs.

Conserved RNA motifs play crucial role in the cell. Accordingly, it is an important task
to provide computational tools [13, 23, 35] for the analysis of RNA sequences. Such
tools include the ability to identify motifs and RNA functional elements. However, the
application of these tools is still not possible for a genome-wide scale analysis. Huge
amounts of sequence data become available every day. However, finding out structurally
conserved and significant RNA elements in such large scale remains with limited progress.

The reasons behind these limits may become more clear by considering two questions.
The first one is, how significant elements in a given RNA sequence can be recognized.
And the second one is, if we have a group of related RNA sequences, how can we de-
termine regions where common structurally conserved elements or at least similar ones
reside with an allowed degree of mis-match.

The first question proposes prediction of the secondary structure, heading to an opti-
mization goal of maximizing a given property that is exhibited by such motifs and other
functional RNA elements. One possibility of such folding criteria is to look for the struc-
ture with the highest energy stability, i.e., folding with the optimization goal of finding
out the MFE (minimum free energy) structure. This was previously suggested to be a
property of functional RNA elements [24]. However, energy stability was found to be not
of statistical significance for a reliable detection of functional RNA elements [12]. More-
over, this approach is considering only the MFE structure. In addition, the probability
of the MFE structure will be very small for large sequences [4]. Therefore, the usage of
the whole structural ensemble instead of fixed minimum free energy structure is often a
better RNA secondary structure representation.

The second question proposes applying multiple structure alignment on two or more re-
lated input sequences. This approach exploits the fact that RNA secondary structure
is more conserved than the sequence in genomes of evolutionarily related organisms [8].
The main limitation of this approach is the enormous computational cost of aligning the
input sequences in a genomic-wide scale. For example, it was estimated to spend months
processing human and mouse genomes for common regions [2] using Dynalign [10, 9] for
example. Some faster approaches exist that depends on supplying a predicted minimum
free energy structure to the multiple alignment module. However, such approaches de-
pend on the quality of the structure prediction algorithms [8] and accordingly may not
be a good choice for analyzing sequences in a genome-wide scale.

In this thesis, we try to tackle the problem of identifying local RNA elements in a genome-
wide scale. We employ a fast sparse algorithm to predict maximum expected accuracy
structures based on base-pairing/unpairing probabilities. Base-pairing/unpairing prob-
abilities can be efficiently computed using RNAplfold [32] included in the Vienna RNA
package [17]. Based on these probabilities we identify structured regions that have high
probabilities of containing significant local RNA motifs.

2

1.2 Related Work

In order to identify functional RNA elements in long sequences, many tools and strate-
gies are available to automate this process. These tools vary in their computational cost
and biological accuracy according to the approach they adapt and the assumptions they
make. Eventually, the user is left to make the decision between fast executing and high
accuracy tools.

In the next subsections, we briefly categorize previous solutions to our problem accord-
ing to the strategy they were based on and discuss advantages and drawbacks for each
strategy.

1.2.1 Comparative-based solutions

Comparative approaches assume that the sequence of an RNA element and its functional
structure are already known. Others make use of functionally related elements from the
same RNA class in a set of genomes. This knowledge is then employed in training a ded-
icated computational model - a probabilistic one in most of the cases - to capture such
information and use this trained model to process long RNA sequences. Comparative
approaches consider the conservation of functional structures in evolutionarily related
genomes as key feature for functional analysis [8].

One way of applying such strategy is training a covariance model1 [36] using Infernal

[14] with a multiple sequence alignment that ensures that functional structures are cor-
rectly aligned. Multiple alignments of ncRNAs for many RNA classes can be obtained
from the Rfam database [33]. This approach assumes that a multiple sequence alignment
exists and that it has been already checked for correctness of the alignment of functional
structures.

The computational cost of applying this approach on an RNA sequence of length L us-
ing a covariance model trained on an alignment of length n is in O(Ln1.3) time and in
O(n2 log n) space.

Even in the absence of an already computed sequence alignment, the application of this
approach is still possible. In order to adapt to the new situation, a multiple sequence
alignment is computed and then proceeding as previously mentioned with Infernal.

Other tools do not require a multiple sequence alignment as an input. CMfinder [38]
accepts unaligned sequences and employs an algorithm that trains a covariance model.
However, following a probabilistic model approach involves high dependency on other evo-
lutionarily related sequences used during the training of the model. Moreover, covariance
models restricts the extension of the tools from any further attempts for the inclusion
of a pseudo-knotted modelling module because, they are SCFG (stochastic context free

1A probabilistic model that can flexibly describe the secondary structure of an RNA element together

with the primary structure.

3

grammar) based. It can only be done by enduring the high cost of translational grammars.

The usage of previously mentioned tools assumes that other evolutionarily and function-
ally related sequences are available to train the probabilistic model to capture sequential
and/or structural characteristics. However, this assumption may not hold in some cases.
Other tools that operate comparatively can do without the need for other evolutionarily
related aligned sequences. RSEARCH [31] can be considered as a good representative for
this kind of tools. However, RSEARCH is also SCFG based and thus comprehends the same
previously mentioned drawbacks of SCFGs.

When using RSEARCH for scanning a long sequence of length n with a shorter sequence of
length L to find structural and sequential similarities, the running time complexity is in
O(nL3) and the space complexity is in O(L3).

The high computational cost of RSEARCH makes it inapplicable for a genome-wide RNA
sequences analysis. Moreover, only one RNA sequence is used as text to look for similar-
ities. This makes the sensitivity of the results not as good as other comparative based
approaches.

Up to now a previous knowledge of both the sequence and the structure of the motif
is assumed. However, it is not always the case. Tools trying to deal with the scenario
when the structure is not known proceed by supposing a structure for a pattern of RNA
element sequence - usually the thermodynamic stable structure is assumed, i.e., the MFE
(Minimum Free Energy) structure. Then a sequence-structure alignment is applied to a
target RNA sequence. Tools of such behaviour also assumes a conservation of functional
structures in related genomes by evolution.

Examples of these tools include FOLDALIGN [22, 21] and Dynalign [10, 9]. They employ
simultaneous alignment and folding - Sankoff-style alignment - to improve the quality
of structure prediction. However, they are computationally expensive. Both of them
minimize the combined free energy of the alignment. They assume Zuker’s energy model
as proposed in [24]. An assumption that was proven to be of non statistical signifi-
cance in [12]. Moreover, the very high computational cost makes them inapplicable for
genome-wide analysis of functional RNA elements. Also RNAforester [27, 26, 25] can be
considered as an example. However, it proceeds by first predicting MFE structures then
aligning fixed secondary structures.

1.2.2 Prediction-based solutions

Doing without comparative-based solutions when searching for functional RNA elements
seems to be a good solution. Especially, when dealing with genome-wide scale analysis.
This is due to the enormous computational cost required by comparative approaches.
However, choosing a prediction-based strategy for functional RNA elements detection is
still considered a challenging alternative that depends on the quality of the folding algo-
rithm.

4

Programs predicting functional RNA elements are usually MFE based. For example,
RNALfold [18] from the Vienna RNA package [17] which calculates locally stable MFE
secondary structures of RNAs. However, considering only a fixed MFE structure may
not be the best representation.

1.2.3 Family-specialized solutions

The categorization of RNAs into different classes or families paved the way to employ such
division in devising other approaches that are RNA class specific. Solutions exploiting
such categorization include miRseeker that’s specialized in microRNAs detection and
tRNAscan for tRNAs (transfer RNAs) detection. RNAmicro also is a tool that exploits
this categorization and is designed for the purpose of dealing with genome-wide scale
data.

1.3 Contribution

Typically, in large-scale analysis of genomic sequences for functional motifs, neither the
functional structure of the RNA element is known nor its boundaries [8]. Moreover, com-
parative approaches have a high computational cost that makes them inapplicable for
extended genome-wide scale analysis as discussed before in section 1.2.1. Accordingly,
approaches based on multiple sequence-structure alignment seem not to be the optimal
choice for large-scale analysis.

Furthermore, the assumption of a global folding model applies only to trans-acting RNAs
and RNA sequences up to ∼1000 nucleotides. For long RNA sequences it was shown that
base-pairs with a large span are disfavored kinetically [5]. Hence, a local folding model
is more appropriate for the analysis of long RNA sequences like mRNAs, untranslated
regions (UTRs) and long non-coding RNAs (lncRNAs).

Base-pairing probabilities for base-pairs restricted to a span of L together with local
unpairing probabilities can be efficiently calculated by RNAplfold [32]. RNAplfold con-
siders the ensembles of all secondary structures in thermodynamic equilibrium. It is
implemented in an efficient way that requires a running time in O(nL2) and a space in
O(n + L2) to compute base-pairing and base-unpairing probabilities. It uses a sliding
window fashion of fixed length L while processing the RNA sequence of length n.

The use of local base-pairing/unpairing probabilities within long RNA transcripts has
the advantage that the complete structural ensemble of the RNA is considered instead of
the fixed minimum free energy structure. In this thesis we investigate the potentials of
employing RNAplfold [32] in the detection of local structured cis-acting and trans-acting
RNA elements.

The difference to existing approaches is a new definition for significant local RNA ele-
ments. Local accuracies are weighted by a normalization function, which has an inverse
proportionality to the length of the motif.

5

Predictions from scanning algorithms are biased towards large motifs in case of large
folding windows [8]. However, using an accuracy function with this nature avoids such
bias and favours only motifs according to the final weighted accuracy value.

Recently, a fast sparse folding algorithm was proposed in [37]. We apply such algorithm to
compute the maximum expected accuracy structure based on precomputed base-pairing
and base-unpairing probabilities. This allows for an efficient identification of branched
RNA elements instead of only hairpin structures.

In order to be able to analyze long RNA sequences in genomic scale, a scanning fashion
is used for calculating base-pairing/unpairing probabilities and for applying the sparse
folding algorithm. This window scanning approach has the computational advantage of
keeping memory requirements manageable. Also, biologically it maintains the importance
of being local in structure prediction while having no dependency on the chosen folding
window. This approach takes into consideration that the final output is not affected by
such windowing by considering transitional overlapping sections between successive win-
dows in computing probabilities and in folding as well.

1.4 Overview

Chapter 2 introduces the necessary definitions, notations and conventions used through-
out the thesis. In chapter 3, a full description of the implemented algorithms is presented.
Finally, time and space analysis of the program are given. Chapter 4 discusses the imple-
mentation details and the features included in the program. In chapter 5, we present the
evaluation of the program and discuss the results. In chapter 6 we conclude this thesis
with an outlook on possible future work.

6

Chapter 2

Preliminaries

In this chapter we introduce fundamental biological definitions and other concepts and
conventions related to the algorithmic aspects of our contribution. We are going to follow
these conventions throughout the rest of the thesis.

2.1 Molecular Biology: DNA, RNA and Motifs

DNAs (Deoxyribonucleic acid) and RNAs (Ribonucleic acid) are two of the most impor-
tant types of molecules in the living cell. The fact that DNA is responsible for storing
the heredity information explains the reason behind its high importance. Furthermore,
DNA is the place from which the complex process of protein biosynthesis start.

One of the characteristics that constitute differences between DNA and RNA molecules
is their structure. DNA molecules are constructed from a double chain of nucleotides
which we will call bases. Complementary bases from opposite chains pair together and
form what we call a base pair. Typically, a DNA molecule contains four bases which are
adenine, cytosine , guanine and thymine. These bases are designated as A, C, G and T
respectively. The pairing between complementary bases from different chains is said to
follow a Watson-Crick pair 1 scheme.

In contrast to the DNA molecular structure and bases composition, a typical RNA
molecule is a single stranded one. However, bases along that strand can pair together
allowing the RNA molecule to fold forming many structural levels. Theses levels differ in
their degree of freedom that we are going to discuss later. Moreover, an RNA molecule’s
bases composition is not exactly the same as in DNA molecules. In RNA, a thymine type
nucleotide - designated as T - is always replaced with a uracil type nucleotide designated
as U.

1James Watson and Francis Crick, they were the first to come up with the double helix model for the

molecular structure of DNA molecules.

7

2.1.1 RNA Structures

An RNA molecule is able to fold into a structure by base-pairs. In order to describe the
formed structure in detail, we introduce different levels of abstraction. Figure 2.1 depicts
those different structural levels. Next, we briefly explore each of those structures and
introduce some definitions.

Figure 2.1: Primary, secondary and tertiary structures of a sample RNA molecule. Figure
taken from [34]

Primary Structure

This structure describes the order of nucleotides in an RNA molecule. It models the
molecule on the sequence level as a string of symbols. These symbols correspond to the
bases forming the RNA molecule’s strand. It is the simplest level of abstraction for de-
scribing an RNA molecule for further required analysis.

Throughout this thesis we refer to the alphabet Σ as an alphabet over the set of symbols
{A,C,G, U}.

Definition 2.1.1 (Primary Structure). For an RNA sequence, a primary structure P =
p0 . . . pn−1 is the ordered finite string of concatenation of its symbols over the alphabet Σ.
The length of P is the count of its symbols and is designated as |P |. By pi we denote the
ith symbol and by Pi,j we denote the subsequence starting at and including pi which ends
at pj including it.

8

Alternatively, a primary structure can be called a primary sequence due to its sequential
nature. Furthermore, we mean by subsequence here the continuous substring.

The determination of the nucleotide sequence of a given RNA molecule can be done by
laboratory experimental means and is not considered as a challenging problem in the
world of bioinformatics.

Secondary Structure

The secondary structure exploits an additional degree of freedom. In addition to the
1D-modeling of the RNA molecules’ composition, the secondary structure describes how
the molecule is folded in a 2D level. This is done by describing the pairings between
molecule bases. Typically, the secondary structure is more conserved in evolution than
the primary structure between related organisms. This is one reason for the increasing
interest to find those conserved structures.

The complexity of a secondary structure varies according to the complexity of the base-
pairs. A plain secondary structure has no base-pairs and is equivalent to a primary struc-
ture. However, a branched secondary structure introduces base-pairs with constraints on
the presence of such base-pairs. These constraints guarantee that no nesting or even
crossing base-pairs are allowed. A nested secondary structure keeps the constraint of
being non-crossing but allows a nesting in the base-pairings. Finally, a crossing structure
allows that two base-pairs may cross each other. An RNA molecule whose secondary
structure contains a crossing base-pair is said to be having a pseudoknot. A summary of
the different complexity levels of RNA secondary structures is depicted in figure 2.2.
Throughout this work we will not deal with crossing secondary structures. We proceed
by defining an RNA secondary structure.

Definition 2.1.2 (Secondary Structure). Let P = p0 . . . pn−1 be a primary structure. A
secondary structure of an RNA molecule is the set of pairs S = {(i, j) | 0 ≤ i < j < n}
where pi is paired with pj. Moreover, for a given index k s.t. 0 ≤ k < n, pk occurs at
most once in both components of the pairs in S, i.e., ∀((i, j), (i′, j)′ ∈ S) : i = i′ ⇔ j =
j′ and i 6= j. By Si,j we denote the substructure for the subsequence Pi,j. The number of
base-pairs in a given substructure is denoted by |Si,j| or alternatively BP (Si,j).

Definition 2.1.3 (Minimum pairing length). Let S be a secondary structure for an RNA
primary sequence P . By µ we denote the minimum allowed length that a base-pair in S
can span. Formally, j − i ≥ µ ∀ (pi, pj) ∈ S.

Definition 2.1.4 (Maximum pairing length). Let S be a secondary structure for an RNA
primary sequence P . By δ we denote the maximum allowed length that a base-pair in S
can span. Formally, j − i ≤ δ ∀ (pi, pj) ∈ S.

This definition ensures that the maximum degree of pairing is one for any base, i.e., each
base can pair with at most only one base.

9

Figure 2.2: Different categories of RNA secondary structures. Figure taken from [3]

Tertiary Structure

By RNA tertiary structure we mean the 3D folding of an RNA molecule. Typically, the
determination or the prediction of such structure is an expensive and complex task. We
will not go further with this type as it is irrelevant to our work in this thesis.

2.1.2 Functional RNA elements

The DNA encodes all the necessary information for the processes in the cell. The cell
makes use of this information by the process of transcription. This process copies the
information from a specific DNA region called gene to an RNA molecule. Typically, the
copying process is catalysed by some enzymes. For a long period, the whole picture of an
RNA molecule was limited to a molecule that carries the required blueprint for protein
biosynthesis from the gene to the protein factories, called ribosomes. The encoding for a
protein is represented by mRNAs (messenger RNAs).

Protein biosynthesis contains one more process that takes place outside the nucleus after
the transcription process. This process is called translation. In this process the con-
struction of proteins is done by connecting smaller building blocks together in an ordered
fashion. These building blocks are called amino acids. Outside the nucleus, ribosomes
scan the mRNA and simultaneously connect the corresponding amino acids to form the
required protein. Required amino acids are transferred by tRNAs (transfer RNAs). A
schematic view of protein biosynthesis process is depicted in 1.1.

10

A non-coding region of a gene is responsible for the production of non-coding RNAs.
Those non-coding RNAs are functionally important for the living cell, such as tRNAs.
The next subsections categorize these functional elements into two groups and explain
briefly each of them.

cis-regulatory motifs

These are regions of the mRNA molecule itself. They are responsible for regulating the
process of gene expression. This type of control is required to end up with a suitable level
and an appropriate time for gene expression. Only a part of the mRNA molecule carries
the required information for producing the required protein. The rest of the molecule
plays an important regulatory role throughout the whole life cycle of mRNAs. The parts
of the mRNA molecule that are responsible for such regulation are called cis-regulatory
motifs. Some of these motifs are responsible even for the degradation of mRNA molecules,
such as AREs (AU-rich elements).

trans-regulatory RNAs

Other kind of regulatory RNAs are called trans-regulatory RNAs. They differ from cis-
regulatory motifs in the place where they reside and from which they can carry out their
regulatory duties. An example of such motifs is microRNAs. They are typically 20-25
nucleotides long single-stranded molecules that function when binding to mRNAs for
quick degradation or for protein translation inhibition [6, 15].

2.2 RNA Secondary Structure Prediction

Different approaches exist to predict the secondary structure of an RNA molecule given
its primary sequence. Especially dynamic programming algorithms were designed for the
problem. However, the prediction of the most realistic one is always a challenge. In the
next subsections, we explore such attempts and analyze their worst case running times
and space complexities. Moreover, we explore the capabilities of each algorithm when
utilized for an extended analysis in a genome-wide scale.

2.2.1 Maximum number of base-pairs

The first approach is a dynamic programming algorithm, with an optimization goal of
maximizing the number of base-pairs in the folded secondary structure. This algorithm
is named Nussinov’s algorithm [30] after the name of its designer. The goal of Nussinov
algorithm is maximizing the number of base-pairs in the computed secondary structure
without taking into account the nature of the resulting substructures.

Definition 2.2.1 (Maximum base-pairs structure). Recall that we referred to the number
of base-pairs in a given substructure by BP (Si,j). By Ψi,j we denote the secondary sub-
structure with the maximum number of base-pairs for a given RNA primary subsequence
Pi,j.

11

Definition 2.2.2 (N-matrix). For an RNA primary sequence Po,n−1, a Nusinov’s matrix
is an (n× n)-matrix with entries N [i, j] such that N [i, j] = BP (Ψi,j) ∀ 0 ≤ i, j < n.

The algorithm of Nussinov tries to find BP (Ψ0,n−1) for a given primary sequence P , i.e.,
tries to maximize the value BP (Si,j) for all 0 ≤ i < j < n by filling in the N-matrix
corresponding to the given RNA primary sequence P .

A naive implementation of Nussinov algorithm together with its underlying recurrence
are presented in algorithm 1. This implementation fills the upper right triangular part
of the N-matrix. After initializing the main diagonal, the algorithm proceeds by filling
other shorter diagonals starting from the upper left end of each diagonal. By filling the
N-matrix entry N [0, n− 1], the algorithm has computed the maximum number of base-
pairs that could be found in a global secondary structure folding for the input primary
sequence.

Algorithm 1 The Algorithm of Nussinov
Input: a primary sequence P = p0 . . . pn−1.
1. Initialization

for i = 1 to n− 1 do

N [i, i− 1] = 0;
end for

for i = 0 to n− 1 do

N [i, i] = 0;
end for

2. Recurrence

for l = 1 to n− 1 do

for i = 0 to n− l − 1 do

j = i+ l;

N [i, j] = max















N [i− 1, j − 1] + 1, pi and pj are complementary (i)
N [i, j − 1] (ii)
N [i+ 1, j] (iii)
maxk,i<k<j−1{N [i, k] +N [k + 1, j]} (iv)

end for

end for

Output: N [0, n− 1]

The recurrence cases used in Nussinov’s algorithm includes the possibilities of (i) base-
pairing, (ii, iii) a base being unpaired and (iv) branching into two substructures. These
decompositions are depicted in Figure 2.3.

Filling the upper right triangle of an (n × n)-matrix requires O(n2) steps to finish. Ac-
cording to the fourth case of Nussinov’s recurrence presented in Algorithm 1, the number
of possible branching points to be checked is in O(n). This gives an overall running time
in O(n3). The space complexity is in O(n2) since only one (n× n)-matrix is used.

12

Figure 2.3: Possible sequence decompositions of Nussinov’s algorithm. Figure taken from
[3]

2.2.2 Minimum Free Energy

Nussinov’s algorithm does not consider any preferences for the type of the formed sub-
structures. Another algorithm was proposed by Zuker [29] that takes into account sta-
bilizing and destabilizing effects of the kind of the formed substructures and tries to
predict the minimum free energy (MFE). This is done by further decomposition of the
formed substructures when enclosed by a given base-pair (i, j). Hairpin loop, stacking
loop, interior loop and a branching are the four loop decomposition cases considered by
Zucker’s algorithm. This algorithm is named Zuker’s Algorithm also after the name of
its designer.

Definition 2.2.3 (MFE structure). For a given RNA primary subsequence Pi,j, Ωi,j

denotes the secondary substructure with the minimum free energy. By FE(Si,j) we denote
the value of free energy of the substructure Si,j.

Definition 2.2.4 (Z-matrix). For an RNA primary sequence P0,n−1, a Z-matrix is an
(n× n)-matrix with entries Z[i, j] such that Z[i, j] = FE(Ωi,j) ∀ 0 ≤ i, j < n and Si,j is
a general secondary substructure of the RNA primary sequence P .

As we mentioned above, a given substructure enclosed by a base-pair needs further de-
composition to analyze its energy components. This leads us to the next definition of the
V-matrix.

Definition 2.2.5 (V-matrix). For an RNA primary sequence P0,n−1, a V-matrix is an
(n× n) matrix with entries V [i, j] such that V [i, j] = FE(Ωi,j) ∀ 0 ≤ i, j < n and Si,j is
a secondary substructure of an RNA primary sequence P subject to the constraint that pi

and pj are paired. Formally, (pi, pj) ∈ S.

The recurrence equations for Zucker’s Algorithm are presented in equations (2.1), (2.2)
and (2.3). The consideration of the nature of the formed loops by the algorithm is obvious
in the recurrence equation (2.2). es(i, j) is the energy released by the substructure Si,j

due to the stacking of the base-pair (i, j). It has a stabilizing effect, i.e., negative value.
eh(i, j) is the energy due to the formation of a hairpin loop enclosed by the base-pair

13

(i, j) with i − j − 1 unpaired bases. Moreover, by eb(i, i′, j, j′) we denote the energy of
an interior loop or alternatively a bulge enclosed by the pairing of (i, j). i′ = i + k + 1
is accessible from i. And k is the number of unpaired bases in the bulge formed at i.
Similarly, for j′, k′ is the number of unpaired bases in the bulge at j. Finally, a is a
constant penalty for branching. These values are determined experimentally and are
used to establish preferences for different types of loops.

Definition 2.2.6 (M-matrix). For an RNA primary sequence P0,n−1, an M-matrix is an
(n × n) with entries M [i, j] such that M [i, j] = FE(Ωi,j) ∀ 0 ≤ i, j < n and Si,j is a
secondary substructure of an RNA primary sequence P subject to the constraint that Si,j

is a non-empty structure, i.e., it contains at least one structural element and is a part of
a multi-loop.

Note that, for all matrices involved in Zuker’s algorithm, the boundary conditions are
MAT [i, j] = +∞ ∀ j − i < µ, where MAT is a wildcard for Zuker’s matrices and µ > 0.

In the V-matrix recurrence, equation (2.2), the multi-loop branch case of the V-matrix
recurrence ensures that it will not recurse to structures other that multi-loops.

Note the difference between the N-matrix recurrence in algorithm 1 and the Z-matrix main
recurrence equation (2.1) considering the optimization goals. In the N-matrix recurrence
presented in algorithm 1, the goal is obtaining an optimum structure by maximizing the
values of matrix entries. However, in the Z-matrix case, the goal is minimizing the values.

Z[i, j] = min















V [i− 1, j − 1] (i)
Z[i, j − 1] (ii)
Z[i+ 1, j] (iii)
mink,i<k<j−1{Z[i, k] + Z[k + 1, j]} (iv)

(2.1)

V [i, j] = min















eh(i, j) (i)
es(i, j) + V [i+ 1, j − 1] (ii)
mini<i′<j′<j{eb(i, i

′, j, j′) + V [i′, j′]} (iii)
mink,i<k<j−1{M [i+ 1, k] +M [k + 1, j − 1] + a} (iv)

(2.2)

M [i, j] = min















M [i, j − 1] + b (i)
M [i+ 1, j] + b (ii)
V [i+ 1.j − 1] + c (iii)
mink,i<k<j−1{M [i, k] +M [k + 1, j]} (iv)

(2.3)

We begin by exploring the Z-matrix recurrence equation (2.1), it proceeds by filling an
(n × n)-matrix, which essentially requires O(n2) steps to finish. However, case (iv) in
the recurrence may require O(n) steps in the worst case to cover all branching positions.
This leads to an overall running time in O(n3).

14

For the V-matrix recurrence presented in equation (2.2), obviously, the interior-loop -
case (iii) - has the highest complexity of O(n2). By bounding the size of the interior
loop, the overall run time complexity to fill of the V-matrix is bounded by the multi-loop
case - case iv - which has a worst case running time in O(n3) as well.

The M-matrix recurrence can finish in the worst case after O(n3) steps. This leads to an
overall running time complexity of Zuker algorithm in O(n3). Three matrices are used,
the size of each is in O(n2) which is also the space complexity of the algorithm. A straight
forward implementation of Zuker’s algorithm resembles that of Nusinov’s algorithm pre-
sented in algorithm 1.

2.2.3 Maximum Expected Accuracy

The maximum expected accuracy folding (MEA) was proposed to be an alternative to
the minimum free energy folding in [7, 16]. The probability of the MFE structure Pr(Ω)
is the highest in thermodynamic equilibrium when predicting single structures. However,
it is very low in case of long sequences [4].

The MEA folding proposal is to look for the structure with the highest number of correct
base-pairs. In our work, we consider the base-pairing probability as the measure for its
correctness. Moreover, we consider another contribution to the correctness of a given
secondary structure. We consider the probabilities of single bases being unpaired as well.
This leads to the next definitions.

Definition 2.2.7 (Structure Accuracy). Let Pri,j be the probability that a pairing be-
tween the bases pi and pj will occur in the thermodynamic equilibrium. Also, let Pri be
the probability that a given base pi will be unpaired. The structure accuracy of a given
secondary structure Acc(S, P) is the summation of probabilities of both its paired and
unpaired bases in the secondary structure S and is denoted by

Acc(S, P) =
∑

(i,j)∈S

(Pri,j − Pri − Prj) +
∑

i∈P

Pri (2.4)

Definition 2.2.8 (MEA Structure). For a given RNA primary subsequence Pi,j, Υi,j

denotes the secondary substructure with maximum structure accuracy.

The advantage of the MEA folding is that it separates the process of predicting a sec-
ondary structure into two models of computation. The first one assumes an already
calculated set of probabilities as an input to the prediction algorithms. However, the
underlying model for probabilities calculation considers the resulted structural elements
in thermodynamic equilibrium. It deals differently with different types of loops. At that
lower level, considering other physics related variables to calculate such probabilities is
possible. This modularity and separation between a physics-based model and a physics-
free one makes it more usable by using a lower level model that captures the preferences
of a secondary structure and then using it as an input to fast higher level algorithms.

15

Accordingly, if those probabilities can be computed efficiently, a Nussinov-style algorithm
can be employed to maximize the accuracy. Fortunately, the average base-pairing prob-
ability for any pair (pi, pj) together with the unpairing probability for any base pi can
be efficiently calculated by RNAplfold [32] by considering the ensembles of all secondary
structures in thermodynamic equilibrium. It is implemented in an efficient way that
requires a running time in O(nL2) and a space in O(n + L2) to compute base-pairing
probability matrices and base-unpairing probabilities using a sliding window fashion of
fixed length L while processing the RNA sequence of length n.

Definition 2.2.9 (A-matrix). For an RNA primary sequence P0,n−1, an Accuracy matrix
is an (n× n)-matrix with entries A[i, j] such that A[i, j] = Acc(Υi,j) ∀ 0 ≤ i, j < n. The
boundary condition of the matrix is A[i, i] = Pri ∀ 0 ≤ i < n.

In algorithm 2, we present a Nussinov-style algorithm to calculate the MEA(Υ) given a
primary RNA sequence P . The recurrence is the same as in Nussinov’s algorithm. Also,
the loop architecture is similar. This algorithm requires O(n3) steps in the worst case to
finish. It consumes only one n×n matrix which leads to a space complexity of the whole
algorithm in O(n2).

Algorithm 2 Maximum Expected Accuracy Calculation
Input:

1. base-pairing probabilities Pri,j ∀ 0 ≤ i < j < n.

2. base unpairing probabilities Pri ∀ 0 ≤ i < n.

1. Initialization

for i = 1 to n− 1 do

A[i, i− 1] = 0;
end for

for i = 0 to n− 1 do

A[i, i] = Pri;
end for

2. Recurrence

for l = 1 to n− 1 do

for i = 0 to n− l − 1 do

j = i+ l;

A[i, j] = max















A[i− 1, j − 1] + Pri,j (i)
A[i, j − 1] + Prj (ii)
A[i+ 1, j] + Pri (iii)
maxk,i<k<j−1{A[i, k] + A[k + 1, j]} (iv)

end for

end for

Output: A[0, n− 1]

16

Chapter 3

Algorithmic aspects

In this chapter, we present the algorithms used in our work and ideas behind these algo-
rithms. We start by explaining the idea of sparsification and how the triangle inequality
can be used to speed up dynamic programming algorithms. We explain how this speed
up can be achieved. Finally, we employ such speed up to implement a MEA algorithm
presented in algorithm 3. This algorithm will be the engine for our program RNAMotid.

3.1 Sparsification

Typically, folding algorithms that consider splitting the structure into two substructures
at a given branching point require in their worst case O(n3) steps to finish. To fold an
RNA sequence of length n, they essentially fill an n × n matrix in O(n2). Moreover,
they need O(n) steps to consider all possible branching points. That leads to the overall
running time of O(n3).

Obviously, the bottleneck for such algorithms is the branching case. Sparsification deals
with pruning this case by considering only a constant number of candidate points at
which branching into two substructures may only be useful.

A MFE folding algorithm was presented in [37] which considers only a limited number of
branching points. The idea behind this implementation is based on the triangle inequality
rule. The restriction to certain branching points leads to an overall running time to fold
an RNA sequence of length n in O(n2ψ(n)), where ψ(n) was shown to be constant on
average. Another algorithm was also designed that exploits the same underlying idea of
maximizing the number of base-pairs in the folded secondary structure.

In the next section, we present a new algorithm based on the same idea presented in
[37] to find Acc(Υ0,n−1), given an RNA primary sequence P . After that, we analyze the
running time and the space complexities of this algorithm.

17

3.2 The new algorithm

The main recurrence equation, upon which the previously presented implementation of
the MEA algorithm 2 was based, is presented in equation (3.1).

The previously used recurrence, presented in equation (3.1), has four cases to which it can
recurse. However, the unpairing cases can be included as a special branching case where
one of the substructures contains only a single base. The recurrence can accommodate
this inclusion easily because of the boundary conditions of the matrix which states that
A[i, i] = Pri ∀ 0 ≤ i < n.

A[i, j] = max















A[i− 1, j − 1] + Pri,j

A[i, j − 1] + Prj

A[i+ 1, j] + Pri

maxk,i<k<j−1{A[i, k] + A[k + 1, j]}

(3.1)

We can prove the correctness of transforming a part of equation (3.1) into equation
(3.2) by induction. However, we just consider the intuition behind this correctness for
simplicity. The term A[i+ 1, j] + Pri can be obtained when substituting for k = i in the
maximization term leading to A[i, i] + A[i + 1, j]. Recall that the boundary conditions
state that A[i, i] = Pri. This leads to a final result from the maximization term of
A[i+1, j]+Pri. Similarly, when substituting k = j−1 in the maximization term leading
to a final result of A[i, j − 1] + Prj.

Definition 3.2.1 (Component). Given an RNA secondary structure S, a component C
is either a substructure Si,j in which the base pi is paired with pj, i.e., (pi, pj) ∈ S or a
single unpaired base, where i = j.

Definition 3.2.2 (MEA Component). For a given RNA primary subsequence Pi,j, Φi,j

denotes a component with the maximum structure accuracy.

Definition 3.2.3 (C-matrix). Given an RNA primary sequence P0,n−1, a C-matrix is an
(n× n)-matrix with entries C[i, j] = Acc(Φi,j) ∀ 0 ≤ i, j < n. The boundary condition of
the matrix is C[i, i] = Pri ∀ 0 ≤ i < n.

A[i, j] = max

{

C[i, j]
maxk,i≤k<j{A[i, k] + A[k + 1, j]}

(3.2)

C[i, j] = max







Pri , if i = j
A[i− 1, j − 1] + Pri,j , if Pri,j > 0
0 , Otherwise

(3.3)

18

Definition 3.2.4 (A′-matrix). Given an RNA primary sequence P0,n−1, an A′-matrix is
an (n× n)-matrix with entries A′[i, j] = −A[i, j] ∀ 0 ≤ i, j < n. The boundary condition
of the matrix is A′[i, i] = 0 ∀ 0 ≤ i < n.

Definition 3.2.5 (C ′-matrix). Given an RNA primary sequence P0,n−1, a C ′-matrix is
an (n× n)-matrix with entries C ′[i, j] = −C[i, j] ∀ 0 ≤ i, j < n.

Introducing the A’-matrix and the C ′-matrix will enable us to re-formulate equations
(3.2) and (3.3) to equations (3.4) and (3.5) so that equation (3.4) follows the triangle
inequality rule. The inclusion of the unpairing cases in the branching case is still valid,
although we change the boundary conditions of the A′-matrix. The boundary conditions
are still valid for the C ′-matrix and any entry of the form A[i, i] will definitely recurse
to the non-branching case. This is because there is no branching point that can satisfy
the condition i ≤ k < j for such entry. According to the above definitions, the following
recurrence equations corresponding to the A′-matrix and the C ′-matrix are presented in
equations (3.4) and (3.5).

By dividing equation (3.1) into two recurrence equations, we achieve two goals. By intro-
ducing equation (3.5), we separated the recurrences responsible for structural decompo-
sition from the other terms contributing to the value being calculated. This separation
will be used later in our arguments. Next, we introduce the triangle inequality rule.

A′[i, j] = min

{

C ′[i, j]
mink,i≤k<j{A

′[i, k] + A′[k + 1, j]}
(3.4)

C ′[i, j] = min







−Pri , if i = j
A′[i− 1, j − 1]− Pri,j , if Pri,j > 0
0 , Otherwise

(3.5)

Definition 3.2.6. A matrix M is said to follow the triangle inequality rule iff

∀ i < k < j M [i, j] ≤M [i, k] +M [k + 1, j]

From the above definition, it’s easy to deduce that the A′-matrix, as computed from
recurrence equation (3.4), follows the triangle inequality rule. This is obvious from the
re-formulation of the recurrence due to the fact that a given entry in the A′-matrix is
computed recursively via a minimization term. This term involves two competing values -
mink,i≤k<j{A

′[i, k]+A′[k+1, j]} and C ′[i, j]. The first of these values - mink,i≤k<j{A
′[i, k]+

A′[k+ 1, j]} - is the branching case which is the right side of the triangle inequality rule.
So, the final value for a given entry will eventually come from either the branching or from
a higher C ′-matrix value of a component. This is the intuition behind the ” ≤ ” operator.

The whole intuition behind using this idea is explained by proofing the following theorem.
This theorem claims that any given entry in the A′-matrix whose value was computed
by recursing into two sub-problems, i.e., the branching case was chosen from the mini-
mization term, can be reformulated as a summation of the solutions of another or the

19

same two sub-problems where the first sub-problem’s optimal solution is computed via
considering it as a component, i.e., the first part of the structure is a component. The
proof will be done by contradiction.

Theorem 1.

∀ i, j ((∃ i ≤ k < j ∧ A′[i, j] = A′[i, k] + A′[k + 1, j])⇒

(∃ k′ ≤ k ∧ A′[i, j] = A′[i, k′] + A′[k′ + 1, j] ∧ A′[i, k′] = C ′[i, k′]))

Proof. Let k be the smallest index at which the statement A′[i, j] = A′[i, k] + A′[k +
1, j] would be true. Now, we will assume that A′[i, k] < C ′[i, k] and then obtain a
contradiction. According to equation (3.4), A′[i, k] = A′[i, k′] + A′[k′ + 1, k] for some
i ≤ k′ < k. But the A′-matrix follows the triangle inequality rule, which lead to the
following inequality

A′[i, j] = A′[i, k′] + A′[k′ + 1, k] + A′[k + 1, j] ≥ A′[i, k′] + A′[k′ + 1, j]

which contradicts the hypothesis that k is the smallest index at which branching is pos-
sible.

The intuition behind the above proof by contradiction is by arguing that if the first sub-
problem - A′[i, k] - of the main two subproblems - A′[i, k] and A′[k+1, j] - did not recurse
to the component case in the main recurrence equation - equation (3.4) - then it should
have recursed using the branching case into another two sub-problems, leaving a total
of three subproblem namely A′[i, k′′], A′[k′′ + 1, k′] and A′[k′ + 1, j] instead of only two.
However, according to this new combination of sub-problems, there is a possibility that
the last two mentioned sub-problems can - combined together - constitute a component
whose value may be the optimal. This additional potential to form a component by com-
bining the old sub-problem - A′[k′ + 1, j] - with the new subproblem - A′[k′′ + 1, k′] - is
the intuition behind our proof.

A′[i, j] = min

{

C ′[i, j]
mink,i≤k<j{C

′[i, k] + A′[k + 1, j]}
(3.6)

According to theorem 1, the recurrence in equation (3.4) can be represented as in equa-
tion (3.6).

Even with a direct application of the recurrence in equation 3.6, O(n) comparisons should
be carried out to find out the optimum branching point. But by taking a closer look we
can observe that some redundancies are taking place in the computation of the optimum
score. By Investigating these comparisons, a dominance behaviour was observed between
them.

20

Theorem 2.

∀ i, j ((∃ i < k < j ∧ C ′[i, j] ≥ C ′[i, k] + A′[k + 1, j])⇒

(∀ j′ ≥ j ∧ C ′[i, j] + A′[j + 1, j′] ≥ C ′[i, k] + A′[k + 1, j′]))

This dominance relation is formalized in theorem 2. The theorem limits the number of
branching points that needs to be checked by exploiting this dominance relation. It shows
that considering a given point k for branching comparisons in a given sequence Pi,j can
only be beneficial if the score of considering the prefix Pi,k as a component is better than
considering it as a combination of two smaller subproblems. This means that we are only
interested in branching points that lead to scores that can not be dominated by others
according to definition 3.2.7. This criteria is formalized in definition 3.2.7. The proof of
this theorem can also be done by contradiction in the same way as theorem 1 using the
triangle inequality.

Definition 3.2.7. An index j is considered as a branching candidate iff

∀ i < k ≤ j C ′[i, j] < A′[i, k] + A′[k + 1, j]

To make use of this dominance relation, a different order of filling the A′ matrix will be
employed. An order that keeps track whether the score of a given prefix is computed
via considering it as a component or as a combination of two subproblems. According to
the requirements and the knowledge that we want to acquire before processing a given
subsequence, the matrix is filled, in the order of increasing the length of the prefixes of
the suffixes of the sequence. The rows of the matrix are filled bottom first then top. In
each row, the columns are filled from left to right. The filling order of the A′ matrix is
visualized in figure 3.1. Moreover, the corresponding order of processing the input RNA
sequence is visualised in figure 3.2.

An implementation of the MEA sparse version is presented in algorithm 3. We will start
by explaining how the candidate list1 is filled up. Then, we will discuss the running time
and space complexities.

Essentially, at the beginning of filling each row i, the candidate list is empty. Accord-
ingly, the flow in execution will reach the 9th line of the iteration step, at the conditional
statement. In the beginning of processing each row, the condition will always evaluate
to true. This fact is ensured by the initialization step. In the initialization, each entry
C ′[i, i] stores the negative of the unpairing probability Pri, which is guaranteed to be
smaller that 0 that is stored in A′[i, i] during the initialization step.

The index of the single unpaired base Pj=i is added to the candidate list at the beginning
of filling each row because, it satisfies the criteria we stated in definition 3.2.7. By this,

1The list containing the points that fulfill the criteria of being split points as stated in definition 3.2.7.

21

Figure 3.1: The filling order of the A′ matrix.

Figure 3.2: The processing order of the input RNA sequence.

22

we mean that this single unpaired base can be considered as a candidate split point for
longer sequences Pi...j...k. That’s because, considering Pi...j as a component during its
processing was better than considering it as a combination of two subproblems.

After that, for any entry j in a given row i, the matrix entry A′[i, j] is filled with the
optimum score considering all splitting points k previously added to the candidate list
during the processing of smaller sequences up to Pi...k...j−1. These previous checks makes
sure that when the flow reaches the conditional statement the condition is evaluated to
true and accordingly a new entry is added to the candidate list only if this new score of
this new candidate point j was not dominated by the score of any previously added points
in the candidate list. The iteration step continues till the end of the current suffix being
processed then the algorithm moves on to the next longer suffix and so on as illustrated
in figure 3.2.

Complexity Analysis

In [37], the expected growth of the candidate list size with respect to increasing the input
sequence size - where the candidate list is filled in the same fashion described here - was
shown to be converging to a constant factor O(ψ(n)). This leads to an overall running
time of the algorithm in O(n2ψ(n)) on average. However, in our case, an additional case
in the recurrence was added that counts for base unpairing. Now, we are left to prove that
this additional case we introduced in equation (3.5) will not affect the overall running
time of the algorithm.

Eventually, an additional element will be essentially added to the candidate list counting
for the additional recurrence case at which i = j for each row j. Since for each row there
exists only a single entry for which i = j is true, then this is the whole additional contribu-
tion to the candidate list considering the unpairing case. Asymptotically, this means that
a constant factor c is added to O(ψ(n)) giving an overall running time in O(n2(ψ(n)+c)).
Which still leads to an overall running time of the algorithm in O(n2ψ(n)).

In the algorithm two matrices were used each of maximum size in O(n2) leading to an
overall space complexity of the algorithm in O(n2).

Accuracy Function

Algorithm 3 calculates the maximum accuracy as defined in subsection 2.2.3. However,
the model we introduce here should consider also a kind of locality of the predicted RNA
elements. This idea of locality imposes reformulation of our previous definition of accu-
racy. A new function should be devised that ensures the locality of the predicted RNA
elements. For example, a cis-acting RNA element is considered to be local relative to the
mRNA molecule. Also, a trans-acting RNA element is relatively local from the perspec-
tive of the whole genome.

We introduce here the formula of an accuracy function. A function that fulfills our crite-
ria of locality of the predicted RNA elements. This function is introduced in equation 3.7.

23

Algorithm 3 Maximum Expected Accuracy Calculation - Sparse Version
Input:

1. base-pairing probabilities Pri,j ∀ 0 ≤ i < j < n.

2. base unpairing probabilities Pri ∀ 0 ≤ i < n.

I. Initialization

1: for i = 1 to n− 1 do

2: A′[i, i− 1] = 0;
3: C ′[i, i− 1] = 0;
4: end for

5: for i = 0 to n− 1 do

6: A′[i, i] = 0;
7: C ′[i, i] = −Pri;
8: for j = i to n− 1 do

9: if Pri,j > 0 then

10: C ′[i, j] = −Pri,j;
11: end if

12: end for

13: end for

II. Iteration

1: for i = n− 1 to 0 do

2: candidate-list ← NULL
3: for j = i to n− 1 do

4: for all k such that k ∈ candidate-list do

5: if A′[i, j] < C ′[i, k] + A′[k + 1, j] then

6: A′[i, j] = C ′[i, k] + A′[k + 1, j]
7: end if

8: end for

9: if C ′[i, j] < A′[i, j] then

10: A′[i, j] = C ′[i, j]
11: Append j to candidate-list
12: end if

13: end for

14: end for

Output: −A′[0, n− 1]

24

Accuracy =
Base pairing probabilities+Base unpairing probabilities

Start value+ Subsequence lengthdegression
(3.7)

With a function of this form we can make sure that small RNA elements are predicted
as well as long RNA elements. Two more variables - namely the start value and the
degression - are introduced. By altering the values of these variables the variance of
the function output with the length can be modified. This makes us able to alter the
behaviour by which the function reacts to the change in the length parameter. Moreover,
by training such parameters we can alter the performance of our program according to
different input nature or family as we are going to see in chapter 5.

The curves depicted in figures 3.3 and 3.4 demonstrate the effect of introducing such
variables and the change in the behaviour of the function when altering such variables.

Figure 3.3: The curve of the accuracy function with degression = 0.7 and start = 1 for
a domain from 0 to 20

25

Figure 3.4: The curve of the accuracy function with degression = 0.9 and start = 10 for
a domain from 0 to 20

26

Chapter 4

Implementation details

In this chapter we explore the implementation details of RNAMotid and present the fea-
tures included in the program. Moreover, we introduce each module of the program and
explain the implementation details of it. Also, we introduce the mechanism of the win-
dowing approach and discuss the ability of the program to scan long sequences efficiently.
Then we look at the big picture of the program and explain how each module fits into
this picture.

4.1 RNAMotid in Modules

4.1.1 Probability Calculation Module

This module is responsible for preparing base-pairing and base-unpairing probabilities of
the input RNA sequence to be used by next modules. Base-pairing and base-unpairing
probabilities can be obtained via two possible ways.

The first way is through the functions provided by the Vienna RNA library [17]. The
pfl fold() function provided by the Vienna RNA library can be used to calculate base-
pairing and base-unpairing probabilities given an RNA input sequence and other relevant
parameters. Such parameters include the maximum span, a cutoff and the unpairing
length. The maximum span specifies the maximum length for a valid base-pairing. A
cutoff acts as a lower limit for the calculated base-pairing probabilities. Moreover, the
unpairing length determines an upper limit for the region length up to which the mean
probabilities of being unpaired are computed. Finally, a folding window size is provided.

The other approach to obtain base-pairing and base-unpairing probabilities for a given se-
quence is to rely on a pre-computed probabilities stored in a PostScript dot-plot file. This
file can be generated by RNAplfold program [32] included in the Vienna RNA package
[17]. By using this PostScript file, the probability calculation module becomes capable
of obtaining the base-pairing probabilities. For the base-unpairing probabilities, another
file can be generated by the RNAplfold program [32] that contains the base-unpairing
probabilities. The module is capable of parsing such file and storing the base-unpairing
probabilities as well.

27

By finishing the execution of this module, RNAMotid is done preparing the base-pairing
and base-unpairing probabilities for the input RNA sequence. Base-pairing and base-
unpairing probabilities can be considered as two of the main inputs to RNAMotid, ac-
cordingly, making a specialized module to obtain those probabilities is important. By
the presence of such specialized module, probabilities can be obtained using any other
approaches with simple modifications in this module without any requirements to change
other modules.

Windowing probability calculations

A windowing mechanism is included in this module. This mechanism removes any depen-
dency on the pfl fold() function concerning the longest allowed RNA sequence that can
be processed at a time. Also, it enables the program to calculate base-pairing and base-
unpairing probabilities for large sequences without having any difficulties in allocating
memory. With this windowing mechanism, the module is capable of making successive
calls to pfl fold() function to process a long RNA input sequence whose total length
may exceed the limits of the pfl fold() function.

Between two successive calls to pfl fold() an overlapping sequence is considered. One
can argue that the length of this overlapping sequence can be determined according to
the maximum length of a valid base-pair. By adapting this approach, it is not possible
that the module will miss any probable base-pairing. However, this approach implies a
dependency of the computed base-pairing probabilities on their positions in the proba-
bility calculation window. This dependency comes from the fact that bases which are
located at the beginning of the window are averaged over a less number of pfl fold()

windows.

Therefore, RNAMotid extends the sequence length of the current probability calculation
window by RNAplfold window size on each side - left and right ends - of the probability
calculation window. However, we ignore any base-pairs in these regions. By considering
such overlapping sequences, we make sure that we are not ignoring any potential base-
pairing probabilities due to the windowing approach. Moreover, we make sure that the
bases at the extremes of the probability calculation window are averaged over the same
number of RNAplfold windows. These additional paddings remove any dependency of
the calculated probabilities on the chosen folding window.

Generating dot-plot PostScript file

When choosing the first way to compute base-pairing and base-unpairing probabilities,
the probability calculation module gives the option to export those base-pairing proba-
bilities to a PostScript file. This PostScript file contains a dot-plot representation of the
base-pairing probabilities. Using the dot-plot file, base-pairing probabilities can easily be
parsed and visually inspected. Generating the PostScript file that contains the dot-plot
can be done by calling the PS dot plot turn function provided by the Vienna RNA li-
brary.

28

Complexity Analysis

The running time complexity of the pfl fold() function is in O(Lw2) with L being the
chunk for calling the function and w is the RNAplfold window size parameter.

Let n be the total length of the sequence to be processed by the probability calculation
module and m be the length of a chunk to pfl fold() - the probability calculation win-
dow size. The pfl fold() function will be called n/m times. This implies an overall time
complexity of O((n/m)(m + 2w)w2) which equals O(nw2). The 2w term in the m + 2w
factor comes from the additional sequence size when calling pfl fold().

Considering the space complexity of the module, the space allocated by a function call
is in O(L + w2). However, the calculated probabilities are stored after each call in an
(n× n)-matrix which leads to an overall space complexity in O(n2).

4.1.2 Sequence Folding Module

The folding module makes use of the previously computed probabilities to execute the
sparse folding algorithm and prepares information for the traceback module.

This module uses a window scanning approach similar to the one implemented in the
probability calculation module. However, the length of the overlapping sequence consid-
ered between successive executions of the folding algorithm is different. This overlapping
length is determined according to the maximum allowed motif length. By considering
an overlapping sequence of such length, RNAMotid makes sure that no motifs are ignored
because of the windowing mechanism.

Complexity Analysis

Let n be the length of the input RNA sequence to the algorithm. Let m denote the max-
imum allowed motif length. w denotes the size of a chunk to the sparse folding algorithm
- scan window size.

The running time of the sparse folding algorithm is O(n2ψ(n)) as mentioned in section
3.2, where n is the length of the algorithm input sequence, ψ(n) is proved to be constant
on average in [37].

According to the windowing mechanism described, the algorithm will be executed n/w
times. This lead to an overall running time complexity of O((n/w)(w +m)2ψ(w +m)).
The m term in the w + m factor comes from the length of the addition considered se-
quence when calling the algorithm.

Essentially, the module allocates three matrices, each has a size in O((w +m)2) leading
to an overall space complexity in O((w +m)2).

29

4.1.3 Traceback Module

In this module, the information gathered by the folding module is used to reproduce the
corresponding structures. Each piece of information denotes how a given structure could
be obtained from a smaller one. A call to the trace back module is made after the folding
module is finished with a given window.

For a given folding window, the traceback module iterates through a matrix whose size
is in O(n2) with n being the length of the folding window including any additional over-
lapping sequences between successive windows. In the worst case, an entry in this matrix
will require O(n) steps to finish. This leads to a worst case running time in O(n3).

Overlapping Structures

The traceback module is capable of detecting traced structures that are not contributing
any additional base-pairs. While tracing a given structure, every base-pair added to the
structure is marked only if it was previously involved in any traced structure with higher
accuracy value. If the current structure has a higher accuracy value, it takes the priority.
By keeping track of the status of each base-pair, this feature is implemented in a way
that does not increase the order of the running time.

The folding module ensures the validity of the final output. This is done after the al-
gorithm is executed for the whole input sequence. The set of output motifs is checked
against the specified input arguments by the user.

Moreover, if any sorting is required for the final output before passing it over to the
exporting module, the traceback module executes an in-place O(n2) sorting algorithm for
the gathered structures. Since the module is responsible for gathering all output motifs
during the whole life time of the program, it is more critical to choose an in-place sorting
algorithm as long as it is still within the essential running time of the module.

Motifs Regions

RNAMotid is also capable of computing motifs regions. By motifs region we mean the
continuous interval of input RNA sequence that contain at least a part of a valid output
motif. A set of those regions is also prepared for the data exporting module to take over
the task of writing them to the disk.

4.1.4 Data Exporting Module

In the previous module, a final set of output motifs was created. This set was ensured
for validity as well. In this module, the task of writing output files is carried out. The
modularity of this task is important because it enables the program to output additional
different file formats that make use of the same computed output information. This can
be done by adding modifications to a single part of the program without the need to alter
other modules.

30

Currently, RNAMotid generates FASTA file formats for both the output motifs and the
output motifs regions. Moreover, it generates CSV files that could be used in data visual-
ization and output analysis.

4.2 RNAMotid: The big picture

In the previous section we introduced each module in detail and discussed the features
presented by each one. Moreover, we discussed the running time and space complexities
for each module separately. In this section we zoom out to view the big picture of
RNAMotid and see how those previously presented modules can fit together.

4.2.1 Window Scanner

We start this section by introducing the windowing mechanism. One of the functional
requirements of RNAMotid is to be able to deal with input RNA sequences that are in
genome-wide scale. Moreover, it is also required that this windowing approach does not
affect the output due to the window position. In order to achieve this, a promising win-
dowing approach was implemented.

The windowing manager is responsible for initiating the execution of other modules. It
is also responsible to define and update the input borders to other modules and update
them upon the termination of those modules. The update of the borders depends on
some parameters. Theses borders are used to define a section of the input RNA se-
quence. Some of these parameters depend on the input arguments specified by the user.
The windowing manager makes use of these parameters to ensure that the modules’ out-
put is independent on the current position of the window. The pig picture of RNAMotid
is described in figure 4.1.

In order to achieve this independency, the windowing manager adds padding sequences
to that computed section. By adding such paddings we can make sure that the computed
output is not affected by the position of a window. Those paddings are visualized in
figures 4.4, 4.2 and 4.3.

From a probability calculation module perspective, the length of such paddings can be
set to two RNAplfold window sizes at both sides of the scan window as discussed in
subsection 4.1.1. However, from a folding module perspective, the length of the padding
sequences should be the maximum allowed motif length as discussed in 4.1.2. By adding
this padding to the left side of the scan window - the side at which the execution of the
sparse algorithm ends, we make sure that there is no possibility that in a given folding
window an output motif starts in a given window and ends in another one. Accord-
ingly, this ensures that no output motifs are missing. Accordingly, the total length of
the padding sequences is calculated as the summation of the length of two RNAplfold

windows - at the extremes - plus an additional maximum motif length - on left side of
the window. This window structure is depicted in figures 4.4 and 4.3.

31

Figure 4.1: A flow chart describing the flow of the control in RNAMotid.

32

Figure 4.2: A diagram visualizing the big picture of the windowing mechanism imple-
mented in RNAMotid. This window depicted in the figure is referred to as the program
window. A scan window size specifies the maximum sequence length to be scanned for
motifs at one time excluding any additional sequences that should be added to ensure the
independency of the result on the position of the window or on being local or global in
folding. A maximum motif length is also added to the program window which is consid-
ered by the folding algorithm to ensure that no motifs are missing in the output because
of windowing. An additional sequence of length RNAplfold window size is also added to
the program window to ensure - when calculating probabilities by the probability calcu-
lation module - that base-pairing probabilities of bases at the extremes of the program
window are averaged over the same number of windows as inner ones by the pfl-fold

function. These three value combined together form the final program window length
and is calculated by the windowing manager.

Figure 4.3: Repeated motifs in the shaded section are detected and included only once
in the final output.

33

Figure 4.4: A visualization of the windowing mechanism implemented in RNAMotid show-
ing the constituents of the program window and inner windowing mechanism.

Figure 4.5: A legend for figures 4.4 and 4.2.

34

Chapter 5

Evaluation and results

In this chapter, we evaluate the performance of RNAMotid. in section 5.1, we start by
evaluating the ability of the program to identify local motifs in a randomly shuffled
context. Then we evaluate the ability of the program to deal with genome-wide sequences
in section 5.2.

5.1 Motif identification evaluation

A data set consisting of 4016 sequences collected from 134 different families if cis-
regulatory motifs from the Rfam database [33] is used. The sequences have varying
lengths. Each family has different number of sequences in the data set.

The evaluation was carried out to estimate the ability of RNAMotid to identify known
motifs. These motifs are embedded in a randomly shuffled context. The length of the
shuffled context is 200 nucleotides on both ends of the known motif. A simple parameter
training was performed using this data set. The training considered two parameters,
seed and degression, to find out which values give the optimum performance. First, the
parameters were trained for the whole data set considering all included families. After
that, a family-based parameter training was performed for the same parameters. They
were tuned to obtain the optimum performance per family.

RNAMotid output is collected for each sequence in the data set. For each sequence in the
data set, a set of candidate output motifs within the specified suboptimum threshold are
produced by the program. Each individual output is classified whether it is an individual
true or an individual false. An output is classified as an individual truth iff it overlaps
with the known motif with an allowed tolerance length for the mismatch. The tolerance
length is 5 percent of the known motif length. The final result of a sequence is determined
according to the greater of individual trues and individual falses. The individual positive
predictive value - or alternatively the precision - is calculated as shown in equation 5.1.
Similarly, the final positive predictive value is calculated as shown in equation 5.2.

Individual PPV =
Total Individual Trues

Total Individual Falses + Total Individual Trues
(5.1)

35

Final PPV =
Total Final Trues

Total Final Falses + Total Final Trues
(5.2)

5.1.1 Overall parameter tuning and evaluation

When tuning the parameters for the whole data set considering all families, a sample
from each family is taken. The size of such sample is at most 10 sequences per family.
The seed and degression parameters were found to have an optimum value of 65 for the
seed and an optimum value of 0.8 for the degression considering the overall evaluation.
Table A.1 shows the values for other parameters used to perform an overall performance
evaluation. Detailed results are shown in tables from table A.2 to table A.9. The results
are categorized according to the family category and sorted descendingly according to
the final PPV values. The Avg Ex column denotes the average exact value, which is
the average of the accuracies of motifs identified when restricting the scan boundaries for
RNAMotid to the boundaries of the known motif. The Avg Fin column denotes the average
final value, which means the average of the highest accuracy motifs identified by RNAMotid

when scanning the whole sequence including the shuffled context. By comparing these
values, we can have an estimate for the value that the suboptimum threshold parameter
can take in order to include motifs from this family in the output.

Figure 5.1: A graph visualizing the individual PPV value for each family after performing
the overall parameter tuning for RNAMotid

Overall evaluation analysis

The underlying criteria for RNAMotid for favouring the score of a given section in the input
RNA sequence is based mainly on the calculated base-pairing probabilities by RNAplfold.

36

Accordingly, the program favours those highly structured regions in the input sequence.

The overall performance for each category is summarized in table A.10. The true fami-
lies count column indicates the number of families in a given category with an individual
PPV greater than 0.5. From this table, we can have an idea about the performance of
each category. However, the number of families in each category is not the same. The
Category-relative PPV column gives a picture of the performance of the families in a
given category separately. However, the number of families in each category is not the
same.

From this table, we can see that some categories, like the cis-reg(Riboswitch), have high
category-relative PPV. Also, some categories are performing bad. For example, the cis-
reg(IRES) category. Next, we are going to investigate the reasons behind the low perfor-
mance of some categories even after applying a simple parameter training.

We take a sample from the HIV-1 SL4 family from the evaluation results shown in table
A.3. One can notice the large difference between the scores of motif regions suggested
by RNAMotid and the region where the real motif is located. We can investigate the
reason behind such big difference by going back to the underlying criteria of calculated
base-pairing probabilities as mentioned before.

In figure 5.2, a dot-plot depicting base-pairing probabilities calculated by RNAplfold.
The region where the real motif resides is indicated by a double line and the region where
the RNAMotid suggested motif with the highest score resides is indicated by a single
line. From this figure, we can notice that the real motif regions is not containing any
potential base-pairing probabilities. In other words, the region containing the real motif
is not structured. However, if we take a look at the region of the suggested motif, it’s
obvious that the suggested motif region by RNAMotid with the highest score is much more
structured. Moreover, it’s obvious that the base-pairing probabilities in this regions is
much higher than the region containing the real motif.

Figure 5.2: A dot-plot generated by RNAplfold visualizing base-pairing probabilities for a
sample from the HIV-1 SL4 family. The single line indicates the region where the highest
score motif resides and the double line indicates the region where the real (known) motif
resides.

37

5.1.2 Family-based evaluation

Another parameter tuning is carried out for the same data set. However, this time the
tuning aimed at optimizing the same parameters - the seed and the degression - for each
family separated. The program output is then observed. A sample of at most 30 se-
quences is taken from each family from the data set. Detailed results for some chosen
families are shown in tables from table A.11 to table A.13. The results are categorized
according to the family category and sorted descendingly by final PPV values.

From these tables, we can see that an improvement is done in the performance of
RNAMotid after using the parameters that were trained per family. For example, the
IRES(Bip) family from the cis-reg(IRES) category. The performance (PPV) increased
from 0.255 to 0.727, which is a high improvement. Recall that the cis-reg(IRES) category
was showing a bad overall PPV as discussed in the subsection 5.1.1.

Moreover, we can see in figure 5.3 the improvement in the performance of RNAMotid

after performing the family-based parameter tuning relative to the previous individual
PPV value after performing an overall parameter tuning. The individual PPV value is
dropped with some families as a result of increasing the sample size when performing the
family-based parameter tuning.

Figure 5.3: A graph visualizing the individual PPV value for each family after performing
the family-based parameter tuning - red color - together with the corresponding individual
PPV value after the overall parameter tuning - blue color - for RNAMotid.

5.2 Genome-wide evaluation

RNAMotid was designed with the requirement to include the ability to perform processings
of input RNA sequences in a genome-wide scale. Thanks to windowing, RNAMotid was
able to scan the 22nd human chromosome for structured regions - more than 50 million
bases. Recall a region is continuous interval in the input sequence containing at least a
part of an output RNA element. Approximately 2 million bases are processed per hour

38

using a single cluster core (2 Mbases/hour). Thanks to the fast sparse algorithm. This
time includes the time taken to calculate the base-pairing and the base-unpairing proba-
bilities. RNAMotid was able to identify regions that are overlapping with known genome
transcripts. The results are depicted in the graph in figure 5.4.

Because of the capability of RNAMotid to process genome-wide sequences, it has many ap-
plications. One of its applications is to narrow down the scope of input RNA sequences to
those regions that contain only structured regions. These regions are used by alignment
algorithms. By performing this narrow down we can reduce the overall running time.
This idea is used when processing input RNA sequences for long ncRNAs. A sample of
this usage is depicted in figure 5.5.

Figure 5.4: A graph depicting the results of processing the 22nd chromosome of the
human genome with RNAMotid. The x-axis represents the position in the sequence of the
chromosome. The y-axis represents the number of regions of RNA elements discovered
by RNAMotid that are overlapping with a genome transcript.

39

Figure 5.5: The usage of RNAMotid’s ability of identifying RNA structured regions in
long ncRNAs. The bright blue track displays the output of RNAMotid

40

Chapter 6

Conclusion

In this thesis we introduced the new program RNAMotid. In conclusion, we employed the
potentials of RNAplfold program in the computation of base-pairing and base-unpairing
probabilities. This was combined with a fast sparse algorithm that is able to efficiently
detect local structured RNA elements like cis-regulatory elements. Moreover, we intro-
duced a new definition for locality through the presented accuracy function.

Also, a windowing mechanism was implemented in our program. It enables RNAMotid

to scan long RNA sequences and operate in a genome-wide scale in a memory-efficient way.

Future work may target improving the performance of RNAMotid when dealing with
genome-wide sequences. Also, additional investigations are still required concerning the
structured regions.

In addition to performance related future work, other extensions are still available. Some
of them may target the structures that RNAMotid is able to detect. Structures containing
pseudoknots can be detected by RNAMotid by adding the required modifications in the
sequence folding module.

Also, the modularity of RNAMotid enables the usage of individual modules in other as-
pects. For example, the window scanner can be easily used to include a window scanning
mechanism in other programs.

Many features representing several modules were integrated together in our program.
This modularity counts for the flexibility and optionality of the analysis. They also
enables the reusability and also the extendability for future work.

41

Appendix A

Tables

Table A.1: RNAMotid parameters used in the performance evaluation

Parameter Value

Maximum motif length 150
Minimum motif length 20
RNAplfold window size 160

RNAplfold span 80
RNAplfold cutoff 0
Scan window size 5000

Suboptimum threshold 0.95
Suboptimum type global

Trace type non-overlap-branch

42

Table A.2: Overall Evaluation Results: Cis-reg

Family Count Ind Trues Ind Falses Fin Trues Fin Falses Avg Ex Avg Fin Ind. PPV Fin PPV

speF 6 95 0 6 0 0.3151 0.3151 1.000 1.00
K10 TLS 4 36 3 4 0 0.1783 0.2940 0.923 1.00

ylbH 3 39 0 3 0 0.2452 0.2938 1.000 1.00
HCV ARF SL 10 43 0 10 0 0.3054 0.3263 1.000 1.00

bicoid 3 10 113 1 10 0 0.2955 0.2961 0.991 1.00
rne5 3 19 0 3 0 0.2539 0.2644 1.000 1.00
RRE 10 66 0 10 0 0.3710 0.3710 1.000 1.00

yybP-ykoY 10 70 20 9 1 0.2247 0.3050 0.778 0.90
23S-methyl 10 64 11 9 1 0.2835 0.3362 0.853 0.90

PyrR 10 69 9 9 1 0.2537 0.3104 0.885 0.90
IBV D-RNA 10 86 9 9 1 0.1666 0.2924 0.905 0.90

ykoK 10 74 32 8 2 0.2459 0.2743 0.698 0.80
Tombus IRE 10 66 33 7 3 0.1980 0.3061 0.667 0.70
HCV SLIV 10 96 30 7 3 0.1574 0.2700 0.762 0.70

T-box 10 69 28 7 3 0.2518 0.2716 0.711 0.70
RtT 10 69 36 7 3 0.1905 0.2515 0.657 0.70

RSV PBS 9 66 27 6 3 0.2469 0.3218 0.710 0.67
HBV 3 12 8 2 1 0.1987 0.3056 0.600 0.67
rli51 8 30 25 5 3 0.1308 0.2284 0.545 0.63
purD 10 51 43 6 4 0.1882 0.2566 0.543 0.60

HCV SLVII 10 60 49 6 4 0.1760 0.2786 0.550 0.60
nos TCE 5 24 12 3 2 0.1561 0.2555 0.667 0.60
HIV-1 SD 10 37 31 6 4 0.0000 0.2645 0.544 0.60

HIV POL-1 SL 10 39 45 6 4 0.1460 0.2158 0.464 0.60
CAESAR 8 30 34 4 4 0.1358 0.2645 0.469 0.50

sucA 10 55 44 5 5 0.1676 0.2796 0.556 0.50
Entero CRE 10 50 46 5 5 0.1595 0.2605 0.521 0.50

HHBV epsilon 6 21 33 3 3 0.1293 0.2548 0.389 0.50
Gammaretro CES 10 59 83 5 5 0.2025 0.2790 0.415 0.50

mini-ykkC 10 48 56 5 5 0.0937 0.2626 0.462 0.50
6C 10 28 52 5 5 0.2104 0.3022 0.350 0.50

REN-SRE 4 22 9 2 2 0.0302 0.2396 0.710 0.50
RSV RNA 8 45 36 4 4 0.2767 0.2954 0.556 0.50

MPMV package 8 33 39 4 4 0.2040 0.2369 0.458 0.50

43

Table A.3: Overall Evaluation Results: Cis-reg

Family Count Ind Trues Ind Falses Fin Trues Fin Falses Avg Ex Avg Fin Ind. PPV Fin PPV

HepC CRE 4 25 11 2 2 0.1105 0.2452 0.694 0.50
Flavivirus DB 2 5 11 1 1 0.1499 0.2576 0.313 0.50

HIV GSL3 10 50 50 4 6 0.1148 0.2210 0.500 0.40
HIV-1 SL4 10 36 44 4 6 0.0305 0.2240 0.450 0.40

serC 10 42 41 4 6 0.0875 0.2396 0.506 0.40
IRE 10 26 44 4 6 0.0486 0.2513 0.371 0.40

Retro dr1 10 25 45 4 6 0.1801 0.2813 0.357 0.40
SECIS 10 29 38 4 6 0.1209 0.2660 0.433 0.40

U1A PIE 10 20 46 4 6 0.0816 0.2484 0.303 0.40
Histone3 10 34 44 4 6 0.0647 0.2481 0.436 0.40

G-CSF SLDE 10 56 39 4 6 0.2168 0.3180 0.589 0.40
traJ 5 5 32 18 2 3 0.2182 0.2827 0.640 0.40

Rhino CRE 3 10 13 1 2 0.1448 0.2499 0.435 0.33
Gurken 3 6 11 1 2 0.2021 0.2941 0.353 0.33

GEMM RNA motif 10 69 59 3 7 0.1359 0.2437 0.539 0.30
ydaO-yuaA 10 33 59 3 7 0.1928 0.2649 0.359 0.30
Vimentin3 10 8 54 3 7 0.0686 0.2415 0.129 0.30

rncO 10 24 73 3 7 0.2090 0.2716 0.247 0.30
ykkC-yxkD 10 34 71 3 7 0.1710 0.2707 0.324 0.30

HLE 4 14 23 1 3 0.2116 0.2713 0.378 0.25
Cardiovirus CRE 4 8 24 1 3 0.0679 0.2361 0.250 0.25

WLE3 9 28 48 2 7 0.1064 0.2350 0.368 0.22
Flavivirus SLIV 9 22 53 2 7 0.1424 0.2462 0.293 0.22

FIE3 5 14 52 1 4 0.0659 0.2364 0.212 0.20
DPB 10 12 74 2 8 0.1195 0.2478 0.140 0.20

BLV package 5 17 21 1 4 0.0455 0.2389 0.447 0.20
Corona package 10 10 112 2 8 0.1634 0.2576 0.082 0.20

K chan RES 10 25 56 2 8 0.1536 0.2593 0.309 0.20
HIV-1 DIS 10 16 41 2 8 0.0553 0.2334 0.281 0.20
HIV-1 SL3 10 16 53 2 8 0.0501 0.2568 0.232 0.20
HepE CRE 10 26 58 2 8 0.1597 0.2461 0.310 0.20
JEV hairpin 10 17 96 2 8 0.1041 0.2637 0.150 0.20
S-element 10 45 83 2 8 0.1315 0.2792 0.352 0.20

44

Table A.4: Overall Evaluation Results: Cis-reg

Family Count Ind Trues Ind Falses Fin Trues Fin Falses Avg Ex Avg Fin Ind. PPV Fin PPV

ybhL 7 16 57 1 6 0.1074 0.2664 0.219 0.14
BTE 10 24 104 1 9 0.1290 0.2445 0.188 0.10

Tombus 3 III 10 16 70 1 9 0.1059 0.2716 0.186 0.10
SVLPA 1 0 6 0 1 0.0086 0.3259 0.000 0.00

p27 CRE 5 1 44 0 5 0.0535 0.2663 0.022 0.00
GAIT 3 2 16 0 3 0.0733 0.2820 0.111 0.00
Spi-1 3 0 15 0 3 0.1740 0.2548 0.000 0.00

HIV PBS 10 1 108 0 10 0.1249 0.2460 0.009 0.00

45

Table A.5: Overall Evaluation Results: Cis-reg(Frameshift Element)

Family Count Ind Trues Ind Falses Fin Trues Fin Falses Avg Ex Avg Fin Ind. PPV Fin PPV

IS1222 FSE 4 47 21 3 1 0.1667 0.2850 0.691 0.75
HIV FE 10 58 35 6 4 0.1312 0.2535 0.624 0.60
DnaX 5 3 39 0 5 0.1197 0.2572 0.071 0.00

46

Table A.6: Overall Evaluation Results: Cis-reg(IRES)

Family Count Ind Trues Ind Falses Fin Trues Fin Falses Avg Ex Avg Fin Ind. PPV Fin PPV

IRES Picorna 10 77 8 9 1 0.2848 0.2938 0.906 0.90
IRES Aptho 10 59 4 9 1 0.3129 0.3279 0.937 0.90
IRES n-myc 4 15 7 3 1 0.2446 0.2748 0.682 0.75
IRES c-sis 5 42 10 3 2 0.2688 0.2956 0.808 0.60

IRES FGF2 5 43 23 3 2 0.2824 0.2888 0.652 0.60
IRES Bip 4 12 35 2 2 0.2056 0.2568 0.255 0.50
IRES Bag1 8 50 47 4 4 0.2592 0.2752 0.515 0.50
IRES IGF2 6 27 28 3 3 0.1692 0.2652 0.491 0.50
IRES KSHV 4 11 9 2 2 0.2043 0.2584 0.550 0.50
IRES FGF1 2 3 11 1 1 0.1751 0.2521 0.214 0.50
IRES HIF1 10 28 68 3 7 0.2395 0.2811 0.292 0.30
IRES TrkB 10 22 92 3 7 0.2355 0.2841 0.193 0.30
IRES Hsp70 8 30 68 2 6 0.1891 0.2723 0.306 0.25
IRES APC 4 7 21 1 3 0.0484 0.2071 0.250 0.25

IRES EBNA 5 20 46 1 4 0.1935 0.2423 0.303 0.20
IRES Kv1 4 5 2 18 1 4 0.2229 0.2590 0.100 0.20
IRES mnt 10 33 89 2 8 0.2066 0.2612 0.270 0.20

IRES Tobamo 7 0 62 0 7 0.1380 0.2427 0.000 0.00
IRES Cx32 4 5 50 0 4 0.1420 0.2053 0.091 0.00

IRES VEGF A 2 3 10 0 2 0.2678 0.3116 0.231 0.00
IRES Cx43 3 0 35 0 3 0.1625 0.2677 0.000 0.00

47

Table A.7: Overall Evaluation Results: Cis-reg(Leader)

Family Count Ind Trues Ind Falses Fin Trues Fin Falses Avg Ex Avg Fin Ind. PPV Fin PPV

Thr leader 10 87 6 9 1 0.2561 0.2986 0.935 0.90
L20 leader 10 87 23 9 1 0.2632 0.3064 0.791 0.90
His leader 10 62 10 8 2 0.2577 0.3118 0.861 0.80
Leu leader 4 15 3 3 1 0.2567 0.3089 0.833 0.75
L10 leader 10 50 14 7 3 0.2452 0.2896 0.781 0.70
Trp leader 10 46 38 6 4 0.1807 0.2594 0.548 0.60
L19 leader 10 42 77 4 6 0.0468 0.2350 0.353 0.40
L21 leader 10 8 63 2 8 0.1115 0.2672 0.113 0.20
L13 leader 10 19 55 2 8 0.1283 0.2387 0.257 0.20

S15 10 4 73 1 9 0.1624 0.2617 0.052 0.10

48

Table A.8: Overall Evaluation Results: Cis-reg(Riboswitch)

Family Count Ind Trues Ind Falses Fin Trues Fin Falses Avg Ex Avg Fin Ind. PPV Fin PPV

rli55 3 32 0 3 0 0.2989 0.2989 1.000 1.00
Lysine 10 80 1 10 0 0.2944 0.3062 0.988 1.00
rli56 6 59 8 5 1 0.2182 0.2760 0.881 0.83
TPP 10 81 24 8 2 0.1936 0.2720 0.771 0.80

Purine 10 60 25 8 2 0.1475 0.2423 0.706 0.80
glmS 10 89 32 8 2 0.2666 0.2832 0.736 0.80
rli61 4 35 11 3 1 0.2564 0.2987 0.761 0.75

MOCO RNA motif 10 53 36 6 4 0.2301 0.2931 0.596 0.60
SAM 10 66 30 6 4 0.2213 0.2847 0.688 0.60
rli53 5 30 16 3 2 0.2694 0.2885 0.652 0.60
FMN 10 46 27 6 4 0.1943 0.2709 0.630 0.60

preQ1-II 10 57 44 6 4 0.1870 0.2679 0.564 0.60
rli52 6 26 34 3 3 0.2095 0.2751 0.433 0.50

Cobalamin 10 48 48 5 5 0.2465 0.2726 0.500 0.50
rli54 5 17 12 2 3 0.2666 0.2857 0.586 0.40

SAM-IV 10 28 75 3 7 0.1938 0.2718 0.272 0.30
PreQ1 10 36 70 3 7 0.0526 0.2402 0.340 0.30
Glycine 10 30 69 2 8 0.1736 0.2657 0.303 0.20

SAH riboswitch 10 16 59 2 8 0.1296 0.2633 0.213 0.20
SAM alpha 10 6 86 1 9 0.1021 0.2607 0.065 0.10

rli62 2 0 6 0 2 0.2321 0.3277 0.000 0.00
Mg sensor 4 5 34 0 4 0.1712 0.2602 0.128 0.00

49

Table A.9: Overall Evaluation Results: Cis-reg(Thermoregulator)

Family Count Ind Trues Ind Falses Fin Trues Fin Falses Avg Ex Avg Fin Ind. PPV Fin PPV

Hsp90 CRE 4 25 2 3 1 0.1953 0.2390 0.926 0.75
PrfA 4 24 9 3 1 0.1830 0.2303 0.727 0.75
ROSE 10 82 38 6 4 0.2427 0.3008 0.683 0.60

50

Category Category-relative PPV True Families Total Families

(Sorted by families count) (Trues count/Total count) Count Count

Cis-reg 0.44 33 75
Cis-reg(Riboswitch) 0.64 14 22

Cis-reg(IRES) 0.33 7 21
Cis-reg(Leader) 0.60 6 10

Cis-reg(Thermoregulator) 1.00 3 3
Cis-reg(Frameshift element) 0.67 2 3

Table A.10: Overall performance summary for each category

51

Table A.11: Family Specific Evaluation Results: Cis-reg

Family Seed Deg Ind Trues Ind Falses Fin Trues Fin Falses Ind PPV Fin PPV Avg Ex Avg Fin

RSV PBS 15 0.95 37 1 9 0 0.9737 1.0000 0.319 0.317
HCV SLIV 10 0.90 46 0 15 0 1.0000 1.0000 0.366 0.389

speF 10 0.50 89 0 6 0 1.0000 1.0000 1.701 1.701
K10 TLS 20 0.85 29 3 4 0 0.9063 1.0000 0.340 0.400

ylbH 10 0.50 38 0 3 0 1.0000 1.0000 1.299 1.586
HCV ARF SL 10 0.50 131 3 18 0 0.9776 1.0000 1.584 1.691

bicoid 3 10 0.50 110 0 10 0 1.0000 1.0000 1.595 1.598
rne5 10 0.50 24 0 3 0 1.0000 1.0000 1.367 1.424
RRE 10 0.50 152 0 30 0 1.0000 1.0000 2.014 2.014

23S-methyl 10 0.70 136 10 16 1 0.9315 0.9412 0.809 0.886
IBV D-RNA 10 0.50 83 6 9 1 0.9326 0.9000 0.858 1.576
Tombus IRE 10 0.95 61 6 10 2 0.9104 0.8333 0.274 0.314

6C 10 0.95 70 26 16 4 0.7292 0.8000 0.306 0.323
nos TCE 10 0.95 24 5 4 1 0.8276 0.8000 0.239 0.269

yybP-ykoY 40 0.80 147 53 19 5 0.7350 0.7917 0.291 0.375
ykoK 55 0.90 197 87 23 7 0.6937 0.7667 0.204 0.228
PyrR 10 0.85 174 72 21 9 0.7073 0.7000 0.389 0.456
RtT 10 0.50 195 87 21 9 0.6915 0.7000 1.038 1.340
HBV 25 0.95 8 4 2 1 0.6667 0.6667 0.244 0.267

Gurken 15 0.85 19 10 2 1 0.6552 0.6667 0.371 0.415
HIV-1 SD 70 0.80 70 50 9 5 0.5833 0.6429 0.000 0.248

T-box 60 0.80 196 107 19 11 0.6469 0.6333 0.247 0.279
G-CSF SLDE 25 0.95 89 33 8 5 0.7295 0.6154 0.234 0.274

IRES c-sis 10 0.70 38 10 3 2 0.7917 0.6000 0.745 0.820
traJ 5 40 0.80 27 14 3 2 0.6585 0.6000 0.284 0.358
sucA 25 0.95 147 141 16 14 0.5104 0.5333 0.192 0.245

Entero CRE 15 0.90 79 77 15 15 0.5064 0.5000 0.274 0.310
rli51 10 0.75 26 17 4 4 0.6047 0.5000 0.322 0.529

HHBV epsilon 10 0.95 9 5 3 3 0.6429 0.5000 0.207 0.271
REN-SRE 10 0.60 23 9 2 2 0.7188 0.5000 0.134 0.952
RSV RNA 70 0.85 52 38 4 4 0.5778 0.5000 0.236 0.252
HepC CRE 10 0.95 5 2 2 2 0.7143 0.5000 0.188 0.257

Flavivirus DB 10 0.95 1 1 1 1 0.5000 0.5000 0.225 0.271

52

Table A.12: Family Specific Evaluation Results: Cis-reg(Frameshift Element)

Family Seed Deg Ind Trues Ind Falses Fin Trues Fin Falses Ind PPV Fin PPV Avg Ex Avg Fin

IS1222 FSE 20 0.90 22 12 2 2 0.6471 0.5000 0.213 0.323
HIV FE 10 0.60 121 118 14 16 0.5063 0.4667 0.574 1.015
DnaX 10 0.95 2 12 1 4 0.1429 0.2000 0.195 0.279

53

Table A.13: Family Specific Evaluation Results: Cis-reg(Riboswitch)

Family Seed Deg Ind Trues Ind Falses Fin Trues Fin Falses Ind PPV Fin PPV Avg Ex Avg Fin

rli56 10 0.95 11 0 6 0 1.0000 1.0000 0.296 0.348
L20 leader 10 0.85 191 33 27 3 0.8527 0.9000 0.437 0.471

Lysine 10 0.70 231 42 27 3 0.8462 0.9000 0.771 0.815
MOCO RNA motif 20 0.85 218 49 24 6 0.8165 0.8000 0.358 0.397

rli53 10 0.85 14 2 4 1 0.8750 0.8000 0.427 0.448
glmS 20 0.90 116 34 13 4 0.7733 0.7647 0.306 0.324
rli52 10 0.75 16 33 4 2 0.3265 0.6667 0.558 0.644
TPP 45 0.90 146 99 20 10 0.5959 0.6667 0.180 0.240

IRES FGF2 35 0.80 46 23 3 2 0.6667 0.6000 0.377 0.386
preQ1-II 10 0.80 82 59 8 6 0.5816 0.5714 0.386 0.511

SAM 10 0.50 142 104 17 13 0.5772 0.5667 1.010 1.480
Cobalamin 10 0.75 207 125 16 14 0.6235 0.5333 0.567 0.644

HLE 10 0.90 10 10 2 2 0.5000 0.5000 0.285 0.338

54

List of Tables

A.1 RNAMotid parameters used in the performance evaluation 42
A.2 Overall Evaluation Results: Cis-reg . 43
A.3 Overall Evaluation Results: Cis-reg . 44
A.4 Overall Evaluation Results: Cis-reg . 45
A.5 Overall Evaluation Results: Cis-reg(Frameshift Element) 46
A.6 Overall Evaluation Results: Cis-reg(IRES) 47
A.7 Overall Evaluation Results: Cis-reg(Leader) 48
A.8 Overall Evaluation Results: Cis-reg(Riboswitch) 49
A.9 Overall Evaluation Results: Cis-reg(Thermoregulator) 50
A.10 Overall performance summary for each category 51
A.11 Family Specific Evaluation Results: Cis-reg 52
A.12 Family Specific Evaluation Results: Cis-reg(Frameshift Element) 53
A.13 Family Specific Evaluation Results: Cis-reg(Riboswitch) 54

55

Bibliography

[1] Zubiaga AM, Belasco JG, and Greenberg ME. The nonamer UUAUUUAUU is
the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol.,
15(4):2219–30, April 1995.

[2] Uzilov AV, Keegan JM, and Mathews DH. Detection of non-coding RNAs on the
basis of predicted secondary structure formation free energy change. BMC Bioinfor-
matics, pages 7–173, March 2006.

[3] Hans-Joachim Böckenhauer and Dirk Bongartz. Algorithmic Aspects of Bioinfor-
matics (Natural Computing Series). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2007.

[4] Flamm C, Gardner P, Gautheret D, Giegerich R, Griffiths-Jones S, Hofacker I, Math-
ews D, Meyer I, Nieselt K, Stadler P, Steger G, Westhof E, and Zavolan M. Theory
and Practice of Computational RNA Biology. EMBO workshop, 2008.

[5] Flamm C, Fontana W, Hofacker IL, and Schuster P. RNA folding at elementary step
resolution. RNA, 6:325–38, 2000.

[6] Llave C, Xie Zhixin, Kasschau KD, and Carrington JC. Cleavage of Scarecrow-like
mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 2002.

[7] Do CB, Woods DA, and Batzoglou S. CONTRAfold: RNA secondary structure
prediction without physics-based models. Bioinformatics, 22(14):e90–8, July 2006.

[8] Athanasius F Bompfnewerer Consortium, Backofen R, Bernhart SH, Flamm C, Fried
C, Fritzsch G, Hackermller J, Hertel J, Hofacker IL, Missal K, Mosig A, Prohaska SJ,
Rose D, Stadler PF, Tanzer A, Washietl S, and Will S. RNAs everywhere: genome-
wide annotation of structured RNAs. J Exp Zool B Mol Dev Evol., 308(1):1–25,
January 2007.

[9] Mathews DH. Predicting a set of minimal free energy RNA secondary structures
common to two sequences. Bioinformatics, 21:2246–2253, May 2005.

[10] Mathews DH and Turner DH. Dynalign: an algorithm for finding the secondary
structure common to two RNA sequences. J Mol Biol, 317(2):191–203, March 2002.

[11] Goodwin E, Okkema P, Evans TC, and Kimble J. Translational regulation of tra-2
by its 3′ untranslated region controls sexual identity in C. elegans. Cell, 75(2):329–39,
October 1993.

56

[12] Rivas E and Eddy SR. Secondary structure alone is generally not statistically sig-
nificant for the detection of noncoding RNAs. Bioinformatics, 16(7):583–605, July
2000.

[13] Rivas E and Eddy SR. Noncoding RNA gene detection using comparative sequence
analysis. BMC Bioinformatics, 2(1):2–8, 2001.

[14] Nawrocki EP, Kolbe DL, and Eddy SR. Infernal 1.0: Inference of RNA alignments.
Bioinformatics, 25:1335–7, 2009.

[15] Tang G, Reinhart BJ, Bartel DP, and Zamore PD. A biochemical framework for
RNA silencing in plants. Genes Dev., 2003.

[16] Kiryu H, Kin T, and Asai K. Robust prediction of consensus secondary structures
using averaged base pairing probability matrices. Bioinformatics, 23(4):434–41, 2007.

[17] Hofacker I. Vienna rna secondary structure server. Nucleic Acids Res., 31(13):3429–
31, July 2003.

[18] Hofacker I, Priwitzer B, and Stadler P. Prediction of Locally Stable RNA Secondary
Structures for Genome-Wide Surveys. Bioinformatics, 20:186–90, 2004.

[19] Cousin J. Breakthrough of the year: Small RNAs make big splash. Science, 298:2296–
97, December 2002.

[20] Ross J. mRNA stability in mammalian cells. Microbiol., 59(3):423–50, September
1995.

[21] Havgaard JH, Torarinsson E, and Gorodkin J. Fast Pairwise Structural RNA Align-
ments by Pruning of the Dynamical Programming Matrix. PLOS computational
biology, 3:e173, 2007.

[22] Havgaard JH, Lyngs RB, and Gorodkin J. The FOLDALIGN web server for pairwise
structural RNA alignment and mutual motif search. Nucl. Acids Res., 33:W650–3,
2005.

[23] Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES,
Kent J, Miller W, and Haussler D. Identification and Classification of Conserved
RNA Secondary Structures in the Human Genome. PLoS Computat Biol, 2(4):e33,
April 2006.

[24] Shu-yun L, Chen JH, Currey K, and Maizel J. A program for predicting significant
RNA secondary structures. Comput. Appl. Biosci., 4:153–59, 1988.

[25] Höchsmann M. The Tree Alignment Model: Algorithms, Implementations and Appli-
cations for the Analysis of RNA Secondary Structures. PhD thesis, Bielefeld, 2005.

[26] Höchsmann M, Voss B, and Giegerich R. Pure Multiple RNA Secondary Structure
Alignments: A Progressive Profile Approach. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, 1(1):53–62, 2004.

57

[27] Höchsmann M, Tller T, Giegerich R, and Kurtz S. Local Similarity in RNA Sec-
ondary Structures. Proceedings of the IEEE Bioinformatics Conference, pages 159–
68, 2003.

[28] Welsh M, Scherberg N, Gilmore R, and Steiner DF. Translational control of insulin
biosynthesis. Biochemical Journal, 235:459–467, 1986.

[29] Zuker M and Stiegler P. Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucl. Acids. Res., 9:133–48, 1981.

[30] Nussinov R, Pieczenik G, Griggs JR, and Kleitman DJ. Algorithms for loop match-
ings. SIAM Journal on Applied mathematics, 35:68–82, 1978.

[31] Klein RJ and Eddy SR. RSEARCH: Finding homologs of single structured RNA
sequences. BMC Bioinformatics, 4:44, 2003.

[32] Bernhart S, Hofacker I, and Stadler P. Local RNA base pairing probabilities in large
sequences. Bioinformatics, 22(5):614–615, 2006.

[33] Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, and Bateman A.
Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res,
33:D121–4, January 2005.

[34] Heyne S. Pairwise Comparison of RNA Secondary Structures via Exact Pattern
Matches. Master’s thesis, Friedrich-Schiller-Universität Jena, November 2007.

[35] Washietl S, Hofacker IL, and Stadler PF. Fast and reliable prediction of noncoding
RNAs. Proc Natl Acad Sci, 102(7):2454–59, January 2005.

[36] Eddy SR and Durbin R. RNA sequence analysis using covariance models. Nucleic
Acids Res., 22(11):2079–88, June 1994.

[37] Wexler Y, Zilberstein C, and Ziv-Ukelson M. A study of accessible motifs and RNA
folding complexity. J Comput Biol., 14(6):856–72, July-August 2007.

[38] Yao Z, Weinberg Z, and Ruzzo WL. CMfindera covariance model based RNA motif
finding algorithm. Bioinformatics, 22:445–452, February 2006.

58

