
Media Engineering and Technology Faculty

German University in Cairo

Inferring RNA Stem-Loop Descriptors from
Multiple Sequence-structure Alignments for

an Indexed-based RNA Search Method

Bachelor Thesis

Author: Baher S.A. Salama

Supervisor: Prof. Dr. Rolf Backofen

Dr. Sebastian Will

Steffen Heyne

Michael Beckstette

Reviewers: Prof. Dr. Slim Abdennadher

Submission Date: 5 September, 2009

This is to certify that:

(i) the thesis comprimises only my original work toward the Bachelor De-
gree

(ii) due acknowlegement has been made in the text to all other material
used

Baher S.A. Salama
5 September, 2009

IV

Acknowledgement

I would like to thank Prof. Dr. Rolf Backofen for inviting me to do this bache-
lor thesis in his Department of Bioinformatics at Albert-Ludwigs Univerisity
in Freiburg. I would also like to thank my supervisor Steffen Heyne for his
continuous, daily support and guidance. In addition, I would like to thank
Dr. Sebastian Will and Michael Beckstette for their support and their inter-
est in my thesis work. I would also like to thank Prof. Dr. Slim Abdennadher
for arranging me this opportunity.

Abstract

Since the discovery of the variety of functional roles performed by non-
protein-coding RNA (ncRNA), the search for homologous RNAs has been
a problem of great interest in the field of bioinformatics. This thesis presents
a new technique that uses an index-bases search tool to perform RNA ho-
mology search. A multiple sequence alignment of an RNA family is used
to generate search patterns/descriptors for an affix-array-based search tool
which uses the descriptors to search a nucleotide sequence database for new
members of the given RNA family. The results of the search are evaluated
and compared to results produced by other famous tools that perform a sim-
ilar task using different techniques. In addition, the thesis introduces two
extensions that were developed for the index-bases search tool used.

V

Contents

1 Introduction 2
1.1 Ribonucleic acids . 2
1.2 RNA families . 5
1.3 RNA alignments . 6
1.4 RNA homology search and related work 7

1.4.1 Alignment tools . 7
1.4.2 Motif discovery and search tools 8

1.5 RNA family databases . 8
1.6 Index-based search . 9
1.7 Contribution . 11

2 Methods 12
2.1 Hairpin extraction . 13
2.2 Descriptor generation . 14

2.2.1 First scheme . 15
2.2.2 Second scheme . 17
2.2.3 Information content calculation 20
2.2.4 General definitions . 21

2.3 Search . 21
2.4 Chaining and filtering . 23
2.5 Summary . 25

3 Evaluation and Results 27
3.1 Evaluation scheme . 27
3.2 Terminology . 28
3.3 Statistical measures . 28
3.4 Results . 29

3.4.1 First scheme . 29
3.4.2 Second scheme . 31

4 Conclusion 32

VI

CONTENTS 1

A Extensions and Implementation 33
A.1 Multiple search extension . 33
A.2 Chaining extension . 33
A.3 Implementation . 34

Chapter 1

Introduction

The discovery of multiple functional roles for non protein-coding ribonu-
cleic acids (RNA) has made them the focus of much research in the recent
years. Non-coding RNAs (ncRNA) have been found to be responsible for
many key functional roles in living cells. Some examples of such roles are
transcriptional regulation, RNA processing and modification, chromosome
replication, mRNA stability and replication and protein degradation [21].
The problem of detecting homologous sequences as well as conserved motifs
in ncRNAs has been of great interest in the field of bioinformatics. Several
methods have been proposed for detecting homologues, finding conserved re-
gions within families, predicting secondary structures, performing multiple
sequence and structure alignments and performing sequence and structure
searches for ncRNAs in nucleotide sequence databases. Many databases have
been built solely for storing, grouping, and annotating ncRNA families.

1.1 Ribonucleic acids

A ribonucleic acid (RNA) molecule is a biopolymer composed of a chain
of nucleotides. A single nucleotide is composed of a phosphate group, a
ribose sugar and a nitrogenous base. There are four types of bases found
in RNA which are Adenine (A), Guanine (G), Cytosine (C) and Uracil (U).
Deoxyribonucelic Acids (DNA) are also composed of linked nucleotide chains.
However, DNA nucleotides contain deoxyribose sugar instead of ribose and
Thymine (T) base instead of Uracil. This project focuses mainly on RNAs.
Throughout the thesis, the bases will normally be referred to using their
single-letter abbreviations (shown in parentheses).

2

CHAPTER 1. INTRODUCTION 3

(a) G-C pair

(b) A-U pair

Figure 1.1: Watson-Crick base pairs. Figures taken from [24]

Base pairing and secondary structure

The formation of hydrogen bonds between the bases of different nucleotides
in RNA molecules is a phenomenon referred to as base pairing. The most
common base pairs occur between Adenine and Uracil; and between Guanine
and Cytosine, these are known as Watson-Crick pairs (Figure 1.1). Other
types of base pairs, such as Guanine-Uracil, can also occur but are less fre-
quent.

The formation of base pairs between two different nucleotides in the same
RNA molecule causes the molecule to fold forming what is referred to as
secondary structure. A correct secondary structure is crucial for an RNA to
perform its function correctly. The most common structural element is the
stem-loop or hairpin.

Coding vs. non-coding RNA

The role of protein coding RNA is to transfer the genetic data encoded in
DNA to be synthesised into proteins. This process takes place in 2 phases:
transcription and translation. In the transcription phase, a sequence of DNA
is encoded on a corresponding sequence of RNA. In the translation phase,
the formed RNA sequence is used to construct the protein.

CHAPTER 1. INTRODUCTION 4

Non-coding RNAs, on the other hand, are not translated into proteins.
Instead, they perform a variety of catalytic, regulatory and other functional
roles. Like protein-coding RNA, non-coding RNA is transcribed from a region
of DNA in a transcription process. This project is concerned mainly with
non-coding RNA.

Representation of primary sequence

Due to the asymmetric linkage of RNA nucleotides, the “direction” of the
nucleotide sequence needs to be defined. The end of an RNA molecule linked
to the 5’ carbon atom of the ribose sugar is called the 5’ end while the
end linked to the 3’ atom is called the 3’ end. Conventionally, the 5’ end is
regarded as the “starting point” of the RNA strand. Thus the RNA molecule
can be represented as a string over the alphabet Σ = {A,G,C, U}, where the
letters represent the abbreviation of the bases stated above. This sequence
is called primary sequence.

Definition 1 (Primary sequence).
Let Σ be the nucleotide alphabet {A,G,C, U}. The primary sequence S is
defined as S = 〈s1, s2, s3, . . . , sn〉, where n ∈ N and si ∈ Σ, for 1 ≤ i ≤ n.

Througout the thesis, |S| will denote the length of the sequence S, Si will
denotes the ith element of the sequence S, and Sij will denote the substring of
S between i and j inclusive, where 1 ≤ i ≤ j ≤ |S|. The following definition
defines when two sequences are considered equal.

Definition 2 (Sequence equality). Two sequences X and Y are equal if-and-
only-if |X| = |Y | = n and Xi = Yi for all 1 ≤ i ≤ n.

Representation of secondary structure

To represent base pairings between the nucleotides of a sequence, the sec-
ondary structure of an RNA sequence is defined as follows:

Definition 3 (Secondary structure).
Given a primary sequence S, the secondary structure T over S is defined as
follows:
T = {(i, i′) : Si is paired with Si′}.

For the scope of this work, valid secondary structures must satisfy the
following:

1. ∀(i,i′)∈T : 1 ≤ i < i′ ≤ |S|.

CHAPTER 1. INTRODUCTION 5

2. ∀(i,i′),(j,j′)∈T : (i 6= i′) and (j 6= j′) and (i = j ⇐⇒ i′ = j′).

3. ¬∃(i,i′),(j,j′)∈T : i < j < i′ < j′. i.e. pseudo-knots are not allowed.

In practice, the secondary structure is represented in dot-bracket notation
which is defined as follows:

Definition 4 (Dot-bracket notation). Given a sequence S with secondary
structure T , dot-bracket notation represents the secondary structure as a
sequence B with the same length as S over the alphabet {(,), .}, such that
B = 〈b1, b2, . . . , bn〉, where n = |S| and bi = ‘(’ and bi′ = ‘)’ if (i, i′) ∈ T ,
otherwise bi = ‘.’, for 1 ≤ i < i′ ≤ n

Hairpin structure

Definition 5 (Hairpin). Given a primary sequence S and a secondary struc-
ture T . The subsequence Sab is a hairpin structure if:

1. (a, b) ∈ T , and

2. ¬∃(i,i′),(j,j′)∈T : (i > a) ∧ (j′ < b) ∧ (j > i′), i.e. no branchings.

Definition 6 (Maximal hairpin). Given a primary sequence S and a sec-
ondary structure T such that Sab is a hairpin. Sab is a Maximal hairpin if
there is no proper supersequence of Sab in S that is a hairpin, i.e. there does
not exist a′ ≤ a and b′ ≥ b such that (b′ − a′) > (b− a) and Sa′b′ is a hairpin
according to definition 5.

Throughout this thesis, the term hairpin will used to refer to the maximal
hairpin, unless otherwise noted.

Many of the definitions above are inspired by [12].

1.2 RNA families

Non-coding RNAs are categorised into families according to functional or
structural similarities. RNA sequences within the same family usually share
certain regions or motifs. Finding these conserved regions or motifs in RNA
families as well as finding RNA family member within genomes are problems
of great interest in bioinformatics. Several models, techniques and tools
have been developed for solving these problems. Some of these tools are
introduced in the next section. The following are some common examples of
RNA families:

CHAPTER 1. INTRODUCTION 6

Transfer RNA (tRNA): RNA molecules that contribute to the RNA trans-
lation process by binding to specific amino acids and transferring them
to ribosomes to be assembles into polypeptide chains. The secondary
structure of tRNA is characterized by three hairpin loops.

RNase P: a ribozyme (RNA enzyme) that performs post-transcriptional
modification of tRNA [7].

Small nucleolar RNA (snoRNA): RNA molecules that guide post-tran-
scriptional chemical modifications of tRNAs.

MicroRNA (miRNA): a family of short (∼22 nucleotides long) ncRNAs.
miRNAs perform regulation of gene expression [4].

1.3 RNA alignments

Definition 7 (Alignment).
Given a set A′ of sequences over an alphabet Σ, an alignment of A′ is an
m × n matrix A over alphabet ΣA = (Σ ∪ { }), where m = |A|. The rows
of the matrix represent sequences each of length n, where the ith sequence is
represented as Si = 〈Ai,1, Ai,2, . . . , Ai,n〉, where Ai,j ∈ ΣA, for 1 ≤ j ≤ n,
1 ≤ i ≤ m. The following conditions also hold:

1. for every sequence s′ in A′ there is a corresponding sequence s in A
such that removing all ‘ ’ characters from s produces s′.

2. ¬∃1≤j≤n : ∀1≤i≤m : Ai,j = ‘ ′, i.e. no column that contains only gaps.

For an alignment A with dimensions m × n, the common length n will
sometimes be denoted as the aligment length or length[A]. The number
of sequences in the alignment m will be denoted as |A|. If |A| = 2 the
alignment is called a pairwise alignment, while if |A| > 2 the alignment is
called a multiple alignment. The ‘ ’ symbol in the definition above denotes a
gap in the alignment, which is represented in text format as . or -. Figure
1.3 on page 11 shows an example of a multiple alignment with secondary
structure annotation.

Definition 8 (Alignment column). Given an alignment A over a finite
alphabet ΣA. The jth column of the alignment is defined as a sequence:
CA,j = 〈A1,j, A2,j, . . . , Am,j〉, where m = |A| and Ai,j ∈ ΣA, for 1 ≤ i ≤ m.

CHAPTER 1. INTRODUCTION 7

Definition 9 (Alignment column sequence).
Given an alignment A. The column sequence of the alignment CA is defined
as CA = 〈CA,1, CA,2, CA,3, . . . , CA,n〉, where n = length[A] and CA,i is the ith

column of alignment A, for 1 ≤ i ≤ n.

Definition 10 (Subalignment).
Given two alignments A and B over the same alphabet, B is a subalignment
of A only if CB is a subsequence of CA, where CX is the column sequence of
alignment X.

1.4 RNA homology search and related work

1.4.1 Alignment tools

This section introduces some sequence and/or structure alignment tools that
are used for searching and grouping homologous RNA.

LocARNA [26]

LocARNA introduces an efficient variant of Sankoff’s algorithm for simulta-
neous alignment and secondary structure prediction (see [18]). For sequences
of length n, LocARNA reduces the time and space complexities of pairwise
alignment from O(n6) and O(n4) in Sankoff’s algorithm to O(n4) and O(n2),
respectively. This significant enhancement makes it efficient to use LocARNA
for computing all pairwise alignments of a large set of RNA sequences. The
resulting alignment scores can then be used to cluster RNAs according to
sequence and structure similarities.

Infernal [16]

Infernal takes as input a multiple sequence alignment of a group of related
RNAs with secondary structure annotation. It uses the alignment to con-
struct a covariance model (CM) (see [6]) that describes probabilistically the
consensus sequence and structure of the given alignment. It then uses the
constructed CM to search nucleotide sequence databases for homologous
RNA molecules.

CHAPTER 1. INTRODUCTION 8

1.4.2 Motif discovery and search tools

RNAProfile [17]

RNAProfile takes as input an unaligned set of RNA sequences expected to
share a common motif along with the expected number of hairpin loops in
the shared motif. RNAProfile highlights the shared motif regions in the given
set of RNA molecules. This information can be used by other tools to search
for RNAs that exhibit similar structural or functional properties to the given
RNA molecules.

ERPIN [9]

The ERPIN software takes an RNA sequence alignment with secondary struc-
ture information and constructs two probabilistic profiles one for sequence
information and one for base pairing information. It then uses the con-
structed profiles to perform a database search for sequences homologous to
those given in the input. The search uses dynamic programming alignment
of the generated profiles with the searched sequence.

RNAMotif [14]

RNAMotif takes as input a complex description of RNA secondary structure.
The structure description language allows the user to specify allowed base
pairings, structural elements, scoring schemes and other detailed specifica-
tions. RNAmotif then uses the description to search a nucleotide sequence
database for sequences that satisfy the given structural constraints.

RNAalifold [5]

RNAalifold takes as input a multiple RNA sequence alignment and computes
its consensus secondary structure.

1.5 RNA family databases

There exist several online databases specialised for storing, grouping and an-
notating ncRNAs. Such databases provide several interfaces for browsing as
well as searching the stored data. A notable example of such online databases
is the Rfam database [8].

CHAPTER 1. INTRODUCTION 9

Rfam database

The Rfam databases stores a collection of ncRNA multiple sequence-structure
alignments grouped into families. The alignments are constructed using the
Infernal software introduced earlier in section 1.4. The input to Infernal is
a hand-made multiple alignment of the known members of an RNA family
annotated with secondary structure information. This alignment is referred
to as the seed alignment. From the seed alignment, Infernal constructs a
CM profile and uses it to search for other members of the RNA family in a
nucleotide sequence database. The resultant matches are then aligned to the
CM, forming what is referred to as the full alignment. Both the seed and the
full alignments along with the CM are stored for each family in the Rfam
database [10].

1.6 Index-based search

Index-based search algorithms are sequence search algorithms that rely on
constructing a special search index once and performing multiple searches
over the index with a reduced per-search time complexity. Several types
of indexes and index-based algorithms exist, each has its advantages and
drawbacks.

The following are some of the most common index structures:

Suffix tree

The suffix tree is a data structure that gives a hierarchial representation of
all the suffixes of a given string. Each path from the root to a leaf of the
suffix tree corresponds to a suffix of the string represented by the tree.

Given a string S of length n and a search pattern P of length m, deciding
whether P is a substring of S can be easily computed on a suffix tree of S
in O(m) time. Enumerating all z occurrences of P in S can be performed in
O(m + z) time. Notice that both times are independent of n.

There exist several algorithms for constructing the suffix tree of the search
string S in O(n) time [15, 23]. The space consumed by the suffix tree is also
O(n).

The main drawback of suffix trees is their large space consumption which,
although linear, can reach up to 20n bytes. This drawback limits the prac-
tical applicability of suffix trees, especially in bioinformatics where search
databases are usually large.

CHAPTER 1. INTRODUCTION 10

Suffix array

The suffix array is a more space-efficient index structure than the suffix tree.
It stores the starting points of the suffixes of a string sorted in lexicographical
order. A suffix array for a string of length n can be stored in 4n bytes
instead of 20n for the suffix tree. A linear time algorithm for suffix array
construction is introduced in [20]. Algorithms for solving both the decision
and enumeration problems on a suffix array in the same time complexities
as on a suffix tree are introduced in [3]. In addition, a generic framework
for mapping any bottom-up traversal suffix tree algorithm to enhanced suffix
arrays (a suffix array extended with a table) is introduced in [2].

Due to its lower space consumption, the suffix array is more practically
applicable than the suffix tree. This is also supported by the existence of
algorithms for solving many suffix tree problem on the suffix array.

Affix tree and affix array

The structure of the suffix tree allows using it for matching in only one
direction (left to right), i.e. the search pattern can not be introduced in
reverse direction. To overcome this limitation, a suffix tree is augmented
with another suffix tree for the same string in reverse direction, this is known
as a reverse prefix tree. Corresponding nodes in both tree are connected and
the two trees are merged to form a single data structure known as the affix
trees. An algorithm for constructing affix trees in O(n) time is introduced in
[13].

The affix array has the same functionality as the affix tree, yet more space
efficient. It extends the suffix array for performing bi-directional matching in
the same way the affix tree extends the suffix tree. Like affix trees affix arrays
can be constructed in O(n) time [22]. Affix arrays are useful in applications
where bi-directional matching is required such as RNA secondary structure
analysis.

AfSearch

AfSearch is an index-based search tool that uses affix arrays to search nu-
cleotide sequence databases for given search patterns. The tool is based on
ideas and concepts from [22]. Search patterns will be referred to throughout
this thesis as descriptors.

Descriptors are composed of a sequence pattern and a secondary structure
annotation. Sequence patterns can contain wildcards (i.e. positions that
can match any character). However, the length of the pattern has to be

CHAPTER 1. INTRODUCTION 11

GC*****GGU****CC***G*GC

(((((((((.....)))))))))

Figure 1.2: Example descriptor

CCACCUUAAGAGC.GCG.UCGC.AGCCU...GGGGA.GGCUCCCGGCACCGAGACCAAUG

CCACCUUAAGAGC.GCGCUCGCCAGCCUGGGCGGAGCGGCUCCCGGCGCCGAGACCAAUG

CCACCUUAAG.GCCGCGCUCGCCAGCCUCGGCGGGGCGGCUCCCGCCGCCGCAACCAAUG

CCACCUUAAG.GCCGCGCUCGCCAGCCUCGGCGGGGCGGCUCCCGCCGCCGCAACCAAUG

........((.((.((....))..))))..(((((((((...))))).))))........

Figure 1.3: Example multiple alignment with secondary structure annotation

fixed, i.e. the pattern has to be solid. Secondary structures are described in
dot-bracket notation, and based on the allowed base pairings, afSearch only
matches sequences that can fold into the given secondary structure. AfSearch
is capable of handling only hairpin structures, as defined in [27]. Figure 1.2
shows an example descriptor.

1.7 Contribution

This projects investigates the feasibility of using index-based search, in par-
ticular affix-array based search, for performing RNA homology search. The
project implements the descriptor/pattern generation part of a new RNA
homology search tool that employs affix array search. The new tool is com-
pared with several other search methods in terms of efficiency, sensitivity,
specificity and other measures.

The program takes as input a multiple sequence alignment of RNA with
consensus secondary structure annotation. From the alignment, the program
generates a set of patterns or descriptors that are used by the affix-array
search tool afSearch, introduced in section 1.6, to search a nucleotide se-
quence database for matching RNA sequences. Figure 1.3 shows an example
of a multiple alignment with secondary structure annotation.

The project introduces 2 different schemes for descriptor generation. Each
scheme has a set of parameters for tuning the descriptor generation process.
An internal comparison is performed to find the best scheme and the optimal
parameters for descriptor generation and search.

Chapter 2

Methods

This section introduces the processes and steps through which the pat-
terns/descriptors for the affix-array search tool afSearch are constructed.
The input to the process is a multiple alignment of the sequences of an RNA
family with secondary structure annotation.

Given a multiple alignment of an RNA family with secondary structure
annotation, the process goes through the following 4 steps:

1. Hairpin extraction

2. Descriptor generation

3. Search

4. Chaining and filtering

hairpin extraction detects and extracts hairpin regions out of the given
multiple alignment.

descriptor generation takes the hairpin regions from the hairpin extrac-
tion step and produces one or more search descriptors for every hairpin
region.

search takes as input the descriptors generated by the second step and uses
the afSearch affix array search tool to find RNA sequences matching
the given descriptors in a nucleotide sequence database.

chaining ensures that matches from different hairpins appear in the correct
order.

filtering eliminates sequences with less than the required number of correct
order matches.

Detailed discussions of these steps are presented in the following sections.

12

CHAPTER 2. METHODS 13

2.1 Hairpin extraction

Due to the fact that the afSearch tool can only handle hairpin secondary
structures (see section 1.6 page 10), the first step of the search process is
extracting the hairpin columns out of the multiple alignment. This is done
by examining the secondary structure annotation of the alignment. Other
columns of the alignment that are not inside a hairpin region are discarded.
Figure 2.1 shows an example alignment with hairpin columns highlighted.

CCACCUUAAGAGC.GCG.UCGC.AGCCU...GGGGA.GGCUCCCGGCACCGAGACCAAUG

CCACCUUAAGAGC.GCGCUCGCCAGCCUGGGCGGAGCGGCUCCCGGCGCCGAGACCAAUG

CCACCUUAAG.GCCGCGCUCGCCAGCCUCGGCGGGGCGGCUCCCGCCGCCGCAACCAAUG

CCACCUUAAG.GCCGCGCUCGCCAGCCUCGGCGGGGCGGCUCCCGCCGCCGCAACCAAUG

........((.((.((....))..))))..(((((((((...))))).))))........

Figure 2.1: Example multiple alignment with hairpin columns highlighted

Procedure

The first step in the hairpin detection procedure is matching correspond-
ing opening and closing brackets in the secondary structure. This is done
by traversing the secondary structure form left to right. When an opening
bracket is encountered, its position is pushed on a stack. When a closing
bracket is encountered, it is paired with the topmost element on the stack
and that element is popped off the stack. If an opening bracket is encoun-
tered after one or more closing brackets, then the region between last closing
bracket and its corresponding opening bracket is marked as a hairpin region
and the stack is cleared. Algorithm 1 on page 15 simultaneously performs
the pairing and hairpin detection procedures.

Hairpin order

The order in which the hairpins appear in the alignment is significant and is
used by the chaining step explained in section 2.4. To begin discussing the
order of hairpins we need to define the set of all hairpins in an alignment as
follows:

Definition 11 (Hairpin set). Given an alignment A, the set of all hairpins of
A, denoted as RA is defined as follows: RA = {(i, i′) : 1 ≤ i < i′ ≤ length[A]}
which denotes that the region in the alignment between positions i and i′

inclusive is a hairpin region according to definition 5. Hairpin regions cannot
overlap, i.e. ∀(i,i′),(j,j′)∈RA

: (i < j ⇐⇒ i′ < j) and (i = j ⇐⇒ i′ = j′).

CHAPTER 2. METHODS 14

AGAGC.GCG.UCGC.AGCCU .GGGGA.GGCUCCCGGCACCGA

AGAGC.GCGCUCGCCAGCCU GCGGAGCGGCUCCCGGCGCCGA

AG.GCCGCGCUCGCCAGCCU GCGGGGCGGCUCCCGCCGCCGC

AG.GCCGCGCUCGCCAGCCU GCGGGGCGGCUCCCGCCGCCGC

((.((.((....))..)))) (((((((((...))))).))))

Figure 2.2: Hairpin columns extracted from example alignment in figure 2.1.
This set of columns is the input to the descriptor generation phase.

The definition above induces a total order over the hairpin regions in an
alignment, thus making the hairpin set a totally ordered set.

Definition 12 (Hairpin total order). The total order of the hairpins of an
alignment A is defined by the strict total order relation (<) over the set RA

as follows: For a = (i, i′), b = (j, j′) ∈ RA, a < b ⇐⇒ i < j.

The relation defined above will be referred to throuout the thesis as “be-
fore”.

Properties of the strict total order:
for a, b and c in RA:

1. irreflexive: ¬(a < a), i.e. A hairpin cannot be before itself.

2. asymmetric: (a < b) =⇒ ¬(b < a), i.e. if hairpin a is before b, then b
cannot be before a.

3. transitive: (a < b) ∧ (b < c) =⇒ (a < c), i.e. if hairpin a is before b
and b is before c, then a is before c.

4. trichotomous: ¬(a < b) ∧ ¬(b < a) =⇒ a = b.

Proof of strict total order properties. From definition 12, a < b ⇐⇒ i < j,
and the fact that i, j ∈ N, the properties above follow directly from the strict
total order of natural numbers.

2.2 Descriptor generation

The descriptor generation step takes as input the extracted hairpin columns
produced by the hairpin extraction step (see figure 2.2). Each one of those
subalignments is processed in the same way producing one (or more) descrip-
tors.

CHAPTER 2. METHODS 15

Algorithm 1 Finding hairpin regions

Let D be the secondary structure
for i = 1 to |D| do

if Di = ‘(’ then
if last = ‘)’ then

Declare pair as hairpin region
Clear stack

end if
Push i
last ← ‘(’

else if Di = ‘)’ then
if Stack is not empty then

Pop j
pair ← (j, i)

end if
last ← ‘)’

end if
end for

Definition 13 (Descriptor). Given an alignment A over a finite alphabet Σ,
such that ‘*’ /∈ Σ, a descriptor D over the alignment is defined as follows:
D = (P, T), where P is a sequence over the alphabet (Σ−{ }∪{∗}) defining
the primary sequence pattern of the descriptor, and T = {(i, i′) : 1 ≤ i <
i′ ≤ |P |} with the same constraints as the definition of secondary structure
(see definition 3 on page 4) defining the secondary structure constraints of
the descriptor.

In practice, the secondary structure of descriptors is expressed in dot-
bracket notation as defined in definition 4 on page 5.

Since the afSearch tool can only handle solid patterns, the descriptor gen-
eration scheme must first deal with gaps or insertions, which represent differ-
ences in the lengths of the sequences in the alignment. This thesis presents
two scheme for descriptor generation that differ mainly in the way they deal
with gaps. The two schemes are presented in the following subsections.

2.2.1 First scheme

The first descriptor generation scheme deals with the gaps problem in a fairly
simple way. The scheme simply eliminates columns with high gap content.
The choice of columns to eliminate is controlled by one parameter, namely the

CHAPTER 2. METHODS 16

AGAGC.GCG.UCGC.AGCCU

AGAGC.GCGCUCGCCAGCCU

AG.GCCGCGCUCGCCAGCCU

AG.GCCGCGCUCGCCAGCCU

((.((.((....))..))))

AGGCGCG.UCGC.AGCCU

AGGCGCGCUCGCCAGCCU

AGGCGCGCUCGCCAGCCU

AGGCGCGCUCGCCAGCCU

((((((....))..))))

Figure 2.3: Gap removal process. On the left, columns to be eliminated
are highlighted. On the right, the subalignment after gap removal. In this
example, “gap ratio” = 0.6.

“gap ratio”, which specifies the maximum allowed gap:row ratio in a column.
If the number of gaps exceeds the gap ratio, the column is eliminated.

Algorithm 2 below describes briefly the process of gap elimination. In
the algorithm, A refers to a hairpin subalignment and gapcount(c) returns
the number of gaps in an alignment column c. Figure 2.3 demonstrates the
process.

Algorithm 2 Gap elimination algorithm

for all c in CA do
let gaps ← gapcount(c)
if gaps/|c| ≥“gap ratio” then

Eliminate c
end if

end for

Using the remaining columns, the number of occurrences of every nu-
cleotide in the column is counted and an information content measure is
calculated based on the counts. Two methods for calculating the informa-
tion content are presented in section 2.2.3.

The information content measure is used to decide whether a position
will be a wildcard or not. The choice of wildcard positions is controlled by
2 parameter, the “wildcard ratio” and the “maximum score”. The wildcard
ratio determines the maximum percentage of columns to be wildcards. The
maximum score determines the maximum allowed wildcard score i.e. if a
column has a higher score than the wildcard score, it will never be a wildcard.

This wildcard ratio parameter is used to calculate a threshold for the
minimum allowed information content. Algorithm 3 below describes briefly
the descriptor generation procedure. In the algorithm, A is the subalign-
ment with gaps eliminated, infocontent(c) returns the information content
of an alignment column c, mode(c) returns the statistical mode (i.e. the most

CHAPTER 2. METHODS 17

.GGGGA.GGCUCCCGGCACCGA

GCGGAGCGGCUCCCGGCGCCGA

GCGGGGCGGCUCCCGCCGCCGC

GCGGGGCGGCUCCCGCCGCCGC

G*GG**CGGCUCCCG*C*CCG*

Figure 2.4: Descriptor generation. The last line is the generated descriptor.

abundant element) of a column. The ‘*’ symbol denotes a wildcard. Figure
2.4 shows a subalignment with the generated descriptor highlighted below.

Algorithm 3 Descriptor generation algorithm

for i = 1 to |CA| do
info[i] = infocontent(CA,i)

end for
Sort info
index ← ⌊ “wildcard ratio” · |info| ⌋
R ← info[index]
for i = 1 to |CA| do

if infocontent(CA,i) ≥ R then
descriptor[i] = mode(CA,i)

else
descriptor[i] = ‘*’

end if
end for

If the information content of a column is lower than the calculated thresh-
old and the given maximum score, a wilcard is used to represent the column.
Otherwise the most abundant nucleotide or “character” is used to represent
the column. The generated pattern is combined with the secondary struc-
ture notation of the hairpin to produce a descriptor such as the one shown
in figure 1.2 on page 11.

2.2.2 Second scheme

The first scheme produces only one descriptor per hairpin. This limits the
matches from such a descriptor to hairpins of only one length. Thus if there
large variations in the lengths/gaps of the sequences in the alignment, the
generated descriptor would only express a few of them. To better understand
the problem, consider the alignment in figure 2.5. The strong variations in
the lengths and gap patterns of the sequences will cause any single descriptor

CHAPTER 2. METHODS 18

GCUCAAUC..GGU...AGAGC

GUUUAAU...GGA...AAAAC

GUGAAAAA..GGUA..AACAC

ACUGAGU...GGUUU.AAGGU

GCUGAA....GUU...UAGGC

GUUUAAU...GA....AGAAU

GUGAAAU...GGUA..GACAC

GUUUAA....UC....AAAAC

Figure 2.5: A multiple alignment with highly varying gap patterns.

generated for the alignment using the first scheme to match only one of
the sequences since although the sequences share many gap positions, no to
sequences have the same gap pattern.

The second descriptor generation solves this problem by generating mul-
tiple descriptors for a single hairpin. Each descriptor is generated from a
group of sequences with identical gap patterns. This is done by grouping the
sequences of a certain hairpin loop by gap patterns, giving groups with more
sequences a higher priority.

Definition 14 (Gap pattern). The gap pattern of a sequence S is defined as
the set of all indices/positions in the sequence that are gaps:

GS = {i : 1 ≤ i ≤ |S| and Si = ‘ ’}.

Grouping procedure

The grouping procedure takes the hairpin subalignment and performs the
following steps iteratively until it ends with an empty set:

1. remove a sequence at random from the alignment.

2. check all sequences in the alignment, if a sequence has the same gap
pattern as the sequence taken in step 1, do the following:

(a) remove the sequence from the alignment.

(b) put it in the same group as the sequence taken in step 1.

Algorithm 4 below explains the procedure in pseudocode. In the algo-
rithm, A denotes the processed alignment and Gs is the gap-pattern of a
string s, as defined in definition 14 on page 18. At the end of the algorithm,
the variable groups will contain the sequences of the alignment divided into
groups by gap patterns.

CHAPTER 2. METHODS 19

Algorithm 4 Sequence grouping according to gap patterns

groups ← ∅
while A is not empty do

s ← random sequence from A
remove s from A
group ← {s}
for all s′ in A do

if Gs′ = Gs then
group ← group ∪ {s′}
remove s′ from A

end if
end for
groups ← groups ∪ {group}

end while

Prioritisation

Instead of the “gap ratio” parameter used for the first scheme, the second
scheme is controlled by 2 other parameters The “max groups” parameter con-
trols the maximum number of groups that will be used to generate descrip-
tors. The “descriptor ratio” parameter governs the total number of sequences
in the groups that will be used to generate descriptors, to the total number
of sequences in the alignment. Algorithm 5 below clarifies in pseudocode the
prioritisation process. In the code, descgroups is the set of groups that will
be used to generate descriptors, such that descgroups ⊆ groups.

Algorithm 5 Prioritization

union ← ∅
for all group in descgroups do

union ← union ∪ group
end for

Ensure: |union|/|A| ≤ “descriptor ratio”
Ensure: |descgroups| ≤ “max groups”

To choose which groups should be used, the second scheme employs a
simple prioritisation technique, giving a higher priority to groups with a
larger number of sequences. In the implementation, this is achieved by sorting
the groups in descending order by size and taking the first n groups such that
list1n satisfied the above conditions while list1(n+1) violates one or more of
the conditions.

CHAPTER 2. METHODS 20

Descriptor generation

After the groups are decided, the common gap columns in each group are
eliminated and the descriptors are generated from the subalignment as in the
first scheme. The consensus computation is controlled by the same 2 param-
eters used for the the first scheme, namely, “wildcard ratio” and “maximum
score”.

Algorithm 6 Second scheme descriptor generation

for all group in descgroups do
eliminate gaps from group
generate descriptor from group

end for

2.2.3 Information content calculation

Two different methods were used for calculating the information content
of a column used by by the first and second descriptor generation schemes
described above.

The first method is straight-forward, it computes the percentage of the
most abundant element from the total number of columns. Thus if we define
N(x, c) as the number of occurrences of element x in column c, and Max(c)
as the most abundant element in column c, then the information content of
a column c would be:

N(Max(c), c)

|c|

The second information content calculation method uses the LOGOS
measure explained in [19]. For a column c, the uncertainty measure H(c)
is defined as follows:

H(c) =
‘U’∑

b=‘A’

f(b, c) log2 f(b, c)

where b goes through the four bases {A,G,C, U}, and f(b, c) is the fre-
quency of base b in column c. The information content of a column c is then
defined by the following formula:

R(c) = 2 − (H(c) + e(n))

where e(n) is a correction factor.
The results from both schemes are compared in the results chapter.

CHAPTER 2. METHODS 21

2.2.4 General definitions

The following are some descriptor-related definitions that are independent of
the descriptor generation scheme used.

The following is the definition of the function that maps descriptors to
the hairpin from which they were generated.

Definition 15 (Source hairpin). Given an alignment A, and using MA to re-
fer to the set of all descriptors from A, we define a function Hp : MA −→ RA

as follows: Hp(D) = the hairpin from which descriptor D was generated.

The function defined above will be referred to as the Source hairpin func-
tion.

Like hairpins, descriptors are also ordered. However since one hairpin can
generate multiple descriptors, the order of descriptors is a partial order.

Definition 16 (Descriptor partial order). Given some alignment A and two
descriptors a and b in the set of all alignment descriptors MA, the strict
partial order relation (<) over MA is defined as follows: a < b ⇐⇒ Hp(a) <
Hp(b).

This relation will sometimes be referred to as “before”.
A descriptor is thus regarded as “before” another descriptor if the former

is generated from a hairpin that appears earlier in the alignment than the the
one from which the latter is generated. Note that in the second descriptor
generation scheme, more than one descriptor can be generated from one
hairpin, thus the descriptors can be regarded as overlapping.

2.3 Search

After the descriptors are generated for every hairpin in the alignment, the
descriptors are used by the afSearch tool to search through a nucleotide se-
quence database for sequences matching one or more of the given descriptors.
Along with the matched sequences, the tool also returns the matching po-
sitions in the sequence and the input descriptor that produced the match.
This information is essential for the chaining step explained in section 2.4.

To define matching, the notion of allowed base pairs has to be defined
first. The following is the definition of the set of possible base pairs:

Definition 17 (Possible base pairings). The set of possible base pairings
Y over the RNA alphabet Σ = {A,G,C, U}, is defined as follows: Y =
(A,B)|A,B ∈ Σ. For all pairs (A,B) ∈ Y , A can pair with B.

CHAPTER 2. METHODS 22

The matching process is defined as follows:

Definition 18 (Matching). Given a descriptor D = (P, T) and sequence S
and a set of possible base pairings Y , such that ΣP = ΣS ∪ {∗}, D matches
S at position p if all of the following is true:

1. Pj = ‘*’ or Sp+j−1 = Pj, for 1 ≤ j ≤ |P |.

2. (Sj, Sj′) ∈ Y or(Sj′ , Sj) ∈ Y , for all (j, j′) ∈ T . i.e. Sj can pair with
Sj′.

A match can be defined as the triple (S,D, p). The search process returns
a set of matches.

In the definition above, condition 1 means that the substring Sp(p+|P |−1)

matches the pattern P . Condition 2 means that the matched substring can
make the base pairings of the secondary structure of the descriptor.

Figure 2.6 shows an example descriptor and figure 2.7 shows a sequence
with the matching region of the descriptor in figure 2.6 highlighted. Notice
that the descriptor matches at position i = 11 on the sequence in figure 2.7.

C**C*CCC*A*CG*G**G

((((((......))))))

Figure 2.6: A descriptor. Above is the primary sequence pattern. Below is
the secondary structure in dot-bracket notation.

CGGCGGGACACCCCUCCCCAACGAGGGGCUUCUAUCUGAGAGGAUAGCAUAU

Figure 2.7: A sequence with the matching region of the descriptor in figure
2.6 highlighted.

Note that several descriptor can match the same sequence and even the
same descriptor can match a single sequence several times at different posi-
tions.

Sequence match set

The set of matches returned by search process contains matches from multiple
sequences in the nucleotide database. It is useful however, to define the set
of matches in a specific sequence.

Definition 19 (Sequence match set). Given a sequence K in the nucleotide
sequence database used by the search process, the set of all matches in K is
defined as follows: MK = {M = (S,D, p) : M is a match and S = K}.

CHAPTER 2. METHODS 23

Match order

The match order is defined on matches in the same sequence, i.e. the notion
of match order only applies to sequence match sets defined in definition 19.
Unlike hairpins, different matches matches may overlap, thus the definition
of match order will be different from that of hairpins.

Definition 20 (Match partial order). The partial order of the matches of a
sequence S, is defined by the strict partial order relation (<) over the set MS

as follows:
For all m1 = (S,D1, p1),m2 = (S,D2, p2) ∈ MS, m1 < m2 ⇐⇒ e1 < p2,

where ei = pi + |Di| denotes the ending point of a match mi.

From the definition above, match is < another match if the former ends
before the beginning of the latter. The set MS along with the (<) operator
defined above form a strict partially ordered set.

The definition above formalizes the intuitive notion of the order of matches.

2.4 Chaining and filtering

Recall that every RNA alignment needs to have one or more hairpins. From
every hairpin, one or more descriptors are generated. The descriptors are
given to the search engine which uses them to search a nucleotide sequence
database and find the matching positions of each descriptor. Recall also that
several matches can exist in a single sequence. To make sure that the matches
actually identify a correct member of the family and not just matched by
coincidence, the chaining process makes sure that the matches appear in the
correct order and find the longest sequence of matches that is in the correct
order.

Depending on the number of hairpins in the alignment of the RNA family
to be searched, a search sequence is required to have a proportional number
of matches. In addition, the matches must not overlap and must appear
in the same order of their corresponding hairpins (and hence descriptors).
This leads to the problem of chaining matches to find the longest sequence
of correctly ordered matches in some sequence. To further discuss chaining,
a second type of partial order on sequence match sets is defined as follows.

Definition 21 (Chainability). Given any 2 matches m1 = (S,D1, p1) and
m2 = (S,D2, p2) in the match set MS of some sequence S, we define the
chainability relation on the set MS as follows: m1 is chainable to m2 if-
and-only-if m1 < m2 as defined in defintion 20 and D1 < D2 as defined in
definition 16.

CHAPTER 2. METHODS 24

Figure 2.8: The chaining process. Figure taken from [25]

The relation will be referred to as “chainable to”.
From the definition above, a match is chainable to another match if the

former ends before the beginning of the latter and if the former comes from
a descriptor and hence a hairpin that is before that of the latter.

This definition induces as second type of strict partial order on the match
set of a sequence. Using the definition above, chaining can be defined as the
longest sequence of chainable matches in a the match set of a sequence.
Figure 2.8 is visual demonstration of the chaining process. In the figure,
the horizontal axis represents a sequence to be chained, the vertical axis
represents the descriptors and the diagonal lines represent matches between
regions of the descriptors and the sequence. An arrow represents chainability.

Due to the fact that every strict partial order corresponds to a directed
acyclic graph (DAG), one can model the matches in the match set as nodes
in the graph and chainability relations as edges. Using this model, chaining
is simply finding the longest path (or critical path) in the graph.

In the implementation, chaining is done using the graph approach de-
scribed in the previous paragraph. For a sequence with m matches, this
implementation of chaining runs in O(m2). This is due to the fact that
the number of edges in the graph is bounded from above by m(m − 1)/2
so constructing the graph requires O(m2) time and the longest (or critical)
path algorithm runs on DAGs in O(m) time giving a total of O(m2). This

CHAPTER 2. METHODS 25

approach is taken from [11].

Filtering

The chaining step takes the match set of some sequence as input and re-
turn the length of the maximum possible chain of matches and possibly the
chain itself. If a sequence does not satisfy a minimum chain length, which
is proportional to the number of hairpins extracted from the alignment, the
sequence is eliminated from the result set. This is referred to as filtering.

2.5 Summary

Figure 2.9 summarises the overall descriptor generation and search process.
The input to the process is a multiple sequence alignment with secondary
structure annotation. The process goes through the steps labeled in the
diagram as follows:

1. Hairpin regions are extracted from the alignment.

2. Depending on the descriptor generation scheme used, gaps are elimi-
nated and descriptors are generated for every hairpin subalignment.

3. The descriptors are sent to the affix-array based search tool afSearch,
which searches through a nucleotide sequence index and returns se-
quences with one or more matches.

4. The matched sequences are sent to the chaining process, which finds
the longest possible chain of matches for every sequence.

5. Depending on the number of hairpins in the alignment, sequences with
chaining results lower than some threshold are removed from the result
set and the search results are returned.

CHAPTER 2. METHODS 26

CGGCAGGACACCUCUCCCUAACGAGAGGCGC.CUAUCUGAAAGGGUAGUCAAA

CGGCAGGACACCUCUCCCUAACGAGAGGCGC.CUAUCUGAAAGGGUAGUCAAA

AAGUGGGCCACGUCUCCCCAACGAGACGCGUGCUAUCUGAGAGGAUAGAAACA

CGGCGGGCCACGCCCCCCCAACGGGGCGCAGUCCAUCUGUAAGGAUGGGAGAC

CAGCGGGAAACCUCUCCCCACCGAGAGGCAG.CUAUCUGGAAGGAUAGACUAU

CGGCGGGACACCCCUCCCCAACGAGGGGCUU.CUAUCUGAGAGGAUAGCAUAU

..........((((((......))))))....((((((....)))))).....

CGGCAGGACACCUCUCCCUAACGAGAGGCGC.CUAUCUGAAAGGGUAGUCAAA

CGGCAGGACACCUCUCCCUAACGAGAGGCGC.CUAUCUGAAAGGGUAGUCAAA

AAGUGGGCCACGUCUCCCCAACGAGACGCGUGCUAUCUGAGAGGAUAGAAACA

CGGCGGGCCACGCCCCCCCAACGGGGCGCAGUCCAUCUGUAAGGAUGGGAGAC

CAGCGGGAAACCUCUCCCCACCGAGAGGCAG.CUAUCUGGAAGGAUAGACUAU

CGGCGGGACACCCCUCCCCAACGAGGGGCUU.CUAUCUGAGAGGAUAGCAUAU

..........((((((......))))))....((((((....)))))).....

CUCUCCCUAACGAGAGG CUAUCUGAAAGGGUAG

CUCUCCCUAACGAGAGG CUAUCUGAAAGGGUAG

GUCUCCCCAACGAGACG CUAUCUGAGAGGAUAG

GCCCCCCCAACGGGGCG CCAUCUGUAAGGAUGG

CUCUCCCCACCGAGAGG CUAUCUGGAAGGAUAG

CCCUCCCCAACGAGGGG CUAUCUGAGAGGAUAG

(((((......)))))) ((((((....))))))

C*CCC*A*CG*GG C*AUCUG**AGG*U*G

(((((......)))))) ((((((....))))))

afSearch

Chaining/filtering

Search results

nucleotide

sequence

database

1

2

3

4

5

Figure 2.9: Process overview

Chapter 3

Evaluation and Results

3.1 Evaluation scheme

The Rfam database (section 1.5, page 9) is an ideal resource to use for eval-
uating the effectiveness of the descriptor generation methods described in
the previous section, and comparing the different schemes and parameter
settings.

To search a certain RNA family, the hand-curated Rfam seed alignment
of the family is used as input to train the descriptors. The descriptors are
then used by the afSearch tool and the search results are compared to the
sequences in the full alignment taken from the Rfam database. As explained
is section 1.5, the full alignment is produced using the Infernal tool.

The searches are performed using version 8.1 of the Rfam database. This
version contains the alignments of 630 RNA families. For every test, the
procedures described in chapter 2 are repeated on all the families.

Every search cycles traverses through all the families of the database
performing the following steps:

1. generate descriptors from the seed alignment

2. perform search using afSearch

3. compare search results with sequences in full alignment

4. compute statistical measures

The rest of this chapter presents the results and comparisons of the meth-
ods described earlier.

27

CHAPTER 3. EVALUATION AND RESULTS 28

3.2 Terminology

Throughout this thesis, a search match will be denoted as correct if it exists
in the full alignment of the searched RNA family.

In the context of a nucleotide search, any sequence in the nucleotide
sequence database can be described using one of the following four terms:

True positive is a sequence that is matched by the search and is in the full
alignment of the searched family.

False positive is a sequence that is matched by the search but is not in the
full alignment of the searched family.

True negative is a sequence that is not matched by the search and is not
in the full alignment of the searched family.

False negative is a sequence that is not matched by the search but is in
the full alignment of the searched family.

3.3 Statistical measures

This section defines some statistical measures that are used to evaluate and
compare the search results.

The following are the definitions of three important statistical measures:

Definition 22 (Sensitivity).

sensitivity =
number of True Positives

number of True Positives + number of False Negatives

Definition 23 (Specificity).

specificity =
number of True Negatives

number of True Negatives + number of False Positives

Definition 24 (Positive predictive value (PPV)).

PPV =
number of True Positives

number of True Positives + number of False Positives

Definition 25 (Ideal family). In the context of a nucleotide search, an ideal
family is one for which sensitivity = specificity = 100%.

From the definition above, an ideal family is one for which all correct
sequences are matched and no false positives are matched.

CHAPTER 3. EVALUATION AND RESULTS 29

3.4 Results

All the tests described in this section were run on a 2.13 GHz Intel Core2
machine with 3GB of memory. The pattern that is used to perform the tests
is to fix all of the parameters for search/descriptor generation and to alter
only one at a time, observing effects on the variables and statistical measures
defined in the previous two sections. In all of the results, search time denotes
the time taken to search all 630 families of Rfam 8.1.

3.4.1 First scheme

This section presents the results of searches performed using the first descrip-
tor generation scheme.

Match ratio

In the following series of tests, all the parameters are fixed except for the
match ratio parameter. The table below shows the values to which the pa-
rameters are fixed.

Parameter Value
Descriptor scheme scheme 1
Chaining ratio 0.5
Gap ratio 0.7
Max score 0.95
Information content conservation ratio

The following table shows the effect of changing the match ratio on the
statistical measures and the search time.

Match Ratio Avg. Sensitivity Avg. PPV Ideal family count search time (s)
0.00 0.0436 0.97289 25 10.36
0.20 0.19622 0.978 42 30.29
0.40 0.3598 0.97006 49 127.89
0.60 0.42569 0.94929 52 401.97
0.70 0.46929 0.93128 52 710.57
0.80 0.50998 0.9153 52 961.54

The table above shows that increasing the wildcard ratio, and hence the
number of wildcards in a descriptor, increases the average sensitivity, ideal
family count and search time while decreasing the average PPV.

CHAPTER 3. EVALUATION AND RESULTS 30

Information content

In this section, all the parameters are fixed except for the information content
which uses the LOGOS method instead of the conservation ratio. The results
are compared to those from the previous series of tests. The following are
the fixed parameters.

Parameter Value
Descriptor scheme scheme 1
Chaining ratio 0.5
Gap ratio 0.7
Max score 1.90
Information content LOGOS

The following table shows the results of using the LOGOS method instead
of the conservation ratio to decide which positions in a descriptor should be
wildcards.

Match Ratio Avg. Sensitivity Avg. PPV Ideal family count search time (s)
0.40 0.36108 0.96921 49 140.16
0.60 0.42997 0.95042 52 487.10
0.70 0.46634 0.93082 52 690.10

Comparing the table above with the results table on page 29, it can be
generally noted that LOGOS produces a slightly higher average sensitivity
than conservation ratio but in a trade-off for a slightly lower average PPV.
There is no difference in the ideal family count.

Chaining ratio

In this section, all the parameters are fixed except for the chaining ratio,
which determines the minimum number of chained matches needed to accept
a search result. It is determined as a percentage of the number of hair-
pins in the input alignment of the RNA family. The following are the fixed
parameters and their corresponding values:

Parameter Value
Descriptor scheme scheme 1
Gap ratio 0.7
Max score 0.95
Wildcard ratio 0.4
Information content conservation ratio

CHAPTER 3. EVALUATION AND RESULTS 31

The following table shows a comparison of results with different chaining
ratios.

Chaining Ratio Avg. Sensitivity Avg. PPV Ideal family count search time (s)
0.20 0.46249 0.91225 59 140.813869
0.40 0.37324 0.96921 51 142.899285
0.50 0.36108 0.96921 49 140.161394
0.60 0.26399 0.98839 29 139.90015

From the table above, increasing the chaining ratio decreases the average
sensitivity and ideal family count while increasing the average PPV. Differ-
ences in search times are negligible.

3.4.2 Second scheme

This section presents the results of searches performed using the second de-
scriptor generation scheme.

Wildcard ratio

This section investigates the effect of changing the wildcard ratio on the
results of searches performed using the second descriptor generation scheme.
The following parameters are fixed:

Parameter Value
Descriptor scheme scheme 2
Descriptor ratio 0.7
Max score 0.95
Wildcard ratio 0.4
Information content conservation ratio

Match Ratio Avg. Sensitivity Avg. PPV Ideal family count search time (s)
0.40 0.41883 0.97622 75 115.056093
0.60 0.52477 0.95707 79 233.492931
0.70 0.59369 0.948 79 346.513616
0.80 0.73708 0.93522 80 539.320117

Observe from the table above that although the second scheme produces,
on average, more than one descriptor per hairpin loop, the search times for
the second scheme are significantly lower than their corresponding search
time in the first scheme. This is due to the fact that the smaller number of
sequences used to generate a descriptor in the second scheme, has less vari-
ance among the bases in a column and hence less wildcards in the descriptor
which decreases the search time.

Chapter 4

Conclusion

In conclusion, this new technique for RNA homology search can be seen as
a trade-off between speed and accuracy or efficiency and effectiveness, that
is tending more towards the efficiency side than the effectiveness side. The
results in the previous chapter show that the second descriptor generation
scheme outperforms the first scheme in terms of both speed and accuracy.
The choice of parameters depends on the constraints of the application.

The program can thus provide a fast and reliable search tool for a subset
of the families, namely the families with high sensitivity and PPV results.

32

Appendix A

Extensions and Implementation

This appendix introduces two extensions that were implemented for the affix-
array search tool afSearch.

A.1 Multiple search extension

The afSearch tool was limited to performing only a single search per run,
i.e. the program starts and loads the index, performs one search using the
given descriptors and then exits. This pattern causes a lot of overhead due
to the considerable amount of time needed to load the search index every
time a search is performed. To overcome this limitation and to enable fast
database-wide searching, an extension for afSearch was written to enable
afSearch to load a search index once and use it to perform multiple searches
thus eliminating a massive amount of overhead that would have been needed
if the index were loaded to search every one of the 630 families in version 8.1
of the Rfam database.

A.2 Chaining extension

The afSearch program used an external tool called Chain2dim to perform the
chaining step described in section 2.4. Using Chain2dim for this application
had two drawbacks. First, it required that all potential matches (matches
before chaining and filtering) be written on files on the hard drive. This
process required a massive amount of time causing huge overhead for the
search. The second drawback was that Chain2dim did not support multiple
descriptors per hairpin, which is needed for the second descriptor generation
scheme.

33

APPENDIX A. EXTENSIONS AND IMPLEMENTATION 34

These two drawbacks were the motivation to implement a built-in chain-
ing extension for the afSearch tool. The new extension extracted the search
results directly from the memory, thus eliminating the overhead of writing
potential matches to hard drive. The extensions also added chaining support
for multiple descriptors per hairpin loop.

The extensions uses the graph approach described in section 2.4 to per-
form the chaining. The only disadvantage of such implementation is that it
runs in O(n2) instead of O(n lg n) for Chain2dim. However due to the small
size of the problem and the large overheads of Chain2dim, the extension runs
a lot faster than Chain2dim.

A.3 Implementation

The descriptor generation software was implemented in Python[1], a very-
high-level object oriented programming language.

The extensions described above were implemented in C.

Bibliography

[1] Python Programming Language. http://www.python.org/.

[2] M. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array
and its applications to genome analysis. Lecture Notes in Computer
Science, pages 449–463, 2002.

[3] M. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string
matching based on suffix arrays. Lecture Notes in Computer Science,
pages 31–43, 2002.

[4] V. Ambros. microRNAs tiny regulators with great potential. Cell,
107(7):823–826, 2001.

[5] S. Bernhart, I. Hofacker, S. Will, A. Gruber, and P. Stadler. RNAalifold:
improved consensus structure prediction for RNA alignments. BMC
bioinformatics, 9(1):474, 2008.

[6] S. Eddy and R. Durbin. RNA sequence analysis using covariance models.
Nucleic Acids Research, 22(11):2079, 1994.

[7] D. N. Frank and N. R. Pace. Ribonuclease p: Unity and diversity in a
trna processing ribozyme. Annual Review of Biochemistry, 67(1):153–
180, 1998.

[8] P. Gardner, J. Daub, J. Tate, E. Nawrocki, D. Kolbe, S. Lindgreen,
A. Wilkinson, R. Finn, S. Griffiths-Jones, S. Eddy, et al. Rfam: updates
to the RNA families database. Nucleic Acids Research, 2008.

[9] D. Gautheret and A. Lambert. Direct RNA motif definition and iden-
tification from multiple sequence alignments using secondary structure
profiles. Journal of Molecular Biology, 313(5):1003–1011, 2001.

[10] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. Eddy.
Rfam: An RNA family database. Nucleic Acids Research, 31(1):439,
2003.

35

BIBLIOGRAPHY 36

[11] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.

[12] S. Heyne. Pairwise Comparison of RNA Secondary Structures via Exact
Pattern Matches. Master’s thesis, Friedrich-Schiller-Universität Jena,
2007.

[13] M. Maaß. Linear bidirectional on-line construction of affix trees. Algo-
rithmica, 37(1):43–74, 2008.

[14] T. Macke, D. Ecker, R. Gutell, D. Gautheret, D. Case, and R. Sam-
path. RNAMotif, an RNA secondary structure definition and search
algorithm. Nucleic Acids Research, 29(22):4724, 2001.

[15] E. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM (JACM), 23(2):262–272, 1976.

[16] E. Nawrocki, D. Kolbe, and S. Eddy. Infernal 1.0: inference of RNA
alignments. Bioinformatics, 25(10):1335, 2009.

[17] G. Pavesi, G. Mauri, M. Stefani, and G. Pesole. RNAProfile: an al-
gorithm for finding conserved secondary structure motifs in unaligned
RNA sequences. Nucleic Acids Research, 32(10):3258, 2004.

[18] D. Sankoff. Simultaneous solution of the RNA folding, alignment and
protosequence problems. SIAM Journal on Applied Mathematics, pages
810–825, 1985.

[19] T. Schneider and R. Stephens. Sequence logos: a new way to display
consensus sequences. Nucleic Acids Research, 18(20):6097–6100, 1990.

[20] K. Schurmann and J. Stoye. An incomplex algorithm for fast suffix array
construction. Software: Practice and Experience, 37(3):309–329, 2007.

[21] G. Storz. An Expanding Universe of Noncoding RNAs. Science,
296(5571):1260–1263, 2002.

[22] D. Strothmann. The affix array data structure and its applications to
RNA secondary structure analysis. Theoretical Computer Science, 2007.

[23] E. Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

[24] G. Varani and W. McClain. The G· U wobble base pair: a fundamental
building block of RNA structure crucial to RNA function in diverse
biological systems. EMBO reports, 1(1):18, 2000.

BIBLIOGRAPHY 37

[25] M. Veeramalai, Y. Ye, and A. Godzik. Tops++fatcat: Fast flexible
structural alignment using constraints derived from tops+ strings model.
BMC Bioinformatics, 9(1):358, 2008.

[26] S. Will, K. Reiche, I. Hofacker, P. Stadler, and R. Backofen. Inferring
noncoding RNA families and classes by means of genome-scale structure-
based clustering. PLoS Comput. Biol, 3(4):65, 2007.

[27] M. Zuker. Optimal computer folding of large RNA molecules using
thermodynamics and oscilliary information. Nucleic Acids Res, 9:133–
148, 1981.

