Phylogeny
Quadtree Sampling

Rolf Backofen

Lehrstuhl für Bioinformatik
Institut für Informatik
Albert-Ludwigs-Universität Freiburg

Course Bioinformatics I

built on January 29, 2019
• **Finally:** Problem of find correct topology for unrooted tree
 • very complex problem ⇒ heuristics
 • best so far: quadtree sampling

• Quadtree \(\{a, b, c, d\} = \)

\[
\begin{array}{c}
a \\
\downarrow \\
b \\
\downarrow \\
c \\
\downarrow \\
d
\end{array}
\]

⇒ expresses neighbourship between taxa:

\(a-b \) are more closely related than \(a-c \) or \(a-d \) etc.
Example: 5 taxa

Consider given but unknown tree for 5 taxa

1. How many quadtrees? \(\Rightarrow 1 \) for every 4-subset of 5 taxa \(\Rightarrow \binom{5}{4} \) many

2. Given correct topology, what are the “correct” quadtrees?

\[
\{a, b, c, d\} \rightarrow \hspace{1cm} \{a, c, d, e\} \rightarrow \\
\{b, c, d, e\} \rightarrow \hspace{1cm} \{a, b, c, d\} \rightarrow \\
\{a, b, d, e\} \rightarrow \hspace{1cm} \{a, e\mid b, d\}
\]

Alternative tree encodings:
\[N_1(a, b|c, d), \ N_2(a, e|c, d), \ N_3(b, e|c, d), \ N_4(a, e|b, c), \ N_5(a, e|b, d)\]
Why are we interested in the \(\binom{n}{4} \) many quadtrees for \(n \) taxa?

Theorem

Given the \(\binom{n}{4} \) many quadtrees associated with an arbitrary topology for \(n \) taxa. Then the set of all quadtrees uniquely determines the final topology.

⇒ Idea of quadtree sampling

Step 1 for each of the \(\binom{n}{4} \) subsets of \(n \) taxa, determine the optimal quadtree using Felsenstein.

3 possibilities for each subset of 4 taxa to check

Step 2 combine the found quadtrees into final topology

- *Step 2 “simple” if all quadtrees are correct*
- *however, this is usually not the case ⇒ heuristic combination*
Idea Quadtree Sampling

- Idea of heuristic in **Step 2**: minimize error!
 - ⇒ iterative procedure, extend tree by one taxa in every step.
 - given reconstructed tree (topology) for \(k \) taxa \(\{ t_1, \ldots, t_k \} \)
 - consider every possible edge to add \(t_{k+1} \)

 for each edge \(e \):
 - consider all quadtrees (=neighborships) for \(\{ t_1, \ldots, t_{k+1} \} \) that contains \(t_{k+1} \)
 - count the number of neighborships not satisfied by the edge \(e \)
 - choose edge \(e \) with minimal number of unsatisfied neighborships

- Example: correct tree:

![Diagram](image.png)

- assume (**correct !**) result from step 1: associated quadtrees

 \[
 N_1(a, b | c, d), \; N_2(a, e | c, d), \; N_3(b, e | c, d), \; N_4(a, e | b, c), \; N_5(a, e | b, d),
 \]
Example: Effect of Addition of Edge

- add edge e to the following topology for $\{a, b, c, d\}$

- now add node e (incorrectly) to the c edge:

- check satisfied/unsatisfied neighbourships:

 \[
 N_1(a, b|c, d) \checkmark \quad N_2(a, e|c, d) \xmark \quad N_3(b, e|c, d) \xmark \\
 N_4(a, e|b, c) \xmark \quad N_5(a, e|b, d) \xmark
 \]

- edge will be marked with 4 (errors)
Example: Quadtree Sampling

\[N_1(a,b|c,d) \]

\[N_2(a,e|c,d) \]

\[N_3(b,e|c,d) \]

\[N_4(a,e|b,c) \]

\[N_5(a,e|b,d) \]

CC BY-NC-SA 4.0 - R. Backofen - Bioinformatics - University Freiburg - Germany
Final Outcome:

- **Note:** there might be several edges with minimal error

- **Solutions:**
 - randomize succession order of taxa
 - select minimal edge at random
 - run several times
 - build final **majority tree** (see literature)