Scoring: Similarity vs. Distance

- Scoring so far:
 - Type 1: similarity (e.g., PAM)
 - Type 2: distances $\hat{=} \text{metric (edit distance)}$

- Often: similarity measurable (PAM, BLOSUM) but distance needed

 eg. for computing guide tree for progressive multiple sequence alignment

- However: similarities can be translated into distances!

One of the first approaches by Feng&Doolittle (1987)

- **Given**: 2 sequences $a, b \in \Sigma^*$ and a similarity function S
- **Wanted**: (evolutionary) distance estimation D of a and b
Feng-Doolittle (1987): Similarity → Distance

- **Definitions:**
 - \(S(a, b) \)
 similarity of \(a, b \) (= score of opt. alignment)
 - \(S_{a,b}^{\text{max}} = \frac{S(a, a) + S(b, b)}{2} \)
 maximal similarity possible
 - \(S_{\text{rand}} \)
 expected score for aligning two random sequences \(a', b' \) with same length and compositions ⇒ \(a, b \) shuffled

- **Then:** define \(S_{a,b}^{\text{eff}} = \frac{S(a, b) - S_{\text{rand}}}{S_{a,b}^{\text{max}} - S_{\text{rand}}} \)

- \(S_{a,b}^{\text{eff}} \) normalized percentage similarity
 - values between 0 and 1
 - converges exponentially slow to 0 for increasing evolutionary distance

- **Hence:** for an approx. linear distance define \(D(a, b) = - \log \left(S_{a,b}^{\text{eff}} \right) \)
Feng-Doolittle (1996): Simplifying S_{rand} computation

- **Problem 1:** S_{rand} computationally very demanding
 - Have to:
 - generate random a', b'
 - align to get similarity score $S(a', b')$
 - derive statistics and expected score
 - needed for every sequence pair independently! (no general distance score)

- **Problem 2:** $D = -\log(S_{\text{eff}})$ not deterministic! (due to S_{rand})

- **Solution:** approximate using single (optimal) alignment A of $a, b \in \Sigma^*$

 $$S_{\text{rand}} = \frac{1}{|A|} \cdot \left(\sum_{(x, y) \in \Sigma \times \Sigma} S(x, y) \cdot N_a(x) \cdot N_b(y) \right) + \text{gaps}(A) \cdot S(-, \ast)$$

 $$\approx \text{frequency-weighted similarity score}$$

 $N_a(x) =$ occurrences of x in a; $\text{gaps}(A) =$ number of gaps in A