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Preface

This volume contains the contributions to WCB12, the eighth Workshop on Con-
straint Based Methods for Bioinformatics. The meeting was held on September
8, 2012 in Budapest colocated with the International Conference on Logic Pro-
gramming (ICLP12). For these proceedings and presentation at the meeting,
the committee decided to accept all of the 5 strong submissions after thorough
peer-review. Each paper was reviewed by 3-4 program committee members.

The workshop series has its origins already 14 years ago with the workshops
”Constraints and Bioinformatics/Biocomputing”. These workshops have been
colocated with the constraint programming conferences CP97 and CP98. Start-
ing from 2005, the Workshop on Constraint based methods for Bioinformatics
(WCB) series took place every year, colocated with either constraint or logic
programming conferences. The numerous submissions to the workshops over the
past years demonstrate impressively that constraint-based techniques provide
solutions for various complex bioinformatics tasks, comprising problems from
sequence alignment, simulation of biological systems, haplotype inference, pedi-
gree analysis, structure prediction of RNAs and proteins, and protein docking.
For this edition of WCB, we collected submissions discussing (in random order)
loop modeling for protein structure prediction, modeling of cell dynamics, anal-
ysis of biochemical networks, mapping of atoms in chemical reactions, and a web
service providing phylogenetic data.

We thank our colleagues Nicos Angelopoulos, Pedro Barahona, Alexander
Bockmayer, Alessandro Dal Palu, Agostino Dovier, Esra Erdem, Francois Fages,
Andrea Formisano, Ines Lynce, Enrico Ponticelli, Sven Thiele, and Pascal van
Hentenryck for supporting the workshop by joining the program committe. More-
over, we thank all authors who contributed their papers to WCB12. Our special
thanks go to our invited speaker Christoph Flamm for enhancing the meeting
with his keynote talk. Finally, we thank the organizers of ICLP12 and, in par-
ticular, the workshop chair Mats Carlsson for setting the comfortable friendly
environment that made this workshop possible. Finally, we thank the developers
of EasyChair; their system greatly supported the reviewing process and genera-
tion of the proceedings.

August 1st, 2012
Freiburg

Sebastian Will
Rolf Backofen
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Search and Rescue: logic and visualisation of

biochemical networks

Nicos Angelopoulos1, Paul Shannon2, and Lodewyk Wessels1

1 Netherlands Cancer Institute, Amsterdam, Netherlands
2 Fred Hutchinson Cancer Research Center, Seattle, USA

n.angelopoulos@nki.nl

Abstract. We utilise a recently introduced Prolog package that allows communi-

cation with the R statistical software to develop a graph-centric suit of procedures

that allow the exploration of biological data and hit-lists from within Prolog. We

show how a number of public protein-protein interaction databases can be intu-

itively be represented as facts before we present search algorithms that are natu-

rally expressed in logical terms. Visualisation of the resulting graphs is done via

low-level communication to Bioconductor’s RCytoscape package. We illustrate

the utility of the integrative Prolog platform using two public databases and a

graph search to connect elements of genes involved in cell motility.

1 Introduction

Constraint logic programming is a powerful yet under-valued platform for research and

analysis in bioinformatics and computational biology. Scripting, high-level of abstrac-

tion, interpreter-base and automatic memory management are all features of logic pro-

gramming (LP) that make it ideal for the development of research-led code in the above

areas.

The areas in which LP is deficient are: the lack of user-based package extensions as

typified by code repositories, the limited number of statistical packages and its graph-

ical abilities. The deployment of LP in areas that have a strong ethos with regard to

backing conceptual ideas and research results with functioning code will help create

the necessary conditions for code repositories. This has already been born out for the

communities of R [7], Perl and Python. Where, their use in bioinformatics has substan-

tially bolstered their community-contributed code base. One might argue, that a surge

in the use of LP in computational biology would be beneficial for its expansion. This is

seriously hampered by the second and third shortcomings, i.e. the lack of statistical rea-

soning and graphical output software suits. The use of LP has been previously argued

and used in bioinformatics and particular in ontology reasoning [6].

In this paper we take advantage of recent developments in integrating R within Pro-

log [1] to explore graph searching and visualisation within logic programming. The

strengths of Prolog in data representation and search are put into representing and rea-

soning with biological knowledge. Furthermore, the complementary strengths of R in

visualisation are brought to bear within a logic programming environment, thus doing

away with need of re-implementing such procedures.
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The remainder of the paper is organised as follows. Section 2 describes protein-

protein interactions networks (PPIs). Section 3 presents graph operations on gene lists

in the context of PPIs and develops these ideas on a specific PPI and motility gene list.

The paper’s concluding remarks are in the Section 4.

2 Protein-Protein interaction networks

The last decades have witnessed a phenomenal increase in the amount of biological

knowledge that has been published and codified. This acceleration can be directly at-

tributed to the evolution of high throughput technologies such as genome wide expres-

sion assays, microscopy, and deep sequencing.

One important way in which biological knowledge is codified is in the form of

protein-protein interaction (PPI) databases such as STRING [9] andHPRD [4]. STRING

collates information from a variety of sources including predicted interactions and gives

weight scores to each edge based on the strength of the evidence supporting the cor-

responding interaction. It currently contains information on 5, 214, 234 proteins from

1133 organisms and holds 224, 346, 017 interactions. HPRD holds human proteins and

interactions between them. Currently there are 39, 194 interactions in HPRD.

Apart from direct interactions it is also straight forward to represent interactions

passing through metabolites, such as the interactions present in the metabolic path-

ways present in the KEGG database [3]. Visualising PPIs are often in the form of net-

works/graphs which provide an overall picture of the connectivity between the various

pathways mapping biological functions.

Representing these types of interactions depends to a large extent on the operations

one plans to perform. One way in which directional HPRD interactions can be stored is

as interaction facts:

interaction( From, To, Types, References ).

Proteins From and To are mapped to Entrez IDs and Types are the types of evidence

provided in References. Alternatively, when type of interaction needs to be explicitly

represented, as is the case in our KEGG database example below, one can represent the

separate reaction types as separate facts:

activation( From, To, Organism, Pathway ).

inhibition( From, To, Organism, Pathway ).

phosphorylation( From, To, Organism, Pathway ).

ubiquination( From, To, Organism, Pathway ).

The represented interaction of the involved proteins is known to occur in the specified

Organism and is part of the KEGG pathway identified by Pathway.
As regulatory, metabolic and signalling networks become better known, due largely

to advances in laboratory technique, we will nonetheless be faced by the condition-

specific, and cell-line specific nature of all molecular interactions within the cell. Logic

programming offers new capabilities to understand these interactions, and in our efforts

to predict and control cellular behaviour.
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Fig. 1. Transcription factors control metabolic pathways activity in yeast [2].

The complexity and contingency of regulatory networks is an emerging, recurrent

theme demonstrated in a plethora of computational biology papers. For instance, [2] de-

scribes a combination of metabolite flux measurements and protein abundance across

119 transcription factor knockout strains in yeast, to identify a small number of tran-

scription factors which regulate a crucial step in the TCA cycle. Using RCytoscape,

we displayed these on top of the yeast consensus carbon cycle metabolic network

(http://www.comp-sys-bio.org/yeastnet/).

Logic programming is a natural complement to this network visualisation of the data

in Fendt et. al [2]- which is multi-dimensional, and representative of the rich networks

which will become increasingly available. Representing and reasoningwith the multiple

levels of such networks that include regulatory, metabolic and signalling components

can be an important future research area for logic programming. Its AI heritage can be

put in good use in elucidating the intricate details of such structures and inferentially

associate or predict the outcome of interventions.

3 Gene-lists in Graphs

A variety of bioinformatics analyses have as an end or intermediate product the gen-

eration of a list of genes. Visualising these lists in the context of protein interaction
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Fig. 2.KEGG interactions for a subset of the members of an adhesome library. Nodes are proteins

and edges denote interactions. Blue nodes are connecting proteins that do not appear in the library.

Edges are coloured as per type of interaction.

networks is a useful tool through which results can be presented. Visualisation is par-

ticularly powerful when communicating results to experimental biologists.

Cell motility is a complex biological process that plays a critical role in develop-

ment, wound healing and cancer metastasis. It is mediated by focal adhesion complexes

which are dynamic structures that may involve a large number of proteins. There exists

a large body of literature that studies the molecular mechanisms by which cells move in-

vitro and in-vivo. The main core of the proteins involved in complexes has been placed

by some studies to 156 [11] while when considering potential encoding genes for the

whole motility apparatus, the total number can be substantially greater. Such broadly

defined libraries play an important role in screening programmes. Here we explore a set

of 570 motility related genes that were gathered from a variety of sources [10].

3.1 Graph operations

We mapped the list of motility genes to the KEGG interaction pathways. We construct a

graph by adding an edge between any pair of genes with a known interaction in KEGG.

As only a limited number of pairs have direct interactions we extended the graph by

implementing a depth first search algorithm based on the representation of KEGG in-

teractions we already discussed. The most connected sub-graph is designated as the

seed of the main graph and attempts are made to expand it. For each of the remaining

sub-graphs or disconnected motility genes, a breadth first attempt is made to connect
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it to the main graph by adding n additional nodes. If n such nodes can be found, the

current sub-graph is removed from the list of sub-graphs to be connected, otherwise

the algorithm repeats the test for n = n + 1. The algorithm is greedy in that it only

analyzes the first extending path of n additional genes it encounters. The sub-graph is

removed from the list of sub-graph to be connected if there exists no n such that it can

be connected to the main graph. The algorithm terminates when it encounters an empty

sub-graphs list. The implementation of the algorithm in Prolog is elegant and easy to

communicate and maintain. We hope it will be added to the standard graph operations

library that exists in many Prolog systems.

3.2 Visualisation software

The results of the algorithm on the motility list are shown in Figure 2. Note that not

all genes can be connected in this case. Some of these disconnected genes are shown

at the bottom of the graph. Visualisation has been one of the areas in which Prolog has

been weak. Here we utilise r..eal [1], a recently developed Prolog library that allows

efficient interactions with the R statistical software system. We developed software that

allows the visualisation of Prolog graphs via the RCytoscape Bioconductor package

[8]. Our interface code can be used with Prolog represented graphs from the standard

graph library and provides convenient options for rendering a variety of aspects for all

graph elements. It is worth noting that the interaction between Prolog and Cytoscape

is bi-directional. Sets of nodes selected via the graphical interface can be interactively

accessed via Prolog.

4 Conclusions

We have argued in this paper that Prolog is a power platform for data analysis and

computational research in biofinformatics. Biological knowledge can be succinctly rep-

resented and reasoned about within logic programming which has traditional strengths

in artificial intelligence research and provides a high-level at which one can interact

with biological datasets.

In addition, we present practical steps towards the promotion of logic program-

ming in the manipulation and visualisation of biochemical networks and associated

gene lists. Graph operation on such lists are crucial to communicating results of analy-

sis to experimentalists but can also provide the basis for further analysis. For example,

in network based regression algorithms [5]. Our software is a useful addition to existing

Prolog code in the bioinformatics domain [6].
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Protein Loop Modeling via Constraints and
Fragment Assembly

F. Campeotto1,2, A. Dal Palù3, A. Dovier2, F. Fioretto1, and E. Pontelli1

1 Dept. Computer Science, New Mexico State University
2 Depts. Math. & Computer Science, Univ. Udine

3 Dept. Mathematics, Univ. Parma

Abstract. Methods to predict the structure of a protein often rely on
the knowledge of macro-sub-structures and their exact or approximate
relative positions in space. The parts connecting these sub-structures
are called loops and, in general, they are characterized by a high degree
of freedom. Modeling proteins loops is thus a critical problem in pre-
dicting protein conformations that are biologically realistic. This paper
introduces a novel constraint targeted at modeling proteins loops with
fragment assembly, and presents a filtering technique, inspired by inverse
kinematics, that can drastically reduce the search space of potential con-
formations.

1 Introduction

Proteins are macro-molecules of fundamental importance in the way they reg-
ulate vital functions in all biological processes. These function are in a direct
correspondence with the protein’s 3D structure and, due to its inherent and com-
putational complexity [1, 5], investigating its spatial conformation is one of the
most important open problems in the bioinformatics field. This has originated a
variety of alternative approaches. One method, named fragments assembly, has
proved to be particularly promising. The idea behind this method is to assemble
a protein structure by using small protein subunits as templates that present
similarities (homologous affinity) w.r.t. the object sequence.

Nevertheless, even when protein structure prediction is realized using ho-
mologous templates, the final conformation may present aperiodic structures
(loops) connecting the known protein segments on the outer region of the pro-
tein. These protein regions are, in general, not conserved during evolution, and
therefore templates provide very limited statistical structural information. Mod-
eling a protein loop often imposes constraints in the way of connecting two
protein segments. Restrictions on the mutual positions and orientations (dihe-
dral angles) of the loop anchors are often present. Such restrictions are defined
as the loop closure constraints (Fig. 1). Popular methods for loop prediction
include the CCD [3] and the SOS algorithm [7].
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Fig. 1: Helices with
a loop. The loop
anchors are colored
in orange; the loop
constraint is satis-
fied by the loops
connecting the two
anchor points.

In this paper, we adopt Constraint Programming (CP)
techniques to encode such constraints and, together with
fragments assembly, we investigate the problem of pro-
tein loop modeling. In particular, we abstract the problem
as a general multi-body system, where each composing
body is constrained by means of geometric properties in
the space and related to other bodies through joint rela-
tionships. This model leads to the Joined-Multibody (JM)
constraint. Realistic loop modeling requires the assembly
of hundreds of different body versions, making the prob-
lem intractable. We study an efficient approximated prop-
agator, named JM filtering (JMf), whose propagation is
performed by an ad-hoc algorithm. This propagator allows
us to efficiently compute classes of solutions, partitioned
by structural similarity and controlled tolerance.

We demonstrate the strength of the filtering algorithm
in significantly reducing the search space and in aiding the
selection of representative solutions.

2 The Joined-Multibody Constraint

A rigid block B is composed of an ordered list of at least three 3D points, denoted
by points(B), represented by circles in Figure 2. The anchors and end-effectors
of a rigid block B, denoted by start(B) and end(B), are the two lists containing
the first three and the last three points of points(B). With B(i) we denote the
i-th point of the rigid block B. For two ordered lists of points p and q, we write
p_ q if they can be perfectly overlapped by a rigid translation and/or rotation
(i.e., a roto-translation).

Definition 1 (Multi-body). A sequence S1, . . . , Sn of non-empty sets of rigid
blocks is said to be a multi-body. A sequence of rigid blocks B1, . . . , Bn, is called
a rigid body if, for all i = 1, . . . , n− 1, end(Bi) _ start(Bi+1).

A rigid body can be seen as one instance of a multi-body that guarantees the par-
tial overlapping of each two consecutive blocks. The overlapped points end(Bi)
and start(Bi+1) constitute the i-th joint of the rigid body, marked by orange
rectangles and grey circles in Figure 2. The number of rigid bodies “encoded”
by a single multi-body is bounded by Πn

i=1|Si|. A rigid body is defined by the

Fig. 2: A schematic representation of a rigid body

overlap of joints, and thus relies on a chain of relative roto-translations of its
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blocks. Each points(Bi) is therefore positioned according to the coordinate sys-
tem associated to a rigid block Bi−1. Note that once the reference system for B1

is defined the whole rigid body is completely positioned. The relative positions
of two consecutive rigid blocks Bi−1 and Bi of a rigid body (2 ≤ i ≤ n) can be
defined by a transformation matrix Ti ∈ R4×4 determined from the start and
end of the blocks according to the standard Denavit-Hartenberg parameters [4]
obtained from the start and end of the respective blocks. We denote the product
T1 · T2 · . . . · Ti · (x, y, z, 1)T by ∇i(x, y, z).

For i = 1, . . . , n, the coordinate system conversion (x′, y′, z′), for a point
(x, y, z) ∈ points(Bi) into the coordinate system of B1, is obtained by:

(x′, y′, z′, 1)T = T1 · T2 · . . . · Ti · (x, y, z, 1)T = ∇i(x, y, z) (1)

Homogeneous transformations are such that the last value of a tuple is always 1.
Note that the matrix T1 affects the positioning and rotation of the first fragment
and thus the overall placement of the protein.

Definition 2 (JM-constraint). The joined-multibody (JM) constraint is de-
scribed by a tuple: J = 〈S,V ,A,E, δ〉, where:

– S = S1, . . . , Sn is a multi-body. Let B = {B1, . . . , Bk} be the set of all rigid
blocks in S, i.e., B =

⋃n
i=1 Si.

– V = V1, . . . , Vn is a list of finite-domain variables. For i = 1, . . . , n, the
variable Vi is associated to a domain dom(Vi) = {j : Bj ∈ Si}.

– A = A1,A2,A3, and E = E1, . . . , E3n are lists of sets of 3D points such that:
• A1 ×A2 ×A3 is the set of admissible points for start(B), with B ∈ S1;
• E3i−2×E3i−1×E3i is the set of admissible points for end(B), with B ∈ Si,
i = 1, . . . , n

– δ is a constant, used to express a minimal distance constraint between dif-
ferent points. Let us assume that for all B ∈ B and for all a, b ∈ points(B),
if a 6= b then ‖a− b‖ ≥ δ (where ‖ · ‖ is the Euclidean norm).

Intuitively, the JM constraint limits the spatial domains of the various blocks
composing the multibody, in order to retain those fragments that assemble prop-
erly and that do not compenetrate.

A solution for the JM constraint J is an assignment σ : V −→ {1, . . . , |B|}
s.t. there exists a sequence of matrices T1, . . . , Tn with the following properties:

Domain: For all i = 1, . . . , n, σ(Vi) ∈ dom(Vi).

Joint: For all i = 1, . . . , n − 1, let (a1, a2, a3) = end(Bσ(Vi)) and (b1, b2, b3) =
start(Bσ(Vi+1)), then it holds that (for j = 1, 2, 3):

∇i(ajx, ajy, ajz) = ∇i+1(bjx, b
j
y, b

j
z)

Spatial Domain: Let (a1, a2, a3) = start(Bσ(V1)), then T1 · aj ∈ Aj × {1}.
For all i = 1, . . . , n, let (e1, e2, e3) = end(Bσ(Vi)) then

∇i(ejx, ejy, ejz) ∈ E3(i−1)+j × {1}
where 1 ≤ j ≤ 3 and T2, . . . , Ti (in ∇i) are the matrices that overlap Bσ(Vi−1)

and Bσ(Vi) (the product ×{1} is due since we use homogeneous coordinates).
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Minimal Distance: For all j, ` = 1, . . . , n, j < `, and for all points a ∈ points(Bσ(Vj))
and b ∈ points(Bσ(V`)), it holds that:

‖∇j(ax, ay, az)−∇`(bx, by, bz)‖ ≥ δ

2.1 Loop Modeling by the joined-multibody constraint

We addressed the problem of connecting two rigid block structures through a
protein loop via the joined-multibody constraint. The proposed encoding and the
constraint solving procedure are implemented within FIASCO (Fragment-based
Interactive Assembly for protein Structure prediction with COnstraints) [2]. FI-
ASCO is a C++ tool that provides a flexible environment that allows us to easily
manipulate constraints targeted at protein modeling through fragment assembly.
The starting point is a given protein together with the pair of the two known
(large) blocks connected by the target loop. The model will account for them
in the definitions of sets E. The coordinates of the initial and the final anchors,
relative to the given blocks, are known. Moreover, the sequence of amino acids
a1, . . . , an connecting the two anchors is known. Loop modeling can be realized
using the joined-multibody constraint J = 〈S,V ,A,E, δ〉 where:

• For i = 1, . . . , n the set Si contains all the protein’s fragments (i.e., rigid
blocks) associated with the amino acid ai.

• dom(Vi) is the set of labels that uniquely identify the fragments that can be
used for the amino-acid ai. Note that a fragment is used to encode a single
residue.

• The constant δ (now δ = 1.5Å) asserts a minimum distance between atoms,
used for overlapping fragment during each fragments assembly step.

• For the spatial domains, we set in A the coordinates of the initial anchor
and in E a 3D interval. This interval is calculated from the coordinates of
the final anchor, using the covalent radii bond distances of the specific types
of atoms belonging to the final anchor itself. Note that now we use intervals
to represent sets of points. We use this slack for the last 3 points of the
loop in order to cushion the error produced during the clustering step, still
obtaining solutions that are geometrically eligible.

Let us observe that more than one loop in the same target protein can be
modeled simultaneously in this way.

3 Filtering algorithm for the joined-multibody constraint

We designed a filtering algorithm (JMf) for ad-hoc propagation of the JM con-
straint in protein loop modeling. The Joined-Multibody filtering is inspired by
arc consistency on the 3D positions of end-effectors, and uses a clustering re-
lation over these bounds, in order to retain those domain variable assignments
that produce similar spatial results. The equivalence relation captures those rigid
bodies that are geometrically similar and thus compacts small differences among
them; relevant gains in computation time can be derived when some errors are
tolerated.
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The JMf algorithm receives as input a JM-constraint 〈S,V ,A,E, δ〉, a clus-
tering function ∼ on the space of triples of 3D points, and a function fsel that
selects a representative fragment for each cluster (i.e., each equivalence class)
produced by ∼. Note that the JMf algorithm is parametric w.r.t. ∼ and fsel.
JMf is based on an iterative procedure that computes for each body in S the
fragments to be retained. Since the joints depend on the preceding bodies, the
algorithm computes the domains starting from the first body. At iteration i,
every fragment from Si is joined to the previous bodies instances already com-
puted at step i, producing a set Ri of end-effectors. Based on local geometric
properties, the function ∼ computes a set of equivalence classes from Ri. From
each of such clusters, the function fsel selects the new fragment representative
that satisfy the constraint and that will be used to calculate Ri+1 in the next
step.

Clustering. The proposed clustering relation for loop modeling takes into ac-
count two factors: (a) the positions of the end-effectors in the 3D space and
(b) the orientation of the planes formed by the fragments’ end-effectors. This
combination of clusterings allows to capture both spatial and rotational features
of rigid bodies.

The spatial clustering (a) is based on three parameters: kmin, kmax ∈ N,
(kmin ≤ kmax), and r ∈ R, r ≥ 0. The clustering works as follows. Given set of
fragments, the end-effectors of each fragment are considered (i.e., its three last
atoms) and the centroid of the triangle based on their coordinates is computed.
Then, a set of kmin fragments, pairwise distant at least 2r, is selected from
the initial set. These fragments are selected as representatives of the equivalence
classes. Other fragments will be assigned to a class whom representative centroid
has mutual distance of at most r Å. This clustering ensures a rather even initial
distribution of clusters, however some fragments may not fall within the kmin
clusters. We allow to create up to kmax−kmin new clusters, each of them covering
a sphere of radius r. Remaining fragments are then assigned to the closest cluster.

The orientation clustering (b) partitions the fragments according to their rel-
ative orientation of the plane (called β) described by the end-effectors positions.
This is handled in a pre-processing phase, being independent on other domains.
The final cluster is the intersection of the two partitioning algorithms. Moreover,
the representative selection function fsel selects the fragments for each partition
according to some preferences (e.g., most frequent fragment, closest to the center,
etc.).

The filtering algorithm is similar to a directional arc consistency, when the
global constraint is viewed as a conjunction of binary constraints between adja-
cent blocks. In particular, as soon as the domain for the variables related to the
initial anchor of a JM constraint is instantiated, the corresponding constraint is
woken up. The algorithm JMf is invoked with the parameters described above.
If there are no empty domains after this stage, the search proceeds by selecting
the leftmost variable and assigning it a fragment (block) in a leftmost order. All
domains are pre-sorted from the most likely to the least likely for each variable
(the previous stage of filtering preserves the ordering).
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4 Experimental Results

The proposed method has been tested on a data set of 10 loop targets for each
of the lengths 4, 8, and 12 residues. The targets are chosen from a set of non-
redundant X-ray crystallography structures structures [3]. We analyze the per-
formances of the Joined-Multibody filtering by examining the fraction of the
search space explored during solution search, along with the qualities of the
loop prediction. The latter is expressed by a meausre of the root mean square
deviation (RMSD) of the atoms of proposed loop with respect to the native
conformation. All experiments are conducted on a Linux Intel Core i7 860, 2.5
GHz, memory 8GB, machine.

To show the filtering power of the JM constraint we employ different evalu-
ations based on protein loop lengths. For short protein loops (10 loops of length
4) we analyze the loop closures generated by two CSPs: the first with the JM
constraint enabled (JMf), and the second is a simple combinatorial fragment
assembly search (NC). For both problems we exhaustively explored the search
space. For longer protein loops (10 loops of lengths 8 and 12, respectively), where
a complete search space exploration cannot be computed in reasonable time, we
compute an approximation of a filtering measure based on the ratio between the
nodes pruned by propagating the JM constraint within a timeout of 600 seconds4

and number of possible nodes expandable by an NC search.
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Fig. 3: Ratio of the solutions for short loop lengths (left) and RMSD comparison (right)

The aforementioned experiment are reported in Figure 3 (left) and Figure 4.
We relate the filtering measures at varying of the cluster parameters r and β.
The adopted parameters for the β angles are reported on the x-axes, while the
r values for the clustering distances are plotted in different colors (10Å is the
lightest color). The number of fragments in each variable domain is 60. This
increases the likelihood to generate a loop structure that is similar to the native
one.

4 We merely count the actual search time, excluding the time spent in the clustering
phase from the total running time.
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Figure 3 (left) reports the ratio (Rsol) between the number of solutions for
the CSPs with and without the JM constraint at varying of the clustering pa-
rameters, while kmin and kmax are set to 20 and 100, respectively. The white
dots represent the average values of all the trials and the vertical bars illustrate
the standard error of the mean: σ√

N
, where σ is the standard deviation and N

is the number of samples. It can be observed that the number of the solutions
generated by the JM constraint decreases as the β and r values increase, as one
can expect. The size of the prop-labeling tree and running times decrease with
a similar trend.
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Fig. 4: Ratio of the search space explored using JMf for 8-loops (left) and 12-loops.

Longer loops are analyzed in Figure 4, which reports the percentage of the
approximate space left to explore after the JM propagation. The space filtered
by the JM constraint rises up to 10% of the original prop-labeling tree according
to the increasing values of r and β. However, this is just an under-estimation of
the pruning capability, as several fragments might immediately lead to a failure
due to spatial constraints and allotting more time for the computations allows
further pruning, thus increasing the filtering measure.

Figure 3 (right) reports on the qualities of the loop predictions generated
by the JMf. In particular, we show that the RMSD measure is not significantly
degraded by the large filtering performed by the propagator. The experiments
are carried on with kmin = 20 and kmax = 100, while r and β are set respec-
tively to 1.0 and 15 for loops of length 4, and 2.5 and 60 for longer loops. In our
analysis, such parameters guarantee a good compromise between filtering power
and accuracy of the results. In Figure 3 (right), the bottom and top point of
each vertical line show the RMSD of the best and worst prediction, respectively,
within the group of targets analyzed. The results are biased by the fragment
database in use: we excluded from it the fragments that belong to the deposited
protein targets. Therefore it is not possible to reconstruct the original target
loop and none of the searched are expected to reach a RMSD equal to 0. The
bottom and top horizontal lines on each box shows the RMSD of the 25th and
75th percentile prediction, respectively, while the line through the middle shows
the median. We observe no substantial difference in the distributions related to
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short loop predictions (length 4), and an improvement for targets of greater size
due to time-out. Such results experimentally show the strength of our method:
JM filtering algorithm removes successfully redundant conformations; moreover,
it quickly direct the search space exploration through predictions that are bio-
logically meaningful.

We also compare our method to three other state-of-the-art loop samplers:
the Cyclic Coordinate Descent (CCD) algorithm [3], the self-organizing algo-
rithm (SOS) [7], and the FALCm method [6]. Table 1 shows the average RMSD
for the benchmarks of length 4, 8 and 12 as computed by the four programs.
Note that our solution does not include specific heuristics and additional infor-
mation that are used in the other programs. Moreover, it can be noted that our
results are in line with those produced by the other systems, even if a general
fragment database has been used in our system.

Loop Average RMSD
Length CCD SOS FALCm JMf

4 0.56 0.20 0.22 0.30
8 1.59 1.19 0.72 1.31
12 3.05 2.25 1.81 1.97

Table 1: Comparison of loop sampling methods

5 Conclusions

In this paper, we presented a novel constraint (joined-multibody) to model rigid
bodies connected by joints, with constrained degrees of freedom in the 3D space,
along with a filtering technique to exploit the geometrical features of the rigid
bodies. We showed its application in sampling protein loop conformations. In
particular, we showed that the search space of the protein loop conformations
generated is drastically reduced, when the joined-multibody constraint is prop-
agated, with controlled loss of quality.

As future work, we plan to apply our filtering method to other related appli-
cations, for example, those where there is the need of generating large number
of protein conformations, by acting only on a restricted part of the protein.

Acknowledgments. The research has been partially supported by a grant from
the AHPCR Center, NSF grants CBET-0754525 and IIS-0812267, and PRIN
2008 (20089M932N).
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Qualitative Models of Cell Population Dynamics
as Constraint Satisfaction Problems

Tom Kelsey1 and Steve Linton1

School of Computer Science,
University of St Andrews, KY16 9SX, UK

Abstract. Existing approaches to the modelling of mammalian ovarian
cell population dynamics involve differential equations. This methodol-
ogy has several defects, including the inclusion of modelling assumptions
that may not be supported by empirical data. We present the derivation
of Constraint Satisfaction Problems based on qualitative properties of
the underlying cell population dynamics. When combined with bound-
ary conditions, exploration of the space of solutions provides a range of
models that can be assessed for validity using residual errors from em-
pirical observations. Valid models, i.e. those providing the basis for a
quantitative model capable of interpreting and predicting average case
population dynamics for several inter-connected cell-types, can also be
categorised in terms of computational complexity of potential underlying
quantitative models.

Keywords: Constraint Satisfaction, Qualitative Models, Compartmen-
tal Models, Cell Dynamics

1 Introduction

Successful computer modelling in biomedicine is a difficult undertaking. Domains
are often poorly measured due to ethical, technical and/or financial constraints.
In extreme instances the collection of accurate longitudinal data is simply im-
possible using current techniques. This adversely affects the production and as-
sessment of hypothetical quantitative models, since the incompleteness of the
domain datas necessitates the making of assumptions that may or may not re-
flect ground truths. A second category of assumptions are involved in the choice
of quantitative modelling framework. Hypothetical solutions can be ruled out by
restricting the complexity of models, and unrealistic models can be allowed by
over-complex models. For both types of a priori assumption, mutually exclusive
assumptions must be kept separate, sometimes with no biomedical justification.

One way to overcome some of these difficulties is to use qualitative mod-
elling [12, Chapter 3], whereby the modelling process commences by describing
what must, might and cannot happen in informal and conceptual terms, followed
by the derivation and assessment of quantitative models that can be deployed
for investigative use. Qualitative models identify the type and number of impor-
tant entities of a system, and describe relationships between them in terms of



Workshop on Constraint-Based Methods for Bioinformatics (WCB12)

17

2 CSP-derived Qualitative Models

required, allowed or forbidden behaviour. Natural frameworks for such models
include Constraint Programming [18], and Mixed-integer Linear (or Quadratic)
Programming [9]. Each of these allows the formal description of relationships
between (classes) of objects, and each has advanced techniques for either finding
solutions or proving that no solution exists.

In this paper we focus on a single area of biomedicine – the maturation of
human ovarian cells – and a single modelling framework – Constraint Program-
ming. In Section 2 we describe briefly our domain of interest and limitations
of the purely quantitative approach that has been used in previous studies. We
describe our framework for defining classes of qualitative models and solving for
candidate instances in Section 3, followed by a brief discussion in Section 4.

2 Background & Motivation

Fig. 1. Compartmental schematic of human ovarian follicular development.

The human ovary contains a population of primordial (or non-growing) folli-
cles (F0 in Figure 1). Some of these are recruited towards maturation and start
to grow. Many of these die off through atresia, but some become primary follicles
(F1 in Figure 1). Again, a proportion of these die off with the remainder grow-
ing into secondary follicles (F2 in Figure 1). This continues until a very small
proportion become eggs that are released from the ovary for potential fertilisa-
tion. For the purposes of this study, we consider only the dynamics of follicle
progression (primordial to primary to secondary). Since there are well-defined
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physiological differences between the types, the obvious choice of quantitative
model is compartmental:

dF0

dt
= −kT0F0 − kL0F0

dF1

dt
= kT0

F0 − kT1
F1 − kL1

F1

dF2

dt
= kT1F1 − kT2F2 − kL2F2

Kinetic loss and transfer parameters – kLi and kTi respectively – are found in
principle by estimating populations at known ages, then fitting ODE solutions
that minimise residual errors [8].

There are several limitations to this approach. Empirical data is scarce for
primordial follicles [19], is calculated by inference for primary follicles [13], and
simply does not exist for secondary follicles. Mouse-model studies have produced
reasonable parameter estimates and validation [1], but it is not known how well
these results translate to humans. Recent studies have shown that human ovarian
stem-cells exist, suggesting that further model parameters are needed to allow
for regeneration of the primordial follicle pool. The resulting models suffer from
biological implausibility in the mouse model [1], and remain to be produced
for humans. A key methodological drawback is that the use of compartmental
models leads to a constrained class of solutions that excludes other plausible
models. For example, the dynamics could also be modelled by nonlinear reaction–
diffusion equations that lead to solutions that are unlikely to be obtained from
a system of coupled linear ODEs (Figure 2).

Fig. 2. Two hypothetical models of primordial follicle population from conception to
menopause. On the left, a peak model adapted from [19]. On the right, the solution
of a reaction–diffusion equation. Both are supported by existing physiological theory
and empirical evidence, and both are intended to describe the same cell population
dynamics.
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3 Qualitative modelling of ovarian cell dynamics

We use the Savile Row tool that converts constraint problem models formulated
in the solver-independent modelling language Essence’ [10] to the input format of
the Constraint Satisfaction Problem (CSP) solver Minion [11]. Savile Row con-
verts Essence’ problem instances into Minion format and applies reformulations
(such as common subexpression elimination) that enhance search. As well as
the standard variables and constraints expected of a CSP modelling language,
Essence’ allows the specification of “for all” and “exist” constraints, that are
then re-cast as basic logic constraints in Minion.

We expect our candidate qualitative models to be implemented as differential
equations or by non-linear curve-fitting. In both case we need to specify the
notions of rate of change and smoothness. Suppose that X[0, . . . , n] is a series
of variables representing a follicle population at different ages. Then we can
approximate first derivatives by X ′[1, . . . , n] where X ′[i] = X[i]−X[i− 1], and
second derivatives by X ′′[1, . . . , n − 1] where X ′′[j] = X ′[j + 1] − X ′[j]. These
definitions allow us to post qualitative constraints about peak populations

∃p ∈ [1, . . . , n] such that ∀i > p,X ′[i] < 0 ∧ ∀i < p,X ′[i] > 0.

We can require or forbid smoothness by restricting the absolute value of the X ′′

variables, and require or forbid fast rates of population growth by restrictions
on the X ′[i].

By having three sets of variables (primordial, primary and secondary folli-
cles) each with up to two derivative approximations, we can model interactions
between the populations at different ages. For example, we can require a zero
population of secondary follicles until puberty, after which the population be-
haviour is similar to that of primary follicles, but on a smaller scale and with an
adjustable time-lag.

To further abstract away from quantitative behaviour, populations can be
defined in terms of proportion of peak rather than absolute numbers of cells,
different time scales can be used for different age ranges (e.g. neonatal vs post-
menopausal), and we can model the qualitative behaviour of values that are
normally log-adjusted in quantitative studies. Table 1 gives an illustrative ex-
ample of a model involving one type of follicle.

Any solution of such a model is a candidate for the basis of a quantitative
model of actual cell dynamics, once boundary conditions and scale conditions
are supplied. For example, the population of each type of follicle is known to
be zero at conception, and can be assumed to be below 1,000 at menopause.
Several studies have indicated that peak primordial population is about 300,000
per ovary. There is initial evidence that primary follicle population peaks at
13–15 years of age in humans. Using a combination of facts and quantitative
information, a range of quantitative models can be produced for later empirical
validation.

Each of our qualitative models represents a class of CSPs, a set of variables
with integer or Boolean domains together with a set of constraints involving
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those variables. A solution is an assignment of domain values to variables such
that no constraint is violated. In our methods, solutions are found by Minion
using backtrack search with a variety of search heuristics. In general, there will be
many more solutions to the CSP than realistic models, and many more realistic
models than models that accurately describe reflect what happens in nature.
Moreover, the resulting quantitative models can be graded by their complexity
– linear ODE, piecewise-linear ODE, quadratic ODE, ..., non-linear PDE. Hence
the ideal situation would be a CSP solution leading to an easily solved quantitive
model that is biologically accurate. However, no such solution need exist, and we
need to investigate the tradeoff between model complexity and model accuracy.

We can sample the space of CSP solutions by randomly ordering the variables
before making value assignments, thereby constructing a different but logically
equivalent search tree at each attempt. This allows us to estimate the likelihood
of “good” models being found (i.e cheap and accurate), and thereby estimate
the computational costs involved in attempting to find the best model that can
be derived from our qualitative descriptions.

Essence’ statement Qualitative description

find x : [int(0..max)] of int(0..100) percentage of peak population
find y: [int(1..max)] of int(−r · · · r) 1st deriv. variables
find z : int(1..max− 1)] of int(−r · · · r) 2nd deriv. variables
forall i : int(1..max).y[i] = x[i]− x[i− 1] 1st deriv.definition
forall j : int(1..max− 1).z[j] = y[j + 1]− y[j] 2st deriv. definition
exists k, j : int(2..birth).

forall i : int(birth..max).
i < k ⇒ y[i] > 0 positive 1st deriv. pre-peak
i > k ⇒ y[i] < 0 negative 1st deriv. post-peak
x[k] = 100 ∧ y[k] = 0 it is a peak
i > birth⇒ |z[i]| < max smooth post-gestation

Table 1. An example of a simple qualitative model specified in Essence’. When supplied
with values for max, r, and birth, Savile Row will construct a Minion instance, the
solutions of which are all hypothetical models that respect the qualitative description.

4 Discussion

Qualitative modelling is a mature technique, with existing methods and results
for qualitative compartmental models [15, 14, 16] and for the use of CSPs to
describe and solve qualitative models [4, 7]. However, these latter studies either
reported incomplete algorithms [4] or described complicated algebras with no as-
sociated CSP modelling language or optimised CSP solver [7]. Other approaches
include process calculi and temporal logics, both of which have been shown to
be successful at the molecular level [2] and the protein network level [3, 17], but
not as yet at inter- and intra-cellular levels.



Workshop on Constraint-Based Methods for Bioinformatics (WCB12)

21

6 CSP-derived Qualitative Models

In this study we have utilised recent advances in CSP technology such as
solver-independent modelling frameworks, specification–solver interfaces that en-
hance CSP instances, and the use of solvers that can quickly find all solutions
to large and complex CSP instances [6, 5]. Taken together, these advances al-
low us to easily specify qualitative behaviour of cell dynamics, obtain solutions
that generate quantitative models, and systematically investigate the tradeoffs
between computational expense, model complexity and biological accuracy in a
domain for which there is extremely limited direct empirical data. Our investiga-
tions utilise the search heuristics used to find CSP solutions: solvers proceed by
backtrack search in a tree constructed by explicit choices for current search vari-
able and current value assignment, by randomising these choices we can explore
the space of candidate solutions.

The framework for ovarian cells treats primordial follicles as a source, and
the other types as both sinks and sources. There is no feedback in the dynamical
system, but we see no reason why this aspect could not be included if required.
We therefore believe that this initial study can generalise to other domains at
other levels of systems biology from population-based epidemiology to steered
molecular dynamics.
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Abstract. The mass flow in a chemical reaction network is determined
by the propagation of atoms from educt to product molecules within
each of the constituent chemical reactions. The Atom Mapping Problem
for a given chemical reaction is the computational task of determining
the correspondences of the atoms between educt and product molecules.
We propose here a Constraint Programming approach to identify atom
mappings for “elementary” reactions. These feature a cyclic imaginary
transition state (ITS) imposing an additional strong constraint on the
bijection between educt and product atoms. The ongoing work presented
here identifies only chemically feasible ITSs by integrating the cyclic
structure of the chemical transformation into the search.

1 Introduction

For chemical reactions often only educt and product molecules are known. The
underlying mechanism, i.e., the chemical bonds that are broken or newly formed
to transform the educt molecule into the product, is unknown. Equivalently, it
is unknown which atom in the educt corresponds to which atom in the product.
Traditionally, such knowledge is gained by isotope labeling experiments, that is,
by substituting certain atoms in an educt molecule with chemically identical but
physically recognizable variants that are then identified in the product molecules
by means of NMR or similar methods [25]. Such approaches produce a mapping
between the atoms present in the educt and product molecules and thus identify
the chemical bonds that have changed. Knowledge of the reaction mechanism
enables for instance the analysis and identification of metabolic pathways [3] or
the classification of reactions and enzymes in terms of the mechanisms [19, 20].

The in silico identification of correct atom mappings is computationally non-
trivial and an extensively studied task. First approaches analyzed the adjacency
information within educts and products [9] using branch-and-bound search fol-
lowing the Principle of Minimal Chemical Distance [17] or used topological in-
dexing based on Morgan numbering [21]. More recent methods operate directly
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Fig. 1. Example of a Diels-Alder reaction. The ITS is an alternating cycle defined by
the bonds that are broken (in red) and the bonds that are newly formed.

on graph representations of the molecules. For instance, searching for Maximum
Common Edge Subgraphs (MCES) [8, 13, 14, 20, 23], an NP-hard problem, or
the use of specialized energetic criteria [2, 18] allows for the identification of the
static parts of the reaction and, subsequently, of the atom mapping. Another
class of algorithms iteratively decomposes the molecules until only isomorphic
sub-graphs remain [1, 4, 7] since it was shown by Akutsu that the MCES ap-
proaches fail for certain reactions [1].

Here, we propose a new approach to identify chemically feasible atom map-
pings given educt and product molecules as input. This approach makes explicit
use of the observation that most reactions exhibit a cyclic transition state [16],
i.e., the chemical bonds that are broken or formed are arranged in an alternat-
ing cycle. This class of mechanisms includes in particular all pericyclic reactions
such as the Diels-Alder reaction, which is shown in Fig. 1 together with its tran-
sition state. We use this knowledge and focus on the identification of the cyclic
imaginary transition sub-graph (ITS) because once identified the overall atom
mapping is easily derived. For the identification of cyclic ITS candidates, con-
straint satisfaction problems are formulated for different cycle lengths. A fast
graph matching approach is used successively to identify the overall atom map-
ping for each ITS solution. In the following, we will detail the problem, our
constraint programming approach to identify the cyclic ITS, and how to extend
an ITS candidate to a complete atom mapping for the chemical reaction.

2 Problem Definition

Given are two sets of molecules, the educts and products of a chemical reaction,
each with n atoms. Both educts and products are represented by a single, not
necessarily connected, undirected graph denoted I = (VI , EI) for educts/input
and O = (VO, EO) for products/output. Each molecule corresponds to a con-
nected component. Nodes in a molecule graph represent atoms labeled with the
respective atom type l(x). Following the principle of mass conservation it follows
|VI | = |VO|. Edges encode covalent chemical bonds between atoms. More pre-
cisely, it is often convenient to use a multi-graph representation, in which each
bonding electron pair is represented as an edge. Non-bonding electron pairs thus
correspond to loops in the multi-graph. For the CSP formulation it will be more
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convenient, however, to use an ordinary graph representation and to label each
edge {x, y} ∈ EI ∪ EO with its bond order: single, double or triple bonds are
represented by a single edge with labels 1, 2, or 3, respectively. The matrix ele-
ments Ix,y denote the number of shared bond electron pairs for the edge between
the atoms x and y in the educt graph I, i.e., in practice Ix,y ∈ {0, 1, 2, 3}. O is
defined accordingly. If necessary, non-bonding electron pairs can be represented
by the diagonal entries Ix,x and Oy,y. Thus, the matrices I and O encode the
adjacency information of the educt and product graphs, respectively.

Consider a function α : VI → VO mapping the nodes of I onto the nodes of
O and a matrix Q rows and columns indexed by VI . Then we denote by Q ◦ α
the matrix with entries Qα(x),α(y) with rows and columns indexed by VO. Thus
Rα = O − (I ◦ α) is well defined.
Definition. An atom mapping is a bijective mapping m : VI → VO such that

1. ∀x∈VI
: l(x) = l(m(x)) (preservation of atom types)

2. Rm−→1 = 0 (preservation of bond electrons)

The reaction matrix Rm encodes the imaginary transition state (ITS) [11, 15].
This definition of m is a slightly more formal version of the Dugundji-Ugi theory
[9]. Our notation emphasizes the central role of the (not necessarily unique)
bijection m. Since we consider I and O as given fixed input, the atom mapping
m uniquely determines Rm. The pair (m,Rm), furthermore, completely defines
the chemical reaction. It therefore makes sense to associate properties of the
chemical reaction directly with the atom map m.

Equivalently, the ITS can be represented as a graph R = (VR, ER) so that
ER consists of the edges in I that are removed in O and the edges in O that were
not present in I as well as the atom nodes x ∈ VR with at least one adjacent
edge. Each edge {x, y} ∈ ER is labeled by the changes in bond order Rmx,y 6= 0.
See Fig. 1 for an example. We note that in a slightly more general setting we
can regard R = (VR, ER) as a multi-graph consisting of all electron pairs that
are formed or removed.

It is important to note that the existence of an atom mapping m as defined
above does not necessarily imply that Rm is a chemically plausible ITS.

We say that two edges {x, y}, {y, z} ∈ ER in R are alternating if Rmx,y +
Rmy,z = 0. A simple cycle in R of size k > 2 is given by the node sequence
(v1, v2, . . . , vk, v1) with vi ∈ VR, {vi, vi+1} ∈ ER, and ∀i < j ≤ k : vi 6= vj . Such
a simple cycle is called alternating if all successive edges as well as the ring
closure {v2, v1}, {v1, vk} are alternating.
Definition. An atom map m is homovalent if Rmxx = 0 for all x ∈ VR. A
homovalent reaction is elementary if its ITS R is a simple alternating cycle.
Thus Rmx,y ∈ {−1, 0,+1} holds for all elementary homovalent reactions.

In the following we outline a novel algorithm for finding atom maps for el-
ementary homovalent reactions that is guaranteed to retrieve all possible map-
pings given I, O, and the atom labels l(x) for x ∈ VI ∪ VO.

Of course, not all I,O pairs that are educts and products of chemical trans-
formation admit an atom mapping m with a homovalent elementary ITS. This
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Fig. 2. The Meisenheimer rearrangement [22] transforms nitroxides to hydroxylamines.
It does not admit a simple alternating cycle as ITS when molecules are represented as
graphs whose vertices are atoms. An extended representation, in which the additional
electron at the oxygen is treated a “pseudo-atom” can fix this issue. In such a repre-
sentation an additional “charge separation” rule has to be introduced that allows an
electron and a positive charge (here at the nitrogen in the product) to annihilate. This
would disturbe the bijectivity of m, however.

will in general be the case for multi-step reactions and for the so-called am-
bivalent reactions, in which the number of non-bonding electron pairs (and thus
the oxidation number of atoms) changes in the course of a reaction. Fig. 2, for
example shows an example of a reaction for which it is not possible to find a
simple circular ITS using the encoding above. It appears to be possible to extend
the formalism outlined above also to reactions with charged atoms and radicals.
This is much less well understood, however, and will require a deeper theoretical
analysis in the future.

3 Constraint Programming Approach

The central problem to find an elementary homovalent atom mapping is to iden-
tify the alternating cycle defining the ITS R given the adjacency information
of the educts I and products O. This can be done via solving the Constraint
Satisfaction Problem (CSP) as presented below. Note, due to the alternating
edge condition within the ITS, we have to consider rings with an even number
of atoms only. In practice, the ITS of elementary homovalent reactions involves
|VR| = 4, 6, or 8 atoms.

A CSP for an ITS of size k = |VR| is given by the triple (X,D,C) defining
the set of variables X, according domains Di, and the set of constraints C to be
fulfilled by any solution.

We construct an explicit encoding of the atom mapping using k variables
representing the ring in I and another set for the mapped nodes in O, i.e.,
X = {XI

1 , . . . , X
I
k} ∪ {XO

1 , . . . , X
O
k } with domains DI

i = VI and DO
i = VO.

To find a bijective mapping we have to ensure ∀i 6= j : XI
i 6= XI

j and ∀i 6= j :

XO
i 6= XO

j , i.e., a distinct assignment of all variables. To enforce atom label

preservation we need arc consistency for l(XI
i ) = l(XO

i ), i.e. we have to enforce
∀e ∈ DI

i : ∃p ∈ DO
i : l(e) = l(p) as well as ∀p ∈ DO

i : ∃e ∈ DI
i : l(p) = l(e).

Analogously, homovalence is represented by (IXI
i ,X

I
i
−OXO

i ,X
O
i

) = 0. Due to the
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alternating ring condition, each atom can loose or gain at most one edge during
a reaction. Thus, we can further constrain the variables with |degree(XI

i ) −
degree(XO

i )| ≤ 1; where degree(v) gives the out-degree of node v.
Finally, we have to encode the alternating cycle structure of the ITS in the

mapping, i.e., for the sequence of bonds with indices 1-2-..-k-1. For all ring pair
indices (i, j) we therefore require pairs with even index i to correspond the
formation of a bond, i.e., we enforce (OXO

i ,X
O
j
− IXI

i ,X
I
j
) = 1, while all odd

indices i are bond breaking (OXO
i ,X

O
j
− IXI

i ,X
I
j
) = −1 accordingly.

In order to avoid symmetric solutions, we introduce order constraints on the
input variables: (∀i > 1 : XI

1 < XI
i ); where Xi < Xj denotes ∃(x, y) ∈ Di ×Dj :

x < y using e.g. an index order on the nodes. This ties the smallest cycle node
to the first variable XI

1 and prevents the rotation-symmetric assignments of the
input variables. Note, since we constrain the bond (1, 2) to be a bond breaking
(OXO

1 ,X
O
2
− IXI

1 ,X
I
2

= −1), the direction of the cycle is fixed and all direction
symmetries are excluded as well.

Although the CSP is defined above for domains of nodes v ∈ VI ∪ VO it
can be easily reformulated using integer encodings of the atom nodes allowing
the application of standard constraint solvers such as Gecode [12]. This enables
the use of efficient propagators for most of the required constraints, such as
the algorithm of Regin [24] for globally unique assignments. Only a few binary
constraints, e.g. to ensure atom label preservation or the ring bonding, require
a dedicated implementation, which poses no serious obstacles.

All solutions for this CSP are chemically valid ITS candidates. In order to
check whether or not a true ITS is found we have to ensure that the remaining
atoms, i.e., those that do not participate in the ITS, can be mapped without
further bond formation or breaking. This is achieved using a standard graph
matching approach as discussed in the following.

4 Overall Atom Mapping Computation

Given the CSP formulation from above, we can enumerate all valid ITS can-
didates for all possible ring sizes k ∈ {4, 6, 8}. For a CSP solution we denote
with aIi and aOi the assigned values of the variables XI

i and XO
i , respectively.

Once the ITS candidate is fixed, we can reduce the problem to a general graph
isomorphism problem with a simple relabeling of the ITS edges. Thus, we de-
rive two new adjacency matrices I ′ and O′ from the original matrices I and
O, resp., as follows: For all ring pairs (i, j) within the ring sequence 1-2-..-k-
1, we change the corresponding adjacency information to a unique label using
I ′
aIi ,a

I
j

= O′
aOi ,a

O
j
∈ {f, b} encoding if a bond between the mapped ITS nodes is

formed (f) or broken (b). All other adjacency entries are kept the same as in I
and O, respectively.

Given these updated, “ITS encoding” adjacency matrices I ′ and O′, the
identification of the overall atom mapping m reduces to the graph isomorphism
problem based on I ′ and O′. Thus, all exact mappings of I ′ onto O′ are valid
atom mappings m of an elementary homovalent reaction, since the encoded ITS
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respects all constraints due to the CSP formulation. The graph matching can
be done using fast and efficient algorithms as the VF2-algorithm [6], which is
among the fastest available [5]. Since almost all molecular graphs are planar,
even faster algorithms [10] might be applicable as well.

5 Discussion

We have presented here a novel constraint programming approach to identify
atom mappings for elementary homovalent reactions. The incorporation of the
cyclic ITS structure within the search ensures the chemical feasibility of the
mapping that is not guaranteed by standard approaches that attempt to solve
Maximum Common Edge Subgraph Problems [1].

The formulation of the CSP using only the atoms involved in the ITS results
in a very small CSP that can be solved efficiently. Thus, it is well placed as
a filter for ITS candidates for the subsequent, computationally more expensive
graph matching approaches. While not described here, the CSP could be easily
extended to find the entire atom mapping by introducing additional matching
variables for all atoms participating in the reaction, all constrained to preserve
atom label, node degree, and bond valence information. The solutions of such
an extended CSP are the desired chemically feasible atom mappings m. This
involves a much larger search space, however.

At present, we consider elementary homovalent reactions only, i.e., for re-
actions in which the transition state is an elementary cycle with an even num-
ber of atoms. The CSP formulation can be easily extended to odd ITS cycles
(k ∈ {3, 5, 7}), but different ring layouts have to be considered. Furthermore,
such reactions are not homovalent, i.e., at least one atom participating in the
ITS is gaining or losing non-bonding electrons, which requires some moderate
changes in the formulation of the constraints.

Constrain programming appears to be a very promising approach to solving
atom mapping problems since it provides a very flexible framework to incorpo-
rate combinatorial constraints determined by the underlying rules of chemical
transformations.
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Abstract. This paper illustrates the use of ASP technology in im-
plementing the PhyloWS web service API—a recently proposed and
community-agreed standard API to enable uniform access and inter-
operation among phylogenetic applications and repositories. To date,
only very incomplete implementations of PhyloWS have been realized;
this paper demonstrates how ASP provides an ideal technology to sup-
port a more comprehensive realization of PhyloWS on a repository of
semantically-described phylogenetic studies. The paper also presents a
challenge for the developers of ASP-solvers.

1 Introduction

Phylogenetic inference is the task of constructing a phylogenetic tree that ac-
curately characterizes the evolutionary lineages among a set of given species or
genes. Phylogenetic trees allow us to understand the lineages of various species
and how various functions evolved, to inform multiple alignments, and to iden-
tify what is the most conserved or important in some class of sequences. As such,
phylogenetic trees have gained a central role in modern biology. They have be-
come fundamental tools for building new knowledge, thanks to their explanatory
and comparative-based predictive capabilities [9].

The explosive growth of phylogenetic data and the central role of phylogenetic
knowledge in system biology led to the development of a database of phylogenies,
called TreeBASE (e.g., [15, 19], www.treebase.org). The database contains phy-
logenetic trees and data matrices, together with information about the relevant
publication, taxa, morphological and sequence-based characters, and published
analyses. The trees are stored as text field strings structured in the Newick
format [8]. The database provides retrieval capabilities via a web interface, al-
lowing users to locate phylogenies and to obtain datasets for different studies.
Users can also retrieve data via a web service interface API (sourceforge.net/
apps/mediawiki/treebase/index.php?title=API). This interface can deliver data
in several different formats, including Newick, NEXUS [13], JSON, NeXML [22].

The creation of TreeBASE is a significant step towards the goal of creating
the Tree of Life. Yet, it has been recognized that the lack of interoperability and
standards in data and services between tools for the inference of phylogenies pre-
vent large-scale and integrative analyses. To address these shortcomings, several
efforts have been made. One of such efforts led to the development of an inter-
operation stack (EvoIO Stack) for the encoding and exchange of evolutionary
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structures. EvoIO comprises of (i) an ontology for data description (Comparative
Data Analysis Ontology (CDAO)) [18], (ii) an exchange format (NeXML) [22],
and (iii) a web service interface (PhyloWS ) [11].

The PhyloWS interface specification [11] identifies several classes of queries
specifically tied to phylogenies. The interface is comprehensive and represents
the most extensive collection of queries and transformations for biological phy-
logenies proposed to-date—in particular, it largely subsumes previous attempts
to characterize access to phylogenetic databases (e.g., the approach of [16], im-
plemented in Prolog by [3]). The implementation of these queries on an RDF
representation of phylogenies proved to be challenging; in particular, traditional
languages for RDF (e.g., SPARQL) do not provide the power to perform the type
of computations on phylogenies required by PhyloWS—e.g., they lack the ex-
pressive power to capture recursive computations and transitive closures (which
are essential, e.g., to determine ancestors and lineage in a phylogeny).

Contribution: In this paper, we propose a modular implementation of PhyloWS
using answer set programming (ASP) [14]. We present the encoding of PhyloWS,
which shows that ASP is ideal to answer various types queries from the PhyloWS
specification. Experimental results are presented in a companion paper [12].

The overall implementation of PhyloWS is depicted in Figure 1. The top part
shows the components of the system necessary to populate CDAOStore; CDAO-
Store [3] is a triple store,
built using CDAO and
used for our experiments.
First, data from current
phylogenetic tree repos-
itories (e.g., TreeBASE)
is extracted into NeXML
data files (Extractor) and
converted to CDAO rep-
resentation (Converter).
This process is executed
only once to populate the
repository of phylogenetic
data in CDAO represen- Fig. 1: Overall Structure: System Implementation

tation. A standard XML-parser is used to generate triples from NeXML and
import them into the CDAOStore.

The main contribution of this paper is the PhyloWS box. User queries are ana-
lyzed by a query analyzer that determines the actual ASP-code and the necessary
data type from the CDAOStore repository. This information is passed on to the
Triples Extractor module. The ASP program (facts and code) is sent to the ASP
solver to compute its answer sets. The export module obtains the answer sets
from the solver and generates the answer for the user. Let us emphasize that
the PhyloWS implementation in this paper is fully modular, and can be applied
to any data source that can provide phylogenetic data as CDAO RDF triples.
Note, that in the construction of the CDAOStore, we were able to reuse the pro-
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totype described in [3]. The present system includes several improvements over
the reported prototype—e.g., it is able to extract all studies from TreeBASE,
the conversion to CDAO is more precise.

2 PhyloWS in ASP

PhyloWS [11] is a web-services standard for accessing phylogenetic trees, data
matrices, and their associated metadata from online phylogenetic data. Together
with NeXML and CDAO, PhyloWS is a part of the platform, called EvoIO Stack
[20], that combines support for exchange of data and their semantics and pre-
dictable programmatic access. To date, PhyloWS only exists as a specification.
The implementation proposed in this paper is its first implementation1. Phy-
loWS contains specification for a variety of tasks necessary for the creation,
maintaining, retrieving, and manipulating of phylogenetic data (e.g., trees, ma-
trices). In this paper, we will focus on the services for retrieving phylogenetic
data. For efficiency purpose, we develop a front-end that analyzes the queries
and determines the type of phylogenetic data that needs to be extracted from
the CDAO repository. Presently, the type of data corresponds to the type of
queries. For example, for a node-oriented query, information about the trees
(nodes and edges) will be extracted. The Triples Extractor module is responsi-
ble for extracting the necessary information from the CDAO representation and
generating ASP facts for use to answer the query. Observe that this task can be
combined and executed via ASP extensions such as dlvhex [4]. We will discuss
the reason behind our design choice in the discussion part of the paper.
Representing CDAO in ASP. The information about phylogenies can be
easily encoded as ASP facts. Following are some sample facts generated by the
Triples Extractor module:

tree(t_id). % t_id is a tree

tree_is_defined_by(t_id,s_id). % t_id is studied in s_id

tree_ntax(t_id,n_Taxa). % t_id has n_Taxa taxa

edge(t_id,n1,n2). % t_id contains an edge from n1 to n2

edge_length(t_id,n1,n2,l). % l = length of the edge (n1,n2) in t_id

represents_TU(t_id,n1,tu_id). % node n1 of t_id represents tu_id

taxon_id(tu_id,taxon_id). % tu_id represents taxon_id

matrix_type(m_id,m_type). % matrix m_id is of the type "m_type"

belongs_to_TU(m_id,cell,tu_id). % cell in matrix m_id belongs to tu_id

ASP Encoding of PhyloWS. The encoding of the PhyloWS in ASP starts
with the definition of a set of rules that will be frequently used in several types
of queries. The rules defined common concepts like node(T,N) (N is a node of
tree T), parent(T,N1,N2) (N1 is the parent of N2 in tree T), etc. It also de-
fines the predicate common ancestor of a set of taxa, identified by the predicate
set of taxa, whose elements will be specified by member/2.

1 The implementation of PhyloWS at sourceforge.net/apps/mediawiki/treebase/

index.php?title=API is tailored to TreeBASE and limited to simple retrievals.
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Node-oriented Queries. We currently consider four frequently used node-
oriented queries.

• Query N1: compute the most recent common ancestor of two or more leaf
nodes in a specified tree. The input consists of a tree t and a set s of leaf
nodes in t. The output should be the most recent common ancestor n of
elements in s, denoted by mrca(n, s), determined using the ASP rule:

mrca(N, S):- tree(T), node(T,N), set_of_taxa(S),

common_ancestor(T,N,S),

{common_ancestor(T,Nb,S): ancestor(T,N,Nb)}0.

• Query N2: compute the patristic distance between two taxa in a given tree.
The patristic distance between taxa n1 and n2 of a tree t is defined as the
sum of the distances from the most recent common ancestor to each node:

set_of_taxa(s). member(n1,s). member(n2, s).

distance_to_ancestor(T,N1,N2,L):- parent(T,N1,N2),

edge_length(T,N1,N2,L).

distance_to_ancestor(T,N1,N2,D):- parent(T,Nb,N2),

edge_length(T,Nb,N2,L),

distance_to_ancestor(T,N1,Nb,L2), D=L+L2.

patristic_distance(T,N1,N2,D):- mrca(M, s), D=L1+L2,

distance_to_ancestor(T,M,n1,L1),

distance_to_ancestor(T,M,n2,L2).

The rules are simple thanks to the definition of the most recent common
ancestor of a set in Query N1. Rules for computing the distance are standard.

• Query N3: identify the set of matching nodes of a tree whose distance to the
root is greater than a predefined distance. Given a tree t (e.g., by identifier)
and a distance c, output the matching nodes whose distance to the root is
greater than c. This is implemented by the following rule:

matching_nodes(T,N):- root(T,R), distance_to_ancestor(T,R,N,L), L>=c.

• Query N4: compute the lineage of ancestors of a node. Given a tree t, a node
n, the lineage of ancestors for n can be determine by the following rule, built
using the facts has Ancestor(t, n, x), i.e., x is an ancestor of n in t.

lineage_node(T,N,Ancestor_id) :- has_Ancestor(T,N,Ancestor_id).

Clade-oriented Queries. Two typical clade-oriented queries are implemented.

• Query C1: find the minimum spanning clade and the taxonomic units (TUs)
of the clade for a set of taxa in a specified tree. Given a set of taxa s,
determine the minimum spanning clade of s and its TUs. Nodes belong
to the minimum spanning clade are represented by the atoms of the form
minimum clade(s, n). Atoms of the form label(x, y) represent the label as-
sociated to the nodes in the clade. Since the answer is the tree whose root is
the mrca n of s and all n’s descendants, this can be implemented as follows.

minimum_clade(S,N):- tree(T), node(T,N), mrca(N, S).

minimum_clade(S,D):- tree(T), node(T,N), mrca(N, S), ancestor(T,N,D).

label(D,TU_Label):- tree(T), minimum_clade(_,D),

represents_TU(T,D,TU),tu_label(T,TU,TU_Label).
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The first rule states that the given most recent common ancestor belongs to
the minimum clade. The next rule obtains all of its descendants.

• Query C2: find a clade in a tree whose taxa has a given character, i.e., given
a tree t and a character c, find a clade (or all) s of t s.t. every taxon in s has
the character c.

clade(s). {in_clade(s,N) : leaf(t,N)}.

member(N,s):- in_clade(s,N).

:- minimum_clade(s, N),not in_clade(s, N).

:- in_clade(s,N), represents_TU(T,N,TU),

belongs_to_TU(M,Cell,TU), not belongs_to_Character(M,Cell,c).

The fact clade(s) specifies the name s of the clade produced. The choice
rule states that a leaf might or might not belong to the clade. The third rule
defines the membership of the node in the set of taxa s that has been selected
to determine the minimum clade (Query C1). The first constraint ensures
that the elements of the clade are only those that are selected. The second
removes clades that contain taxa that do not have the specified character.

Tree-oriented Queries. We consider eight types of tree-oriented queries.

• Query T1: find trees matching a topology. The topology can be given by (i)
the range of the numbers of taxa count of the tree, i.e., between n − c and
n + c for two constants n and c; (ii) the range of the width of the tree; etc.
Most of the above queries can be straightforwardly encoded in ASP. For
example, given a constant c and the tree tr13, the following rule determines
all trees with their taxa count in the range [n − c, n + c] where n is the
number of taxa of tr13. The rule makes use of the predicate tree ntax(t, n)
that represents the number of taxa of a tree.

matching_ntax(T,Cnt):- tree_ntax(tr13,N),tree_ntax(T,Cnt),

Cnt <= N+c,Cnt>=N-c.

• Query T2: find trees whose length is shorter (or longer) than the length of
a given tree (or a constant) where the tree length is defined as the maximal
distance from the root of the tree to its taxa (leaves). This type of queries can
be answered with the definition of the tree length, implemented as follows.

distance_to_root(T,N,L):- root(T,R),leaf(T,N),

distance_to_ancestor(T,R,N,L).

tree_length(T,L):- root(T,R), leaf(T,N), distance_to_root(T,N,L),

{distance_to_root(T,X,L1): L1>L}0.

• Query T3: find trees with the shortest distance from the root to a given node
n. This can be easily implemented using the predicate distance to root.

• Query T4: given a set s of OTUs (or taxa), find a tree containing this set.
We present the rules for identifying trees with a set of OTU, specified by the
atom otu set(s) and the membership atoms member(x, s).

connect_tu(TU,S,T):- tree(T),otu_set(S),member(TU,S),

represents_TU(T,_,TU).

tree_otus(T,S):- tree(T),otu_set(S),

{member(TU,S):not connect_tu(TU,S,T)}0.
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• Query T5: find trees based on tree metadata. For example, trees that were
(i) created by some author; (ii) created before a given date; (iii) built with
a given type of data; etc. Since the data included in each study contains
information such as has creator, has creationDate, matrix type, etc. this
type of queries can be implemented in an obvious manner.

• Query T6: identify trees by the parsimony tree length which is defined by the
total number of characters of its taxa. This can be implemented as follows.

parsimony_length(T,L):- tree(T),

L = #count {belongs_to_Character(_,Cell_id,Character):

belongs_to_TU(_,Cell_id,TU_id):represents_TU(T,_,TU_id)}.

• Query T7: determine trees with size greater (or smaller) than a given con-
stant c, or a certain ratio r of internal to external nodes. Using the aggregate
function #count, this type of query can be implemented as follows2.

matching_tree_size(T,S):- tree(T), S = #count {node(T,_)}, S>=c.

internal_node(T,N):- node(T,N), not leaf(T,N).

matching_tree_ratio(T):- tree(T),R=R1/R2, R>=r,

R1 = #count {internal_node(T,_)}, R2 = #count {leaf(T,_)}.

• Query T8: computing the Robinson-Foulds distance [1] between two trees.
The Robinson-Foulds distance is frequently used to compare phylogenetic
trees. It measures the number of clusters of descendant leaves that are not
shared by the two trees. The Robinson-Foulds distance of two trees T1 and
T2 can be computed using the following algorithm:

◦ Compute the multi-set of clusters of each tree, where each cluster is a
set of taxa (leaves) that are descendants of an internal node n. Let us
denote the set of clusters of T1 and T2 by C(T1) and C(T2), respectively.

◦ Compute D1 (resp. D2), the number of clusters which belong C(T1) \
C(T2) (resp. C(T2) \ C(T1)).

The Robinson-Foulds distance is then defined by (D1 + D2)/2. Given two
trees T1 and T2, we define the predicate rf distance(T1, T2, D1, D2) that
encodes the Robinson-Foulds distance. This can be implemented using the
following set of ASP rules.

in_cluster(T,N,L):- internal(T,N), leaf(T,L), ancestor(T,N,L).

neq_cluster(X,Y):- internal(T1,X),internal(T2,Y),T1!=T2,i

n_cluster(T1,X,L), not in_cluster(T2,Y,L).

neq_cluster(X,Y):- internal(T1,X),internal(T2,Y),T1!=T2,

not in_cluster(T1,X,L),in_cluster(T2,Y,L).

eq_cluster(X,Y,T1,T2):- internal(T1,X),internal(T2,Y),T1!=T2,

not neq_cluster(X,Y).

{matched(X,Y,T1,T2) : eq_cluster(X,Y,T1,T2)}.

2{used(T1,X), used(T2,Y)}:- matched(X,Y,T1,T2).

matched(X,Y,T1,T2):- matched(Y,X,T2,T1).

:-matched(X,Y,T1,T2),matched(X,Z,T1,T2),Y!=Z.

:-matched(Y,X,T1,T2),matched(Z,X,T1,T2),Y!=Z.

2 The code assumes that the ratio is an integer. Using the scripting feature available
for clingo, this assumption can be removed.
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:-eq_cluster(X,Y,T1,T2), not used(T1,X), not used(T2,Y).

not_matched(T,N):- internal(T,N),not used(T,N).

rf_distance(T1,T2,D1,D2):- tree(T1), tree(T2), T1!=T2,

D1 = #count {not_matched(T1,N)}, D2 = #count{not_matched(T2,N)}.

The clusters are named by the internal nodes. The first rule defines the el-
ements of a cluster. Next two rules state that two clusters from different
trees are different when their sets of taxa are different. The third rule de-
fines when two clusters are identical. The choice rule defines the predicate
matched(X,Y, T1, T2) among identical clusters of the trees. The next rules
define the predicates matched(X,Y, T1, T2), used(X,T1), and used(Y, T2),
indicating that the cluster X of tree T1 is identical to the cluster Y of tree
T2 and will not be counted towards D1 and D2 respectively. The constraints
ensure that each cluster is used to match with at most one cluster and the
matching should be done as long as it is possible. not matched(T,N) indi-
cates the cluster that is not matched with any cluster of another tree. The
last rule encodes the Robinson-Foulds distance.

Data-oriented Queries. We consider four types of data-oriented queries.

• Query D1: list metadata for a given taxon n or a given tree t. Such informa-
tion is available from the facts associated to the tree, e.g.,

metadata_belongs_to(N,T,Study_id):- node(T,N),

tree_is_defined_by(T,Study_id).

metadata_represents(N,TUId,TULabel,TaxonId,TaxonVariant,Ncbi,Ubio):-

represents_TU(T,N,TUId), tu_label(T,TUId,TULabel),

taxon_id(TUId,TaxonId),taxonVariant_id(TUId,TaxonVariant),

ncbi_id(TUId,Ncbi), ubio_id(TUId,Ubio).

metadata_character(N,Character_id):-

represents_TU(_,N,TU_id),belongs_to_TU(_,Cell_id,Tu_id),

belongs_to_Character(_,Cell_id,Character_id).

• Query D2: identify all matrices containing a given OTU (tu id); or deter-
mine all characters in a matrix (m id) that have data for an OTU. This
query is encoded as follows.

matrices_with_otu(M,tu_id):- has_TU(M,tu_id).

character_has_otu(C,m_id,tu_id):- belongs_to_TU(m_id,Cell,tu_id),

belongs_to_Character(m_id,Cell,C).

• Query D3: identify all OTUs in a matrix which have a given set of characters:

has_character(Tu,C):- belongs_to_TU(M,Cell,Tu),

belongs_to_Character(M,Cell,C).

obtain_otus_having_characters(Tu,S):- has_TU(M,Tu),set_characters(S),

{member(C,S): not has_character(Tu,C)}0.

obtain_otus_having_characters_belonging_matrix(matrix_id,Tu,S):-

has_TU(M,Tu), set_characters(S),

{member(C,S): not has_character(Tu,C)}0.

• Query D4: identify the character that appears in all matrices containing data
for a given set of OTUs. The ASP rules for this query are:

matching_matrices(M,S):- otu_set(S), has_TU(M,_),
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{member(E,S): not has_TU(M,E)}0.

has_character(M,C):- belongs_to_Character(M,_,C).

character_in_all_matrices(C):- matching_matrices(M,S),

has_character(M,C),

{matching_matrices(M1,S): not has_character(M1,C)}0.

The first rule identifies the matrix that contains all the given OTUs. The
other rules search for the characters that appear in all those matrices.

3 Discussion and Conclusions

Design Choices. ASP technologies have been extended to allow ASP programs
interact with ontologies such as the system dlvhex [4]. As such, it is natural to
ask the question of whether PhyloWS could be implemented using dlvhex and
how would the system perform. To answer these questions, we have experimented
with the web interface at http://asptut.gibbi.com/. With a few changes in
the syntax to conform with the dlvhex syntax, most queries can be executed
with sample data. The difficulty arises when we attempt to run with the real
data. As it turns out, converting everything into triples using dlvhex using the
command: triple(X,Y,Z):-&rdf[file_URI](X,Y,Z) and then defining neces-
sary predicates such as has TU, belongs to TU using LP rules such as3

has_TU(X,Z) :- triple(X,"<http://___/cdao.owl#has_TU>",Z).

belongs_to_TU(X1,Y1,Z1) :-

triple(X1,"<http://___/cdao.owl#has_Character>",Z2),

triple(Y1,"<http://___/cdao.owl#belongs_to_Character>",Z2),

triple(Y1,"<http://___/cdao.owl#belongs_to_TU>", Z1).

does not provide the desired efficiency. For example, our parser took 30 minutes
to process the study S261 (12 MB in CDAO representation); the web-interface
does not return the result after 1.5 hours. This indicates that a straightforward
application of dlvhex features to simplify the amount of programming will not
yield an acceptable result. We are planning to further experiment with dlvhex

without using the web-interface.
The huge size of the CDAO files and the lack of an efficient interface between

ASP and ontologies led to the use of the parser (using JAVA and the Jena
framework) to generate facts from CDAO and store them in the CDAOStore.

As noted, the current size of the CDAOStore is about 5GB. Intuitively, any
query listed in Section 2 could have been processed using this data. However,
clingo cannot deal with file larger than 70 MB. We observed this during our
experiment: whenever the amount of data is more than 70MB, a killed message
is displayed and the computation is aborted. The Query Analyzer and Triple
Extractor modules are developed to deal with this issue.
Limitations and Challenges. The previous discussion details some limitations
of the current system. While it would be interesting whether the use of dlvhex

3 ___ stands for www.evolutionaryontology.org/cdao/1.0.
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will help us to eliminate the intermediate steps of the Query Analyzer and Triple
Extractor modules, the critical limitation lies in the scalability of ASP-solver.
As we have mentioned, clingo cannot yet deal with input larger than 70MB.
Considering that in the current experiment, we only use data from 261 studies
(around 1/10 of the total number of studies) and the necessary data could go up
to 44MB, a full implementation of PhyloWS using ASP will require additional
techniques and better solvers. This also raises the question of whether other ASP
extensions (e.g., DLVDB [21]) provide a more scalable implementation.
Conclusion and Future Work. We described an ASP based implementation
of PhyloWS, a web services API for phylogenetic applications. The implemen-
tation focuses on retrieval services, expressed by four different types of queries.
We discussed the ASP implementation of the queries and evaluated with data
from 261 studies extracted from TreeBASE. We detailed the design choices and
discussed its limitations, that presents a challenge to the ASP community.

To continue with the development of PhyloWS, we plan to exploit the strengths
of ASP to enrich PhyloWS with (i) constraints over the answers; and (ii) prefer-
ences between answers. We envision that this can be achieved via a web-interface
that not only allows users to specify their queries but also the additional con-
straints and preferences. We plan to experiment with other ASP-extensions such
as dlvhex or DLVDB to identify a more scalable system. In addition, we will
also investigate whether different methods of computing answer sets (e.g., us-
ing reactive answer set solver) could be useful. Finally, we plan to complete the
import of data from the 9558 CDAO files to CDAOStore.
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